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Abstract

This paper presents Pesto, a high-performance Byzantine
Fault Tolerant (BFT) database that offers full SQL compatibil-
ity. Pesto intentionally forgoes the use of State Machine Repli-
cation (SMR); SMR-based designs offer poor performance
due to the several round trips required to order transactions.
Pesto, instead, allows for replicas to remain inconsistent, and
only synchronizes on demand to ensure that the database
remain serializable in the presence of concurrent transactions
and malicious actors. On TPC-C, Pesto matches the through-
put of Peloton [20] and Postgres [21], two unreplicated SQL
database systems, while increasing throughput by 2.3x com-
pared to classic SMR-based BFT-architectures, and reducing
latency by 2.7x to 3.9x. Pesto’s leaderless design minimizes
the impact of replica failures and ensures robust performance.

CCS Concepts: • Computer systems organization →
Dependable and fault-tolerant systems and networks; •
Security and privacy→ Distributed systems security.

Keywords: databases, transactions, Byzantine fault tolerance,
blockchains, distributed systems

1 Introduction
This paper presents Pesto, a scalable Byzantine Fault Tol-

erant (BFT) Database (DB) that offers full SQL capabilities,
with high throughput and low latency.

Decentralized applications that promise safe data sharing
between mutually distrustful parties are being explored in
sectors like finance [10, 11, 14], healthcare [26, 29], land
records [64], secure key recovery [41], and general-purpose
confidential computing [2, 17]. At their core lie Byzantine
Fault Tolerant (BFT) consensus protocols [38, 56, 57, 63, 85],
which provide a totally ordered, tamper-proof log distributed
across mutually distrustful participants. This simple interface
ensures that all parties observe the same set of operations,
in the same order. In theory, the log can be materialized into
a datastore consistent across all parties; in practice, however,
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accomplishing this is hard: applications must process the
log, coordinate execution to ensure determinism, and handle
potentially complex computations over the logged data.

Layering a DB. The most common design for building a
BFT datastore layers database functionality over BFT consen-
sus [28, 52, 66, 73]. While conceptually simple, this approach
is inefficient. Totally ordering all operations forgoes paral-
lelism inherent to the workload. In theory, this overhead could
be mitigated through sharding. Unfortunately, layering two-
phase commit over consensus across many shards imposes sig-
nificant coordination and cryptographic overhead [81, 87, 88].

Integrating layers, with limited API. Solutions that
integrate consensus and database functionality have shown
higher performance, but only for a basic key-value store
(KVS) interface [72, 81]. Basil [81], a recent transactional
and sharded BFT KVS, eliminates the need for total ordering
by efficiently integrating replication, optimistic concurrency
control, and two-phase commit into a single, low-latency
layer. Basil supports interactive transactions in a BFT setting,
with performance competitive to crash fault tolerant (CFT).
However, it only offers a limited KVS API and cannot easily
(nor efficiently, §7.2) express queries like joins, scans, or
aggregations that are common to most real-world workloads.

Meeting Applications where they are. In contrast, most
centralized applications today look for the generality of
databases. They expect support for (𝑖) interactive transactions
(transactions in which requests are interleaved with appli-
cation code, which are preferred by developers over stored
procedures [71]), (𝑖𝑖) a rich query language that supports
query functionality (such as SQL), and (𝑖𝑖𝑖) horizontal
scalability (the ability to safely partition data across shards).

Today, decentralizing these applications implies tolerating
either limited SQL compatibility with low performance, or
high performance but with a restricted KVS API.

Towards expressive high-performance BFT. This work
proposes Pesto, a general-purpose BFT-database that achieves
high performance while offering a powerful, expressive
SQL query interface. Pesto builds on Basil’s performant
client-driven and ordering-free design and expands it to
support full SQL functionality,1 making it suitable as a
drop-in replacement for most existing SQL databases.

To achieve this, Pesto must overcome two challenges.
(𝑖) Maintaining serializability for arbitrary queries. In
key-value stores, ensuring the correctness of a query’s result
1If life gives you Basil... make Pesto!
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is straightforward, as clients read each key individually.
Commit certificates can assert the validity of read data tuples,
while timestamps can attest to their recency; any further
computation on read tuples is performed by the client itself
and thus inherently trustworthy. Pesto, instead, allows clients
to submit complex queries that are executed server-side:
asserting correctness thus requires trust in the computation
performed by replicas.

A natural solution is consistent replication, which guaran-
tees correctness by requiring all replicas to execute the same
query on the same state, ensuring that the client receives
enough matching responses to conclude that a correct
replica vouched for the result. Unfortunately, this approach
nullifies most of Basil’s performance gains, as it requires all
operations—not just queries—to be totally ordered at every
replica. Is it possible to ensure serializability for arbitrary
queries without sacrificing the performance benefits of Basil?
(𝑖𝑖) Extending concurrency control to generic queries. Basil
relies on an optimistic concurrency control protocol to main-
tain good performance in the common case while preventing
malicious clients from stalling correct clients’ transactions.
Optimistic protocols, however, generally perform poorly for
queries, as they must—at least logically—lock the ranges of
keys that may satisfy the query predicate; this results in high
abort rates and low throughput. Can we design an optimistic
concurrency control protocol that efficiently handles range
queries?

Pesto addresses both challenges with one key insight: when
responding to a query, consistency need only hold for the
specific predicate of that query, not the entire database.

Pesto uses this observation to design a client-driven,
snapshot protocol that ensures that, for a given query,
replicas reply consistently. In many cases, results are already
consistent, and no additional coordination is needed. When
they are not, however, active resolution is necessary: Pesto
clients dynamically establish a common snapshot of relevant
state across replicas, thus ensuring reliably consistent results.

To improve concurrency, Pesto integrates query predicates
and concurrency control (CC). Inspired by precision
locks [59], it proposes a novel optimistic predicate-based CC
check that only aborts concurrent transactions that violate
query semantics. This allows Pesto to support high degrees
of concurrency and eases the consistency requirement to only
query results, and not the read state itself.

Our results are promising. On popular transactional work-
loads (TPC-C [83], AuctionMark [4], and Seats [4]) Pesto
performs competitively with Peloton [20] and Postgres [21],
two un-replicated SQL databases Compared to classic
layered designs (HotStuff [85]/BFT-Smart [6] + Peloton),
Pesto reduces latency by 2.7x and improves throughput by
up to 2.3x (TPC-C). Microbenchmarks based on YCSB [42]
further demonstrate that Pesto significantly improves the
performance of analytical queries compared to Basil, and

remains robust even in the presence of highly inconsistent
or faulty replicas.

In summary, we make the following three contributions:

• A snapshot synchronization protocol to support arbitrary
query computation for inconsistent BFT replication (§5.5).
• A novel semantics based Optimistic Concurrency Control

protocol which is carefully integrated with inconsistent
replication and snapshot based execution (§6.1).
• Pesto, a high performance distributed BFT DB that offers

an interactive SQL transaction interface.

2 Towards expressive, high speed BFT Queries
2.1 Layering Databases atop Consensus

The most straightforward way to implement a BFT DB is to
employ a BFT consensus protocol (e.g., PBFT [38]) to first to-
tally order all operations, and then ingest the log into a DB en-
gine of choice (e.g., Postgres [74]). Since all operations are or-
dered via consensus, the database at each replica will produce
the same result. To execute (SQL) queries, clients simply sub-
mit them to the replicated backend (server-side execution) and
wait for enough matching responses to confirm that at least
one correct replica vouches for the result. This ensures (𝑖) data
validity: the query execution used a correct (valid) input state,
i.e., every value read corresponds to a committed write, (𝑖𝑖)
freshness (bounded staleness): the query was computed using
recent state, and (𝑖𝑖𝑖) query integrity: given the input state, the
query was computed correctly according to its specification.

Unfortunately, this seemingly simple design performs
poorly. First, processing all requests sequentially, even
those that don’t conflict, is essential for ensuring consis-
tency among the states of correct replicas. However, this
approach eliminates the inherent parallelism of the workload.
Sophisticated parallel execution engines [55] may recoup
some of the lost performance, but are complex and cannot
avoid establishing an initial total order. Second, interactive
transactions may consist of several sequential requests, each
requiring several round-trips of coordination to achieve
agreement, resulting in high end-to-end latency. As a result,
many existing systems [27, 28] limit transactions to single-
shot stored procedures that are notoriously unpopular with
developers [71]. Finally, scaling transactions horizontally,
e.g., via sharding, is inefficient, as layering two-phase
commit (2PC) on top of internally replicated shards requires
consistently ordering each 2PC step.

2.2 Basil: An integrated BFT key-value store
To address these challenges, recent work proposes an

innovative order-free approach to BFT-DBs. Basil [81],
a serializable, distributed BFT key-value store (KVS),
eliminates the need for totally ordering requests. Instead,
it combines concurrency control (CC), replication, and
two-phase commit (2PC) into a single, low-latency layer.
In Basil, transactions are independently managed by clients



and proceed in parallel whenever possible. Clients submit
read operations (GET requests) to a subset of replicas and
use their replies to identify fresh and valid responses. These
replies include a Commit-Proof, which verifies the validity
of the write that generated the returned value and its version.
Transaction processing then rests with the client (client-side
execution). Writes (PUT requests) are buffered locally during
transaction execution. To commit a transaction, clients initiate
an efficient two-step commit protocol that simultaneously val-
idates transaction execution results (to ensure serializability),
computes a 2PC decision, and durably replicates the agreed
upon result. When clients fail to complete transactions, Basil
resorts to a cooperative recovery protocol that allows any
client to recover and terminate incomplete transactions. This
integrated database design has shown to be highly performant
for a variety of popular OLTP workloads.

Basil, unfortunately, supports only GET operations: more
complex, analytical queries must explicitly be re-structured.
This is undesirable, as it increases the burden on application
developers, and incurs coordination costs proportional to the
size of a query’s intermediate results. Consider a simple join
query SELECT * FROM tbl𝑥, tbl𝑦 WHERE 𝑥 = 𝑦 span-
ning two tables tbl𝑥 and tbl𝑦 (with primary keys 𝑥 and𝑦, re-
spectively), both containing one million rows and overlapping
in exactly one key. Executing this query requires first identify-
ing the size of the tables (it is unknown to the client), and then
issuing one million reads to tbl𝑥 and tbl𝑦 respectively; only
then can the client determine locally the result, a single row.

2.3 Introducing Pesto
Pesto strives to retain Basil’s performance and scalability

while adding efficient support for complex SQL queries. This
requires addressing two key challenges:

(𝑖) Pesto must guarantee validity, freshness, and integrity
for query results; Pesto executes queries server-side, but
requires that clients wait for enough matching replies to
ensure that at least one correct replica vouched for the result.
Like Basil, Pesto prioritizes performance by not ordering
requests. This approach carries a risk: even correct replicas
may diverge during execution (e.g., due to high contention)
and produce different results. Pesto addresses this risk by
introducing a synchronization protocol that dynamically,
and only when needed, establishes common state snapshots
(§5.5) for the current queries.

(𝑖𝑖) Pesto must ensure serializability for complex queries.
Locking-based approaches are a non-starter in a Byzantine
setting, as malicious clients can block progress by refusing
to release their locks. Pesto must thus use optimistic concur-
rency control (OCC). Unmodified OCC, however, typically
struggles with large data scans. Pesto addresses this issue by
leveraging query semantics to create a novel semantics-aware
OCC protocol that aborts transactions only if writes affect
the result of concurrent queries, minimizing conflicts (§6.2).

3 Model
Pesto inherits the assumptions of Basil [81] and prior

BFT work [38, 63, 85]. Pesto operates under partial syn-
chrony [51]: it makes no timing assumption for safety, but
for liveness depends on periods of synchrony.

Participants that adhere to the protocol are deemed
correct while faulty (or Byzantine) participants may deviate
arbitrarily. A strong but static adversary may coordinate
the actions of faulty participants, but cannot break standard
cryptographic primitives such as hashes, MACs, or digital
signatures. We assume clients to be authenticated, and denote
signed replica messages as ⟨𝑚⟩𝜎 .

Pesto, for safety, enforces Byz-serializability [81], which,
summarized curtly, ensures that all correct participants are
guaranteed to observe a sequence of states consistent with
a sequential execution of concurrent transactions; just as
traditional serializability does in a crash fault tolerant setting.
Byz-serializability on its own, however, does not ensure
application progress; Byzantine actors could, for instance,
still collude to systematically abort all transactions. We thus
additionally enforce Byzantine independence [81]: in Pesto,
no group of Byzantine participants may unilaterally decide
the outcome of any operation. Transaction progress is thus
not subject to Byzantine abuse. To satisfy Byzantine inde-
pendence, Pesto, like Basil, operates with 𝑛=5𝑓 +1 replicas
of which at most 𝑓 may be faulty. Classic leader-based BFT
protocols with a replication factor of 3𝑓 + 1 [38, 63, 85],
in contrast, cannot preserve Byzantine independence as
a Byzantine client and leader may collude to front-run
transactions or strategically generate conflicting requests.

Finally, we place no bounds on the number of faulty clients.
As is standard, Pesto cannot stop authenticated Byzantine
clients from intentionally corrupting or deleting objects
through legitimate transactions.

4 Pesto Overview
Pesto is a high performance distributed BFT DB that offers

traditional SQL capabilities. It adopts the standard relational
backend format of tables and rows, with rows uniquely
identified by primary keys. Pesto supports standard SQL
commands: BEGIN, read (SELECT, etc.), write (INSERT,
DELETE, UPDATE, etc.), and COMMIT or ABORT. Transaction
processing in Pesto, akin to Basil [81], follows the ethos of
independent operability: execution is orchestrated by clients,
and proceeds independently of all non-conflicting trans-
actions. Replicas employ inconsistent replication [81, 88]
and forgo totally ordering incoming requests; each replica
may process client requests in any order, and in parallel.
Transaction processing consists of two phases (Fig. 1).

1) Transaction Execution During execution, clients
dynamically issue reads and writes. Write operations, which
are often conditional, begin with an initial reconnaissance
read to retrieve the rows to be modified. The client then
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Figure 1. Pesto Transaction Processing Overview

modifies the target rows and buffers them until commit (§5.2).
Simple reads that access only a single row can be processed
via Basil’s GET protocol (§5.4) and complete in a single round
trip. All other queries (e.g., more complex queries that access
a variable amount of rows) proceed through Pesto’s Range
read protocol (§5.5). This protocol ensures that clients collect
enough matching responses to assert that a correct replica
confirms the result, thus ensuring validity, freshness and
integrity. In many cases, replicas have the same relevant rows
to produce matching results; when they do not, a client must
first synchronize replicas on a common execution state via
Pesto’s snapshot protocol (§5.5). In the absence of failures,
all (correct) replicas already eventually receive all data,
and snapshots serve only to rendezvous; when Byzantine
clients fail to fully disseminate their transactions, however,
synchronization serves also as a recovery mechanism,
ensuring that correct replicas exchange missing data.

2) Transaction Commit Transactions can commit if
they do not violate (Byz-)serializability. To check for this,
replicas locally compare concurrent transactions to determine
whether a reader has missed a concurrent conflicting write, or
vice versa (prepare phase). Crucially, Pesto leverages query
semantics to determine which writes are potential conflicts:
Pesto’s SemanticCC (§6.1) considers concurrent operations
to be in conflict only if a write affects a query’s results.

Pesto, like Basil, opts to make writes optimistically visible
upon successful validation (we call these prepared writes);
this reduces the opportunity for conflicts by up to two
round-trips (a.k.a the time to commit, discussed next), but
requires carefully managing read dependencies to uphold
(Byz-) serializability (§5.4, §5.5).

