Collective Operationsin an Application-level Fault Tolerant MPI System

Greg Bronevetsky, Daniel Marques, Keshav Pingali, Paul Stodghill
Department of Computer Science,
Cornell University, Ithaca, NY 14853

Abstract

The running times of many computational science programs
are now significantly greater than the mean-time-between-
failures (MTBF) of the hardware they run on. There-
fore, fault-tolerance is becoming a critical issue on high-
performance platforms.

Checkpointing is a technique for making programs fault
tolerant by periodically saving their state and restoring this
state after failure. In system-level checkpointing, the state
of the entire machine is saved periodically on stable stor-
age. This has too much overhead to be practical on high-
performance platforms with thousands of processors. In
practice, programmers do manual checkpointing by writing
codeto (i) save the values of key program variables at criti-
cal pointsin the program, and (ii) restore the entire compu-
tational state from these values during recovery. However,
this can be difficult to do in general MPI programs.

In an earlier paper, we presented a distributed check-
point coordination protocol which handles MPI's point-to-
point constructs, and deals with the unique challenges of
application-level checkpointing. This protocol is imple-
mented by a thin software layer that sits between the ap-
plication program and the MPI library, so it does not require
any modifications to the MPI library. However, it did not
handl e collective communication, which is a very important
part of MPI. In this paper we extend the protocol to handle
MPI’s collective communication constructs.

1 Introduction

The problem of implementing software systems that can tol-
erate hardware failures has been studied extensively by the
distributed systems community [6]. In contrast, the paral-
lel computing community has largely ignored this problem
because until recently, most parallel computing was done
on relatively reliable big-iron machines whose mean-time-
between-failures (MTBF) was much longer than the execu-

OThis work was supported by NSF grants ACI-9870687, EIA-9972853,
ACI-0085969, ACI-0090217, ACI-0103723, and ACI-0121401.

tion time of most programs. However, new trends in high-
performance computing, such as the popularity of custom-
assembled clusters, the dawn of grid computing, and increas-
ing complexity of parallel machines, areincreasing the prob-
ability of hardware failures, making it imperative that paral-
lel programstolerate hardware failures.

Unfortunately, many fault tolerance techniques devel-
oped by the distributed systems community do not scale well
to parallel applications running on large parallel platforms
such as the ASCI machines [10] which have thousands of
processors. System-level checkpointing protocols [9] [12]
require all processors to save 'core-dump’ style snapshots
of their computations periodically on stable storage; upon
failure, al processors resume execution from the last snap-
shot. Unfortunately, the torrent of data saved at each check-
point can overwhelm the disk storage system, so few high-
performance machines support or encouragethis style of ob-
taining fault-tolerance. Message logging approaches avoid
writing to disk by logging messages in memory when they
are sent; when afailed processis restarted, other processes
help it to recover by replaying the messages they had sent
it before it failed. Unfortunately, parallel programs commu-
nicate very frequently and send large amounts of data, so
message logs can quickly fill up al the memory.

One solution that has been employed successfully for
parallel programsis application-level checkpointing. In this
approach, the programmer is responsible for saving compu-
tational state periodically, and for restoring this state after
failure. In many programs, it is possible to recover the full
computational state from relatively small amounts of data
saved at key places in the program. For example, in an ab
initio protein-folding application, it is sufficient to period-
ically save the positions and velocities of the bases of the
protein; thisis a few megabytes of information, in contrast
to the hundreds of gigabytes of information that would be
saved by asystem-level checkpoint.

This kind of manual application-level checkpointing
is feasible if the paralel program is written in a bulk-
synchronous manner, but it is not clear how it can be ap-
plied to a general MIMD program without global barriers.

Without global synchronization, it is not obvious when the
state of each process should be saved so asto obtain aglobal
snapshot of the parallel computation. Protocols such as the
Chandy-Lamport [4] protocol have been designed by the
distributed systems community to address this problem, but
these protocols were designed for system-level checkpoint-
ing, and cannot be applied to application-level checkpoint-
ing, as we explainin Section 2.

In a previous paper [2], we argued that these prob-
lems can be circumvented by using a semi-automatic
system for implementing application-level fault tolerance.
With this system, the applications programmer inserts
PotentialCheckpoint () cals at points in the pro-
gramwhereit may be advantageousto take checkpoints. Our
system does the rest. It consists of two parts, a precompiler
and a runtime co-ordination layer.

1. The precompiler figures out what state needs to be
saved at each potential checkpoint, and inserts code to
save that state, and to restore it during recovery. Pro-
gram analysis is used to reduce the state that is saved
at each checkpoint. In this manner, we may gain the
efficiency of manually inserted checkpointing, without
the effort.

2. The co-ordination layer co-ordinates the checkpoints
taken by different processes. It implementsanovel pro-
tocol designed by us for non-blocking application-level
checkpointing of MPI programs.

An overview of this system isgiven in Section 3.

Collective communication calls are an important part of
the MPI standard [8]. One deficiency of our existing system
is that it did not handle collective communication. In Sec-
tion 4, we provide a taxonomy of collective communication
constructsin MPI. We divide these callsinto four groups de-
pending on the directions of data flow in these calls. The
co-ordination layer handles each of these groups differently.
The protocol it implements for each group is described in
Section 5. In Section 6, we provide experimental measure-
ments of the overhead of the protocol for collective commu-
nication. We show that this overhead is acceptable. Finaly,
we conclude in Section 8 with a description of future work.

2 Difficulties in Application-level Checkpointing
of MPI programs

In this section, we describe the difficulties with imple-
menting application-level, coordinated, non-blocking check-
pointing for MPI programs. In particular, we argue that
existing protocols for non-blocking parallel checkpointing,
which were designed for system-level checkpointers, are not
suitable when the state saving occurs at the application level.
In Section 3, we show how these difficulties are overcome
with our approach.

