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Abstract— We present the first protocol that reaches
asynchronous Byzantine consensus in two communication
steps in the common case. We prove that our protocol
is optimal in terms of both number of communication
steps, and number of processes for two-step consensus. The
protocol can be used to build a replicated state machine
that requires only three communication steps per request
in the common case. Further, we show a parameterized
version of the protocol that is safe despitef Byzantine
failures and in the common case guarantees two-step
execution despite some numbert of failures (t ≤ f ). We
show that this parameterized two-step consensus protocol
is also optimal in terms of both number of communication
steps, and number of processes.

Index Terms— Distributed systems, Byzantine fault tol-
erance, Consensus

I. INTRODUCTION

T HE consensus problem can be described in terms
of the actions taken by three classes of agents:

proposers, who propose values,acceptors, who together
are responsible for choosing a single proposed value,
and learners, who must learn the chosen value [12]. A
single process can be a member of more than one class.
Consensus can be specified using the following three
safety properties and two liveness properties:

CS1 Only a value that has been proposed may be
chosen.

CS2 Only a single value may be chosen.
CS3 Only a chosen value may be learned by a correct

learner.
CL1 Some proposed value is eventually chosen.
CL2 Once a value is chosen, correct learners eventually

learn it.

Since the unearthing of the simple and practical
Paxos protocol [12], consensus, which for years had
largely been the focus of theoretical papers, has once
again become popular with practitioners. This popularity
should not be surprising, given that consensus is at the
core of the state machine approach [11], [22], the most
general method for implementing fault tolerant services

in distributed systems. Yet, many practitioners had been
discouraged by the provable impossibility of solving con-
sensus deterministically in asynchronous systems with
one faulty process [5]. Paxos offers the next best thing:
while it cannot guarantee progress in some scenarios,
it always preserves the safety properties of consensus,
despite asynchrony and process crashes. More specif-
ically, in Paxos one of the proposers is elected as a
leader, with the responsibility of communicating with
the acceptors. Paxos guarantees progress only when
the leader is unique and can communicate in a timely
manner with sufficiently many acceptors, but it ensures
safety even with no leader or with multiple leaders. Our
protocol follows a similar structure, but we choose the
leader from the proposers instead of the acceptors.

Paxos is also attractive because it can be made very
efficient in gracious executions, i.e. executions where
(i) there is a unique correct leader, (ii) all correct
acceptors agree on its identity, and (iii) the system is
in a period of synchrony. Note that processes other
than the leader may still fail during gracious executions.
Except in pathological situations, it is reasonable to
expect that gracious executions will be the norm, and
so it is desirable to optimize for them. For instance, the
FastPaxos [1] protocol by Boichat et al. only requires two
communication steps1 in a gracious execution to reach
consensus in non-Byzantine environments, matching the
lower bound formalized by Keidar and Rajsbaum [8]
(FastPaxos should not be confused with Lamport’s more
recent “Fast Paxos” (with a space) [15] that uses a
different approach to reduce the number of commu-
nication steps in the common case). Consequently, in
a state machine that uses FastPaxos, once the leader
receives a client request it takes just two communication
steps, in the common case, before the request can be
executed. Henceforth, we use the terms “common case”
and “gracious execution” interchangeably.

1To be precise, this bound is only met forstable intervalsin which
no replica transitions between the crashed and “up” state.
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In this paper, we too focus on improving the common
case performance of Paxos, but in the Byzantine model.
Recent work has shown how to extend Paxos to sup-
port Byzantine fault tolerant state machine replication.
The resulting systems perform surprisingly well: they
add modest latency [2], can proactively recover from
faults [3], can make use of existing software diversity to
exploit opportunistic N-version programming [20], and
can be engineered to protect confidentiality and reduce
the replication costs incurred to toleratef faulty state
machine replicas [23].

These Byzantine Paxos protocols fall short of the
original, however, in the number of communication
steps required to reach consensus in the common case.
After a client request has been received by the leader,
Byzantine Paxos needs a minimum of three additional
communication steps (rather than the two required in the
non-Byzantine case) before the request can be executed.2

We make three contributions. First, we introduce Fast
Byzantine (or FaB) Paxos, a Byzantine consensus proto-
col that completes in two communication steps in the
common case (we say it istwo-step), without using
expensive digital signatures. FaB Paxos requires5f + 1
acceptors and toleratesf Byzantine faults. Second, we
show a generalization of FaB Paxos—Parameterized FaB
Paxos—that requires3f + 2t + 1 acceptors to toleratef
Byzantine failures and is two-step as long as at most
t acceptors fail. Third, we show that both FaB Paxos
and Parameterized FaB Paxos are tight in the sense that
they use the minimal number of processes required for
two-step protocols.

Since building a replicated state machine from con-
sensus adds a single communication step, FaB Paxos
or Parameterized FaB Paxos can be used to build a
Byzantine fault-tolerant replicated state machine that
requires only three communication steps per operation in
the common case. By comparison, Castro and Liskov’s
Practical Byzantine Fault-tolerance protocol [3] uses four
communication steps in the common case.3

For traditional implementations of the state machine
approach, in which the roles of proposers, acceptors and
learners are performed by the same set of machines,
the extra replication required by FaB Paxos may ap-
pear prohibitively large, especially when considering the
software costs of implementing N-version programming
(or opportunistic N-version programming) to eliminate
correlated Byzantine faults [20]. However, an architec-
ture for Byzantine fault tolerant state machine replication

2No protocol can guarantee to take fewer than two rounds to reach
Byzantine consensus. This bound holds even in a synchronoussystem
where one process may crash [16].

3Even with the tentative execution optimization (see Section VII).

that physically separates agreement from execution [23]
makes this tradeoff look much more attractive. In this
architecture, a cluster of acceptors oragreement replicas
is responsible for producing a linearizable order of client
requests, while a separate cluster of learners orexecution
replicasexecutes the ordered requests.

Decoupling agreement from execution leads to agree-
ment replicas (i.e. acceptors) that are much simpler and
less expensive than state machine replicas used in tradi-
tional architectures—and can therefore be more liberally
used. In particular, such acceptor replicas are cheaper
both in terms of hardware—because of reduced pro-
cessing, storage, and I/O requirements—and, especially,
in terms of software: application-independent agreement
replicas can be engineered as a generic library that
may be reused across applications, while with traditional
replicas the costs of N-version programming must be
paid anew with each different service.

This paper is organized as follows. We discuss related
work in Section 2 and our system model in Section 3. We
presentf -tolerant FaB Paxos in Section 4 and generalize
it to Parameterized FaB Paxos in Section 5. We give
lower bounds on the number of processes in Section 6,
showing that both protocols are optimal. We show in
Section 7 how to build a replicated state machine from
our consensus protocols, then present some optimizations
in Section 8 before concluding.

II. RELATED WORK

Consensus and state machine replication have gen-
erated a gold mine of papers. The veins from which
our work derives are mainly those that originate with
Lamport’s Paxos protocol [12] and Castro and Liskov’s
work on Practical Byzantine Fault-tolerance (PBFT pro-
tocol) [3]. In addition, the techniques we use to reduce
the number of communication steps are inspired by the
work on Byzantine quorum systems pioneered by Malkhi
and Reiter [17].

The two earlier protocols that are closest to FaB
Paxos are the FastPaxos protocol by Boichat and col-
leagues [1], and Kursawe’s Optimistic asynchronous
Byzantine agreement [10]. Both protocols share our
basic goal: to optimize the performance of the consen-
sus protocol when runs are, informally speaking, well-
behaved.

The most significant difference between FastPaxos and
FaB Paxos lies in the failure model they support: in
FastPaxos processes can only fail by crashing, while in
FaB Paxos they can fail arbitrarily. However, FastPaxos
only requires2f + 1 acceptors, compared to the5f + 1
necessary for FaB Paxos. A subtler difference between
the two protocols pertains to the conditions under which
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FastPaxos achieves consensus in two communication
steps: FastPaxos can deliver consensus in two commu-
nication steps duringstable periods, i.e. periods where
no process crashes or recovers, a majority of processes
are up, and correct processes agree on the identity
of the leader. The conditions under which we achieve
gracious executions are weaker than these, in that during
gracious executions processescan fail, provided that the
leader does not fail. As a final difference, FastPaxos
does not rely, as we do, on eventual synchrony but on
an eventual leader oracle; however, since we only use
eventual synchrony for leader election, this difference is
superficial.