Different replicas may validate conflicting transactions in
different orders, leading to different votes. For example, two
conflicting transactions may both receive commit votes from
different sets of replicas. To ensure safety, Pesto’s Commit
protocol (§6.2) requires clients to gather enough votes to
guarantee that, for any pair of conflicting transactions, at
least one correct replica has validated both; this replica
is guaranteed to abort one of these transactions. Because
transactions may involve multiple shards, Pesto aggregates
vote tallies for each shard via Two-Phase Commit (Stage 1).
For safety, this decision must be preserved across runs. In
failure-free executions, transactions may complete in one

round-trip, but an extra round-trip at a single shard is needed
for durability if failures or network reordering arise (Stage 2).
Finally, the client asynchronously notifies all replicas of the
decision during an asynchronous writeback phase. If the
decision is commit, a replica applies all buffered writes.

5 Transaction Execution
We first describe Pesto’s transaction execution protocol.

Much of Pesto’s complexity lies in its efficient handling of
range queries; we focus the majority of the section on this.

5.1 Data structures
Pesto relies on two primary data structures, transactions

and versions. Each version in Pesto corresponds to a
unique write (insertion, update or deletion) and contains, in
addition to column data, metadata necessary for maintaining
serializability (id of the transaction who wrote the version,
timestamp, commit status).

Each transaction is assigned a unique client-generated
timestamp 𝑡𝑠𝑇 B (𝑙𝑜𝑐𝑎𝑙𝑡𝑖𝑚𝑒, 𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷, seq-no) at BEGIN.
This timestamp implicitly establishes the final transactions’
serialization order, and allows Pesto to evaluate transaction
conflicts according to the designated ordering (§6.1).

A transaction 𝑇 additionally stores metadata documenting
its execution. ReadSet𝑇 captures rows (and versions)
accessed; DepSet𝑇 tracks read dependencies on visible but
uncommitted versions (§5.2); PredSet𝑇 tracks query predi-
cates (used for semantic concurrency control); and WriteSet𝑇
contains proposed row updates. Upon COMMIT, 𝑇 receives
a unique identifier 𝑖𝑑𝑇 ; it is computed as a cryptographic
hash of 𝑇 to prevent a Byzantine client from manipulating
𝑇 ’s content. At worst, a malicious client can create a new
transaction, which it can anyway always do. A client may
also explicitly ABORT a transaction at any time before
COMMIT, discarding all intermediate state without effect.

5.2 Serving Update Queries
We begin by describing how Pesto handles writes. As is

standard in optimistic concurrency control, Pesto buffers
writes locally until execution is complete. Doing so requires
additional care when dealing with SQL statements that are typ-
ically conditional, and involve read-modify-write operations.

For example, an insertion only occurs if no row with the
same primary key exists, while updates (UPDATE table𝑥
SET 𝑥 = 𝑥 + 1 WHERE 𝑥 = 5) and deletes may depend on a



predicate (e.g., DELETE FROM table𝑥 WHERE 𝑥 = 5). The
rows to be written are thus only known after execution.

To handle conditional writes, Pesto splits write processing
into two steps. First, a reconnaissance query fetches relevant
rows and returns an intermediary query result Q-RES). Then,
the client modifies or creates rows based on the original
write statement. This approach allows Pesto to use the query
interface to produce an intermediate query result and buffer
new versions locally. For each row written, Pesto inserts
a new write-entry into its current transaction’s 𝑊𝑟𝑖𝑡𝑒𝑆𝑒𝑡𝑇 .
Pesto returns the number of rows written (possibly zero) to
the application.

5.3 Servicing Reads
Reads in Pesto consist of SQL SELECT statements sent to

replicas for execution. For efficiency, Pesto distinguishes be-
tween two types of reads, automatically deduced at runtime:

(𝑖) Point Reads read only a single row and explicitly
identify the primary key of the table (akin to GET requests).
Consider, for instance, a table 𝑈 with columns 𝑎, 𝑏, and
𝑐, and composite primary key (𝑎, 𝑏). The query SELECT

* FROM 𝑈 WHERE 𝑎 = 5 AND 𝑏 = ’apple’ accesses the
unique row with primary key (5,apple). Such reads can
be efficiently executed by Basil’s GET protocol (§5.4) and
are guaranteed to complete in a single round-trip.

(𝑖𝑖) Range Reads (including scans, aggregate functions
such as Min, Max, and joins), may instead scan through a
variable (possibly unknown) number of rows. For efficiency,
Pesto delegates the execution of complex queries to replicas
and tries to collect 𝑓 + 1 matching results to assert that at
least one comes from a correct replica. While simple, this
approach does not guarantee liveness: because Pesto does
not totally order operations at replicas, even correct replicas
might not be consistent, and produce different results. In
fact, replicas might never be fully consistent. Unfortunately,
forcing replicas to synchronize their full state is a non-starter,
as that state can be large. Pesto instead uses a lightweight
snapshot synchronization protocol that allows replicas to
materialize a consistent snapshot on demand, specific to a
given query (§5.5). Upon completing a read operation, Pesto
clients return the result Q-RES to the application.

We describe the details of both read protocols next.

5.4 Point Read Protocol
To execute a point read, clients request valid versions from

a quorum of replicas and select the freshest.

1: C→ R: Client 𝐶 sends read request to replicas.

𝐶 sends a read request POINT-READ B ⟨Q, key, ts𝑇 ⟩,
containing the SQL query 𝑄 , the primary key it touches, and
the transaction timestamp, to at least 2𝑓 +1 replicas.

2: R→ C: Replicas process the client read and reply.

Replica 𝑅 executes 𝑄 and returns a message containing
the result POINT-RESP B ⟨Q-RES, Committed, Prepared⟩𝜎𝑅

.

This response contains, respectively, the latest committed
and prepared versions of the row identified by key key
with timestamps smaller than ts𝑇 (if any). If the respective
versions do not fulfill 𝑄’s predicate, 𝑅 still returns a version,
but indicates that the result Q-RES is empty; tracking the
version is necessary to check for serializability at the commit
stage. This may be the case for queries that have predicates
stricter than the row’s primary key: e.g., SELECT * FROM

x=5 AND y=’apple’, where the primary key is x, but the
latest version does not fulfill y=’apple’. Committed ≡
(version, C-CERT) additionally includes a commit certificate
C-CERT (§6.2) proving that version has committed, while
Prepared ≡ (version, 𝑖𝑑𝑇 ′ ) includes a digest identifier for the
prepared transaction 𝑇 ′ that wrote version.

3: C← R: Client 𝐶 receives read replies.

𝐶 waits for at least 𝑓 + 1 replies to ensure that they
receive at least one correct response and extracts the
highest-timestamped version that is valid: a committed
version must contain a valid C-CERT, while a prepared
version must be returned by at least 𝑓 + 1 replicas. This
ensures (𝑖) that 𝐶’s transaction does not become dependent
on fabricated versions, and (𝑖𝑖) that 𝐶 returns a version no
staler than if it had read from a single correct replica. Finally,
𝐶 confirms that executing 𝑄 on the chosen version indeed
yields the corresponding reported result Q-RES (this is
necessary, as 𝑄 may contain additional computation beyond
the read to 𝑘𝑒𝑦, e.g., further predicates or projections).
𝐶 adds the selected (key, version) to its ReadSet𝑇 . If version

was only prepared, 𝐶 additionally records a dependency
DepSet𝑇 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑖𝑑𝑇 ′ ) which will be used during 𝑇 ’s Prepare
phase to ensure (Byz-) serializability; 𝑇 must not commit
unless all the transactions in DepSet𝑇 commit first.

5.5 Range Read Protocol
Overview Processing arbitrary queries that may compute

on ranges of rows requires additional care. To ensure validity,
freshness, and integrity, a client must receive at least 𝑓 + 1
matching query results; this ensures that at least one correct
replica vouches for the result. Receiving 𝑓 + 1 matching
responses is only guaranteed when correct replicas share
the same state, which Pesto, by design, does not enforce
for performance. Nonetheless, we observe that the rows
touched by a query often reflect state consistent across all
replicas (§7). When they do not, Pesto creates its own luck
by synchronizing replicas only on the rows accessed to agree
on a common snapshot for the query.

In fault-free cases, all (correct) replicas already eventually
receive all data, and snapshots serve only to rendezvous; when
Byzantine clients fail to fully disseminate their transactions,
however, synchronization serves also as a recovery mecha-
nism, ensuring that correct replicas exchange missing data.

Implementing the snapshot mechanism requires answering
two questions: (𝑖) what state should a snapshot contain and



(𝑖𝑖) how to ensure that the snapshot proposal represents
an up-to-date and valid state? To compute a snapshot of
a consistent state, Pesto uses the set of transaction 𝑖𝑑s
associated with the row versions that were read. This set
uniquely identifies a specific state, and ensures atomicity
(transactions are either included or not). Individual row
versions alone do not ensure atomicity, as Byzantine voters
may selectively include versions. While this attack would be
caught at commit time and thus not violate Byz-serializability,
it would violate Byzantine independence!

Recording metadata for every row accessed during
execution is often overly conservative. Most queries are
predicated on a filter (e.g., name = ’Peter’), and require
only agreement on the (often small) set of rows relevant to
the result (i.e., those with name ’Peter’). Pesto leverages
this to include in its snapshots and read sets only the rows
whose (latest versions) fulfill the query predicate (dubbed
active rows). Computation of active rows aligns naturally
with index-based execution used in traditional SQL databases,
which leverages predicates to reduce the number of rows that
need be accessed (reducing query execution time by orders
of magnitude) [78]. Pesto simply piggybacks on this strategy:
since index search conditions are a subset of the query
predicate, index scans will access all rows that affect the
query result. We expand on the concept of active rows in §6.1;
they form the basis of Pesto’s semantic concurrency control.

Protocol Details. We next outline the details of the protocol.
We do omit several pedantic details that impact our final
implementation. Most readers will be happier skipping these
details during their initial read; we defer further discussion
of details, as well as rigorous correctness proofs, to our
Appendix. For simplicity, we assume that queries are satisfied
by a single shard and that clients know the partitioning
scheme. However, transactions may span multiple shards.
Figure 2 illustrates an example execution.

1: C→ R: Client C sends read request to replicas.

C sends a read request RANGE-READB ⟨𝑄B𝑄𝑢𝑒𝑟𝑦, t𝑠𝑇 ⟩
to at least 3𝑓 +1 replicas (to ensure at least 2𝑓 +1 replies).

2: R→ C: Replicas process the client’s read and reply.

A replica 𝑅 executes the query 𝑄 on its local state (reading
only versions no later than 𝑡𝑠𝑇 ), and produces a query result
Q-RES. For concurrency control purposes, 𝑅 adds the active
(key, version) pairs accessed during the computation (at
most one version per key, the freshest version read) to a
query read set Q-READ. In Figure 2, for instance, replicas
record their latest version for the active key ’Parker’. If
a given version is only prepared (i.e., tentatively committed),
𝑅 additionally records a dependency on the version writer
𝑇 ′, Q-DEP.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑖𝑑𝑇 ′ ). Pesto’s validation check uses this
information to ensure that 𝑄 observes only serializable state.

Finally, 𝑅 records as snapshot vote SS-VOTE the set of all
transaction identifiers (𝑖𝑑𝑇 ∗) associated with the read set.

𝑅 returns to the client a read reply RANGE-RESP-SS B
⟨Q-RES, Q-READ, Q-DEP, SS-VOTE⟩𝜎𝑅 .

3: C← R: Client 𝐶 receives read replies.

Eager Path: 𝐶 waits for up to 2𝑓 + 1 replies and tries to
assemble 𝑓 +1 distinct replies with matching Q-RES and Q-
READ, and valid dependencies Q-DEP (we defer discussion
of the latter to §5.5.1). This ensures that at least one correct
replica vouches for the result and read set, which is necessary
to correctly enforce serializability during validation. If
successful, 𝐶 considers the read complete: it returns Q-RES
to the application, and respectively adds Q-READ and Q-DEP
to its ongoing transaction’s ReadSet𝑇 and DepSet𝑇 .

Snapshot Path: If𝐶 cannot successfully complete a read, it
enters the snapshot path. 𝐶 tallies the snapshot votes and tries
to propose a common execution state. To ensure liveness,
a correct client must only propose to include transactions
that exist, lest risk failing synchronization between replicas.
Pesto must also ensure that faulty participants cannot cause
a snapshot proposal to be artificially stale, as this would
artificially extend the transaction’s conflict window, making
it much more likely to abort.

4: C→ R: Client 𝐶 proposes a snapshot to the replicas.

To generate a snapshot proposal, 𝐶 selects all transaction
𝑖𝑑s present in 𝑓 + 1 SS-VOTEs and merges them into a
proposal SS-PROPB {(𝑖𝑑𝑇 ∗,{r})}, along with the ids of the
replicas that suggested them. This filtering procedure ensures
data validity: the set contains only transactions that at least
one correct replica believes to be committed or prepared.
In Figure 2, only 𝑡3 passes the filter. Waiting to receive at
least 2𝑓 + 1 snapshot votes bounds staleness as it ensures
that, if all correct replicas had this transaction in their state,
this transaction will pass the filter and thus be included
in the snapshot proposal (𝑓 + 1 proposals out of the 2𝑓 + 1
necessarily come from correct replicas).
𝐶 then sends its SS-PROP to at least 3𝑓 +1 replicas.

5: R: Replicas process the snapshot and execute.

Upon receiving a snapshot proposal SS-PROP, a replica
𝑅 checks whether it has already applied all included
transactions: a transaction 𝑇 ′ is considered applied once it
has either (𝑖) been explicitly aborted, or (𝑖𝑖) all of its write
versions have been inserted into the respective rows.

Synchronization. If 𝑅 has not yet applied a transaction
𝑇 ′ in the snapshot proposal, it fetches it from its peers by
sending a SYNC message containing 𝑖𝑑𝑇 ′ to the 𝑓 +1 replicas
that included the 𝑇 ′ in their SS-VOTE.

5.A: R→ R: Replicas process a sync request.

A correct replica 𝑅′ ignores synchronization request for
transactions it does not have. If 𝑅′ has𝑇 ′, it returns a message
SUPPLY B (𝑇 ′, status, (C-CERT𝑇 ′/A-CERT𝑇 ′ )), containing
𝑇 ′, 𝑇 ′’s current commit status, and, if 𝑇 ′ has completed,
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Figure 2. Life of a query (eager path disabled). The client broadcasts a query to a quorum of replicas who compute the query on their local state.
Replicas return their query result (Q-RES), their (active) read set (Q-READ)—the rows that fulfill the query predicate—, and the associated
snapshot vote (SS-VOTE). The client aggregates a snapshot proposal (SS-PROP) and synchronizes replicas on a common execution state.

its commit/abort-certificate. If 𝐶 is correct and created its
SS-PROP truthfully, then at least one voting replica is correct
and will supply 𝑇 ′. If 𝐶 is Byzantine and fabricated its
SS-PROP, then synchronization will fail, affecting only the
liveness of 𝐶’s own query 𝑄 .

5.B: R← R: Replicas process a supplied transaction.

𝑅 processes SUPPLY messages according to the commit
status, accepting and applying committed and aborted
transactions after verifying the associated proof. If the
decision is abort, 𝑅 removes the transaction from any
snapshot proposal it received. This may cause replicas to
synchronize inconsistently (some replicas may not observe
the abort) but is necessary as reading an aborted version will
cause the query to abort too.

Applying a transaction 𝑇 ′ that is only prepared requires
additional care. To uphold safety, 𝑅 must not prepare
𝑇 ′ without independent validation, as it may—due to
inconsistency—detect a conflict that another replica did not.
Rather than abandon synchronization, however, Pesto permits
𝑄 to read 𝑇 ′ regardless of its local validation outcome; after
all, at least one correct replica part of SS-PROP considered
𝑇 ′ prepared (or committed), suggesting that𝑇 ′ may very well
ultimately commit. If 𝑇 ′ fails validation, 𝑅 applies 𝑇 ’s write
versions but exposes them exclusively to 𝑄 .