’

p._ 0 ' 1N 2

I
I
1 X X
| ! \
! ' Intra-epoch Later
QL0 1 ‘y 2
I ‘\ \\\
I \ ~
3 0 Y 1 Early\\\V 2
\ 7% /\\
i R

'
v
\

R

I ~
Start S
of program Global Checkpoint 1 Global Checkpoint 2

Figure 1. Epochs and message classification

2.1 Terminology

We assume that a distinguished process called the initiator
triggers the creation of global checkpoints periodically. We
assumethat it doesnot initiate the creation of aglobal check-
point before all previous global checkpoints have been cre-
ated and committed to stable storage.

The execution of an application process can therefore be
divided into a succession of epochs where an epoch is the
period between two successive local checkpoints (by con-
vention, the start of the program is assumed to begin thefirst
epoch). Epochs are labeled successively by integers starting
at zero, as shownin Figure 1.

It is convenient to classify an application message into
three categories depending on the epoch numbers of the
sending and receiving processes at the points in the appli-
cation program execution when the message is sent and re-
ceived respectively.

Definition 1 Given an application message from process A
to process B, let e 4 be the epoch number of A at the point in
the application program execution when the send command
is executed, and let e g be the epoch number of B at the point
when the message is delivered to the application.

e Late message: If ey < ep, themessageissaid to bea
late message.

o Intra-epoch message: If e 4 = e, the message is said
to be an intra-epoch message.

e Early message: If e4 > ep, the message is said to be
an early message.

Figure 1 shows examples of the three kinds of messages,
using the execution trace of three processes named P, Q and
R. The source of the arrow represents the point in the exe-
cution of the sending process at which control returns from
the MPI routine that was invoked to send this message. Sim-
ilarly, the destination of the arrow represents the delivery of
the message to the application program.

In the literature, late messages are sometimes called in-
flight messages, and early messages are sometime called in-
consistent messages. This terminology was developedin the
context of system-level checkpointing protocols but in our
opinion, it is misleading in the context of application-level
checkpointing.

2.2 Delayed state-saving

A fundamental difference between system-level check-
pointing and application-level checkpointing is that a
system-level checkpoint may be taken at any time dur-
ing a program’'s execution, while an application-level
checkpoint can only be taken when a program executes
PotentialCheckpoint cals.

System-level checkpointing protocols, such as the
Chandy-Lamport distributed snapshot protocol, exploit this
flexibility with checkpoint scheduling to avoid the creation
of early messages — during the creation of a global check-
point, a process P must take its local checkpoint before it
can read a message from process (that was sent after Q
took its own checkpoint. This strategy does not work for
application-level checkpointing, because process P might
need to receive an early message before it can arrive a a
point whereit may take a checkpoint.

Therefore, unlike system-level checkpointing protocols,
application-level checkpointing protocols must handle both
late and early messages.

2.3 Handling late and early messages

We use Figure 1 to illustrate the issues associated with late
and early messages.

Suppose that one of the processes in this figure fails af -
ter the taking of Global Checkpoint 2. For process @) to
recover correctly, it must obtain the late message that was
sent to it by process P prior to the failure. Therefore, we
need mechanisms for (i) identifying late messages and sav-
ing them along with the global checkpoint, and (ii) replay-
ing these messages to the receiving process during recovery.
In our implementation, each process usesarecoveryLog
to save late messages after taking its local checkpoint; once
logging is complete, the contents of thisrecoveryLog are
saved on stable storage’. L ate messages must be handled by
many system-level checkpointing protocolsas well.

Early messages, such as the message sent from process
Q to process R pose a different problem. On recovery, pro-
cess R does not expect to be resent this message, so process
@ must suppress sending it. To handle this, we need mech-
anisms for (i) identifying early messages, and (ii) ensuring
that they are not resent during recovery. In our implemen-
tation, each process uses a suppressList to log early
messages; once logging is complete, the suppressList
is saved on stable storage.

Early messages also pose a separate and more subtle
problem. The saved state of process R at Global Checkpoint

1There is an entire class of fault-tolerance mechanics described in the
distributed systems literature that is based upon the message logging. How-
ever, our use of message logging is fundamentally different than these.
Whereas, the classic approaches logs all messages over the entire program
execution, we log only subset of messages that occur within a small execu-
tion window. This difference is discussed further in Section 7.

2 may depend on data contained in the early message from
process (). If that data were a random number generated
by @, R's state would be dependent on a non-deterministic
event at Q. If this number isre-generated by () on recovery,
@ and R may disagree on its value after recovery.

In general, we must ensure that if a global checkpoint
depends on a non-deterministic event, that event will re-
occur the same way after restart. Therefore, mechanismsare
needed to (i) log the non-deterministic events that a global
checkpoint depends on, so that (ii) these events can be re-
played during recovery.

2.4 Problems specific to MPI

In addition to the problems discussed above, problems spe-
cific to MPI must be addressed.

Many of the protocols in the literature such as the
Chandy-Lamport protocol assume that communication be-
tween processes is FIFO. In MPI, if a process P sends mes-
sages with different tags or communicators to a process Q,
than Q may require them in an order different from the or-
der in which P sent them. It is important to note that this
problem has nothing to do with the FIFO (or lack of) behav-
ior of the underlying communication system; rather, it is a
property of a particular application.