Kursawe’s elegant optimistic protocol assumes the
same Byzantine failure model that we adopt and op-
erates with only3f + 1 acceptors, instead of5f + 1.
However, the notion of well-behaved execution is much
stronger for Kursawe’s protocol than for FaB Paxos.
In particular, his optimistic protocol achieves consensus
in two communication steps only as long as channels
are timely andno process is faulty: a single faulty
process causes the fast optimistic agreement protocol
to be permanently replaced by a traditional pessimistic,
and slower, implementation of agreement. To be fast,
FaB Paxos only requires gracious executions, which are
compatible with process failures as long as there is a
unique correct leader and all correct acceptors agree on
its identity.

There are also protocols that use failure detectors to
complete in two communication steps in some cases.
Both the SC protocol [21] and the later FC protocol [7]
achieve this goal when the failure detectors make no
mistake and the coordinator process does not crash (their
coordinator is similar to our leader). FaB Paxos differs
from these protocols because it can tolerate unreliable
links and Byzantine failures. Other protocols offer guar-
antees only for certain initial configurations. The oracle-
based protocol by Friedman et al. [6], for example, can
complete in a single communication step if all correct
nodes start with the same proposal (or, in a variant that
uses6f + 1 processes, if at leastn − f of them start
with the same value and are not suspected). FaB Paxos
differs from these protocols in that it guarantees learning
in two steps regardless of the initial configuration.

In a paper on lower bounds for asynchronous consen-
sus [13], Lamport conjectures in “approximate theorem”
3a the existence of a boundN > 2Q + F + 2M on
the minimum numberN of acceptors required by two-
step Byzantine consensus, where: (i)F is the maximum
number of acceptor failures despite which consensus
liveness is ensured; (ii)M is the maximum number
of acceptor failures despite which consensus safety is

ensured; and (iii)Q is the maximum number of ac-
ceptor failures despite which consensus must be two-
step. Lamport’s conjecture is more general than ours—
we do not distinguish betweenM , F , and Q—and
more restrictive—unlike us, Lamport does not consider
Byzantine learners but instead assumes that they can only
crash. This can be limiting when using consensus for
the replicated state machine approach: the learner nodes
execute the requests, so their code is comparatively more
complicated and more likely to contains bugs that result
in unexpected behavior. Lamport’s conjecture does not
technically hold in the corner case where no learner can
fail.4 Dutta, Guerraoui and Vukolić have recently derived
a comprehensive proof of Lamport’s original conjecture
under the implicit assumption that at least one learner
may fail [4]. In a later paper [14], Lamport gives a formal
proof of a similar theorem for crash failures only. He
shows that a protocol that reaches two-step consensus
despitet crash failures and toleratesf crash failures
requires at leastf + 2t + 1 acceptors. In Section V we
show that in the Byzantine case, the minimal number of
processes is3f + 2t + 1.

III. SYSTEM MODEL

We make no assumption about the relative speed of
processes or communication links, or about the existence
of synchronized clocks. The network is unreliable: mes-
sages can be dropped, reordered, inserted or duplicated.
However, if a message is sent infinitely many times then
it arrives at its destination infinitely many times. Finally,
the recipient of a message knows who the sender is. In
other words, we are using authenticated asynchronous
fair links.

Following Paxos [12], we describe the behavior of FaB
Paxos in terms of the actions performed by proposers,
acceptors, and learners. We assume that the numbern of
processes in the system is large enough to accommodate
3f +1 proposers,5f +1 acceptors, and3f +1 learners.
Note that a single process may play multiple roles in
the protocol. Up tof of the processes playing each role
may be Byzantine faulty. When we consider FaB Paxos
in connection with state machine replication, we assume
that an arbitrary number of clients of the state machine
can be Byzantine. Unlike [13], we allow learners to fail
in a Byzantine manner.

FaB Paxos does not use digital signatures in the
common case; however, it does rely on digital signa-
tures when electing a new leader. All acceptors have a
public/private key pair—we assume that all proposers
and acceptors know all public keys and that correct

4The counterexample can be found in our technical report [18].
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acceptors do not divulge their private key. We also
assume that Byzantine processes are not able to subvert
the cryptographic primitives.

Since it is impossible to provide both safety and
liveness for consensus in the asynchronous model [5],
we ensure safety at all times and only guarantee liveness
during periods of synchrony.

IV. FAST BYZANTINE CONSENSUS

We now present FaB Paxos, a two-step Byzantine
fault-tolerant consensus protocol that requires5f + 1
processes—in Section VI, we show that this number is
optimal. More precisely, FaB Paxos requiresa ≥ 5f +1
acceptors,p ≥ 3f +1 proposers, andl ≥ 3f +1 learners;
as in Paxos, each process in FaB Paxos can play one or
more of these three roles. We describe FaB Paxos in
stages: we start by describing a simple version of the
protocol that relies on relatively strong assumptions, and
we proceed by progressively weakening the assumptions
and refining the protocol accordingly.

A. The Common Case

We first describe how FaB Paxos works in the com-
mon case, when there is a unique correct leader, all
correct acceptors agree on its identity, and the system
is in a period of synchrony.

FaB is very simple in the common case, as can be
expected by a protocol that terminates in two steps. Fig-
ure 1 shows the variables we use, and Figure 2 shows the
protocol’s pseudocode. Thepnumber variable (proposal
number) indicates which process is the leader; in the
common case, its value will not change. The code starts
executing in theonStart methods. In the first step,
the leader proposes its value to all acceptors (line 3). In
the second step, the acceptors accept this value (line 21)
and forward it to the learners (line 22). Learners learn a
valuev when they observe that⌈(a+3f+1)/2⌉ acceptors
have accepted the value (line 25). In the common case,
the timeout at line 12 will never trigger. We will use
that code later; the leader election interface is given in
Figure 3. FaB avoids digital signatures in the common
case because they are computationally expensive. Adding
signatures would reduce neither the number of commu-
nication steps nor the number of servers since FaB is
already optimal in these two measures.

a) Correctness:We defer the full correctness proof
for FaB until we have discussed the recovery protocol
in Section IV-D—in the following we give an intuition
of the correctness argument.

Let correct acceptors only accept the first value they
receive from the leader and let a valuev be chosenif

1 i n t l ead e r−e l e c t i o n . getRegency ( )

2 / / r e t u r n t h e number o f t h e c u r r e n t r e g e n t ( l e a d e r i s r e g e n t% p )

3 / / i f no c o r r e c t node s u s p e c t s i t t h en t h e regency c o n t i n u e s.

4

5 i n t l ead e r−e l e c t i o n . g e t Lead e r ( ) :

6 r e t u r n getRegency ( ) % p

7

8 vo id l ead e r−e l e c t i o n . s u s p e c t ( i n t regency )

9 / / i n d i c a t e s s u s p i c i o n o f t h e l e a d e r f o r ” regency ” .

10 / / i f a quorum of c o r r e c t nodes s u s p e c t t h e same regency r ,

11 / / t h en a new regency w i l l s t a r t

12

13 vo id l ead e r−e l e c t i o n . c o n s i d e r ( p r o o f )

14 / / c o n s i d e r o u t s i d e ev i d en ce t h a t a new l e a d e r was e l e c t e d

Fig. 3. Interface for leader election protocol

⌈(a+f +1)/2⌉ correct acceptors have accepted it. These
two requirements are sufficient to ensure CS1 and CS2:
clearly, only a proposed value may be chosen and there
can be at most one chosen value since at most one value
can be accepted by a majority of correct acceptors. The
last safety clause (CS3) requires correct learners to learn
only a chosen value. Since learners wait for⌈(a + 3f +
1)/2⌉ identical reports and at mostf of those come from
faulty acceptors, it follows that the value was necessarily
chosen.