Execution. Once 𝑅 has applied all transactions in SS-PROP
it executes 𝑄 . During execution, a replica tries to read the
freshest version associated with a transaction 𝑖𝑑𝑇 ′ included in
SS-PROP (i.e., 𝑣3 associated with 𝑡3 in Fig. 2). If the snapshot
contains no version for a key accessed (this may happen, for
instance, if a new relevant row is inserted after recording the
SS-VOTE’s) a replica simply reads the freshest committed
version. In some cases, this is even preferable if the snapshot
does have a version: if the freshest committed version is
newer than the latest version in the snapshot, insisting on
the snapshot may result in reading a stale version, ultimately
causing the query’s transaction𝑇 to abort. Reading the fresher
committed version is thus often preferable. This may cause
the client to not receive matching results; however, retrying

only the query (and doing so early) is more cost-effective than
continuing execution and aborting the full transaction later.

As a quick aside, note that this scenario is not the result
of Byzantine behavior—Byzantine replicas cannot cause
correct replicas to diverge, and correct clients can reliably
wait for responses from correct replicas. Rather, it stems from
legitimate contention: no interactive transactional system can
guarantee commit success under such conditions.

Returning to the protocol, 𝑅 adds its chosen read version
to Q-READ, and if the version has status prepared, it adds
the versions’ writer 𝑖𝑑𝑇𝑤 to Q-DEP.

Once 𝑅 completes query execution it returns a read reply
RANGE-RESPB ⟨Q-RES, Q-READ, Q-DEP⟩𝜎𝑅 .

6: C← R: Client 𝐶 receives read replies.

𝐶 considers a read successful upon receiving 𝑓 +1 replies
with matching Q-RES and Q-READ, and valid Q-DEP
(§5.5.1), as before. Because results can be legitimately incon-
sistent (e.g., due to newer committed versions) 𝐶 waits for
up to 2𝑓 +1 replies to guarantee that at least 𝑓 +1 are correct
(and thus do not fabricate inconsistency). If 𝐶 fails to receive
matching replies, it restarts the snapshot path (by requesting
a new set of SS-VOTEs), and retries query execution.

5.5.1 Managing Dependencies Pesto allows queries to
read prepared versions but, for safety, must ensure that correct
clients record dependencies. To maintain liveness, however, a
client𝐶 must avoid including fabricated dependencies (or risk
never completing its transaction). This raises a conundrum: 𝐶
cannot afford to ignore legitimate dependencies, yet it should
only accept dependencies that are vouched for by one correct
replica. Unfortunately, while 𝑓 +1 replicas may agree on the
read set Q-READ, their Q-DEP’s might differ: some (correct)
replicas may consider a candidate dependency 𝑖𝑑𝑇 ′ already
committed and not include it in Q-DEP.

To determine whether to include a dependency 𝐶 requires
either (𝑖) evidence that the dependency really exists, or (𝑖𝑖)
evidence that a correct replica deems it already committed
(and thus it need not be tracked). 𝐶 can assert case (𝑖) if a
candidate dependency 𝑖𝑑𝑇 ′ appears across any 𝑓 +1 Q-DEP’s



or SS-VOTE’s. Note that here, we do not require the result
Q-RES nor read set Q-READ to match as 𝐶 is only interested
in gathering evidence for 𝑖𝑑𝑇 ′ . If instead, 𝐶 is unable to
acquire evidence for 𝑖𝑑𝑇 ′ , but gathers at least 2𝑓 +1 matching
results it can conclude that at least one correct replica
deems the dependency unnecessary because 𝑇 ′ has already
committed (case (𝑖𝑖)). If 𝐶 can do neither, it cannot conclude
legitimacy of the dependency. In this case, it simply waits
for additional replies (or retries the query).

6 Transaction Commit
Once a transaction 𝑇 completes execution, the client begins

the commit process. Pesto adopts the core Basil [81] commit
protocol, which we summarize for completeness (§6.2).
Unlike Basil, however, Pesto’s concurrency control must
efficiently and safely handle range queries; to this end, Pesto
introduces a novel semantic based concurrency control,
reminiscent of precision locking [59]. We first discuss how
replicas locally perform validation. We then outline how
clients aggregate individual replica votes to ensure (Byz-)
serializability across replicas in a durable manner.

6.1 Concurrency Control (CC) Check
A replica votes to commit a transaction if the operations ex-

ecuted at that replica yields a serializable schedule. To check
this, Pesto takes as starting point Basil’s MVTSO algorithm.
Each transaction is assigned a unique timestamp that prede-
termines its global serialization order. Transactions read the
version with the highest timestamp still smaller than their own.
In order to commit, no transactions may miss a write that they
should have observed. As part of a validation phase, MVTSO
checks transactions for pairwise conflicts: if a reading trans-
action 𝑇𝑅 observed version 𝑣 for key 𝑟 , but a newer version 𝑣 ′

(< 𝑡𝑠𝑇𝑅 ) now exists, then 𝑇𝑅 must abort. This approach works
well for point reads as only a single row is involved. It does
not, however, extend gracefully to range reads. Consider the
transaction𝑇 in Fig. 2 that issues a simple scan operation𝑄B
SELECT last FROM people WHERE name = ’Peter’

to a non-primary key name, and which returns as result only
a single row (’Parker’). For safety, 𝑇 should record in its
𝑅𝑒𝑎𝑑𝑆𝑒𝑡𝑇 all rows present in table people as concurrent
transactions might change the contents of any rows name
column to ’Peter’. To avoid Phantom Read anomalies [33],
𝑇 must abort if even a single row in people is concurrently
inserted, updated, or deleted. 𝑇 must effectively acquire a
(logical) lock on the entire table in order to commit.

One can do better. A concurrent write that updates row
’Alice’ to ’Allie’ does not affect the result of𝑄 , and thus
does not violate serializability. Taking into account query se-
mantics can significantly reduce the number of rows that need
to be considered for range reads. Pesto leverages this idea
to implement a semantics-aware CC check that determines
whether concurrent writes affect the read predicate.

6.1.1 Read predicates To implement semantics-aware CC
for queries, Pesto uses an approach common in databases.
Each query (or sub-query) is broken into an operator tree
with leaves consisting of full or partial table scans and an
associated filter predicate (e.g., name = ’Peter’). This
allows Pesto to determine transaction conflicts by checking
whether a write satisfies a concurrent reader’s query filter
predicate. If yes, the write could be part of the read result. We
find that filter predicates, in practice, account for the brunt of
query selectivity, and only rarely unnecessarily abort writes
that meet the filter criteria but do not change the end query
result. Crucially, however, using filter predicates ensures that
Pesto will never miss a write that does affect the query result.

We adjust the read replies (§5.5) sent by replicas
to include the set of filter predicates Q-PRED as-
sociated with the query; replicas return a message
⟨Q-RES, Q-READ, Q-DEP, Q-PRED⟩𝜎𝑅 containing the
query result, read set, dependency set, and set of predicates.
Including the filter predicate is necessary as they may
differ across replicas: replicas might have inconsistent state,
and thus may instantiate different predicates for filters in
nested queries; e.g., the inner predicate of the query SELECT

names WHERE age = (SELECT age WHERE last =

’Parker’) depends on the age of Peter Parker. A client
considers a read successful only if 𝑓 +1 replies have matching
Q-PREDs; if so, it adds Q-PRED to its PredSet𝑇 . This ensures
that the recorded predicates are correct, and will safeguard
serializabillity during the CC-check.

6.1.2 A simple, semantics-aware CC-check Given a read
predicate 𝑃 , Pesto distinguishes between the active read set
(ARS) – all (key,version) pairs that fulfill 𝑃 (the active rows,
stored in Q-READ)—and the passive read set—all other rows.
Point reads, by design, only read active rows. Intuitively,
the ARS captures all rows that are relevant to a read’s
computation (i.e., contribute to the query result Q-RES).

To enforce Byz-serializability Pesto needs to ensure that the
ARS is fresh and complete: (𝑖) versions within the ARS are the
most recent, and (𝑖𝑖) the ARS does not miss any relevant rows.

Algorithm 1 summarizes Pesto’s CC-check; we defer
formal safety proofs to our supplemental material. A replica
𝑅 first performs some sanitization: it rejects transactions
whose timestamps are too high (Line 1) or that claim possibly
fabricated dependencies (Line 5). This ensures that Byzantine
issued transactions do not disrupt progress of concurrent
transactions. Replicas additionally reject transactions whose
writes are non-monotonic (Line 3); we defer explanation to
§6.1.3. Next, a replica checks for serialization conflicts.

Read Conflicts: R first checks that 𝑇 ’s ARS is fresh
(Lines 7-9): there does not exist a write from a committed
or prepared transaction 𝑇 ′ that (𝑖) is more recent than the
version read by 𝑇 and (𝑖𝑖) whose timestamp is smaller than
𝑡𝑠𝑇 (and thus should have been observed by 𝑇 ).



Algorithm 1 SemanticCC-Check(𝑇 )

1: if 𝑡𝑠𝑇 > 𝑙𝑜𝑐𝑎𝑙𝐶𝑙𝑜𝑐𝑘+𝛿
2: return Vote-Abort
3: if ¬isMonotonicWrite(𝑇 )
4: return Vote-Abort
5: if ∃ invalid 𝑑 ∈𝐷𝑒𝑝𝑆𝑒𝑡𝑇
6: return Vote-Abort
7: for ∀𝑘𝑒𝑦,𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ∈ReadSet𝑇
8: if 𝑣𝑒𝑟𝑠𝑖𝑜𝑛> 𝑡𝑠𝑇 return MisbehaviorProof
9: if ∃𝑇 ′ ∈𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑∪𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 :𝑘𝑒𝑦 ∈WriteSet𝑇 ′

∧𝑣𝑒𝑟𝑠𝑖𝑜𝑛< 𝑡𝑠𝑇 ′ < 𝑡𝑠𝑇
10: return Vote-Abort, optional: (𝑇 ′, 𝑇 ′.C-CERT)
11: for ∀𝑃 ∈PredSet𝑇
12: if ∃𝑇 ′ ∈𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑∪𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 :

(𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣−𝑔𝑟𝑎𝑐𝑒)< 𝑡𝑠′𝑇 < 𝑡𝑠𝑇 ∧
∃𝑤 ∈WriteSet𝑇 ′ .
𝑤 .𝑘𝑒𝑦 ∉ReadSet𝑇 ∧ �𝑤 ′ :𝑡𝑠𝑇 ′ <𝑤 ′ .𝑇𝑆 < 𝑡𝑠𝑇 :

13: if 𝑃 (𝑤.col-vals)
14: return Vote-Abort, optional: (𝑇 ′, 𝑇 ′.C-CERT)
15: if ¬𝑃 (𝑤.col-vals)∧riskyPrepared(𝑇 ′, w)
16: 𝐷𝑒𝑝𝑆𝑒𝑡𝑇 .insert(𝑇 ′)
17: for ∀𝑘𝑒𝑦,col-vals∈WriteSet𝑇
18: if ∃𝑇 ′ ∈𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑∪𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑.𝑡𝑠𝑇 < 𝑡𝑠𝑇 ′ :

ReadSet𝑇 ′[key].version< 𝑡𝑠𝑇∨
(𝑘𝑒𝑦 ∉ReadSet𝑇 ′∧∃𝑃 ∈PredSet𝑇 ′ :𝑃 (col-vals))

19: return Vote-Abort, optional: (𝑇 ′, 𝑇 ′.C-CERT)
20: 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑.𝑎𝑑𝑑 (𝑇 )
21: wait for all pending dependencies
22: if ∃ 𝑑 ∈𝐷𝑒𝑝𝑆𝑒𝑡𝑇 :𝑑.𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛=𝐴𝑏𝑜𝑟𝑡
23: 𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑇 )
24: return Vote-Abort
25: return Vote-Commit

R then checks that 𝑇 ’s ARS is complete: for each predicate
𝑃 , 𝑅 determines if there exists a preceding write 𝑤 from a
transaction 𝑇 ′ (𝑡𝑠𝑇 ′ < 𝑡𝑠𝑇 ) that (𝑖) is not in 𝑇 ’s ARS, (𝑖𝑖) is
the freshest version visible to 𝑇 , and (𝑖𝑖𝑖) fulfills 𝑃 , and thus
should have been in𝑇 ’s ARS (Lines 11-14). If 𝑤 does not ful-
fill 𝑃 , but 𝑇 ′ is only prepared, additional care is necessary: if
𝑇 ′ were to abort and reveal (as next freshest write) a write 𝑤 ′

(𝑡𝑠𝑤′ < 𝑡𝑠𝑤) that does fulfill 𝑃 , then 𝑇 may need to abort after
all. In this case, 𝑅 dynamically adds 𝑇 ′ to DepSet𝑇 (Lines
15-16). We defer discussion of 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 and 𝑔𝑟𝑎𝑐𝑒 to §6.1.3.

Write Conflicts: Writes are checked analogously. 𝑅 checks
that writes of𝑇 do not cause reads of a prepared or committed
transaction 𝑇 ′ to miss a version (Lines 17-19): R checks that
(𝑖) the ARS of 𝑇 ′ remains fresh, and that (𝑖𝑖) 𝑇 ’s writes do
not render the ARS of 𝑇 ′ incomplete.

If 𝑅 detects a direct conflict during validation, it immedi-
ately votes to abort 𝑇 . Otherwise, if no conflicts are found,
𝑅 prepares 𝑇 and tentatively makes its writes visible to
concurrent readers (Line 20). For safety, 𝑇 may only commit
if all of its read dependencies commit first (Lines 21-15). 𝑅

therefore waits for these dependencies to resolve: it votes to
commit 𝑇 if all dependencies commit; otherwise it votes to
abort 𝑇 and rolls back 𝑇 ’s tentative writes.

6.1.3 Making semantic CC efficient Ensuring freshness
for active reads is simple: it suffices to check for conflicts be-
tween the version read by 𝑇 and 𝑡𝑠𝑇 . Ensuring completeness
is less obvious: a newly arriving transaction𝑇 ′ that has a very
old timestamp (𝑡𝑠𝑇 ′ << 𝑡𝑠𝑇 ) may still insert a new relevant
row (or update the latest version of some relevant row), and
thus must be validated for potential conflicts. To uphold
safety, when a new transaction arrives, a replica 𝑅 must
therefore either (𝑖) re-execute all of 𝑇 ’s queries or (𝑖𝑖) check
for conflicts against all transactions (with smaller timestamps)
that ever wrote to the table; both of which are impractical.

Re-introducing ordering. We solve this problem by attach-
ing, for each read predicate 𝑃 of a transaction 𝑇 , a concise
summary of the (write) transactions that already happened
prior to the read, and whose effects are thus included as part
of the query result. Specifically, Pesto records a timestamp
of the (then) latest write to the given table, denoted table
version (𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣), and guarantees that all transactions with
timestamp lower than 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 are not conflicting (they
are either part of the query result, or not relevant). As a
consequence, 𝑅 need only inspect the remaining transactions
between 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 and 𝑡𝑠𝑇 . Pesto enforces this invariant
through write monotonicity: a new transaction 𝑇 ′ may only
write to a table if its timestamp is greater than any previously
recorded table version (i.e., is monotonic). Non-monotonic
writers must be aborted (Alg. 1, Lines 3-4).

To implement this idea, we make two adjustments to
Pesto’s read protocol: the first ensures consistency across all
replicas, and the second accounts for queries that may read
older versions due to snapshots.

Hardening Range Reads. First, Pesto must enforce
monotonicity not only within one replica but across all
replicas. Specifically, Pesto must ensure that the table version
included as part of a query reflects the latest committed
transaction at any replica. By design, reads that miss fresher
committed versions will be caught by Pesto’s CC’s freshness
check. Table versions are different. They are the mechanism
that ensures that current transactions are validated against
all possibly concurrent conflicting transactions. Our range
read quorums (which require 𝑓 +1 matching replies, see §5.5)
were previously not required to intersect with transactions’
commit quorums (§6.2). They must now be modified to
intersect with these commit quorums in at least one correct
replica. This requires clients to obtain table versions (and
associated results and read sets) from at least 3𝑓 +1 replicas.