MPI aso supports a very rich set of group communica
tion calls called collective communication calls. These calls
are used to do broadcasts, reductions, etc. The problemwith
collective calls is that in a single collective cal, some pro-
cesses may invoke the call before taking their checkpoints
while other processes may invoke the call after taking their
checkpoints. Unless something is done, only a subset of the
processes will re-invoke the collective call during recovery,
which would be incorrect.

Finally, the MPI library has internal state that may need
to be saved with checkpoints. It is not clear how this can be
accomplished without access to the MPI library code. On
the other hand, modifying the MPI library reducesthe porta-
bility of our system.

3 The Point-to-point Protocol

In [2], we describe the coordination protocol for global
checkpointing. This protocol handles point-to-point com-
munication only. In this section, we will summarize this
protocol and in Section 5, we extend this protocol to han-
dle collective communication. The protocol is independent
of the technique used by processesto take local checkpoints
which are discussed in [2] and which we will not describe
further here.

3.1 High-level description of protocol

Phase #1 To initiate a distributed snapshot, the initiator
sends a control message called pleaseCheckpoint to all ap-

plication processes. Each application process must take a
local checkpoint at some time after it receives this request.
In between, it sends and receives messages normally; other-
wise, the program may deadl ock.

Phase #2 When an application process reachesapoint in
the program where it can take alocal checkpoint, it savesits
local state and the identities of any early messages on stable
storage. It then starts writing alog of (i) every late message
it receives, and (ii) the result of every non-deterministic de-
cision it makes. Once a process has received al of its late
messages?, it sends a control message called readyToSto-
pLogging back to the initiator, but continues to write non-
deterministic decisionsto thelog.

Phase #3 When the initiator gets a readyToStopLogging
message from all processes, it knows that every process has
taken its local checkpoint. Since every process has transi-
tioned to the new epoch, any message sent by any processor
after the initiator has acquired this knowledge cannot be an
early message. Therefore, all processes can stop logging. To
share this information with the other processes, the initia-
tor sends a control message called stopLogging to all other
processes.

Phase #4 An application process stops logging when (i)
it receives a stopLogging message from the initiator, or (ii) it
receives a message from a process that has stopped logging.

The second condition is alittle subtle. Because we make
no assumptions about message delivery order, it is possible
for the following sequence of eventsto happen.

1. Process P receives a stopLogging message from theini-
tiator, and stops logging.

2. P makes a non-deterministic decision.

3. P sends a message containing this decision to process
Q, whichis still logging.

4. Process Q uses this information to create an event that
it logs.

When Q savesitslog, we have aproblem: the saved state
of the global computation is causally dependent on an event
that was not itself saved. To avoid this problem, we require
aprocessto stop logging if it receives a message from a pro-
cess that has itself stopped logging. These conditions for
terminating logging can be described quiteintuitively asfol-
lows: aprocess stopsloggingwhenit hearsfromthe initiator
or from another process that all processes have taken their
checkpoints.

Once the process has saved its log on disk, it sends a
stoppedLogging message back to theinitiator. When theini-
tiator receives a stoppedLogging message from all processes,
it records on stable storage that the checkpoint that was just
created is the one to be used for recovery, and terminates the
protocol.

2We assume the application code receives all messages that it sends.

P—%

bl

Recovery line Stop-log line

Figure 2: Possible Patterns of Communication

3.2 Guarantees provided by the protocol

It can be shown that this protocol providescertain guarantees
that are useful for reasoning about correctness. First, we
introduce the following terminol ogy.

Definition 2 In the context of a single global checkpoint, a
process P is said to be

o behind the recovery line if it has not yet taken its local
checkpoint,

o beyond the recovery lineif it has taken itslocal check-
point,

o behind the stop-log lineif it is beyond the recovery line
but has not stopped logging.

o beyondthestop-loglineif it isbeyond both the recovery
line and the stop-log line.

Claim 1 The protocol described in this section provides the
following guarantees.

1. No process can stop logging until all processes are be-
yond the recovery line.

2. Aprocess P that is beyond the stop-log line cannot send
a message to a process Q that is behind the stop-log
line.

3. Aprocess P that is beyond the stop-log line cannot re-
celve a message from a process Q that is behind the
recovery line.

Figure 2 shows the possible communication patterns,
given these guarantees. For example, a message sent by
process Q at point bl (behind the recovery line) cannot be
received by process P at point g3 (beyond the stop-log line).

3.3 Piggybacked information on messages

To implement this protocol, the protocol layer must piggy-
back asmall amount of information on each application mes-
sage. Thereceiver of amessage uses this piggybacked infor-
mation to answer the following questions.

1. Isthe message alate, intra-epoch, or early message?
2. Hasthe sending process stopped logging?

3. Which messages should not be resent during recovery?

The piggybacked values on a message are derived from
the following values maintained on each process by the pro-
tocol layer.

e epoch: Thisinteger keeps track of the epoch in which
the process is. It isinitialized to O at start of execu-
tion, and incremented whenever that processtakesalo-
cal checkpoint.

e amlLogging: Thisisabooleanthat istrue when the pro-
cessislogging, and false otherwise.

e nextMessagelD: This is an integer which is initialized
to 0 at the beginning of each epoch, and isincremented
whenever the process sends a message. Piggybacking
this value on each application message in an epoch en-
sures that each message sent by a given process in a
particular epoch has aunique ID.

A simple implementation of the protocol can piggy-
back all three values on each message that is sent by the
application. When a message is received, the protocol
layer at the receiver examines the piggybacked epoch num-
ber and compares it with the epoch number of the re-
ceiver to determine if the message is late, intra-epoch, or
early. By looking at the piggybacked boolean, it determines
whether the sender is still logging. Finaly, if the message
is an early message, the receiver adds the pair <sender,
messagel D> to its suppressList. Each processor saves
its suppressList to stable storage when it takesitslocal
checkpoint. During recovery, each processor passes its list
of messagel D's to their sender processors so that resending
these messages can be suppressed.