B. Fair Links and Retransmissions

So far we have assumed synchrony. While this is a
reasonable assumption in the common case, our protocol
must also be able to handle periods of asynchrony. We
weaken our network model to consider fair asynchronous
authenticated links (see Section III). Note that now
consensus may take more than two communication steps
to terminate, e.g. when all messages sent by the leader
in the first round are dropped.

Our end-to-end retransmission policy is based on the
following pattern: the caller sends its request repeatedly,
and the callee sends a single response every time it
receives a request. When the caller is satisfied by the
reply, it stops retransmitting. We alter the pattern slightly
in order to accommodate the leader election protocol:
other processes must be able to determine whether the
leader is making progress, and therefore the leader must
make sure that they, too, receive the reply. To that end,
learners report not only to the leader but also to the other
proposers (Figure 2, line 28). When proposers receive
enough acknowledgments, they are “satisfied” and notify
the leader (line 9). The leader only stops resending when
it receives⌈(p + f + 1)/2⌉ such notifications (line 4).
If proposers do not hear from⌈(l + f + 1)/2⌉ learners
after some time-out, they start suspecting the leader
(line 14). If ⌈(p + f + 1)/2⌉ proposers suspect the
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variable initial comment
Globals
p, a, l Number of proposers, acceptors, learners
f Number of Byzantine failures tolerated
Proposer variables
Satisfied ∅ Set of proposers that claim to be satisfied
Learned ∅ Set of learners that claim to have learned
Acceptor variables
accepted (⊥, ⊥) Value accepted and the corresponding proposal number
Learner variables
learner.accepted[j] (⊥, ⊥) Value and matching proposal number acceptorj says it accepted
learner.learn[j] (⊥, ⊥) Value and matching proposal number learnerj says it learned
learner.learned (⊥, ⊥) Value learned and the corresponding proposal number

Fig. 1. Variables for the FaB pseudocode

1 l e a d e r . o n S t a r t ( ) :

2 / / p r o p o s i n g (PC i s n u l l u n l e s s r e c o v e r i n g )

3 send (PROPOSE, va lue , pnumber , PC) t o a l l a c c e p t o r s

4 u n t i l | S a t i s f i e d| >= ⌈(p + f + 1)/2⌉

5

6 p r o p o se r . onLearned ( ) : f rom l e a r n e r l

7 Learned := Learned un ion{ l }

8 i f | Learned| >= ⌈(l + f + 1)/2⌉ t h en

9 send ( SATISFIED ) t o a l l p r o p o s e r s

10

11 p r o p o se r . o n S t a r t ( ) :

12 w a i t f o r t i m eo u t

13 i f | l e a r n e d| < ⌈(l + f + 1)/2⌉ t h en

14 l ead e r−e l e c t i o n . s u s p e c t ( l ead e r−e l e c t i o n . getRegency ( ) )

15

16 p r o p o se r . o n S a t i s f i e d ( ) : f rom p r o p o se r x

17 S a t i s f i e d := S a t i s f i e d∪ {x}

18

19 a c c e p t o r . onPropose ( va lue , pnumber , p r o g c e r t ) : f rom l ea d e r

20 i f n o t a l r e a d y accep t ed t h en

21 accep t ed := ( va lue , pnumber ) / / a c c e p t i n g

22 send (ACCEPTED , accep t ed ) t o a l l l e a r n e r s

23 l e a r n e r . onAccepted ( va lue , pnumber ) : f rom a c c e p t o r ac

24 accep t ed [ ac ] := ( va lue , pnumber )

25 i f t h e r e a r e ⌈a + 3f + 1)/2⌉ a c c e p t o r s x

26 such t h a t accep t ed [x ] == ( va lue , pnumber ) t h en

27 l e a r n e d := ( va lue , pnumber ) / / l e a r n i n g

28 send (LEARNED) t o a l l p r o p o s e r s

29

30 l e a r n e r . o n S t a r t ( ) :

31 w a i t f o r t i m eo u t

32 wh i le ( n o t l e a r n e d ) send (PULL) t o a l l l e a r n e r s

33

34 l e a r n e r . o n P u l l ( ) : f rom l e a r n e r l n

35 I f t h i s p r o cess l e a r n e d some p a i r ( va lue , pnumber ) t h en

36 send (LEARNED , va lue , pnumber ) t o l n

37

38 l e a r n e r . onLearned ( va lue , pnumber ) : f rom l e a r n e r l n

39 Learn [ l n ] := ( va lue , pnumber )

40 i f t h e r e a r e f + 1 l e a r n e r s x

41 such t h a t l e a r n [x ] == ( va lue , pnumber ) t h en

42 l e a r n e d := ( va lue , pnumber ) / / l e a r n i n g

Fig. 2. FaB pseudocode (excluding recovery)

leader, then a new leader is elected.5 The retransmission
policy therefore ensures that in periods of synchrony the
leader will retransmit until it is guaranteed that no leader
election will be triggered. Note that the proposers do not
wait until they hear from all learners before becoming
satisfied (since some learners may have crashed). It is
possible therefore that the leader stops retransmitting
before all learners have learned the value. To ensure that
eventually all correct learners do learn the value, lines
30–42 of the protocol require all correct learners still in
the dark to pull the value from their peers.

C. Recovery protocol

Recovery occurs when the leader election protocol
elects a new leader. Although we can reuse existing
leader election protocols as-is, it is useful to go through
the properties of leader election. The output of leader
election is a regency numberr. This number never
decreases, and we say that proposerr mod p is the

5We do not show the election protocol, because existing leader
election protocols can be used here without modification, e.g. the
leader election protocol in [3].

leader. Each node in the system has an instance of
a leader-election object, and different instances may
initially indicate different regents. Nodes indicate which
other nodes they suspect of being faulty; that is the input
to the leader election protocol. If no more thanf nodes
are Byzantine and at least2f + 1 nodes participate in
leader election, then leader election guarantees that if no
correct node suspects the current regent, then eventually
(i) all leader-election objects will return the same regency
number and (ii) that number will not change. Leader
election also guarantees that if a quorum of correct nodes
(⌈(p + f + 1)/2⌉ nodes out ofp) suspects regentr, then
the regency number at all correct nodes will eventually
be different fromr. Finally, leader election also generates
a proofr when it elects some regentr. If proofr from a
correct node is given to a leader-election objecto, then
o will elect regencyr′, r ≤ r′.

The interface to leader election is shown in Figure 3.
getRegency() returns the current regency number,
and getLeader() converts it to a proposer number.
Nodes indicate their suspicion by callingsuspect( r) .
When leader-election elects a new leader, it notifies
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the node through theonElected( regency, proofr)
callback (not shown). If necessary,proofr can then
be given to other leader-election objects through the
consider( proofr) method.

When proposers suspect the current leader of being
faulty, they trigger an election for a new leader who then
invokes the recovery protocol. There are two scenarios
that require special care.

First, some valuev may have already been chosen: the
new leader must then propose the samev to maintain
CS2. Second, a previous malicious leader may have
performed apoisonous write[19], i.e. a write that
prevents learners from reading any value—for example,
a malicious leader could propose a different value to
each acceptor. If the new leader is correct, consensus in
a synchronous execution should nonetheless terminate.

In our discussion so far, we have required acceptors to
only accept the first value they receive. If we maintained
this requirement, the new leader would be unable to
recover from a poisonous write. We therefore allow
acceptors to change their mind and accept multiple
values. Naturally, we must take precautions to ensure
that CS2 still holds.

1) Progress certificates and the recovery protocol:
If some valuev was chosen, then in order to maintain
CS2 a new correct leader must not propose any value
other thanv. In order to determine whether some value
was chosen, the new leader must therefore query the
acceptors for their state. It can gather at mosta − f
replies. We call the set of these replies aprogress
certificate. The progress certificate serves two purposes.
First, it allows a new correct leader to determine whether
some valuev may have been chosen, in which case
the leader proposesv. We say that a correct leader will
only propose a value that the progress certificatevouches
for—we will discuss in Section IV-C.2 how a progress
certificate vouches for a value. Second, the progress
certificate allows acceptors to determine the legitimacy
of the value proposed by the leader, so that a faulty leader
may not corrupt the state after some value was chosen.
In order to serve the second purpose, we require the
answers in the progress certificate to be signed.