Table versions are only a coarse summary of the state, so it
is possible for two different (correct) replicas to produce the
same query result (Q-RES) and (active) read set (Q-READ),
yet report different table versions. Pesto allows clients
to complete range reads without matching table versions,



and, for safety, simply selects the smallest table version
as 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣; to avoid selecting excessively low versions
fabricated by a Byzantine replicas, clients may reject replies
that deviate too far from the 𝑓 +1st smallest reported version.

Accounting for Snapshots. The aforementioned scheme
is sufficient if transactions always read the latest versions.
Snapshots, however, may direct queries to read versions
several timestamps older than the latest version of a row. For
example, a snapshot may cause a replica to skip a recently pre-
pared version that was not included in the snapshot proposal
SS-PROP. Such skipped versions can have a timestamp lower
than 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 , violating the invariant that all transactions
lower than 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 have been observed and therefore require
no further conflict checks. For safety, Pesto must thus check
for conflicts with any transaction written since the read
version, which may be lower than 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 . To close this gap
and restore the invariant, Pesto simply lowers 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 to one
less than the timestamp of the oldest skipped version. Con-
cretely, 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 = 𝑚𝑖𝑛(table version,𝑚𝑖𝑛({𝑡𝑠𝑠𝑘𝑖𝑝𝑝𝑒𝑑 } − 1)).
This ensures that the concurrency control mechanism checks
for all relevant conflicts.

Relaxing Write Monotonicity Write monotonicity, in
its simplest form, is overly harsh on writers: it does not
account for varying transaction execution durations (recall,
timestamps are selected at transaction begin), which may
result in aborts for any "late" writers. To avoid this, Pesto
relaxes the monotonicity requirement by adopting a sliding
window approach. Replicas accept all transactions within the
monotonicity threshold and a grace period, and accordingly
validate a predicate 𝑃 against writes between 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣−𝑔𝑟𝑎𝑐𝑒
and 𝑡𝑠𝑇 (Alg. 1, L. 12.1).

6.2 Commit Coordination
Commit is client-driven, and proceeds in two phases.
Prepare. In the prepare phase the client submits its

transaction 𝑇 to all involved shards for validation. Replicas
within a shard independently perform the local concurrency
control (CC) check (Alg. 1), voting on whether committing 𝑇
will violate Byz-serializability. Notably, replicas may process
transactions in different orders, and thus even correct replicas
may vote differently. The prepare phase ensures mutual
exclusion, that no two conflicting transactions may both
commit. To this end, the client tallies the replica votes of
each involved shard into a single shard-vote. A transaction is
deemed committable only if enough replicas vote to commit
such that no conflicting transaction will ever also become
committable. For transactions that access multiple shards,
the client additionally aggregates shard-votes as part of a
two-phase commit (2PC) protocol: 𝑇 commits if all shards
vote to commit, and aborts otherwise.

The prepare phase consists of two sub-stages. In stage ST1,
the client collects, for each shard that 𝑇 accesses, commit or
abort votes from all of the shard’s replica. These votes are
then used to make the 2PC decision. If the client receives

sufficiently many votes to conclude that the 2PC decision
will remain durable across failures, it proceeds immediately
to the writeback phase.

A shard-vote is considered durable iff it can be indepen-
dently retrieved by any client (i.e., any vote tally quorum
produces the same decision). Durable shard votes form a vote
certificate V-CERT B ⟨i𝑑𝑇 , 𝑆, 𝑉𝑜𝑡𝑒, {ST1R}⟩; we dub shards
with V-CERT fast, and shards without slow. Shard-votes are
tallied as follows:

1. Commit Slow Path (3𝑓 +1≤ commit votes <5𝑓 +1): The
client has received at least a 𝐶𝑜𝑚𝑚𝑖𝑡𝑄𝑢𝑜𝑟𝑢𝑚 (𝐶𝑄) of
votes, where |𝐶𝑄 |= 𝑛+𝑓 +1

2 =3𝑓 +1 Vote-Commit.
2. Abort Slow Path (𝑓 + 1 ≤ abort votes < 3𝑓 + 1): A

collection of 𝑓 + 1 abort votes constitutes the minimum
AbortQuorum (AQ) that preserves Byzantine indepen-
dence. Pesto clients are guaranteed to observe (at least)
either a CQ or an AQ (of size 3𝑓 +1 or 𝑓 +1 respectively).

3. Commit Fast Path (5𝑓 +1 commit votes): No replica re-
ports a conflict, and thus any possible quorum of size 𝑛− 𝑓
will contain sufficiently many commit votes to form a 𝐶𝑄 .

4. Abort Fast Path (3𝑓 +1≤ abort votes): 𝑇 conflicts with
a prepared transaction, and no other quorum can receive
sufficiently many commit votes to form a 𝐶𝑄 .

5. Abort Fast Path (One abort vote with a C-CERT for a
conflicting transaction 𝑇 ′). 𝑇 (provably) conflicts with a
committed transaction; any quorum will conclude abort.

𝐶 decides to commit 𝑇 if all shards vote to commit, and
otherwise aborts 𝑇 . If all shards voting to commit (or anal-
ogously if a single shard voting to abort) are fast (and thus
the votes are durable), 𝐶 aggregates the respective V-CERT’s
and proceeds immediately to the writeback phase. If a single
committing shard is slow (or the one aborting shard is slow)
𝐶 must first complete Stage ST2. Rather than make the votes
of slow shards durable, Pesto opts to replicate the tentative
2PC decision. To do so, 𝐶 selects one of the involved shards,
henceforth denoted as 𝑆l𝑜𝑔, and logs on it the decision; 𝑆l𝑜𝑔
is chosen deterministically depending on 𝑇 ’s id. 𝐶 records
a single durable V-CERT𝑆l𝑜𝑔 := ⟨i𝑑𝑇 , 𝑆, 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛, {ST2R}⟩.

In the absence of failures and contention, Pesto’s fast-path
thus allows clients to commit a transaction in a single
round-trip; otherwise, one additional round-trip is required.

Writeback. Once the decision is durable,𝐶 notifies its appli-
cation of 𝑇 ’s outcome, aggregates shard votes into a decision
certificate C-CERT/A-CERT B ⟨i𝑑𝑇 , d𝑒𝑐𝑖𝑠𝑖𝑜𝑛, {V-CERT𝑆 }⟩
(commit or abort, respectively), and asynchronously informs
all involved shards. On the fast path, C-CERT consists of the
commit V-CERT’s from all involved shards, while an A-CERT
need only contain one shard’s abort V-CERT. On the slow path,
both C-CERT/A-CERT simply include V-CERT𝑆l𝑜𝑔 . Replicas
that commit 𝑇 create new version for each written row. Ad-
ditionally, replicas notify pending dependencies (transactions
that read only prepared values of 𝑇 ) on the outcome of 𝑇 .



Recovery. In case of client failures, a cooperative Fallback
protocol allows other clients to terminate ongoing transac-
tions; we defer details of recovery to Basil [81] as they do
not affect how Pesto processes queries.

7 Evaluation
Our evaluation seeks to answer the following questions:

• How does Pesto perform on realistic applications? (§7.1)
• How does Pesto compare to Basil’s KVS design? (§7.2)
• What is the impact of inconsistency on Pesto? (§7.3)
• How well does Pesto tolerate replica failures? (§7.4)

Implementation. We implement a prototype of Pesto in
C/C++, starting from the open source implementation of
Basil [3]. We use Protobuf [22] and TCP for networking,
ed25519 elliptic-curve digital signatures [34, 68] and
HMAC-SHA256 [45] for authentication, and Blake3 [5] for
hashing. For its query layer, Pesto adapts Peloton [20], a full
fledged open-source SQL Database based on Postgres [74].

Baselines. We compare against four baselines: (𝑖) un-
replicated Peloton, run in-memory. (𝑖𝑖) Peloton-SMR, a
strawman system that layers Peloton atop BFT State Machine
Replication (SMR). We layer Peloton atop HotStuff (Peloton-
HS) [85]—a popular BFT consensus protocol that forms the
basis of several commercial systems [1, 10, 16, 30, 39, 44]—
and BFT-SMaRt (Peloton-Smart) [6, 35], a state-of-the-art
PBFT-based [38] implementation. For correctness, SMR-
based designs require deterministic execution on each replica:
this requires either sequential execution (which drastically
limits performance) or implementation of complex and
custom parallel execution engines [48, 54, 55]. Pesto, in
contrast, allows for optimal parallelism by design. For
maximum generosity to the baselines, we opt to relax the
determinism requirement for Peloton-SMR: we allow replicas
to freely execute transactions in parallel, and designate a
"primary" replica to respond to clients to ensure serializability.
This system configuration is explicitly not fault tolerant, but
simulates the optimal upper-bound on performance.
(𝑖𝑖𝑖) Third, we compare against Postgres [74], a production
grade SQL database. We run Postgres both in an unreplicated
configuration and with its native primary-backup feature
(Postgres-PB), in which writes are synchronously replicated,
with both configurations mounted in-memory on tempfs.
(𝑖𝑣) Finally, since Peloton and Postgres are not easily
shardable, we also compare Pesto against CockroachDB
(CRDB) [8, 82], a popular distributed database of production
grade. Because CRDB has poor single node performance
(it’s CPU utilization and query processing latency are
much higher than Peloton/Postgres) we instantiate it with 6
shards (one machine per shard). We run CRDB unreplicated,
in-memory.

Baseline Description
PESTO Our system: a BFT database that is SQL-

compatible and shardable.
PESTO-UNREP An unreplicated toy variant of Pesto, used only

for microbenchmarks.
PELOTON An unreplicated SQL database; Peloton [20] is

the basis for Pesto’s SQL engine.
PELOTON-HS An SMR-based BFT database: Peloton layered

over HotStuff [85].
PELOTON-SMART An SMR-based BFT database: Peloton layered

over BFT-SMaRt [6].
POSTGRES A widely-used unreplicated production-grade

SQL database [74].
POSTGRES-PB Postgres using built-in primary-backup replica-

tion (one backup replica).
CRDB A production-grade distributed SQL data-

base [8]; we use 6 shards.

Table 1. Summary of evaluated systems.

Table 1 summarizes all evaluated systems.2 All systems
are run in-memory and configured to enforce serializable
isolation, which is the strongest isolation level they support.

Experimental Setup. We use m510 machines (8-core
2.0 GHz CPU, 64 GB RAM, 10 GB NIC, 0.15 ms ping
latency) on CloudLab [7]. Clients execute transactions in a
closed-loop, and reissue aborted transactions using a standard
random-exponential back-off scheme.

We configure each replicated system to tolerate 𝑓 = 1
faults (𝑛 = 3𝑓 + 1 for Peloton-SMR, 𝑛 = 5𝑓 + 1 for Pesto,
𝑛=2 for Postgres-PB); Peloton, Postgres and CRDB are run
unreplicated and tolerate no faults. We run experiments for
60 seconds, including a 15 s warm-up and cool-down period.

7.1 High level performance
We evaluate Pesto on three popular transactional bench-

mark applications: TPC-C [83], AuctionMark [49], and
SEATS [49]. TPC-C (configured with 20 warehouses) ex-
hibits high contention, and a high ratio of point to range reads.
AuctionMark (an auction system with complex joins) and
SEATS (an airline ticketing service) have a high fraction of
range queries and cross-table joins, but exhibit low contention
compared to TPC-C. Figures 3, 4 and 5 report the results.

TPC-C. Pesto’s throughput (1784 tx/s) matches that of un-
replicated Peloton (1777 tx/s) and Postgres (1781 tx/s), is 2.3x
higher than that of Peloton-HS (758 tx/s) and Peloton-Smart
(785 tx/s), and 1.4x higher than Postgres-PB (1257 tx/s). Pesto
increases latency by less than 1.5x over Peloton and Postgres
(equal latency at high load), and reduces latency by 3.9x over
Peloton-HS, and 2.7x over Peloton-Smart. Peloton-HS and
Peloton-Smart incur the latency of consensus (3 message de-
lays (md) for BFT-Smart, 7 md for HotStuff) for each read,
write and commit request; Postgres-PB incurs replication la-
tency for each write, but performs reads at the primary only.
Pesto, in contrast, (𝑖) buffers writes, (𝑖𝑖) executes point reads
in a single round-trip as well as 99.9% of range reads, and
2Our Pesto prototype and all evaluated baseline systems are available at
https://github.com/fsuri/Pequin-Artifact.

https://github.com/fsuri/Pequin-Artifact
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Figure 4. AuctionMark
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Figure 5. SEATS

(𝑖𝑖𝑖) can commit in a single round-trip (Fast Path) 97% of
the time. While Pesto, Peloton and Postgres remain CPU bot-
tlenecked, both Peloton-SMR systems and Postgres-PB are
contention bottlenecked due to their higher latency, thus lim-
iting their achievable throughput. CRDB, too, is contention
bottlenecked, peaking at 1033 tx/s; although CRDB does
not replicate, it supports only sequential reads within each
transaction which results in high latency on TPC-C.

Perhaps surprisingly, Pesto matches the throughput of un-
replicated Peloton despite the overheads inherent to BFT pro-
tocols (e.g., signatures and quorum requirements). This is be-
cause Pesto must read only from a quorum of replicas (at least
𝑓 +1 for point reads, and at least 3𝑓 +1 for range reads): on a
point read heavy workload as TPC-C this allows Pesto to effi-
ciently load-balance read requests and exceed its unreplicated
performance. Unreplicated Pesto is able to closely match
Peloton in latency, but reaches a CPU bottleneck at 1379 tx/s.

AuctionMark and SEATS make fewer point reads which
diminishes the benefits of request load balancing (range reads
require larger quorums). Nonetheless, Pesto is able to match
its unreplicated throughput, while coming within 1.36x of
unreplicated Peloton on AuctionMark, and 1.22x on SEATS;
Pesto comes within 1.94x of Postgres on both workkloads.
Pesto reduces latency over Peloton-HS and Peloton-Smart
respectively by 5x/3x on AuctionMark, and 4.6x/3.4x on
SEATS. Throughput gains are limited (1.1x AuctionMark,
1.2x SEATS) as all systems are CPU bottlenecked.

Takeaway Pesto achieves performance comparable with
unreplicated production-grade systems, while significantly
outperforming traditional BFT-based approaches.

7.2 Comparison with Basil’s key-value store design
Next, we examine the overheads and benefits introduced by

Pesto, compared to Basil’s key-value store-based approach.
Scalability. Figure 6 shows the scalability of Pesto on

TPC-C with increasing number of shards. Pesto is CPU
bottlenecked and thus scales significantly by partitioning
the workload across two (1.64x) and three shards (2.21x),
respectively. On a shared three-shard setup, Pesto – which im-
plements a full-stack SQL system, requiring significant CPU
cycles for query parsing, planning, execution, and index man-
agement – comes within 1.23x of the reported throughput of

Basil (4862 tx/s), which implements only a simple KVS. We
also compare Pesto’s scalability to CRDB. Because Pesto uses
more machines (for replication), we allow CRDB to scale to 6
and 9 shards (its peak). CRDB’s has poor single-shard perfor-
mance (4.46x less throughput than Pesto), but scales at a rate
similar to Pesto. Its peak performance is 2.91x below Pesto.
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Figure 6. Sharding scalability for TPC-C

Range vs. Point Reads. While adding support for SQL
queries naturally adds overhead over a simple transactional
key-value store like Basil, directly using the SQL interface
rather than the basic point query API can speed up the
execution of complex transactions. For instance, Pesto’s range
read protocol reduces the latency of TPC-C’s scan-heavy
Stock-level transaction by over 11x compared to Basil’s
point-read based implementation.