Further economy in piggybacking can be achieved if we
exploit the fact that at most one global checkpoint can be
ongoing at any time. This meansthat the epochsof processes
can differ by at most one. Let us imagine that epochs are
colored red and green aternatively. When the receiver isin
agreen epoch, and it receives a message from a sender in a
green epoch, that message must be an intra-epoch message.
If the message is from a sender in a red epoch, the message
could be either a late message or an early message. It is
easy to see that if the receiver is not logging, the message
must be an early message; otherwise, it is a late message.
Therefore, a process need only keep track of the color of
its epoch, and this color bit can be piggybacked instead of
the epoch number. With this optimization, the piggybacked
information reduces to two booleans and an integer.

By exploiting the semantics of MPI, it is possible to
eliminate the integer atogether, and piggyback only the two
boolean values color and amLogging. We will not discuss
this optimization further.

3.4 Completion of receipt of late messages

Finaly, we need a mechanism for alowing an application
process in one epoch to determine when it has received al
the late messages sent in the previous epoch. Protocols such
as the Chandy-Lamport algorithm assume FIFO communi-
cation between processes, so they do not need explicit mech-
anismsto solve this problem. Since we cannot assume FIFO
communication at the application level, we need to address
this problem.

The solution we have implemented is straight-forward.
In every epoch, each process P remembers how many
messages it sent to every other process @ (cal this value
sendCount(P — @)). Each process () also remembers
how many messages it received from every other process
P (cal this vaue receiveCount(Q < P). When a pro-
cess P takesitslocal checkpoint, it sends a mySendCount
message to the other processes, which contains the number
of messages it sent to them in the previous epoch. When
process () receives this control message, it can compare the
value with receiveCount(Q < P) to determine how many
more messages to wait for.

A subtle issue is the following: since the value of
sendCount(P — @) is itself sent in a control message,
how does @ know how many of these control messages it
should wait for? A simple solution is to assume that every
process may communicate with every other processin every
epoch, so a process expects to receive a sendCount con-
trol message from every other process in the system. This
solution works, but if the topology of the inter-process com-
munication graphsis sparse, most sendCount control mes-
sages will contain O, which is wasteful. If the topology of
this communication graph is sparse and fixed, we can set up
adata structurein the protocol layer that holds this informa-
tion. There are even fancier solutions for the case when the
communication topology is sparse and dynamic, but we do
not present them here.

3.5 Summary

A detailed description of the complete protocol for point-
to-point communication can be found in [2]. The protocol
requires each process to maintain the following variables,
these are also used by the protocol for collective communi-
cation calls presented in Section 5.

e color: A single bit that denotes the color (red or green)
of a processor. This bit is maintained by each proces-
sor and piggybacked onto each message to indicate the
color of the sender.

e amLogging: A single bit indicating whether or
not a processor is logging late messages and non-
determinism. This bit is also maintained by each pro-
cessor and piggybacked on each outgoing messages.

o nextMessagel D: Each processor assigns each outgoing

Collective i
. Communication Cal A Gonymumeation Cal B

X T
/' ' logging

Recover\y line ended

Figure 3: Collective Communication

message a unique ID. This ID is piggybacked on the
message.

e recoveryLog: During the logging phase each processor
maintains a log of all messages received and all non-
deterministic events.

e suppressList: Each processor maintains a list of the
early messages that it receives that must be suppressed
upoN recovery.

4 Classification of collective operations

The protocol described in the previous section must be ex-
tended to handle collective communication calls. The most
obvious problem is that the processes participating in a col-
lective communication call can straddle the recovery linein
the sense that some of them might execute the call before
taking their checkpoints while others might execute the call
after taking their checkpoints, as shown in Call A in Fig-
ure 3. After recovery, process R will not re-execute the col-
lective communication call but processes P and Q will, so
the call will not complete correctly. A more subtle problem
isillustrated by Call B in Figure 3. Suppose that R, which
has stopped logging, broadcasts a value to process P that is
till logging. If this value depends on a non-deterministic
event at R that was not logged, and P logs this value, an in-
consistent state may result after recovery.

To address such problems, it is convenient to divide MPI
collective communication calls into four categories, based
on the data flow of the communication.

1. Sngle-sender: One process sends data to the other
processes in the communicator. Examples are
MPI_Bcast andMPI_Scatter. Thesending process
is called the root process for that call, and data is said
to flow from the root process to the other processesin
the communicator.

2. Sngle-receiver: One process receives datafrom all the
other processes in the communicator. Examples are
MPI_Gather and MPI_Reduce. The receiving pro-
cess is called the root process for that call, and datais
said to flow to the root process from al other processes
in the communicator.

3. All-to-all communication; Each process in the
communicator sends and receives data to accom-

plish the collective communication. Examples are
MPI_Allgather and MPI_Alltoall. All the pro-
cesses are said to be root processes for that call, and
data is said to flow from every process to every other
process in the communicator.

4. Barrier: Unlike other communication calls,
MPI Barrier communicates no data since it is
used to synchronize processes in a communicator.

The protocol developedin Section 5 providesthe follow-
ing guaranteeswhich are similar to the guarantees for point-
to-point communication of Claim 1.

Claim2 1. No process can stop logging until all pro-
cesses are beyond the recovery line.

2. In a collective communication call, data cannot flow
from a process that is beyond the stop-log line to a pro-
cess that is behind the stop-log line.

3. In a collective communication call, data cannot flow
from a process P that is behind the recovery line to a
process Q that is beyond the stop-log line.