A progress certificatePC must have the property that
if some valuev was chosen, thenPC only vouches for
v (sincev is the only proposal that maintains CS2). It
must also have the property that it always vouches for
at least one value, to ensure progress despite poisonous
writes.

In the recovery protocol, the newly elected correct
leaderα first gathers a progress certificate by querying
acceptors and receivinga−f signed responses. Then,α
decides which value to propose: If the progress certificate

vouches for some valuev, thenα proposesv. Otherwise,
α is free to propose any value. To propose its value,
α follows the normal leader protocol, piggybacking
the progress certificate alongside its proposal to justify
its choice of value. The acceptors check that the new
proposed value is vouched for by the progress certificate,
thus ensuring that the new value does not endanger
safety.

As in Paxos, acceptors who hear of the new leader
(when the new leader gathers the progress certificate)
promise to ignore messages with a lower proposal
number (i.e. messages from former leaders). In order
to prevent faulty proposers from displacing a correct
leader, the leader election protocol provides a proof-of-
leadership token to the new leader (typically, a collection
of signed “election” messages).

2) Constructing progress certificates:A straightfor-
ward implementation of progress certificates would con-
sist of the currently accepted value, signed, froma − f
acceptors. If these values are all different, then clearly
no value was chosen: in this case the progress certificate
should vouch for any value since it is safe for the new
leader to propose any value.

Unfortunately, this implementation falls short: a faulty
new leader could use such a progress certificatetwice to
cause two different values to be chosen. Further, this
can happen even if individual proposers only accept a
given progress certificate once. Consider the following
situation. We split the acceptors into four groups; the first
group has size2f +1, the second has sizef and contains
malicious acceptors, and the third and fourth have size
f . Suppose the values they have initially accepted are
“A”,“B”,“B”, and “C”, respectively. A malicious new
leaderλ can gather a progress certificate establishing
that no value has been chosen. With this certificate,λ can
first swayf acceptors from the third group to accept “A”
(by definition, “A” is now chosen), and then, using the
same progress certificate, persuade the acceptors in the
first and fourth group to change their value to “B”—“B”
is now chosen. Clearly, this execution violates CS2.

We make three changes to prevent progress certificates
from being used twice. First, we allow a proposer to
propose a new value only once while it serves as a leader.
Specifically, we tie progress certificates to aproposal
number, whose value equals the number of times a new
leader has been elected.

Second, we associate a proposal number to proposed
values. Acceptors now accept a value for a given pro-
posal number rather than just a value. Where before
acceptors forwarded just the accepted value (to help
learners decide, or in response to a leader’s query), now
they forward both the accepted valueand its proposal
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101 l e a d e r . o n E l ec t ed ( newnumber , p r o o f ) :

102 / / t h i s f u n c t i o n i s c a l l e d when l ead e r−e l e c t i o n p i ck s a new regency

103 / / p r o o f i s a p i ece o f d a t a t h a t w i l l sway l ead e r−e l e c t i o n a t t h e

104 / / o t h e r nodes .

105 pnumber := newnumber / / no s m a l l e r t h an t h e p r e v i o u s pnumber

106 i f ( n o t l e a d e r f o r pnumber ) t h en r e t u r n

107 send (QUERY, pnumber , p r o o f ) t o a l l a c c e p t o r s

108 u n t i l g e t (REP , s i g n ed ( va lue , pnumber ) ) f rom a−f a c c e p t o r s

109 PC := t h e un ion o f t h e s e r e p l i e s

110 i f PC vouches f o r ( v ’ , pnumber ) t h en v a l u e := v ’

111 o n S t a r t ( )

112

113 a c c e p t o r s . onQuery ( pn , p r o o f ) : f rom l e a d e r

114 l ead e r−e l e c t i o n . c o n s i d e r ( p r o o f )

115 i f ( l ead e r−e l e c t i o n . getRegency ( ) != pn ) t h en :

116 r e t u r n / / i g n o r e bad r e q u e s t s

117 send (REP , s i g n ed ( va lue , pn ) ) t o l ead e r−e l e c t i o n . g e t Lead e r ( )

118 a c c e p t o r . onPropose ( va lue , pnumber , p r o g c e r t ) : f rom pr o p o se r

119 i f pnumber != l ead e r−e l e c t i o n . getRegency ( ) t h en

120 r e t u r n / / on ly l i s t e n t o c u r r e n t l e a d e r

121 i f accep t ed ( v , pn ) and pn == pnumber t h en

122 r e t u r n / / on ly once p e r prop . number

123 i f accep t ed ( v , pn ) and v != v a l u e and

124 p r o g c e r t does n o t vouch f o r ( va lue , pnumber ) t h en

125 r e t u r n / / on ly change wi th p r o g r e s s c e r t i f i c a t e

126 accep t ed := ( va lue , pnumber ) / / a c c e p t i n g

127 send (ACCEPTED , accep t ed ) t o a l l l e a r n e r s

Fig. 4. FaB recovery pseudocode

number—hence, progress certificates now contain (value,
proposal number) pairs.

Learners learn a valuev if they see that⌈(a + 3f +
1)/2⌉ acceptors accepted valuev for the sameproposal
number. We say that valuev is chosen forpn if ⌈(a +
f +1)/2⌉ correct acceptors have accepted that value for
proposal numberpn. We say that valuev is chosen if
there is some proposal numberpn so thatv is chosen
for pn.

Third, we change the conditions under which accep-
tors accept a value (Figure 4). In addition to ignoring
proposals with a proposal number lower than any they
have seen (line 119), acceptors only accept one proposal
for every proposal number (line 121) and they only
change their accepted value if the progress certificate
vouches for the new value and proposal number (lines
123–125).

We are now ready to define progress certificates
concretely. A progress certificate contains signed replies
(vi, pn) from a − f acceptors (Figure 4, line 108).
An acceptor’s reply contains that acceptor’s currently
accepted value and the proposal number of the leader
who requested the progress certificate.

Definition We say that a progress certificate
((v0, pn), . . . , (va−f , pn)) vouches for value v at
proposal numberpn if there is no valuevi 6= v that

appears⌈(a−f +1)/2⌉ times in the progress certificate.

A consequence of this definition is that if some specific
pair (v, pn) appears at least⌈(a−f +1)/2⌉ times in the
progress certificate, then the progress certificate vouches
only for value v at proposalpn. If there is no such
pair, then the progress certificate vouches for any value
as long as its proposal number matches the one in the
progress certificate. As we prove in the next section,
progress certificates guarantee that ifv is chosen for
pn, then all progress certificates with a proposal number
following pn will vouch for v and no other value.

Let us revisit the troublesome scenario of before in
light of these changes. Suppose, without loss of gen-
erality, that the malicious leaderλ gathers a progress
certificate for proposal number 1 (λ is the second pro-
poser to become leader). Because of the poisonous write,
the progress certificate allows the leader to propose any
new value. To have “A” chosen,λ sends a new proposal
(“A”, 1) together with the progress certificate first to the
acceptors in the first group and then to the acceptors in
the third group. Note that the first step is critical to have
“A” chosen, as it ensures that the3f +1 correct acceptors
in the first and third group accept the same value for the
same proposal number.

Fortunately, this first step is also what preventsλ from
using the progress certificate to sway the acceptors in the
first group to accept “B”. Because they have last accepted
the pair (“A”, 1), whenλ presents to the acceptors in the
first group the progress certificate for proposal number
1 for the second time, they will refuse it (line 121 of the
protocol).

D. Correctness

We now prove that, for executions that are eventually
synchronous, FaB Paxos solves consensus. Recall that a
value v is chosen for proposalpn iff ⌈(a + f + 1)/2⌉
correct acceptors acceptv for proposalpn. As mentioned
at the beginning of this section, we assume thata > 5f ,
p > 3f , and l > 3f .