We illustrate the benefits of Pesto’s range read protocol in
Figure 7, which reports scan latency across varying ranges
on a simple read-only microbenchmark. As more rows are ac-
cessed, the latency of a point-only implementation increases
significantly due to the need to process and verify messages
based on the size of the intermediary result. In contrast, range
reads scale significantly better (a 16.6x reduction for a range
of 10k rows), with only a single message exchange required
for the entire query. The cost of range reads scales with the
result size. For example, if a scan’s result is conditioned on a
predicate that holds for only 1 in 100 rows, range reads scale
accordingly (a 110x reduction for a range of 10k rows).

7.3 Stress testing Range Reads
Range reads offer improved expressivity and performance

but might not succeed in a single round trip. To evaluate
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Figure 8. Stress testing range reads
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Figure 9. Impact of replica failure

the worst-case, we stress test Pesto by (𝑖) artificially failing
eager execution for every transaction (requiring a snapshot
proposal, but no synchronization), and (𝑖𝑖) artificially sim-
ulating inconsistency by ommitting/delaying writes of every
transaction at 1

3 rd of replicas (requiring also synchronization).
We implement a microbenchmark based on YCSB [42]

consisting of 10 tables, each containing 1𝑀 keys. Every
transaction reads and updates 10 rows. We instantiate two
workloads: an uncontended uniform access pattern U, and
a very highly contended Zipfian access pattern Z with
coefficient 1.1. Figure 8 shows the results.

On the uniform workload Pesto is CPU bottlenecked.
Failed eager execution (U-FailEager) requires an additional
round-trip to propose a snapshot and re-execute on the
synchronized state; re-execution, in turn, increases CPU load
as every transaction must execute twice in total, resulting in
both reduced throughput (≈9%) and higher latency (1.38𝑥).
Inconsistency (U-Incon) yields similar results: two thirds of
transactions fail eager execution and require both a snapshot
proposal and synchronization between replicas to exchange
missing writes. Synchronization cost, however, is offset by
the initial omission of writes at 1

3 rd of replicas, resulting in
an overall throughput reduction of only ≈5%.

The Zipfian workload, in contrast, induces a heavy
contention bottleneck. The respective up-ticks in read latency
for Z-FailEager (1.43x) and Z-Incon (1.49x) increase the
opportunity for conflict (i.e., enlarge conflict windows [37]),
resulting in more transaction aborts. Throughput drops by
32% and 48% respectively.

7.4 Impact of Failure
Finally, we evaluate the impact of replica failures in Pesto.

Note that replicas cannot impact the correctness or liveness of
Pesto’s range read protocol. The snapshot filtering procedure
ensures that all proposed transactions are valid (and thus can
be reliably synchronized), and no more stale than a read to
any single correct replica. Similarly, replicas cannot affect
the safety of Pesto’s commit protocol (this follows from
Basil). Replicas can only impact the system by crashing.

Figure 9 shows the effect of 𝑓 =1 failures on the Uniform
and Zipfian microbenchmarks. Crucially, and unlike SMR-
based designs that rely on a leader [38, 56, 63, 85], Pesto
suffers no progress interruptions as transaction coordination

is entirely client driven. Replica failures affect only Pesto’s
ability to commit in a single round-trip (fast path).

We evaluate two configurations: (𝑖) Failure-NoFP illustrates
the effect of a failure when the fast path is disabled. (𝑖𝑖)
Failure-FP shows the impact of a failed fast path when using a
very conservative timeout of ≈4ms. In principle, fast and slow
path execution can run in parallel to avoid timeout-induced
delays. However, this introduces redundant processing when
transactions succeed on the fast path. By default, Pesto delays
the slow path until a timeout to optimize resource efficiency.

In both configurations, commits requires an additional
round trip of coordination (to a single shard, §6) to ensure
durability. This increases latency, and, for the CPU bottle-
necked uniform workload, reduces throughput due to added
signature overhead. U-Failure-NoFP and U-Failure-FP
degrade throughput by 14% and 24%, respectively, while
latency increases by 1.59x and 2.7x.

In contrast, on the contention bottlenecked Zipfian workload
the slow path overhead only marginally impacts throughput
and latency (1.25x latency increase, and a 5% throughput
reduction for Z-FailureNoFP). This is a direct consequence of
Pesto making writes visible eagerly upon preparing and allow-
ing contending transactions to acquire dependencies instead
of waiting for commitment. The additional slow path latency
is incurred only after preparing, and thus leaves conflict win-
dows mostly unaffected. Z-FailureFP incurs the additional
timeout latency (2.5x), and reduces throughput by 36%.

We defer a detailed analysis of client failures to Basil [81].
Client failures affect only commit liveness—not the commit
outcome—and are resolved via Basil’s cooperative fallback
protocol, which Pesto adopts. Client failures before commit af-
fect only itself, as its writes are not yet visible; clients can only
impact the execution of their own queries, and thus cannot af-
fect the correctness or progress of correct clients’ executions.

8 Related Work
In addition to Basil [81], the BFT key-value store Pesto

builds upon, there are several other related research efforts.
BFT State Machine Replication. State Machine Repli-

cation (SMR) [76] provides the abstraction of a single
fault tolerant server, a core building block in many dis-
tributed data-storage systems, both in the Crash Fault Tolerant



(CFT) [31, 43] and BFT space [27, 28, 32, 61]. At the heart of
BFT SMR lie consensus protocols [38, 40, 56, 57, 63, 79, 85]
enable replicas to establish a consistent total order of requests,
despite arbitrary misbehavior. This powerful abstraction,
unfortunately, comes at a cost.

Reaching agreement requires several rounds of message
exchanges, resulting in high latency. To facilitate agreement
BFT consensus protocols traditionally designate a leader
replica to act as a designated sequencer [38, 57, 63, 85];
this marks a scalability bottleneck and raises fairness
(and censorship) concerns [89]. Recent works propose
multi-leader approaches [46, 56, 79, 80] that improve
throughput and fairness at the cost of increased latency. Pesto,
following in Basil’s footsteps, sidesteps both performance
and fairness concerns by adopting a client-driven (leaderless)
approach and enforcing Byzantine independence.

To maintain consistency, replicas in SMR must further ex-
ecute requests sequentially, limiting scalability; though some
works explore ways to regain limited parallelism [48, 54, 55].
Pesto, in contrast, is order-free by design, and naturally
parallelizes concurrent executions.

Finally, SMR-based systems, by default, require that all
replicas execute every operation. Yin et al. [84] and Distler
et al. [50] explore separating agreement from execution to
reduce redundancy; Pesto, likewise, need only execute at a
subset of replicas, enabling load balancing.

Database functionality can be layered on top of SMR (or
vice versa) [60, 75], but at high cost.

Blockchains [1, 12, 23, 24] offer neither interactive
transactions nor SQL, and instead implement custom Smart
Contract languages (SC) [90] (effectively stored procedures);
SC invocations are ordered using BFT SMR and executed
by native engines such as Ethereum’s VM [13] or the Move
runtime [19].

DB atop BFT. BlockchainDB [52] layers a DB atop
existing blockchains and shards contents across peers
to reduce replication redundancy; however, it does not
implement transactions and offers only a GET/PUT interface.
BigchainDB [66] implements a custom NoSQL [58] interface
and layers MongoDB [18] on top of Tendermint [36].
FalconDB [73] leverages authenticated data structures
to allow clients to safely execute limited SQL queries
against a single replica; it orders transaction commits via
Tendermint and uses OCC to enforce snapshot isolation. The
Blockchain Relational Database [69] and Kwil [15] layer
PostgreSQL [21] atop BFTSmart [6] and CometBFT [9],
respectively, but limit SQL transactions to stored procedures.

BFT atop DB. Hyperledger Fabric [28] adopts an Execute-
Order-Validate framework: stored procedures (Chaincodes)
are executed optimistically in parallel across replicas (peers),
and ordered for validation. ChainifyDB [77] implements a
similar architecture but supports a general purpose SQL inter-
face and allows replicas to deploy heterogeneous relational

DB’s. Transactions are executed optimistically, and attempt
to reach agreement on results; if executions are inconsistent,
database states are rolled back, and transactions re-executed.

SemanticCC Pesto’s SemanticCC builds on the princi-
ples of predicate and precision locking [53, 59]. Classic
approaches, however, assume a centralized lock manager—a
single point of trust and failure—making them infeasible in
a leaderless, Byzantine setting. Hekaton [47] also leverages
semantics to avoid aborts, but does so by tracking full read
sets and re-executing transactions during validation to detect
missed versions. HyPer [70] adapts precision locking to
optimistic concurrency control (OCC), but only in the context
of an unreplicated database. In contrast to HyPer, which
stores predicates server-side during execution, Pesto stores
no query metadata during execution and instead relies on
clients and write monotonicity to enforce serializability.

9 Conclusion
This paper presents Pesto, a high performance BFT database

that provides a general SQL purpose interface. Pesto forgoes
explicit ordering of requests, allowing execution to proceed
in parallel, and with low latency. It implements (Byz-) seri-
alizable transactions and upholds Byzantine independence,
thereby limiting the influence of Byzantine participants.
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The following material has not been Peer-Reviewed
The following material is supplementary. It contains formal

proofs of correctness (§A), as well as additional technical
discussion and optimizations (§B).

A Proofs
We show that Pesto upholds Byz-serializability [81] and

Byzantine independence [81].
Byz-serializability captures Pesto’s safety requirement:

it ensures that all correct participants observe state that is
serializable. While Byzantine participants may choose to
view a non-serializable state, they cannot compromise the
safety of correct participants.

We note that liveness, in a traditional sense, does not
apply to general-purpose interactive transactions. Whether
a transaction commits depends on runtime contention and
concurrency—factors outside the protocol’s control. Transac-
tions facing contention may need to abort and retry; avoiding
aborts with certainty requires a-priori knowledge of a trans-
action’s read and write sets, which generally is unavailable
for interactive transaction workloads. Nonetheless, Pesto is
designed to make as much progress as possible. In particular,
transaction progress should be decoupled from Byzantine be-
havior. Byzantine independence formalizes this requirement:
no operation—especially transaction outcomes—should be
unilaterally determined by Byzantine participants.

Additionally, Pesto should ensure progress in the absence
of contention. Specifically, if no new contending transactions
arrive concurrently, all ongoing (correct clients’) transactions
should eventually commit. To model this scenario, we assume
a contention-free time 𝑡𝐶𝐹 after which no further conflicting
transactions are submitted. We show that under this condition,
Pesto guarantees transaction commit after 𝑡𝐶𝐹 .

A.1 Definitions
For completeness, we restate the formal definitions of

Byz-serializability and Byzantine independence introduced
in Basil [81]:

A transaction T contains a sequence of read and write
operations terminating with a commit or an abort. A history H
is a partial order of operations representing the interleaving of
concurrently executing transactions, such that all conflicting
operations are ordered with respect to one another. A
history satisfies an isolation level I if the set of operation
interleavings in H is allowed by I.

Additionally, let C be the set of all clients in the system;
Crct ⊆𝐶 be the set of all correct clients; and 𝐵𝑦𝑧 ⊆𝐶 be the
set of all Byzantine clients. A projection 𝐻 |C is the subset
of the partial order of operations in 𝐻 that were issued by
the set of clients C .

Legitimate History History 𝐻 is legitimate if it was
generated by correct participants, i.e., 𝐻 =𝐻Crct .

Correct-View Equivalent History 𝐻 is correct-view equiv-
alent to a history 𝐻 ′ if all operation results, commit decisions,
and final database values in 𝐻 |𝐶𝑟𝑐𝑡 match those in 𝐻 ′.

Byz-I Given an isolation level 𝐼 , a history 𝐻 is Byz-I if there
exists a legitimate history 𝐻 ′ such that 𝐻 is correct-view
equivalent to 𝐻 ′ and 𝐻 ′ satisfies 𝐼 .

Pesto specifically guarantees Byz-serializability.

Byzantine Independence For every operation 𝑜 issued by
a correct client 𝑐, no group of participants containing solely
Byzantine actors can unilaterally dictate the result of 𝑜 .

Notation. In the following we refer to the unique identifier
of a row as the row-key. In practice, this is a unique encoding
of the rows primary key. For each row-key, there may exist
multiple row-versions, each corresponding to the write of a
unique transaction.

A.2 Correctness Sketch
We adopt and extend Basil’s proof of Byz-serializability

to Pesto. It proceeds in four steps:
First, we prove that Pesto’s concurrency control ensures that

each correct replica generates a locally serializable schedule.
We adopt Adya’s formalism here [25]: an execution of Pesto
produces a direct serialization graph (DSG) whose vertices
are committed transactions, denoted 𝑇𝑡 , where 𝑡 is the unique
timestamp identifier. Edges in the DSG are one of three types:

• 𝑇𝑖
𝑤𝑤−−−→𝑇𝑗 if 𝑇𝑖 writes the version of object 𝑥 that precedes

𝑇𝑗 in the version order.

• 𝑇𝑖
𝑤𝑟−−→𝑇𝑗 if 𝑇𝑖 writes the version of object 𝑥 that 𝑇𝑗 reads.

• 𝑇𝑖
𝑟𝑤−−→𝑇𝑗 if 𝑇𝑖 reads the version of object 𝑥 that precedes

𝑇𝑗 ’s write.
We assume, as does Adya, that if an edge exists between 𝑇𝑖

and 𝑇𝑗 , then 𝑇𝑖 ≠𝑇𝑗 . An execution is serializable if the DSG is
cycle-free. To prove Lemma 1 it suffices to prove that if there

exists an edge 𝑇𝑖
𝑟𝑤/𝑤𝑟/𝑤𝑤
−−−−−−−−−→𝑇𝑗 , then 𝑖 < 𝑗 (i.e., the timestamp

of the outbound vertex is smaller than the timestamp of the
inbound vertex: 𝑡𝑠𝑜𝑢𝑡 < 𝑡𝑠𝑖𝑛).

Based on this, we define a notion of conflicting transactions:
informally, a transaction 𝑇𝑖 conflicts with 𝑇𝑗 if adding 𝑇𝑗 to
a history containing 𝑇𝑖 would cause the execution to violate
Byz-serializability.

We show:

Lemma 1 On each correct replica, the set of transactions
for which the CC-Check returns Vote-Commit forms an
acyclic serialization graph.

Next, we must show that Pesto’s Commit protocol ensures
that decisions for transactions are unique.

Lemma 2 There cannot exist both an C-CERT and a A-CERT
for a given transaction.

Likewise, the Commit protocol must ensure that no two
conflicting transactions may both commit.

Lemma 3 If 𝑇𝑖 has issued a C-CERT and 𝑇𝑗 conflicts with 𝑇𝑖 ,
then 𝑇𝑗 cannot issue a C-CERT.



It follows that Pesto satisfies Byz-serializability.

Theorem 1 Pesto maintains Byz-serializability

Since Pesto adopts the core Basil Commit protocol, the
proofs of Lemmas 2 and 3 follow directly from Basil; we
defer the proof to [81]. We prove that Pesto’s concurrency
control upholds Lemma 1.

Likewise, it follows directly from Basil that Pesto’s point
read and commit protocol are Byzantine Independent. We
prove additionally that Pesto’s range read protocol upholds
Byzantine independence, and ensures progress in absence
of contention.

Theorem 2 Pesto’s range read protocol is Byzantine
independent.

Theorem 3 Pesto’s range read protocol guarantees successful
termination after 𝑡𝐶𝐹 .

A.3 Byz-Serializability
We first show that Pesto’s range read protocol guarantees va-

lidity and integrity for correct clients. This ensures that, given
a serializable input state, any query issued by a correct client
yields a serializable result. Furthermore, the returned ReadSet,
PredSet, and DepSet accurately reflect the result and preserve
serializability. We do not assess the correctness of reads
performed by Byzantine clients; under Byz-serializability,
such clients are responsible for their own consistency.