Therefore, we see that if the arrowsin Figure 2 are inter-
preted as directions of data flow, the figure shows the pos-
sible data flows for single-sender and single-receiver collec-
tive communication calls. For example, if process Q exe-
cutes a broadcast at point bl (before taking its checkpoint),
process P must receive this value before it crosses the stop-
log line. Dataflow in all-to-all communicationis symmetric,
so the possible data flows are simpler, and are shown in Fig-
ure 4. For example, aprocess P that has crossed the stop-log
line cannot be involved in a collective communication call
with a process Q that is beyond the recovery line but is still
logging.

A word of caution is appropriate here. In most MPI im-
plementations, collective calls are implemented using point-
to-point communication. For example, broadcasts can be
implemented in logarithmic time by using a fan-out tree of
processes. It is important to distinguish the point-to-point
messages that may be used in the underlying implementa-
tion of collective communication from the data flow direc-
tions in collective communication, such as the ones shown
in Figure 4. Data flow directions are conceptual tools that
we use to design the protocols discussed in Section 5; they
are not necessarily related to the implementation of collec-
tive communicationin the MPI library.

5 Protocol for handling collective operations

Our protocol treats each category of collective communica-
tion calls differently.
5.1 All-to-all collective operations

The protocol for al-to-all collective communication calsis
relatively easy to understand, so we explain it first, using

P gl 92

[
I
I

Q bl b2 X b3

Recovery line Stop-log line

Figure 4: Dataflow in all-to-all collective communication

MPI_Allreduce as an example. When the co-ordination
layer intercepts an invocation of MPI Allreduce, it exe-
cutes the code shown in function our MPI Allreducein
Figure 5. This code should be understood with reference to
Figure4.

Suppose that the MPI _A11reduce straddles the recov-
ery line (that is, there are at least two processes between
which information flow is of thetype g1 < b2 in Figure 4).
On recovery, processes that are behind the recovery line will
not re-execute this call. Therefore, the protocol requires
that if theMPI_Allreduce callsstraddletherecovery line,
processes that are beyond the recovery line (such as process
Q at point b2) must log the result of the call, and replay this
value on recovery.

The other possibility is that the MPT_Allreduce does
not straddle the recovery line. If al processes are behind
the recovery line (information flow is of the form g1 < b1
in Figure 4), no process re-executes the call after recovery,
so there is nothing to be done. If all processes are beyond
the recovery line but behind the stop-log line (in Figure 4,
information flow is of the form g2 < 02), we require al
processes to re-executethe call on recovery, so againthereis
nothing to be done. Otherwise, at least one of the processes
has stopped logging. If so, this information is propagated
to al other processesin the call which aso stop logging (so
information flow ends up being of the form g3 < b3 in Fig-
ure 4). The result of the call is not logged, so all processes
re-execute the call during recovery.

Putting all this together, we see that each process must
send its color bit and its amLogging hit to other pro-
cesses. By combining these bits as shown in Figure 5, all
processes figure out whether the collective communication
straddles the recovery line, and whether some process has
stopped logging. This determination isimplemented by two
callsto MPI_Allreduce in the code in Figure 5. These
two calls can be trivially combined into a single call; alter-
natively, the two bits can be piggybacked on the application
data payload. We explore the relative overheads of these al-
ternatives in Section 6.

our_MPI_Allreduce(send_data, recv_data, op, comm) {

MPI_Allreduce(color, crosses recovery_line, MPI_LXOR, comm);
MPI_Allreduce(!amLogging, some_not_logging, MPI_LOR, comm);
MPI_Allreduce(send_data, recv_data, op, comm);
switch{
case crosses_recovery_line & & amlLogging:
recoveryl og.save(recv_data,comm);

case ! crosses_recovery_line & & amLogging & & some.not_logging:

amlLogging = false;

Figure 5: Protocol for an all-to-all communication

5.2 Single-receiver collective operations

We use MPI _Reduce toillustrate how the protocol handles
single-receiver collective communication calls. In Figure 2,
process P is assumed to be the root for the collective com-
munication call, and the arrows from process Q to process
P show the information flows that can occur. When the root
process of the collective communication invokes the call, it
is either logging (in Figure 2, it is at point g2) or it is not
logging (points g1 or g3 in Figure 2).

Suppose that the root process is behind the recovery line

(point ¢g1). If none of the other processes is beyond the re-
covery line, al information flow is of the form b1 — g1.
There is nothing to be done because no process executes
the collective call during recovery. Otherwise, the collective
call straddlesthe recovery line, and some of the information
flows are of the form b2 — ¢1. Since the root process will
not executethe collective call during recovery, processesthat
executethe collective call after taking their checkpointsmust
suppress this call on recovery. The root process can identify
such processes if each process sends the root its color, and
note them in its suppressList. During recovery, these
processes are informed that they must suppress these collec-
tive communication calls.

Suppose that the root processis beyond the recovery line

and is logging (point g2). If the collective communication
does not cross the recovery line, all processes execute the
call during recovery and there is nothing to be done. If the
collective communication crosses the recovery line (thereis
information flow of the form b1 — ¢2), some of the pro-
cesses will not invokethe collective communication call dur-
ing recovery. Therefore, we require the root process to log
the result of the call for replay during recovery; in addi-
tion, the root process identifies all processes that executed
the call after taking their checkpoints, and notes them in its
suppressList.

Thefinal case is when the collective communication call

does not cross the recovery line, and at least one of the
senders has stopped logging. If so, the root process stops
logging. An MPI _Reduce operation is used to inform the

root whether any of the senders have stopped logging.

The pseudo-code in Figure 6 shows two collective com-
munication calls for sending the color and amLogging
information to the root. As aways, these calls can be com-
bined into one; the information can aso be piggybacked on
the application payload.