CS1. Only a value that has been proposed may be
chosen.
Proof: To be chosen, a value must be accepted by a set
of correct acceptors (by definition), and correct acceptors
only accept values that are proposed (line 118).

CS2.Only a single value may be chosen.
Proof: The theorem follows directly from the following
two lemmas.

Lemma 1:For every proposal numberpn, at most one
value is chosen.

Proof: Correct acceptors only accept one value per
proposal number (line 121). In order for a value to be
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chosen forpn, the value must be accepted by at least a
majority of the acceptors (by definition). Hence, at most
one value is chosen per proposal number.

Lemma 2: If value v is chosen for proposalpn, then
every progress certificate for proposal numberpn′ > pn
will vouch for v and no other value.

Proof: Assume that valuev is chosen for proposal
pn; then, by definition, at leastc = ⌈(a + f + 1)/2⌉
correct acceptors have acceptedv for proposal pn.
Let PC be a progress certificate for proposal number
pn′ > pn. All correct acceptors that acceptedv for
pn must have done so before acceptingPC, since no
correct acceptor would acceptv for proposalpn if it
had acceptedPC with pn′ > pn (line 119 and the fact
that the regency number never decreases). Consider the
a−f pairs contained inPC. Since these pairs are signed
(line 117), they cannot have been manufactured by the
leader; hence, at leasta− f + c − a = ⌈(a − f + 1)/2⌉
of them must be signed by acceptors that acceptedv for
pn. By definition, then,PC vouches forv and no other
value.

CS3.Only a chosen value may be learned by a correct
learner.
Proof: Suppose that a correct learner learns valuev for
proposalpn. There are two ways for a learner to learn
a value in FaB Paxos.

• ⌈(a+3f +1)/2⌉ acceptors reported having accepted
v for proposalpn (line 25). At least⌈(a+f +1)/2⌉
of these acceptors are correct, so by definitionv was
chosen forpn.

• f + 1 other learners reported thatv was chosen for
pn (line 40). One of these learners is correct—so,
by induction on the number of learners, it follows
that v was indeed chosen forpn.

We say that a value isstableif it is learned by⌈(l −
f + 1)/2⌉ correct learners.

Lemma 3:Some value is eventually stable.
Proof:

The system is eventually synchronous and in these
periods, leaders that do not create a stable value are
eventually suspected by all correct proposers (line 13).
In this situation the leader election protocol elects a new
leader. Byzantine learners or proposers cannot prevent
the election: even if thef faulty learners pretend to have
learned a value, the remaining correct proposers form a
quorum and thus can trigger an election (see IV-C).

Since the number of proposersp is larger thanf , even-
tually either some value is stable or a correct leaderα is
elected. In a period of synchrony, Byzantine proposers
alone cannot trigger an election to replace a correct
leader (see IV-C). We show that ifα is correct then some
value will be stable.

The correct leader will gather a progress certificate
(line 108) and propose a value to all the acceptors. By
construction, all progress certificates vouch for at least
one value—and correct acceptors will accept a value
vouched by a progress certificate. Sinceα is correct,
it will propose the same value to all acceptors and all
a − f correct acceptors will accept the proposed value.
Given thata > 3f , ⌈(a + f + 1)/2⌉ ≤ a − f and so by
definition that value will be chosen.

The end-to-end retransmission protocol (line 4) en-
sures thatα will continue to resend its proposed value at
least until it hears from⌈(l+f +1)/2⌉ learners that they
have learned a value—that is, until the value is stable
(line 8).

CL1. Some proposed value is eventually chosen.
Proof: By Lemma 3 eventually some value is stable,
i.e. ⌈(l + f + 1)/2⌉ > f correct learners have learned it.
By CS3 a correct learner only learns a value after it is
chosen. Therefore, the stable value is chosen.

Our proof for CL1 only relies on the fact that the
correct leader does not stop retransmission until a value
is chosen. In practice, it is desirable for the leader to
stop retransmission once itis. Sincel > 3f , there are at
least⌈(l + f + 1)/2⌉ correct learners and so eventually
all correct proposers will be satisfied (line 8) and the
leader will stop retransmitting (line 4).

CL2. Once a value is chosen, correct learners even-
tually learn it.
Proof: By Lemma 3, some valuev is eventually stable,
i.e. ⌈(l − f + 1)/2⌉ ≥ f + 1 correct learners eventually
learn the value.

Even if the leader is not retransmitting anymore, the
remaining correct learners can determine the chosen
value when they query their peers with the “pull” re-
quests (lines 32 and 34–36) and receivef + 1 matching
responses (line 40). So eventually, all correct learners
learn the chosen value.

V. PARAMETERIZED FAB PAXOS

Previous Byzantine consensus protocols require3f +
1 processes and may complete in three communication
steps when there is no failure; FaB Paxos requires5f +1
processes and may complete in two communication steps
despite up tof failures—the protocol uses the additional
replication for speed. In this section we explore scenarios
that lie in between these two extremes: when fewer than
5f+1 processes are available, or when it is not necessary
to ensure two-step operation even whenall f processes
fail.

We generalize FaB Paxos by decoupling replication
for fault tolerance from replication for speed. The result-
ing protocol, Parameterized FaB Paxos (Figure 5) spans
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the whole design space between minimal number of
processes (but no guarantee of two-step executions) and
two-step protocols (that require more processes). This
trade-off is expressed through the new parametert (0 ≤
t ≤ f ). Parameterized FaB Paxos requires3f + 2t + 1
processes, is safe despite up tof Byzantine failures,
and all its executions are two-step in the common case
despite up tot Byzantine failures. We say that the
protocol is (t,2)-step. FaB Paxos is just a special case
of Parameterized FaB Paxos, witht = f .

Several choices oft andf may be available for a given
number of machines. For example, if seven machines are
available, an administrator can choose between tolerating
two Byzantine failures and slowing down after the first
failure (f = 2, t = 0) or tolerating only one Byzantine
failure but maintaining two-step operation despite the
failure (f = 1, t = 1).

The key observation behind this protocol is that FaB
Paxos maintains safety even ifn < 5f +1 (provided that
n > 3f ). It is only liveness that is affected by having
fewer than5f + 1 acceptors: even a single crash may
prevent the learners from learning (the predicate at line
25 of Figure 2 would never hold). In order to restore
the liveness property even with3f < n < 5f + 1, we
merge a traditional BFT three-phase-commit [3] with
FaB Paxos. While merging the two, we take special
care to ensure that the two features never disagree as
to which value should be decided. The Parameterized
FaB Paxos code does not include any mention of the
parametert: if there are more thant failures, the two-
step feature of Parameterized FaB Paxos may never be
triggered because there are not enough correct nodes to
send the required number of messages.

First, we modify acceptors so that, after receiving a
proposal, they sign it (including the proposal number)
and forward it to each other so each of them can collect
a commit proof. Acommit prooffor valuev at proposal
numberpn consists of⌈(a + f + 1)/2⌉ statements from
different acceptors that accepted valuev for proposal
numberpn (function “valid”, line 284). The purpose of
commit proofs is to give evidence as to which value
was chosen. If there is a commit proof for valuev at
proposalpn, then no other value can possibly have been
chosen for proposalpn. We include commit proofs in
the progress certificates (line 252) so that newly elected
leaders have all the necessary information when deciding
which value to propose. The commit proofs are also
forwarded to learners (line 245) to guarantee liveness
when more thant acceptors fail.

Second, we modify learners so that they learn a value
if enough acceptors have a commit proof for the same
value and proposal number (line 262).

Finally, we redefine “chosen” and “progress certifi-
cate” to take commit proofs into account.

We now say that valuev is chosen forproposal number
pn if ⌈(a + f + 1)/2⌉ correct acceptors have accepted
v in proposalpn or if ⌈(a + f + 1)/2⌉ acceptors have
(or had) a commit proof forv and proposal numberpn.
Learners learnv when they knowv has been chosen.
The protocol ensures that only a single value may be
chosen.