Lemma 4 Successful range reads issued by correct clients
uphold data validity and query integrity, and produce correct
concurrency control meta-data.

Proof. Range read execution succeeds if a (correct) client
receives 3𝑓 + 1 matching read results, read sets (and valid
dependency sets), and predicate sets. It follows that at least
one correct replica vouches for the result and asserts that it
corresponds to the reported read and predicate sets. A correct
replica will only read valid row-versions, and will perform
the query computation truthfully (i.e., with integrity). Finally,
if at least one correct replica reports a row-version as only
tentatively committed (prepared), a correct client will register
a dependency, or fail the range read. □

Notably, any details relating to snapshot synchronization
do not impact data validity and query integrity. They affect
only responsiveness, Byzantine independence, and freshness.

For completeness, we show correctness also for point
reads. We note that point reads, by design, do not rely on
server-side computation. A point read may perform simple
data transformations on a row-version; however, these may
be performed client-side—integrity is thus a given.

Lemma 5 Successful point reads issued by correct clients
uphold data validity and produce correct concurrency control
meta-data.

Proof. Point reads return either a committed or prepared
row-version. Committed row-versions are supported by a
Commit-Proof which, by definition, proves the validity of
the write. Clients can execute their query on the associated
row-value to confirm the result. Prepared row-versions, in
turn, are only selected by correct clients if backed by 𝑓 +1
replicas, thus asserting that at least one correct replica has
tentatively prepared the value. Correct clients include the
(unique) row-key and row-version in their read set, as well
as a dependency if the read row-version was prepared. □

Transaction Conflicts. In the following, we refer to an
execution of Pesto as the set of committed transactions. An
execution of Pesto is (Byz-) serializable if the execution
results of all (correct clients’) transactions are equivalent
to some serial ordering of all committed transactions. Pesto
simplifies this objective by making the serialization order
explicit: transactions in Pesto are assigned a position in the
serialization order via their timestamp. A Pesto execution
consequently upholds (Byz-) serializability if the execution
results of all committed transaction is consistent with the
timestamp-induced serialization order.

We say that a pair of transactions 𝑇𝑖 , 𝑇𝑗 conflicts if 𝑡𝑠𝑖 < 𝑡𝑠 𝑗 ,
yet 𝑇𝑗 ’s execution results are not compliant with the serial
order. By design, 𝑇𝑖 and 𝑇𝑗 may only conflict if 𝑇𝑖 produces
a write that 𝑇𝑗 should observe, i.e., a write that changes the
result of 𝑇𝑗 ’s read. This corresponds to a rw-edge in the DSG
where 𝑇𝑗

𝑟𝑤−−→𝑇𝑖 , thus violating our objective that 𝑡𝑠𝑜𝑢𝑡 < 𝑡𝑠𝑖𝑛
for all edges in the DSG. All other cases (both transactions
read, both transactions write, or 𝑇𝑖 reads) are conflict-free:
writes are applied to a multi-version store and indexed by
their timestamp, and reads of 𝑇𝑖 exclusively read versions
≤ 𝑡𝑠𝑖 . It thus follows immediately that all ww and wr edges
in the DSG uphold 𝑡𝑠𝑜𝑢𝑡 < 𝑡𝑠𝑖𝑛 (see [81] for full proof).

Conflict: 𝑇𝑖 and 𝑇𝑗 conflict if 𝑇𝑖 produces a write 𝑥𝑖 to a
row 𝑥 read by 𝑇𝑗 , but (𝑖) 𝑇𝑗 does not observe 𝑥𝑖 , and (𝑖𝑖) there
exists no other transaction 𝑇𝑘 with 𝑡𝑠𝑖 < 𝑡𝑠𝑘 < 𝑡𝑠 𝑗 that writes 𝑥 .

We show that Pesto’s concurrency control (CC) ensures that
the set of transactions prepared by any given correct replica is
conflict-free (or, in Adya’s formalism, the DSG is cycle free).
We re-state Lemma 1 adjusted for our conflict terminology.

Lemma 1. On each correct replica, the set of transactions
for which the CC-Check returns Vote-Commit is free of
pair-wise conflicts.

For every query, the active read set (ARS), by definition,
contains all row-keys for which the query predicate evaluates
to true; if there is no predicate, the ARS contains all row-keys
(for the given table).3 It follows from Lemmas 4 and 5 that
correct clients report in their transactions correct ARS and
predicates.
3Note that point reads always contain a predicate strong enough to identify
a singular row. Point reads are thus active by design.



Let 𝑇𝑖 and 𝑇𝑗 be conflicting transactions such that 𝑇𝑖 writes
a row-key 𝑥 , and 𝑇𝑗 reads 𝑥 . By the definition of a conflict,
𝑡𝑠𝑖 < 𝑡𝑠 𝑗 and 𝑇𝑖 is the last writer to 𝑥 preceding 𝑇𝑗 in the
serialization order, and 𝑇𝑗 read a version of 𝑥 with 𝑡𝑠𝑘 < 𝑡𝑠𝑖 .

By design, 𝑇𝑖 ’s write set must contain the write 𝑥𝑖 , as Pesto
only writes keys in the write set.

We distinguish two cases: (𝑖) 𝑟 is in the active read set
(ARS) of 𝑇𝑗 , but is not fresh, and (𝑖𝑖) 𝑟 is in the passive read
set (PRS) of 𝑇𝑗 , and thus 𝑇𝑗 ’s ARS is incomplete.

We first show that the CC-check ensures that a replica 𝑅

only votes to commit transactions whose ARS is conflict-
free, i.e., any concurrent write that would render a read
row-version stale leads to an abort.

Lemma 6 Pesto’s CC-check detects stale ARS.

Proof. There are two subcases: a replica 𝑅 either executes the
check for 𝑇𝑖 before the check for 𝑇𝑗 or vice versa. Note, that
if 𝑇𝑖 or 𝑇𝑗 pass the CC-check at 𝑅 but do not commit globally,
then nothing need be shown as there is no conflict. We thus
assume that the first transaction to be checked becomes
committed; it follows that no correct replica that has prepared
the transaction will ever change its local status to abort.
𝑇𝑖 before 𝑇𝑗 . If 𝑇𝑖 has passed the CC-check on replica 𝑅

(and 𝑇𝑖 ultimately commits) then 𝑇𝑖 must either be in the
Prepared or Committed set when 𝑅 executes the check for 𝑇𝑗 .
When the check for𝑇𝑗 reaches Line 9 in Algorithm 1 the abort
condition is satisfied for 𝑇𝑗 because 𝑟 𝑗 (𝑥)=𝑡𝑠𝑘 < 𝑡𝑠𝑖 < 𝑡𝑠 𝑗 .
𝑇𝑗 before 𝑇𝑖 . If 𝑇𝑗 has passed the CC-check (and 𝑇𝑗

ultimately commits) then 𝑇𝑗 must either be in the Prepared
or Committed set when the check is executed for 𝑇𝑖 . When
the check for 𝑇𝑖 reaches Line 18 in Algorithm 1 the abort
condition is satisfied for 𝑇𝑖 because 𝑟 𝑗 (𝑥)=𝑡𝑠𝑘 < 𝑡𝑠𝑖 < 𝑡𝑠 𝑗 .

It follows, that the CC-check cannot vote to commit two
transactions with a pairwise ARS conflict. □

Next, we show that the CC-check captures conflicts that
render the ARS incomplete, i.e., a row-key 𝑥 that is in the
PRS of 𝑇𝑗 but should have been active. We assume that 𝑇𝑗 ’s
predicate set contains a predicate 𝑃 that perceived 𝑥 as passive.
By definition of a conflict, however, 𝑇𝑖 ’s write 𝑥𝑖 fulfills 𝑃 .

Lemma 7 Pesto’s CC-check detects incomplete ARS.

We show this first for the unoptimized version of Pesto
that does not leverage write monotonicity, before extending
our proof to the general case. We note, that this unoptimized
case is equivalent to a monotonicity grace period that is
unbounded (or "infinite").

Lemma 8 Pesto’s monotonicity-unoptimized CC-check
detects incomplete ARS.

Proof. We again distinguish the two subcases: either the check
for 𝑇𝑖 was executed before the check for 𝑇𝑗 or vice versa.
𝑇𝑖 before 𝑇𝑗 . If 𝑇𝑖 has passed the CC-check, and was com-

mitted, then 𝑇𝑖 must either be in the Prepared or Committed

set when the check is executed for 𝑇𝑗 . Since monotonicity
optimizations are disabled, it is guaranteed that the check for
𝑇𝑗 explicityly compares with 𝑇𝑖 when it reaches Line 12 in
Algorithm 1. The check confirms (𝑖) that 𝑇𝑖 ’s write 𝑥𝑖 fulfills
𝑃 , (𝑖𝑖) that 𝑥 is not present in 𝑇𝑗 ’s ARS, and (𝑖𝑖𝑖) that there is
no other transaction𝑇𝑘 with 𝑡𝑠𝑖 < 𝑡𝑠𝑘 < 𝑡𝑠 𝑗 that has prepared or
committed a write 𝑥𝑘 that does not fulfill 𝑃 . This triggers the
abort condition. Note that, if 𝑇𝑘 exists but is only prepared,
Pesto dynamically adds a dependency on 𝑇𝑘 : if 𝑇𝑘 aborts, 𝑇𝑗
will abort too (Alg 1, Lines 15-16, and Lines 21-24).
𝑇𝑗 before 𝑇𝑖 . If 𝑇𝑗 has passed the CC-check, and was

committed, then 𝑇𝑗 must either be in the Prepared or
Committed set when the check is executed for 𝑇𝑖 . When the
check for 𝑇𝑖 reaches Line 18 in Algorithm 1 it confirms that
𝑇𝑖’s write 𝑥𝑖 fulfills 𝑃 , and 𝑥 is not present in the 𝑇𝑗 ’s ARS,
triggering an abort.4

It follows that the CC-check cannot vote to commit two
transactions with a pairwise predicate conflict. □

Next, we show that the CC-check remains safe when
adjusted to use a finite monotonicity grace period. We omit a
distinction of grace period tiers and assume a single grace pe-
riod; grace tiers do not affect safety but affect only efficiency.

Lemma 7 Pesto’s CC-check detects incomplete ARS.

Proof. We need only expand the subcase in which 𝑇𝑖
was executed before the check for 𝑇𝑗 . The reverse case
is unaffected by write monotonicity and already proven
complete by Lemma 8.
𝑇𝑖 before 𝑇𝑗 . Let 𝑡𝑠𝑃 be the table version of 𝑇𝑗 ’s predicate

𝑃 . We distinguish two subcases: (𝑖) 𝑡𝑠𝑖 ≥ 𝑡𝑠𝑃−𝑔𝑟𝑎𝑐𝑒, and (𝑖𝑖)
𝑡𝑠𝑖 < 𝑡𝑠𝑃−𝑔𝑟𝑎𝑐𝑒.

In case (𝑖) no additional work need be shown, and we defer
to Lemma 8. 𝑇𝑖 will actively be considered for conflict when
the check reaches Line 12 in Algorithm 1.

Case (𝑖𝑖) requires additional care: the abort condition in
Line 12 of Algorithm 1 will not be triggered, yet we must
ensure that 𝑇𝑖 and 𝑇𝑗 do not both commit. We show via
contradiction that it is impossible for𝑇𝑖 to commit in case (𝑖𝑖).

Assume that 𝑇𝑖 commits successfully. It follows from
Pesto’s Commit Protocol that at least 3𝑓 + 1 (out of 5𝑓 + 1)
replicas voted to commit𝑇𝑖 and consequently prepared𝑇𝑖 . We
know, further, that 𝑡𝑠𝑃 is the minimum table version observed
across 3𝑓 + 1 replicas, and, that 𝑇𝑗 observed 𝑥𝑖 at none of
said 3𝑓 +1 replicas (since 𝑥𝑖 is not in 𝑇𝑗 ’s ARS). It follows
from quorum intersection that at least one correct replica 𝑅𝑐
prepares both 𝑇𝑖 and computes 𝑇𝑗 ’s ARS. We distinguish two
more subcases: (𝑖) 𝑥𝑖 was applied by 𝑅𝑐 already, yet 𝑇𝑗 did
not read 𝑥𝑖 , or (𝑖𝑖) 𝑥𝑖 was not yet applied by 𝑅𝑐 at the time
of 𝑇𝑗 ’s read.
4This check is more conservative than the 𝑇𝑖 before 𝑇𝑗 variant. If desired,
it can be adjusted accordingly by comparing not only against concurrent
reads, but dynamically checking whether there are other writers 𝑇𝑘 that
might render the conflict unnecessary.



Case 1 (𝑤𝑟𝑖𝑡𝑒𝑖 before 𝑟𝑒𝑎𝑑 𝑗 ): Since 𝑡𝑠𝑖 < 𝑡𝑠 𝑗 , and no other
write 𝑥𝑘 with 𝑡𝑠𝑖 < 𝑡𝑠𝑘 < 𝑡𝑠 𝑗 exists, 𝑥𝑖 must be the latest
version of 𝑥 visible when 𝑟𝑒𝑎𝑑 𝑗 executes. If 𝑟𝑒𝑎𝑑 𝑗 omits
inclusion of 𝑥𝑖 into it’s ARS, then either 𝑥𝑖 does not fulfill
𝑃— a contradiction—, or 𝑥𝑖 was only prepared and 𝑟𝑒𝑎𝑑 𝑗

read from a snapshot and skipped past 𝑥𝑖 . In the latter case,
however, 𝑅𝑐 would have dynamically adjusted its reported
table version to be 𝑡𝑠𝑃𝑐 ≤ 𝑡𝑠𝑖 +𝑔𝑟𝑎𝑐𝑒. Since 𝑡𝑠𝑃 ≤ 𝑡𝑠𝑃𝑐 it must
be that 𝑡𝑠𝑖 ≥ 𝑡𝑠𝑃−𝑔𝑟𝑎𝑐𝑒 (case (𝑖)), a contradiction.

Case 2 (𝑟𝑒𝑎𝑑 𝑗 before 𝑤𝑟𝑖𝑡𝑒𝑖): Upon executing 𝑟𝑒𝑎𝑑 𝑗 , 𝑅𝑐
adjusts its local montonicity threshold 𝑡𝑠𝑚𝑜𝑛𝑜 ≥ 𝑡𝑠𝑃𝑐 . There
are once again two subcases. (𝑖) 𝑡𝑠𝑃𝑐 ≤ 𝑡𝑠𝑚𝑜𝑛𝑜 ≤ 𝑡𝑠𝑖 +𝑔𝑟𝑎𝑐𝑒.
Since 𝑡𝑠𝑃 ≤ 𝑡𝑠𝑃𝑐 it must be that 𝑡𝑠𝑖 ≥ 𝑡𝑠𝑃 −𝑔𝑟𝑎𝑐𝑒 (case (𝑖)), a
contradiction. (𝑖𝑖) 𝑡𝑠𝑚𝑜𝑛𝑜 ≥ 𝑡𝑠𝑃𝑐 > 𝑡𝑠𝑖 +𝑔𝑟𝑎𝑐𝑒. It follows from
Line 3 of Algorithm 1 that the CC-check of 𝑇𝑖 triggers the
abort condition for violating write monotonicity. This is
contradicts 𝑅𝑐 voting to commit 𝑇𝑖 (and preparing it locally).

It follows that the CC-check cannot vote to commit for two
transactions with a pairwise predicate conflict. □

We conclude from Lemmas 6 and 7 that Pesto’s CC-check
returns a set of pairwise non-conflicting transactions, and
thus Pesto fulfills Lemma 1.

Note: One can strengthen Line 18 in Algorithm 1 to abort a
transaction only if 𝑡𝑠𝑃−𝑔𝑟𝑎𝑐𝑒 < 𝑡𝑠𝑖 < 𝑡𝑠 𝑗 . The proof of safety
follows analogously from the above proof. The monotonicity
threshold and quorum interplay ensures that the above
condition must hold for conflicting transactions if 𝑇𝑖 commits.