5.3 Single-sender collective operations

We use MPI_Bcast to illustrate how the protocol handles
single-sender collective communication calls. In Figure 2,
process Q is assumed to be the root for the collective com-
munication call, and the arrows to process P show the data
flows that can occur. When the root process of the collective
communication invokes the call, it is either logging (in Fig-
ure 2, itisat point b2) or it is not logging (pointsb1 or b3 in
Figure 2).

If the root process is behind the recovery line when it
invokes the call (point b1), it does not re-execute the call on
recovery. If the receiving process P performs the collective
call whileit islogging (point g2), its data flow straddles the
recovery line, and process P must log the valueit receives so
it can replay this value on recovery. To enable P to discover
if dataflow crossestherecovery line, theroot process Q must
broadcast its color to the other processes.

Suppose that the root processis logging when it invokes
the call (point b2). It is possible that one of the receiving
processes has stopped logging (point ¢3); to enableit to re-
cover, it is necessary for the root process to re-execute the
broadcast during recovery. However, it is possible for one of
the receiving processes to be behind the recovery line (point
g1). Such a process would not participate in the collective
call during recovery. To consume the message that it would
be sent by the root process during recovery, the process logs
the parameters of the call in a reexecList. On restart,
calsinthe reexecList areimmediately invoked with the
same parameters, except for the receive buffers, which are
replaced with dummy arguments.

Finally, the root process may be beyond the stop-log line
when it invokes the collective call. By broadcasting its am-
Logging bit to the other processes, it informs them that it
has stopped logging, and they stop logging as well. Noth-
ing needs to be logged because both the root process and the
receivers re-execute the call during recovery.

In the code shown in Figure 7, the root process uses two
cals to MPI_Bcast to broadcast its color and amLogging
bits. Asbefore, these two calls could be combined; the bits
can also be piggy-backed on the application payload.

5.4 Barriers

The primary issue to consider with MPI Barrier is the
fact that it has explicit synchronization semantics. In other
words, a process may not cross a barrier until al the other

our_MPI_Reduce(send_data, recv_data, op, root, comm)
{ if (my_proc_id != root_proc) {
MPI_Gather(color, ..., root, comm);
MPI_Reduce(!amLogging, ..., MPI_LOR, root, comm);
M Pl _Reduce(send_data,recv_data,op,root,comm);
}ese
[* | amreceiving the data ... */

MPI_Gather(..., colors, my_proc_id, comm);
MPI_Reduce(..., some_not_logging, MPI_LOR,
my_proc_id, comm);

M Pl _Reduce(send_data,recv_data,op,my_proc._id,comm);

bool crosses_recovery_line=

exists{ p || p!=my_proc_id && colors[p] !=color } ;
switch {

/* record early sends for suppression */

case crosses._recovery_line & & !lamLogging:

{ foreach (p in comm wherei != my_proc.id) {
if (colorg[p] != color)
suppressList.save(comm,p);

}

}
/* log received data*/
case crosses._recovery_line & & amLogging:

{ recoveryL og.save(recv_data, comm);

/* record al sends that do _not_ cross recovery
line for suppression */

foreach (p in comm wherei !'= my_proc.id) {
if (colorg[p] == color)
suppressList.save(comm,p);

}

}
case | crosses_recovery_line & & amLogging & &
some_not_logging:

{ amLogging = false;

break;

}

}
}

Figure 6: Protocol for single-receiver collective communi-
cation

our_MPI_Bcast(data, root_proc, comm)
{
if (my_proc_id == root_proc) {
/* | am sending the data.... */
MPI _Bcast(color, my_proc_id, comm);
MPI_Bcast(amLogging, my_proc_id, comm);
MPI_Bcast(data, root_proc, comm);
}ese
[* | amreceiving the data ... */
MPI _Bcast(root_color, root_proc, comm);
MPI _Bcast(root.is_logging, root_proc, comm);
MPI_Bcast(data, root_proc, comm);

bool crosses_recovery_line = (color != root_color);

switch {
/* log late Beast */
case crosses._recovery_line & & amlLogging:
{ recoveryLog.save(recv_data, comm);
break;

/* will have to reexec early Bcast */

case crosses.recovery_line & & !lamLogging:
{ reexecList.save(comm);
break;

/* turn off logging */
case | crosses_recovery_line & & amLogging & &
Iroot_is_logging:
{ amLogging = false;
break;
}

Figure 7: Protocol for single-sender collective communica
tion

our_MPI _Barrier(comm)

[* exchange information about each processor’s current state */
MPI_Allgather(color, colors, comm);
MPI _Reduce(!amL ogging, some_not_logging, MPI_LOR, comm);

bool somebody_checkpointed =
exists { p— p !=my_proc_id && colorg[p] !=color } ;

switch {
[* if we haven't checkpointed but somebody €else has */
case 'amLogging & & somebody_checkpointed:
{Take a Checkpoint Immediately
break;

}
* if we're logging but somebody has already stopped */
case amLogging & & some_not_logging:
{ amLogging = false;
break;
}
}

[* finally, perform the actual barrier */
MPI_Barrier(comm);

Figure 8: Protocol for barriers

processes have reached the barrier. Consider what happens
whenacall toMPI _Barrier crossestherecovery line. We
have process P that calls MPI Barrier ahead of the re-
covery line and process @ that callsMPT Barrier behind
the recovery line. On recovery Q will recover at a point past
the barrier while P will recover in a state before it reached
the barrier. Clearly, the very fact that the barrier crosses the
recovery line violates MPI Barrier’s Synchronization se-
mantics.