Progress certificatesstill consist ofa− f entries, but
each entry now contains an additional element: either
a commit proof or a signed statement saying that the
corresponding acceptor has no commit proof. A progress
certificatevouchesfor valuev′ at proposal numberpn if
all entries have proposal numberpn, there is no value
d 6= v′ contained⌈(a − f + 1)/2⌉ times in the progress
certificate, and the progress certificate does not contain a
commit proof for any valued 6= v′ (function “vouches-
for”, line 291). The purpose of progress certificates is, as
before, to allow learners to convince acceptors to change
their accepted value.

These three modifications maintain the properties that
at most one value can be chosen and that, if some value
was chosen, then future progress certificates will vouch
only for it. This ensures that the changes do not affect
safety. Liveness is maintained despitef failures because
there are at least⌈(a + f + 1)/2⌉ correct acceptors, so,
if the leader is correct, then eventually all of them will
have a commit proof, thus allowing the proposed value
to be learned. The next section develops these points in
more detail.

A. Correctness

The proof that Parameterized FaB implements consen-
sus follows the same structure as that for FaB.

CS1. Only a value that has been proposed may be
chosen.
Proof: To be chosen, a value must be accepted by a set
of correct acceptors (by definition), and correct acceptors
only accept values that are proposed (line 229).

CS2.Only a single value may be chosen.
Proof: This proof also follows a similar argument as
the one in Section IV-D. We first consider values chosen
for the same proposal number, then we show that once
a value v is chosen, later proposals also proposev.
Parameterized FaB uses a different notion of chosen, so
we must show that a value, once chosen, remains so if
no correct node accepts new values.

Lemma 4: If value v is chosen for proposal number
pn, then it was accepted by⌈(a + f + 1)/2⌉ acceptors
in proposalpn.
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Proof: The value can be chosen for two reasons
according to the definition: either⌈(a+f +1)/2⌉ correct
acceptors accepted it (in which case the lemma follows
directly), or because⌈(a + f + 1)/2⌉ acceptors have a
commit proof forv atpn. At least one of them is correct,
and a commit proof includes answers from⌈(a + f +
1)/2⌉ acceptors who acceptedv at pn (lines 243 and
286–289).

Corollary 1: For every proposal numberpn, at most
one value is chosen.

Proof: If two values were chosen, then the two
sets of acceptors who accepted them intersect in at least
one correct acceptor. Since correct acceptors only accept
one value per proposal number (line 232), the two values
must be identical.

Corollary 2: If v is chosen for proposalpn and no
correct acceptor accepts a different value for proposals
with a higher number thanpn, thenv is the only value
that can be chosen for any proposal number higher than
pn.

Proof: Again, the two sets needed to choose distinct
v and v′ would intersect in at least a correct acceptor.
Since by assumption these correct acceptors did not
accept a different value afterpn, v = v′.

Lemma 5: If v is chosen forpn then every progress
certificate PC for a higher proposal number either
vouches for no value, or vouches for valuev.

Proof:
Suppose that the valuev is chosen forpn. The higher-

numbered progress certificatePC will be generated in
lines 209–212 by correct proposers. We show that all
progress certificates for proposal numbers higher than
pn that vouch for a value vouch forv (we will show
later that in fact all progress certificates from correct
proposers vouch for at least one value).

The valuev can be chosen forpn for one of two
reasons. In each case, the progress certificate can only
vouch forv.

First, v could be chosen forpn because there is a set
A of ⌈(a+f +1)/2⌉ correct acceptors that have accepted
v for proposalpn. The progress certificate forpn′, PC,
consists of answers fromn− f nodes (line 209). These
answers are signed so each answer in a valid progress
certificate come from a different node. Since acceptors
only answer higher-numbered requests (line 249; regency
numbers never decrease), all nodes inA that answered
have done so after having acceptedv in proposalpn. At
mostf acceptors may be faulty, soPC includes at least
⌈(a−f +1)/2⌉ answers fromA. By definition, it follows
that PC cannot vouch for any value other thanv (lines
292–295).

Second,v could be chosen forpn because there is a set
B of ⌈(a+f +1)/2⌉ acceptors that have a commit proof
for v for proposalpn. Again, the progress certificatePC
for pn′ includes at least⌈(a − f + 1)/2⌉ answers from
B. Up to f of these acceptors may be Byzantine and lie
(pretending to never have seenv), so PC may contain
as few as⌈(a − 3f + 1)/2⌉ commit proofs forv. Since
a > 3f , PC contains at least one commit proof for
v, which by definition is sufficient to preventPC from
vouching for any value other thanv (lines 296–297).

Lemma 6: If v is chosen forpn then v is the only
value that can be chosen for any proposal number higher
thanpn.

Proof: In order for a different valuev′ to be chosen,
a correct acceptor would have to accept a different
value in a later proposal (Corollary 2). Correct acceptors
only accept a new valuev′ if it is accompanied with
a progress certificate that vouches forv′ (lines 232–
234). The previous lemma shows that no such progress
certificate can be gathered.

Putting it all together, we can show that CS2 holds
(by contradiction). Suppose that two distinct values,v
andv′ are chosen. By Corollary 1, they must have been
chosen in distinct proposalspn andpn′. Without loss of
generality, supposepn < pn′. By Lemma 6,v′ = v.

CS3.Only a chosen value may be learned by a correct
learner.
Proof: Suppose that a correct learner learns valuev after
observing thatv is chosen forpn. There are three ways
for a learner to make that observation in Parameterized
FaB.

• ⌈(a+3f +1)/2⌉ acceptors reported having accepted
v for proposalpn (line 255). At least⌈(a+f+1)/2⌉
of these acceptors are correct, so by definitionv was
chosen forpn.

• ⌈(a + f + 1)/2⌉ acceptors reported a commit proof
for v for proposalpn (lines 262–264). By definition,
v was chosen forpn.

• f + 1 other learners reported thatv was chosen
for pn (lines 280–282). One of these learners is
correct—so, by induction on the number of learners,
it follows that v was indeed chosen forpn.

Lemma 7:All valid progress certificates vouch for at
least one value.

Proof:
The definition allows for three ways for a progress

certificatePC to vouch for no value at all. We show
that none can happen in our protocol.

First, PC could vouch for no value if there were two
distinct valuesv andv′, each contained⌈(a− f + 1)/2⌉
times in thePC. This is impossible because thePC
only containsa − f entries in total (line 211).
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Second,PC could vouch for no value if it contained
two commit proofs for distinct valuesv and v′. Both
commit proofs contains⌈(a+f +1)/2⌉ identical entries
(for v andv′ respectively) from the same proposal (lines
286–287). These two sets intersect in a correct proposer,
but correct proposers only accept one value per proposal
number (line 232). Thus, it is not possible forPC to
contain two commit proofs for distinct values.

Third, there could be some valuev contained⌈(a −
f + 1)/2⌉ times in thePC, and a commit proof for
some different valuev′. The commit proof includes
values from ⌈(a + f + 1)/2⌉ acceptors, and at least
⌈(a−f +1)/2⌉ of these are honest so they would report
the same value (v′) in the PC. But ⌈(a− f + 1)/2⌉ is a
majority and there can be only one majority in thePC,
so that scenario cannot happen.

Recall that a value is stable if it is learned by⌈(l−f +
1)/2⌉ correct learners. We use Lemma 3, which shows
that some value is eventually stable, to prove CL1 and
CL2.

CL1. Some proposed value is eventually chosen.
CL2. Once a value is chosen, correct learners even-

tually learn it.
Proof: The proofs for CL1 and CL2 are unchanged.
They still hold because although the parameterized pro-
tocol makes it easier for a value to be chosen, it still has
the property that the leader will resend its value until it
knows that the value is stable (lines 203–204, 216–219).
A value that is stable is chosen (ensuring CL1) and it has
been learned by at least⌈(l− f + 1)/2⌉ correct learners
(ensuring CL2 because of the pull subprotocol on lines
270–282).

VI. T HE LOWER BOUND

Parameterized FaB Paxos requires3f+2t+1 acceptors
to toleratef Byzantine failures and be two-step despite
t failures. We show that this is the optimal number
of processes for parameterized two-step consensus. Our
proof does not distinguish between proposers, acceptors
and learners because doing so would restrict the proof
to Paxos-like protocols.