Pesto adopts the Commit (and Fallback) protocol logic from
Basil [81]. Given Lemma 1, the proofs of Lemmas 2 and 3
consequently follow directly from Basil.

Finally, we show that an execution of Pesto is "complete", i.e.,
that all reads from correct clients’ committed transactions
corresponds to a committed write.

Lemma 9 For any given execution of Pesto: all values read
by correct clients’ committed transactions were committed.

Proof. By design, Pesto only makes prepared and committed
writes visible. We thus must address only the case of reading
prepared row-versions. It follows from Lemmas 4 and 5
that correct clients register a dependency for any prepared
(row-key, row-version) pair in their active read set (ARS).
Additionally, during the CC-check, a replica dynamically
checks whether a passive row-version is prepared and
whether an abort could reveal an active version that would
render the ARS incomplete. If so, it adds a dependency for
the prepared (passive) row-version.

It follows from Lines 21-24 of Algorithm 1 that a
transaction only commits if all dependencies commit.5

5Algorithm 1, line 5 further ensures that (Byzantine) clients cannot claim
fabricated dependencies that may (intentionally) stall a transaction. This is
not necessary for Byz-serializability, but ensures progress.

Consequently, all correct clients’ committed transactions
observe only committed writes. □

We conclude that Pesto upholds Byz-serializability:

Proof. Consider the set of transactions for which a C-CERT
could have been assigned. Consider a transaction 𝑇 in this
set. By Lemma 2, there cannot exist an A-CERT for this
transaction. By Lemma 3, there cannot exist a conflicting
transaction 𝑇 ′ that generated a C-CERT. Consequently, there
cannot exist a committed transaction 𝑇 ′ in the history. The
history thus generates an acyclic serialization graph. Finally,
by Lemma 9, if 𝑇 was issued by a correct client, then all
reads of𝑇 were committed, and thus explainable by the serial
execution. The system is thus Byz-serializable. □

A.4 Byzantine Independence
Next, we show that Pesto upholds Byzantine independence.

Since Pesto adopts Basil’s point read and commit protocol, it
suffices to show that Pesto’s range read protocol does violate
Byzantine independence.

Lemma 10 Pesto’s range read protocol upholds Byzantine
independence.

Proof. We distinguish the eager and snapshot execution paths.
Eager execution Byzantine independence follows directly

from Lemma 4. All results are supported by a correct replica.
Byzantine participants cannot take influence on the commit
chance of a transaction. The result is, by definition, no more
stale than a read to a single correct replica, and read sets,
predicate sets, and dependencies are backed by at least one
correct client. A predicate’s table version corresponds to the
minimum reported version: a Byzantine replica can report
an artificially small table version, but this affects only the
efficiency of the CC-check, and not the outcome.

Snapshot execution The snapshot protocol introduces
an additional layer of indirection. The snapshot proposal
generation process requires that at least one correct replica
vouch for every transaction in order to avoid proposing fab-
ricated transactions. The proposal process is thus equivalent
to a procedure that, for each row-key, consults with a single
correct replica. Furthermore, proposing at transaction granu-
larity ensures that every snapshot applied respects transaction
atomicity; and thus the reading transaction is not subject to
aborting due to reading from a non-serializable state.

Snapshot execution may require dynamic adjustment of
table versions. Since adjustment at most makes the table
version smaller this once again affects only efficiency and
not the outcome of the CC-check.

Finally, snapshot execution, like eager execution, requires
3𝑓 + 1 matching results (and matching read and pred sets,
as well as valid dep sets). It follows that, even for empty
snapshots, Byzantine independence holds.

□



Lemma 11 Pesto upholds Byzantine independence in absence
of a network adversary.

Proof. Pesto adopts Basil’s point read and commit protocol,
and thus inherits its Byzantine independence in absence of
a network adversary. It follows from Lemma 10 that Pesto’s
range read protocol upholds this property. □

A.5 Discussing Range Read Progress
Range reads in Pesto do not guarantee deterministic

success. Range reads may fail (and need to retry) due to
concurrent application of fresher commits at some replicas,
or due to patchy snapshots (§A.5.1), causing replicas to read
inconsistent versions.

A.5.1 Handling patchy snapshots. SS-VOTEs by default
include only 𝑖𝑑s for the freshest row versions. This restriction,
in combination with Pesto’s snapshot filtering procedure,
can have unintended consequences: if correct replicas are
inconsistent, then filtering may eliminate all (transaction)
candidates for a row, making it appear as if the row does not
exist. In Figure 10, for instance, all replicas have observed a
different subset of transactions (for a given key x): if replicas
vote only with their latest version, then the resulting snapshot
proposal is empty. To account for this, Pesto’s execution
procedure allows replicas to use their latest committed row
as stand-in for any "missing" row.

Additionally, replicas may opt to include the 𝑘 ≥ 1 latest
versions of a given row (with 𝑘 depending on the frequency a
given row is written to), allowing the client to establish some
recent common version. Figure 10 illustrates an example
snapshot process for 𝑘 =2.

T1

versions of key = 'x'

T1

T1

T2

T2 T3  SS-Vote: {T3 ,T2}

 SS-Vote: {T1}

 SS-Prop: { ∅ } SS-Vote: {T2 ,T1}

 SS-Prop: {T1,T2}

k = 1

k = 2

Figure 10. Snapshots using 𝑘 =1 (black) and 𝑘 =2 (red).

We note, that although snapshots can be patchy for small 𝑘
(or extreme contention), this is not due to Byzantine influence.
A snapshot quorum consisting entirely of correct replicas
may produce insufficiently matching votes to successfully
filter a transaction. Pesto requires at least 2𝑓 + 1 snapshot
votes to form a proposal, thus guaranteeing that even if
Byzantine replicas (up to 𝑓 ) opt to fabricate their votes, the
resulting snapshot proposal is no worse than a proposal
sourced entirely from a subset of (𝑓 +1) correct replicas.

A.5.2 All roads lead to... Contention. Pesto allows
replicas to favor reading newer committed versions over
versions included in snapshots (or as stand-in for patchy
snapshots). This may result in inconsistent execution results
as some replicas might execute on the proposed snapshot,

while others may execute on newer, locally processed
committed versions. Although Pesto could strengthen the
snapshot execution requirement to force consistency—and
thereby ensure success of range reads—, this would be
short-sighted as it fails to account for the holistic progress
of a transaction. A transaction which succeeds in its read
but accesses a stale version in the process may eventually
have to abort, resulting in greater overall wasted effort. This
approach effectively sacrifices the liveness of the overarching
transaction to ensure the success of individual range reads.

Patchy snapshots are, likewise, an indicator for high
contention. Candidate row-keys, for instance, might be
dropped from a snapshot proposal because correct replicas
differ in their latest observed versions and report only a small
number (e.g., 𝑘 = 1) of versions per key. Raising 𝑘 can help
agree on a common version if there is inconsistency on the
prepared versions, but is, as discussed above, ultimately
futile if replicas disagree on the latest committed versions.

To ensure the best possible end-to-end progress Pesto
should strive to offer optimal freshness (to minimize missed
writes, i.e., conflicts) and to read in as few steps as possible
(to minimize the conflict window opportunity [37]).

Clients can further enhance freshness by collecting 4𝑓 +1
SS-VOTEs: This guarantees that the SS-PROP includes
the latest committed version known to any replica. This
follows from the fact that every committed transaction must
be prepared on at least 2𝑓 + 1 correct replicas, of which at
least 𝑓 +1 are guaranteed to be part of any quorum of size
4𝑓 +1. Since Pesto, when enhanced with write monotonicity,
requires at least 3𝑓 +1 matching replies—and thus typically
waits for up to 4𝑓 + 1 replies during eager execution—this
configuration can be adopted with little to no added cost.

By default, our prototype constructs an SS-PROP from
3𝑓 +1 SS-VOTEs, increasing the coverage of correct replicas
while still allowing early progress when it appears unlikely
that 3𝑓 + 1 matching results will arrive. For improved
freshness, this threshold can be raised to 4𝑓 + 1, incurring
only a small increase in client-side processing latency: the
client already receives 4𝑓 +1 replies and must merely wait
for and process them.

Finally, Pesto consciously favors freshness over consistency,
by opting to read fresher committed versions, in case the
snapshot is stale. This ensures that, for any successful
execution, the (active) read set is no more stale than a read
to the committed state of a single correct replica.

Importantly, Pesto’s range reads are always guaranteed
to be responsive. Since snapshots cannot include fabricated
transactions, synchronization, and consequently execution
is guaranteed to be live. This ensures that a client reliably
receives results. Failure to obtain matching results provides
the client a signal about the level of contention. A client
may choose to retry execution (possibly with larger k,
and/or with larger snapshot/read quorums), or (after a
configurable amount of failures) choose to abort its ongoing



transaction and retry with a new timestamp. This contrasts
with SMR-based designs, which always maintain the illusion
of consistency and freshness—even when a transaction is
ultimately doomed to abort.

A.5.3 Termination in absence of Contention. We briefly
show that, in the absence of contention, Pesto’s range read
protocol ensures reliable termination. Informally, we say that
a transaction contends with a read if it concurrently writes a
value relevant to the read’s query predicate. For simplicity, we
assume the existence of a point in time, 𝑡𝐶𝐹 , after which the ex-
ecution is contention-free. In practice, intermittent periods of
low contention are sufficient in order to complete a range read.

Lemma 12 Pesto’s range read protocol guarantees
termination after 𝑡𝐶𝐹 (for correct clients).

Proof. Suppose all correct replicas exhibit the highest
possible degree of inconsistency; i.e., they differ on their
latest (prepared) version for every row. By design, however,
any committed transaction must have been prepared on at
least 2𝑓 +1 correct replicas.

We assume that 𝑘 is unbounded and that the client requests
4𝑓 +1 SS-VOTE’s. If this is not the case, a client may opt to
retry with a more conservative configuration.

Since there are no concurrent contending writes, the
resulting snapshot proposal is guaranteed to include the
freshest committed row-version for every (active) row-key.
All transactions in the snapshot proposal are available on
at least one correct replica, allowing all replicas succeed in
synchronizing all transactions in the proposal. Because no
new contending transactions arrive, the snapshot captures a
fully committed frontier and is complete (i.e., not patchy),
ensuring that all replicas read from the same state. As a result,
all correct replicas produce consistent results, read sets, and
predicate sets, ensuring successful termination. □

We note that, in most cases, replicas are sufficiently
consistent to achieve success using a small 𝑘 and smaller
snapshot quorums. Replica consistency can be accelerated
by employing lightweight gossip schemes that forward
prepared/committed transactions.

Finally, we note that, in the absence of Byzantine clients,
synchronization is not necessary as all correct replicas
will eventually converge. In this case, simply retrying will
eventually yield termination; snapshot synchronization
merely accelerates the process. In the presence of Byzantine
clients that intentionally (or just by crashing) disseminate
their transactions to only a subset of replicas, however,
eventual consistency is not guaranteed. The snapshot protocol
consequently serves also as a means to ensure reliable
termination of incomplete transactions.

A.5.4 Termination does not imply Commit Successful
range read execution does not imply that the overarching
transaction will commit. A conflicting write may arrive after

the read completes, but before the associated transaction
tries to commit—resulting in an abort. This is inevitable
in presence of contention. We thus once again limit our
discussion to the period after 𝑡𝐶𝐹—the point after which no
more contending transactions arrive.

Pesto’s range read protocol (with sufficiently large quorums
and 𝑘) ensures that a range read will read the freshest
committed version for any given row. It is possible, however,
that materialization will miss fresher prepared versions.
Consider, for instance, a prepared version (perhaps issued
by a Byzantine client) that is only replicated to ≤ 2𝑓 correct
replicas. Even a snapshot quorum of size 4𝑓 + 1 might not
include the version’s transaction id 𝑓 +1 times, resulting in
exclusion from the proposal. This may cause the read of
a stale (active) version, ultimately resulting in the reading
transaction’s abort.6 Successfully committing transactions
thus requires synchronizing also the (freshest) prepared
versions. Pesto relies on two practical mechanisms to do so.

First, transactions that abort due to conflicts with prepared
transactions trigger the fallback protocol. The client of abort-
ing transaction𝑇 will try to commit the conflicting transaction
𝑇 ′ itself. This ensures that (𝑖) all replicas receive the transac-
tion (and thus become consistent), and (𝑖𝑖) 𝑇 ′ actually termi-
nates, and thus any acquired dependency is reliably resolved.

Second, Pesto replicas may gossip prepared transactions.
This can be done either eagerly, upon first receiving a
transaction; or lazily, upon observing inconsistency for range
reads (a replica may then opt to gossip the transactions of
its active rows).

B Extended Technical Discussion
This section outlines supplementary technical details,

optimizations, and considerations for Pesto beyond those
discussed in the main technical sections.

B.1 Bounding Timestamps
Each transaction in Pesto is assigned a unique timestamp

𝑡𝑠𝑇 that implicitly establishes the final serialization order
of transactions. This timestamp is generated client-side as
𝑡𝑠 B (𝑙𝑜𝑐𝑎𝑙𝑡𝑖𝑚𝑒,𝐶𝑙𝑖𝑒𝑛𝑡𝐼𝐷,seq-no) upon BEGIN.7 Byzantine
clients may freely select arbitrary timestamps; here, we
discuss briefly the implications of such behavior.

Choosing a timestamp that is artificially small has minimal
impact. Reads will simply access an older snapshot version—
or be rejected if such versions have been garbage collected
(see §B.3). Writes with low timestamps tend to abort during
validation because they would invalidate existing prepared
or committed reads with larger timestamps.
6Note that if the prepared transaction is only prepared at a few replicas then
it might be possible for the reading transaction to succeed in assembling
a CommitQuorum; in this case the prepared transaction will ultimately abort,
and not the reader! In this case, no additional coordination is necessary.
7To improve commit success rates for write-heavy transactions, clients
may optionally defer timestamp assignment until COMMIT; however, this
increases the risk of reading stale data during execution.



Conversely, choosing artificially large timestamps is more
problematic. While writes with future timestamps cause no
immediate issues—they are simply stored "in the future"—
reads can create extended conflict windows. Specifically, any
concurrent writes with timestamps between the version read
by the reader and the reader’s own timestamp must abort, as
they would otherwise invalidate the reader’s snapshot.

To mitigate abuse by Byzantine clients that fabricate
excessively large timestamps, replicas reject transactions
whose timestamps exceed their local clock 𝑅Time by more
than a threshold 𝛿 , which accounts for client ping latency
and clock skew.8 For a Byzantine client to induce conflicts, it
must successfully prepare or commit its transaction; aborted
or rejected transactions remain invisible and thus have no
effect correct concurrent clients. Therefore, to maximize the
probability of committing, it is rational—even for Byzantine
clients—to choose timestamps that closely reflect real time.
While Pesto does not depend on 𝛿 for safety or liveness, a
well-chosen value can improve the system’s throughput.

B.2 External Consistency with Byzantine actors
By default, Pesto provides Byz-serializability, which

requires no assumptions about clock synchronization for
correctness. However, when clocks are synchronized and
timestamps reflect real time, Pesto’s correctness guarantee
strengthens to Byz-strict serializability. As with Byz-
serializability, external consistency applies only to correct
clients’ transactions—Byzantine clients may arbitrarily
backdate or postdate timestamps in an attempt to subvert
real-time ordering.

Backdated transactions do not, at first glance, violate the
real-time order as directly perceived by correct clients, since
they remain visible to all subsequent correct transactions.
However, they can introduce timestamp inversion phenomena
that indirectly violate real-time [65]. Such behavior is
permitted under Byzantine Isolation [81]: a committed
execution involving Byzantine transactions with backdated
timestamps is considered correct-view-equivalent to one
containing only correct transactions, executed in real-time
order according to their specified timestamps. Put differently,
Byz-strict serializability does not require Pesto to enforce
real-time edges for Byzantine-issued transactions—that is,
real-time dependencies of the form 𝑇1 → 𝑇2, where 𝑇2 is
issued by a Byzantine client, may be ignored.