The solutionto this problem isto ensure that barriers may
never cross recovery lines, an invariant that can be enforced
by placing a special BarrierPotentialCheckpoint
location before each cal to MPI Barrier. At this
BarrierPotentialCheckpoint location each pro-
cess will check whether any other other process has taken
a checkpoint. If so then this process will also take a check-
point. As aresult we can be sure that if any process takes
a checkpoint before an MPI Barrier, the entire recovery
linewill be behindthat MPI _Barrier onall the processors
participating in the call.

In the code shown in Figure 8 the our MPI Barrier
function contains both the code for taking a checkpoint and
performing a barrier. The calls to MPTI AllGather and
MPI_AllReduce exchange the control information that
helps us determine both whether to take a checkpoint and
whether to stop the log. As usual, these two calls can be
combined and/or piggybacked.

6 Experiments

In this section, we report on experiments that were per-
formed to measure the overhead added by this protocol to
MPI’s native collective communication operations.

Our experiments were conducted on a 32 node compu-
tational cluster, part of the Velocity Cluster at the Cornell
Theory Center [1]. Each node contains 2 Intel Pentium 111
processors, each running at 1.0 GHz, and has 2 GB of RAM.
The nodes are connected by the Giganet cLAN [7] intercon-
nect. The operating system is Windows 2000. The MPI im-
plementationis MPI/Pro 1.6.4 using the Virtual Interface Ar-
chitecture (VIA) [3]. For our experiments, we only ran one
MPI process (rank) on each node.

MPI supports a very large number of collective com-
munication cals. From these, we selected MPI Bcast,
MPI _Gather, MPI_Allgather, and MPI Barrier for
our experiments since each of them represents one of the
classes of MPI calls discussed in Section 4. We compared
the performance of the native version of that operation with
the performance of aversion modified to utilize our protocol.
Those modifications include sending the necessary protocol
data (color and logging bits) and performing the protocol
logic shown in the pseudo-code in Section 5. The color and
logging bits were sent together as a one byte block.

There are two natural ways to send the protocol data:
either via a separate collective operation that precedes the
data operation, or by “piggy-backing” the control data onto
the message data and sending both with one operation. For
comparison purposes, we implemented both methods. The
overhead for the separate operation case includes the time
to send both messages. For the combined case, it includes
the time to copy the message data and the control data to a
contiguous region, the time for the single communication,
and the time to separate the message and protocol data on
receipt.

The top graph in Figure 9 shows the absolute time taken
by the native and protocol (both the separate and combined
message) versions of MPI _Bcast for data message rang-
ing in size from 4 bytes to 4 MB. Both axes of this graph
have logarithmic scales. The bottom graph shows the over-
head, in seconds, that the two versions of the protocol add to
the communication. Figure 10 shows similar information for
MPI_Gather and Figure1l doessofor MPI Allgather.

We see that for small messages, the relative overhead
(percentage) might be high but the absolute overhead is
small. For large messages sizes, the absol ute overhead might
belarge, but relativeto the cost of the native version, the cost
isvery small.

Examining the second graph in each set, we observe that
the cost of using the separate message protocol isfairly con-
stant, whereas the cost of the“ piggy-backed” protocol grows
with the size of the message. These behaviors are to be ex-
pected: using a separate message imposes a fixed cost, re-

gardless of the size of the data message, while using a com-
bined message requires copying at both the sender(s) and
the receiver(s). Therefore, the optimal strategy would be a
protocol that switched from a combined message to separate
messages as the size of the data message grew. Using such a
strategy, the overhead added by this protocol is minimal.

) MPI_Bcast, 1 byte protocol block, 32 processes, Absolute Times
10 T T T

— Standard
Separate
— — Combined

3

107k

Time, seconds

10°F

. .
10° 10" 10° 10° 10* 10° 10° 10"
Message size, bytes

MPI_Bcast, 1 byte protocol block, 32 processes, Absolute Overhead
T T T T T

— Standard
Separate
0.031{ — - Combined

Time, seconds
o
=
2
o

.
10 10" 10° 10° 10* 10° 10° 10"
Message size, bytes

Figure9: MPI Bcast

Although a collective communication, MPI Barrier
does not actually communicate any message data to the ap-
plication processes. Therefore, we do not have the option of
piggy-backing the protocol data, and we must use must use
a separate communication to send it. Additionally, exper-
imental results for barrier do not depend on message size.
Figure 12 compares the relative performance of the native
MPI_Barrier and the protocol version. Our experiments
only compare the communication costs of the native and the
protocol versions of MPI Barrier. The differencein the
communication times of thetwo versionsis seen to beincon-
sequential. Note that the true cost of a barrier is the cost of
waiting for all the processesto arriveat it: thiscost isusually
much greater than the cost of actual communication that the
barrier requires. Therefore, we conclude that the overhead
of our protocol is negligible.

7 Prior Work

While much theoretical work has been done in the field of
distributed fault tolerance, there exist few systems that im-

Time, seconds

Time, seconds

10°

H
°,

H
°,

107

Time, seconds

Time, seconds

MPI_Gather, 1 byte protocol block, 32 processes, Absolute Times
T T T T

— Standard
Separate
— - Combined

1
Message size, bytes

MPI_Gather, 1 byte protocol block, 32 processes, Absolute Overhead
T T T T T

— Standard '
Separate /

.25 — - Combined f

0
Message size, bytes

Figure 10: MPI_Gather

MPI_Aligather, 1 byte protocol block, 32 processes, Absolute Times
T T T T

E[— Standard
Separate
— — Combined

10° 10"
Message size, bytes

MPI_Allgather, 1 byte protocol block, 32 processes, Absolute Overhead
T T T T

10"