The proof proceeds by constructing two executions
that are indistinguishable although they should learn
different values. We now define these notions precisely.

We consider a system ofn processes that communicate
through a fully connected network. Processes execute
sequences of events, which can be of three types:lo-
cal, send, and deliver. We call the sequence of events
executed by a process itslocal history.

An execution of the protocol proceeds in asynchronous
rounds. In a round, each correct process (i) sends a

message to every other process, (ii) waits until it receives
a (possibly empty) message sent in that round fromn−f
distinct processes (ignoring any extra messages), and (iii)
performs a (possibly empty) sequence of local events.
We say that the process takes astep in each round.
During an execution, the system goes through a series of
configurations, where a configurationC is an n-vector
that stores the state of every process. We also talk about
the state of a set of processes, by which we mean a
vector that stores the state of the processes in the set.

This proof depends crucially on the notion of indis-
tinguishability. The notions ofview and similarity help
us capture this notion precisely.
Definition Given an executionρ and a processpi, the
viewof pi in ρ, denoted byρ|pi, is the local history ofpi

together with the state ofpi in the initial configuration
of ρ.
Definition Let ρ1 andρ2 be two executions, and letpi

be a process which is correct inρ1 andρ2. Executionρ1

is similar to executionρ2 with respect topi, denoted as
ρ1

pi

∼ ρ2, if ρ1|pi = ρ2|pi.
If an executionρ results in all correct processes

learning a valuev, we say thatv is theconsensus value
of ρ, which we denotec(ρ). For the remainder of this
section we only consider executions that result in all
correct processes learning a value.

Lemma 8:Let ρ1 and ρ2 be two executions, and let
pi be a process which is correct inρ1 andρ2. If ρ1

pi

∼ ρ2,
thenc(ρ1) = c(ρ2).

Proof: The correct process cannot distinguish be-
tweenρ1 andρ2, so it will learn the same value in both
executions. Consensus requires that all correct learners
learn the consensus value, soc(ρ1) = c(ρ2).

Definition Let F be a subset of the processes in the
system. An executionρ is F-silent if in ρ no process
outsideF delivers a message from a process inF .
Definition Let a two-step executionbe an execution in
which all correct processes learn by the end of the second
round. A consensus protocol is(t,2)-stepif it can tolerate
f Byzantine failures and if for every initial configuration
I and every setF of at mostt processes (t ≤ f ), there
exists a two-step execution of the protocol fromI that
is F-silent. If the protocol is (f ,2)-step then we simply
say that it istwo-step.
Definition Given a (t,2)-step consensus protocol, an
initial configurationI is (t,2)-step bivalentif there exist
two disjoint sets of processesF0 andF1, (|F0| ≤ t and
|F1| ≤ t) anF0-silent two-step executionρ0 and anF1-
silent two-step executionρ1 such thatc(ρ0) = 0 and
c(ρ1) = 1.

Lemma 9:For every (t,2)-step consensus protocol
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with n > 2f there exists a (t,2)-step bivalent initial
configuration.

Proof: Consider a (t,2)-step consensus protocolP .
For eachi, 0 ≤ i ≤ n, let Ii be the initial configuration in
which the firsti processes propose 1, and the remaining
processes propose 0. By the definition of (t,2)-step, for
every Ii and for all F such that|F| ≤ t there exists
at least oneF-silent two-step executionρi of P . By
property CS1 of consensus,c(ρ0) = 0 and c(ρn) = 1.
Consider nowF0 = {pj : 1 ≤ j ≤ t}. There must exist
two neighbor configurationsIi and Ii+1 and twoF0-
silent two-step executionsρi andρi+1 such thatc(ρi) 6=
c(ρi+i) andρi+1 is the lowest-numbered execution with
consensus value 1. Note thati ≥ t, since bothρi andρi+1

areF0-silent and the consensus value they reach cannot
depend on the value proposed by the silent processes
in F0. We claim that one ofIi and Ii+1 is (t,2)-step
bivalent. To prove our claim, we setx = min(i + t, n)
and defineF1 as the set{pj : x + 1 − t ≤ j ≤ x}.
Note that, by construction,F0 andF1 are disjoint and
(i + 1) ∈ F1. By the definition ofC, there must in turn
exist two new two-step executionsπi andπi+1 that are
F1-silent. The only difference between configurationsIi

andIi+1 is the value proposed bypi+1, which is silent in
πi andπi+1, since it belongs toF1. Hence, all processes
outside ofF1 (at least one of which is correct) have
the same view inπi and πi+1, and c(πi) = c(πi+1).
Sincec(ρi) 6= c(ρi+1) andc(πi) = c(πi+1), eitherIi or
Ii+1 has two two-step executions that lead to different
consensus values. This is the definition of a (t,2)-step
bivalent configuration.

s1 s2ρ0 s3 s4 s5

s1 s2 s3 t5ρs t4

ρc s1 s2 t5t4

ρt s1 s2 t5t4

ρ1 t5t4

t3

t3t2t1

similar with respect to p3

similar with respect to p3

similar with respect to p1

similar with respect to p1

Fig. 6. Contradiction sketch: The figure represents a systemwith
too few (3f + 2t) processes. Each row represents an execution, and
the boxes represent sets of processes. Dotted boxes containByzantine
nodes. The first execution (ρ0) learns 0, and the last learns 1. Each
execution is similar to the next, leading to the contradiction.

Figure 6 shows a sketch of the idea at the core of the
proof: with only3f +2t acceptors we can construct two
executions (ρ0 and ρ1) that are indistinguishable, even
though they learn different values.

Theorem 1:Any (t,2)-step Byzantine fault-tolerant
consensus protocol requires at least3f+2t+1 processes.

Proof: By contradiction. Suppose there exists a
(t,2)-step fault-tolerant consensus protocolP that (i)
tolerates up tof Byzantine faults, (ii) is two-step despite
t failures, and (iii) requires only3f + 2t processes. We
partition the processes in five sets,p1 . . . p5.

By Lemma 9 there exist a (t,2)-step bivalent con-
figuration Ib and two two-step executionsρ0 and ρ1,
respectivelyF0-silent andF1-silent, such thatc(ρ0) = 0
and c(ρ1) = 1. We name the sets of processes so that
F0 = p5 andF1 = p1 (so p1 and p5 have sizet). The
remaining sets have sizef .

We focus on the state ofp1, . . . , p5 at the end of the
first round, where the state ofpi is a set of local states,
one for each process inpi. In particular, letsi and ti
denote the state ofpi at the end of the first round ofρ0

and ρ1, respectively.pi has statesi (respectively,ti) at
the end of any execution that produces for its nodes the
same view asρ0 (respectively,ρ1). It is possible for some
processes to be in ans state at the end of the first round
while at the same time others are in at state. Consider
now three new (not necessarily two-step) executions of
P , ρs, ρt, andρc, that at the end of their first round have
p1 andp2 in their s states andp4 andp5 in their t states.
The state ofp3 is different in the three executions: inρs,
p3 is in states3; in ρt, p3 is in statet3; and in ρc, p3

crashes at the end of the first round. Otherwise, the three
executions are very much alike: all three executions are
p3-silent from the second round on—inρc becausep3

has crashed, inρs and ρt because all processes inp3

are slow. Further, all processes other than those inp3

send and deliver the same messages in the same order
in all three executions, and all three execution enter a
period of synchrony from the second round on, so that
in each execution consensus must terminate and some
value must be learned. We consider three scenarios, one
for each execution.

a) ρs scenario: In this scenario, thef nodes inp4

are Byzantine: they follow the protocol correctly in their
messages to all processes but those inp3. The messages
that nodes inp4 send top3 in round two are consistent
with p4 being in states4, rather thant4. Further, in the
second round ofρs the messages fromp5 to p3 are the
last to reachp3 (and are therefore not delivered byp3),
and all other messages are delivered byp3 in the same
order as inρ0. The view ofp3 at the end of the second
round of ρs is the same as in the second round ofρ0;
hence nodes inp3 learn 0 at the end of the second round
of ρs (it must learn then becauseρ0 is two-step). Since
nodes inp3 are correct and for each nodep ∈ p3 ρs

p
∼

ρ0, then c(ρs) = c(ρ0) and all correct processes inρs

eventually learn 0.
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b) ρt scenario: In this scenario, thef nodes inp2

are Byzantine: they follow the protocol correctly in their
messages to all processes but those inp3. In particular,
the messages that nodes inp2 send top3 in round two
are consistent withp2 being in statet2, rather thans2.
Further, in the second round ofρt the messages from
p1 to p3 are the last to reachp3 (and are therefore not
delivered byp3), and all other messages are delivered by
p3 in the same order as inρ1. The view ofp3 at the end
of the second round ofρt is the same as in the second
round ofρ1; hence nodes inp3 learn 1 at the end of the
second round ofρt. Since nodes inp3 are correct and
for each nodep ∈ p3, ρt

p
∼ ρ1, then c(ρt) = c(ρ1) and

all correct processes inρt eventually learn 1.
c) ρc scenario: In this scenario, thef nodes inp3

have crashed, and all other processes are correct. Since
ρc is synchronous from round two on, every correct
process must eventually learn some value.