Postdated transactions—i.e., those with timestamps in
the future—pose a more direct threat to causality: if such
a transaction commits before a correct client’s transaction
begins, it may not be observed by that client. This issue can
be mitigated by having correct replicas defer processing
of postdated transactions until their local clock reaches the
specified timestamp. This ensures that postdated transactions
8Alternatively, or additionally, replicas may defer processing of such
requests until their local clock reaches the specified timestamp.

can only commit at a real time no earlier than their assigned
timestamp, preserving external consistency for correct clients.

B.3 Multi-version Garbage Collection
Writes in Pesto create new row versions indexed by the

writing transaction’s timestamp. To enable garbage collection
of old versions, Pesto enforces a timestamp bound on
readable and writeable versions. Each replica maintains a
low-watermark 𝑔𝑐, which lags behind its local clock and
marks the cutoff point. New reads or writes with timestamps
below 𝑔𝑐 are ignored. When writing a new row version with
𝑇𝑆 > 𝑔𝑐, the replica dynamically deletes all but the latest
version with timestamp smaller than 𝑔𝑐. This ensures that
valid readers with read timestamps𝑇𝑆 ≥𝑔𝑐 can find a readable
version. To clean up rarely-updated rows, replicas may also
perform periodic sweep rows to garbage collect old versions.

This scheme bounds the age of stored writes, but not their
frequency. A highly contended key, for instance, may receive
many writes in quick succession; all with timestamps above
𝑔𝑐, preventing their immediate garbage collection. To prevent
storage bloat (e.g., to avoid abuse by an authenticated Byzan-
tine client) Pesto can employ two additional mechanisms. (𝑖)
First, Pesto may rate-limit clients to only one active trans-
action at a time. This limits write frequency, and additionally
ensures that Byzantine clients must complete prior transac-
tions before issuing new ones, minimizing transaction stalls
in the system. (𝑖𝑖) Pesto may enforce a per-key version limit
𝑙 (this may be configured differently for different objects). A
correct replica can delete all but the freshest 𝑙 versions (with
timestamps greater than 𝑔𝑐), and reject any reads to the key
with timestamps older than the 𝑙 th version. If a concurrent
read transaction depends on a (prepared) version has beem
garbage collected (i.e., older than 𝑙 th version), that transaction
is aborted. This is safe and sensible, as the transaction would
likely abort anyways due to reading stale data.

If a snapshot-based read—i.e., a range read applying an
SS-PROP—requests a version that has already been garbage
collected, the replica returns the freshest available version
instead. While this may reduce the number of matching
read replies, it does not compromise safety and often aids
transaction progress, since garbage-collected versions are
(𝑖) typically stale and (𝑖𝑖) would otherwise cause dependent
transactions to abort.

B.4 Managing Dependencies—An Example
Section §5.5.1 outlines the validity rules for dependencies.

We illustrate them here with an example (Figure 11).
Intuitively, a dependency 𝑑𝑒𝑝 is valid only if it is vouched
for by at least one correct replica. In the simplest case, there
exist 𝑓 +1 replies that have matching query result (Q-RES),
matching read set (Q-READ), and matching dependency set
(Q-DEP). However, this may not be guaranteed, as some
(correct) replicas may consider 𝑑𝑒𝑝 already committed and
not include it in Q-DEP. To nonetheless determine the validity
of 𝑑𝑒𝑝, Pesto allows clients to check also the Q-DEP’s and



Dependency example

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {t3}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {∅}
SS-Vote: {...}

Q-RES: {Mouse}
Q-READ: {(Mouse, v2)}
Q-DEP: {t3}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {t3}
SS-Vote: {…}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {t3}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {∅}
SS-Vote: {t3}

Q-RES: {Mouse}
Q-READ: {(Mouse, v2)}
Q-DEP: {∅}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {∅}
SS-Vote: {...}

Q-RES: {Parker}
Q-READ: {(Parker, v3)}
Q-DEP: {∅}
SS-Vote: {...}

(iii) 2f+1 matching results, 
       but < f+1 deps(i) f+1 deps (ii) f+1 deps or SS-Votes

Figure 11. Three criteria to determine dependency validity ((𝑖), (𝑖𝑖)) and relevance ((𝑖𝑖𝑖)).

snapshot votes (SS-VOTE) reported by other replicas that do
not have matching Q-RES or Q-READ. In particular, Pesto
considers a reply with dependency 𝑑𝑒𝑝 valid if either (𝑖)
𝑑𝑒𝑝 appears in the Q-DEP of any 𝑓 + 1 replies, even if the
associated Q-READs differ or (𝑖𝑖) 𝑑𝑒𝑝 appears in any 𝑓 +1
SS-VOTE votes; any combination of these two is possible
as well. In Fig. 11 case (𝑖), for instance, the 𝑑𝑒𝑝 = 𝑡3 is not
present 𝑓 +1= 2 times across the first two replies (that have
matching Q-RES and Q-READ). 𝑡3 is, however, present in the
third reply, enough to conclude that 𝑓 +1 replicas deem 𝑑𝑒𝑝

valid. Similarly, in case (𝑖𝑖), 𝑑𝑒𝑝 =𝑡3 is only present at a single
replica, yet it is also present in the SS-VOTE of another reply.

In some cases, dependencies may be valid but need not be
recorded: if a client is certain that at least one correct replica
deems the dependency unnecessary (for example because it
has already committed the transaction), then we can ignore
the dependency. In particular, Pesto considers a dependency
𝑑𝑒𝑝 unnecessary if there are at least 2𝑓 +1 matching replies
(Q-RES and Q-READ) that contain 𝑑𝑒𝑝 in fewer than 𝑓 + 1
Q-DEP’s. In Fig. 11 case (𝑖𝑖𝑖), for instance, all three replies
match, yet 𝑓 + 1 replicas report no dependencies. Conse-
quently, at least one correct replica deems 𝑑𝑒𝑝 unecessary.

If a candidate 𝑑𝑒𝑝 cannot be found 𝑓 +1 times, nor safely
considered unecessary, then a correct client must consider the
reply containing 𝑑𝑒𝑝 invalid, and either wait for additional
replies, or retry.

B.5 Active Snapshots
Pesto optimistically records in its read sets and snapshot

votes only the metadata of those rows that are relevant to the
query computation. Specifically, an active snapshot includes
the transaction 𝑖𝑑’s associated with row versions that satisfy
a query’s filter predicates—i.e., the active rows.

B.5.1 Record relevant passive versions Including only the
𝑖𝑑s of active rows—that is, rows whose freshest version sat-
isfies the query predicate—greatly reduces snapshot size but
can cause snapshots to be unnecessarily stale. For example,

if some replicas do not include a row-key (e.g., 𝑘 =1) because
their latest version 𝑣 does not fulfill the predicate, while others
include an earlier version 𝑣 ′ < 𝑣 that does, Pesto may recon-
struct a stale state (𝑣 ′). This can cause the reading transaction
to abort at commit time due to missing a newer version. To
prevent this, replicas should also include in snapshots those
fresher versions for which a past version satisfies the predicate.
We call these included (passive) versions active-negative.

B.5.2 Nested Queries Active snapshots may require
additional care when handling complex or nested queries.
Consider the nested query SELECT * FROM 𝑡𝑥 WHERE x >

(SELECT MAX(y) FROM 𝑡𝑦): the active rows of the outer
query 𝑄𝑜 depend on the result of the inner query 𝑄𝑖 . Since
replicas’ SS-VOTEs may differ, the resulting (potentially
patchy) SS-PROP may not be commutative with a sequential
snapshot execution of 𝑄𝑖 followed by 𝑄𝑜 . In such cases, it
may be advisable to either (𝑖) use coarser snapshots, or (𝑖𝑖)
rewrite nested queries into sequential patterns. In practice,
however, replicas tend to remain highly consistent and
execution typically succeeds even on the eager path (§7).

B.5.3 A note on freshness Active snapshots may, in rare
edge cases, lead to slight freshness degradation. If some (but
not all) correct replicas observe only passive row-versions
among their latest 𝑘 versions and therefore omit the row-key
from their SS-VOTE, the resulting snapshot may reflect a
version that is more stale than what a single replica could
return. Notably, if the row-key is omitted entirely, this is
equivalent to materializing a passive row-version, which is
the desired outcome.

Consider the following example with a snapshot quorum
of 2𝑓 + 1 = 3 SS-VOTEs (assuming 𝑓 = 1) for a key 𝑥 with
two versions: 𝑥1, which satisfies the query predicate 𝑃 , and
𝑥2, which does not. Replica 𝑅1 has committed 𝑥2 and sees
no active version, so it casts SS-VOTE1B {}. Replica 𝑅2 has
committed 𝑥1 and prepared 𝑥2. It casts SS-VOTEB {𝑥1,𝑥2},
including 𝑥2 as an active-negative version. Replica 𝑅3 is



Byzantine and votes at whim: it casts SS-VOTEB {𝑥1}. The
resulting snapshot proposal is SS-PROPB {𝑥1}, even though
both correct replicas have observed the fresher 𝑥2. Because
𝑅1 omitted 𝑥2, the snapshot reflects an unecessarily stale state.
In effect, freshness degrades from the equivalent of reading
the freshest version from a single correct replica, to selecting
the 𝑘-freshest version from a single replica. If instead
SS-VOTE3 B {}, then the resulting SS-PROP is empty—
effectively the same as reading 𝑥2, which is passive and does
not affect 𝑃 . This is a valid and even desirable outcome.

Importantly, this edge case does not compromise Byzantine
independence. While the Byzantine replica may influence
which version is selected, it cannot unilaterally dictate the
outcome. The illustrated scenario is no worse than if the faulty
replica had abstained from voting entirely, and a different
correct replica had reported only 𝑥1 as its latest active version.

B.6 Snapshots with Optimistic Transaction IDs.
Snapshots can be further compressed by optimistically

replacing transaction identifiers with transaction timestamps.
Unlike transaction identifiers—which are statistically
independent cryptographic hashes (256b)—timestamps are
smaller (64b) and temporally correlated, allowing more
efficient encoding: a simple delta encoding can reduce them
to 32b, and integer compression can shrink them further to
under 16b.

However, Byzantine clients may equivocate by assigning the
same timestamps to two distinct transactions. This can cause
snapshots to diverge: upon receiving a snapshot proposal
containing timestamp 𝑡𝑠𝑇 , two correct replicas may associate
it with different transactions 𝑇 and 𝑇 ′ (𝑡𝑠𝑇 =𝑡𝑠𝑇 ′ ), leading to
inconsistent synchronization. Fortunately, this is a low-yield
and easily detectable attack. Since timestamps embed client
identifiers and all transactions are authenticated, any client
that reuses a timestamp across different transactions is
explicitly identifiable. Replicas that detect such behavior can
report and exclude the faulty client from further participation.
To improve robustness, a correct client whose snapshot ex-
ecution fails may retry using standard transaction 𝑖𝑑s, which
are globally unique and therefore immune to ambiguity.

B.7 Predicate Instantiations
Pesto, by default, extracts as read predicates the filter condi-

tions associated with a query’s scan operations. Nested query
operations can, depending on the size of intermediary results,
be represented either via coarse singular predicates, or using
multiple predicate instantiations. Consider a simple query
that joins two tables SELECT * FROM 𝑡𝑏𝑙𝑥, 𝑡𝑏𝑙𝑦 WHERE

x.name = ’Peter’ AND x.id = y.account, and, be-
cause 𝑡𝑏𝑙𝑥 has only a few rows with name "Peter" (one, in our
example from Figure 2), chooses to perform a Nested Loop
Join [67]. Rather than deriving only two predicates 𝑇𝑏𝑙𝑥 :
𝑥 .𝑛𝑎𝑚𝑒 = ‘𝑃𝑒𝑡𝑒𝑟 ‘ and the very coarse 𝑇𝑏𝑙𝑦 :𝑇𝑟𝑢𝑒, Pesto opts
to instantiate, for each row 𝑟 in the intermediary result (WHERE
x.name = ’Peter’), a predicate 𝑇𝑏𝑙𝑦 :𝑥 .𝑖𝑑 =<𝑟 .𝑖𝑑 >.

B.8 Bounding Table Versions
Pesto allows clients to complete range reads without match-

ing table versions, and, for safety, simply selects the smallest
table version to include as 𝑃 .𝑡𝑎𝑏𝑙𝑒𝑣 in PredSet𝑇 . Byzantine
clients may try to exploit this and report fabricated low
versions. This does not affect safety, but makes CC-checks
slower, as a larger range needs to be checked. To mitigate
this, correct clients may discard replies with table versions
that deviate significantly from the 𝑓 +1st smallest reported
version. Similarly, correct replicas may reject transactions
whose reported predicate table versions are too low relative
to the transaction’s timestamp.

B.9 Two-Tier Monotonicity Grace
Pesto implements write monotonicity using a sliding

window approach: rather than labeling all transactions that
arrive out of timestamp order as non-monotonic, Pesto
accepts transactions that arrive within a grace period.

Grace periods offer a tradeoff. Larger grace periods offer
writers more slack (reducing aborts), but may cause preparing
readers to unnecessarily validate against transactions that
were already part of their read state. Pesto attempts to soften
this tension by distinguishing two grace tiers: (𝑖) A first, short
grace period reflects the assumption that most concurrent
transactions arrive within close proximity, and requires
validation against all transactions within the range. (𝑖𝑖) A
second, larger grace period, captures (hopefully less frequent)
longer or delayed transactions, and only validates against non-
monotonic arrivals. Configuration of the grace periods does
not affect safety, but if well chosen can improve performance.

We omit a distinction of grace period tiers in our proofs
of Byz-serializability (§A.3). Grace tiers do not affect safety
(they are equivalent to a single grace period); they affect only
efficiency.

B.10 Distributed Queries
Orchestrating and implementing cross-shard query exe-

cution—such as scans or joins over partitioned tables—is
well-studied [31, 62, 82, 86] but non-trivial, and beyond the
scope of our prototype. These challenges are not unique to
Pesto, and arise similarly in SMR-based systems.

We briefly outline how to coordinate Pesto’s snapshot
protocol across shards. For simplicity, we assume each
shard includes a replica operated by the same trust authority
(i.e., every replica has a trusted counterpart in other shards).
We leave the exploration of efficient, trust-free cross-shard
execution to future work.

We distinguish between flat and nested queries. Simple
flat queries, such as range scans (e.g., SELECT * FROM

tbl WHERE x > 5) or hash joins [67], require no cross-
shard coordination during snapshotting. Each shard can
independently compute an SS-PROP by executing the
query locally. Once all involved shards have synchronized,
cross-shard query execution proceeds. One shard may act
as a coordinator to aggregate the final results. If the client is



unaware of the partitioning scheme, it suffices to contact the
coordinator, which forwards the request to the appropriate
shards. Read sets, predicate sets, and dependency metadata
can be collected directly from each individual shard.

Nested queries, by contrast, may require cross-shard
execution during snapshotting due to dependencies between
inner and outer sub-queries. As noted in Section B.5, such
dependencies can complicate snapshotting even within
a single shard. Sharding can amplify this challenge, as
intermediate sub-query results may determine which shards
to involve—potentially leading replicas operated by different
trust authorities to involve inconsistent shard sets. In such
cases, it may be advisable to rewrite queries into sequential
stages, or conservatively expand the snapshot scope to
include all potentially relevant shards.

These complexities are not specific to Pesto: in SMR-based
systems as well, nested cross-shard queries may require
sequential coordination to determine the involved shards, and
each sub-query must be replicated consistently via consensus.
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