— Standard

0.9 Separate

— — Combined J
0.8 f
0.7 f
06 |
051 ,
04t s
03| |

021

011

0Ll o 7
10 10 10
Message size, bytes

Figure1l: MPI Allgather

x10™

Il Standard
[Protocol

MPI_Barrier, 32 processes

=
i

Time, seconds
o o In
= = = N

I
~

o
N

o

Figure12: MPI Barrier

10°

plement it for actual distributed application environments.
One such system is CoCheck [14], which provides fault
tolerance for MPI applications. CoCheck provides only
the functionality for the coordination of distributed check-
points, relying on the Condor [9] system to take system-level
checkpoints of each process. The key difference between
CoCheck and our work is that whereas our protocol isinde-
pendent of the underlying implementation of MPI, CoCheck
is integrated with its own MPI implementation. CoCheck
assumes that collective communications are implemented as
point-to-point messages, an assumption they can make be-
cause they provide their own MPI implementation, but that
can not be made when attempting to provide fault tolerance
for high-performanceimplementations of the standard.
Another distributed fault-toleranceimplementationisthe
Manetho [5] system, which uses causal message logging to
provide for system recovery. Because a Manetho process
logs both the data of the messages that it sends and the
non-deterministic events that these messages depend on, the
size of those logs may grow very large if used with a pro-
gram that generates a high volume of large messages, as is
the case for many scientific programs. While Manetho can
bound the size of these logs by occasionally checkpointing
process state to disk, programs that perform a large amount
of communication would require very frequent checkpoint-
ing to avoid running out of log space. Furthermore, since it
requires a process to take a checkpoint whenever these logs
get too large, it is not applicable to application-level check-
pointing.

Although our protocol also requires the use of a log,
our log is used only while checkpointing to ensure that the
checkpoints are consistent.

Another difference is that Manetho was not designed to
work with any standard message passing API, and thus does
not need to deal with the complex constructs — such as non-
blocking and collective communication — found in MPI.

The Egida [13] system is another fault-tolerant system
for MPI. Like CoCheck, it has been implemented directly
inthe MPI layer and it provides system-level checkpointing.

Like Manetho, it is primarily based upon message logging,
and uses checkpointing to flush the logs when they grow too
large.

8 Conclusions and Future Work

In this paper we have presented a distributed checkpoint-
ing protocol capable of handling the unique requirements
of application-level checkpointing. In conjunction with a
single-processor checkpointer (like the onedescribedin [2])
this protocol can be used to provide fault tolerance for MPI
programs without making any demands on or having know!-
edge of the underlying MPI implementation.

We have presented the protocol’s overall structure, in-
cluding the semantics of its log. We then showed how to
use the guarantees provided by the basic protocol to check-
point MPI point-to-point messages and collective communi-
cations. Finally. we measured the overheads associated with
the additional data our protocol attaches to communications
and the additional code executed for each communication
call and discovered that these overheads were low.

Having shown that it is possible to checkpoint MPI at
the application-level using no knowledge of the underlying
implementation, we would like to extend out work to other
types of parallel systems. One APl of particular interest is
the OpenMP [11] shared memory interface standard. Of
primary use on Shared Memory Multiprocessors, OpenMP
presents a rel ease-consistency-based APl which has a num-
ber of complex features such aslocks, parallel for loops and
barriers.

Another interesting extension of our current work is the
systematic eval uation of the overheads of piggybacking con-
trol data on top of network communications. Such piggy-
backing techniques are very common in distributed proto-
cols but as the performance numbers that we collected for
our own protocol indicate, the overheads associated with the
piggybacking of datacan be very complex. Thereforewe be-
lieve that a detailed, cross-platform study of such overheads
on top of MPI implementationsis in order and would be of
great use for parallel and distributed protocol designers and
implementors.

References

[1] Cornell theory center. Online at http://www.tc.cornell.edu/, 2003.

[2] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated
application-level checkpointing of mpi programs, 2002. submitted to
the Symposium on Principles and Practice of Parallel Programming.

[3] D.Cameron and G. Regnier. The Virtual Interface Architecture. Intel
Press, San Francisco, California, first edition, 2002.

[4] M. Chandy and L. Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computing
Systems, 3(1):63-75, 1985.

[5] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent rollback-
recovery with low overhead, limited rollback and fast output. |EEE
Transactions on Computers, 41(5), May 1992.

(6l

(8

(9

[10]
[11]
[12]

[13]

[14]

M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message passing systems. Techni-
cal Report CMU-CS-96-181, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA, Oct. 1996.

Emulex corporation. Overview of giganet clan. Online at
http://www.emul ex.com/ts/l egacy/clan/index.htm, 2003.
M. P I. Forum. Overview of the mpi standard. Online at

http://www.mpi-forum.org/, 2003.

J. B. M. Litzkow, T. Tannenbaum and M. Livny. Checkpoint and mi-
gration of unix processes in the condor distributed processing system.
Technical Report 1346, University of Wisconsin-Madison, 1997.

National Nuclear Security Administration. Asci home. Online at
http://www.nnsa.doe.gov/asc/, 2002.

OpenMP. Overview of the openmp standard.
http://www.openmp.org/, 2003.

J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent
checkpointing under unix. Technical Report UT-CS-94-242, 1994.

S. Rao, L. Alvisi, and H. M. Vin. Egida: An extensible toolkit for
low-overhead fault-tolerance. In Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing, Madison, Wisconsin, June
15 - 18, 1999.

G. Stellner. CoCheck: Checkpointing and Process Migration for MPI.
In Proceedings of the 10th International Parallel Processing Sympo-
sium (IPPS’96), Honolulu, Hawaii, 1996.

Online at