Consider now a processp in p1 that is correct inρs, ρt,
andρc. By construction,ρc

p
∼ ρt, and thereforec(ρc) =

c(ρt) = c(ρ1) = 1. However, again by construction,ρc
p
∼

ρs, and thereforec(ρc) = c(ρs) = c(ρ0) = 0. Hence,p
in ρc must learn both 0 and 1: this contradicts CS2 and
CS3 of consensus, which together imply that a correct
learner may learn only a single value.

VII. STATE MACHINE REPLICATION

Fast consensus translates directly into fast state ma-
chine replication: in general, state machine replication
requires one fewer round with FaB Paxos than with a
traditional three-round Byzantine consensus protocols.

A straightforward implementation of Byzantine state
machine replication on top of FaB Paxos requires only
four rounds of communication—one for the clients to
send requests to the proposers; two (rather than the tra-
ditional three) for the learners to learn the order in which
requests are to be executed; and a final one, after the
learners have executed the request, to send the response
to the appropriate clients. FaB can accommodate existing
leader election protocols (e.g. [3]).

The number of rounds of communication can be re-
duced down to three usingtentative execution[3], [9], an
optimization used by Castro and Liskov for their PBFT
protocol that applies equally well to FaB Paxos. As
shown in Figure 7, learners tentatively execute clients’
requests as supplied by the leader before consensus is
reached. The acceptors send to both clients and learners
the information required to determine the consensus
value, so clients and learners can at the same time
determine whether their trust in the leader was well put.
In case of conflict, tentative executions are rolled back

Proposers

Acceptors

Learners

request response

Client

tentative
execution

verification

Fig. 7. FaB state machine with tentative execution.

and the requests are eventually re-executed in the correct
order.

FaB Paxos loses its edge, however, in the special case
of read-only requests that are not concurrent with any
read-write request. In this case, a second optimization
proposed by Castro and Liskov allows both PBFT and
FaB Paxos to service these requests using just two
rounds.

The next section shows further optimizations that re-
duce the number of learners and allow nodes to recover.

VIII. O PTIMIZATIONS

A. 2f + 1 Learners

Parameterized FaB Paxos (and consequently FaB
Paxos, its instantiation fort = f ) requires 3f + 1
learners. We show how to reduce the number of learners
to 2f +1 without delaying consensus. This optimization
requires some communication and the use of signatures
in the common case, but still reaches consensus in two
communication steps in the common case.

In order to ensure that all correct learners eventually
learn, Parameterized FaB Paxos uses two techniques.
First, the retransmission part of the protocol ensures that
⌈(l + f + 1)/2⌉ learners eventually learn the consensus
value (line 204) and allows the remaining correct learners
to pull the decided value from their up-to-date peers
(lines 266–282).

To adapt the protocol to an environment with only
2f + 1 learners, we first modify retransmission so that
proposers are content withf +1 acknowledgments from
learners—retransmission may now stop when only a
single correct learner knows the correct response.

Second, we have to modify the “pull” mechanism
because now a single correct learner must be able to
convince other learners that its reply is correct. We
therefore strengthen the condition under which we call
a value stable (line 204) by adding information in the
acknowledgments sent by the learners. In addition to
the client’s request and reply obtained by executing that
request, acknowledgments must now also containf + 1
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signatures from distinct learners that verify the same
reply.

After learning a value, learners now sign their ac-
knowledgment and send that signature to all learners,
expecting to eventually receivef + 1 signatures that
verify their acknowledgment. Since there aref + 1
correct learners, each is guaranteed to be able to even-
tually gather an acknowledgment withf + 1 signatures
that will satisfy the leader. The leader is then assured
that at least one of the learners who sent it a valid
acknowledgment is correct and will support the pull
subprotocol: learners query each other, and eventually
all correct learners receive the valid acknowledgment
and learn the decided value. This exchange of signatures
takes an extra communication step, but this step is not
in the critical path: it occursafter learners have learned
the value.

The additional messages are also not in the critical
path when this consensus protocol is used to implement
a replicated state machine: the learners can execute
the client’s operation immediately when learning the
operation, and can send the result to the client without
waiting for the f + 1 signatures. Clients can already
distinguish between correct and incorrect replies since
only correct replies are vouched for byf + 1 learners.

B. Rejoin

By allowing repaired servers (for example, a crashed
node that was rebooted) to rejoin, the system can con-
tinue to operate as long as at all times no more thanf
servers are either faulty or rejoining. The rejoin protocol
must restore the replicas’s state, and as such it is different
depending on the role that the replica plays.

The only state in proposers is the identity of the
current leader. Therefore, a joining proposer queries a
quorum of acceptors for their current proof-of-leadership
and adopts the largest valid response.

Acceptors must never accept two different values for
the same proposal number. In order to ensure that this
invariant holds, a rejoining acceptor queries the other
acceptors for the last instance of consensusd, and it
then ignores all instances untild+k (k is the number of
instances of consensus that may run in parallel). Once
the system moves on to instanced + k, the acceptor has
completed its rejoin.

The state of the learners consists of the ordered list
of operations. A rejoining learner therefore queries other
learners for that list. It accepts answers that are vouched
by f + 1 learners (either becausef + 1 learners gave
the same answer, or in the case of2f +1 Parameterized
FaB a single learner can showf + 1 signatures with

its answer). Checkpoints could be used for faster state
transfer as has been done before [3], [12].

IX. CONCLUSION

FaB Paxos is the first Byzantine consensus protocol
to achieve consensus in just two communication steps
in the common case. This protocol is optimal in that it
uses the minimal number of steps for consensus, and it
uses the minimal number of processes to ensure two-step
operation in the common case. Additionally, FaB Paxos
in the common case does not require expensive digital
signatures.

The price for common-case two-step termination is a
higher number of acceptors than in previous Byzantine
consensus protocols. These additional acceptors are pre-
cisely what allows a newly elected leader in FaB Paxos
to determine, using progress certificates, whether or not
a value had already been chosen—a key property to
guarantee the safety of FaB Paxos in the presence of
failures.

In traditional state machine architectures, the cost
of this additional replication would make FaB Paxos
unattractive for all but the applications most committed
to reducing latency. However, the number of additional
acceptors is relatively modest when the goal is to tolerate
a small number of faults. In the state machine architec-
ture that we have recently proposed, where acceptors are
significantly cheaper to implement [23], the design point
occupied by FaB Paxos becomes much more intriguing.

Even though5f + 1 acceptors is the lower bound
for two-step termination, it is possible to sometimes
complete in two communication steps even with fewer
acceptors. Parameterized FaB Paxos decouples fault-
tolerance from two-step termination by spanning the
design space between a Byzantine consensus protocol
with the minimal number of servers (but that only
guarantees two-step execution when there are no faults)
to the full FaB protocol in which all common case
executions are two-step executions. Parameterized FaB
requires3f + 2t + 1 servers to toleratef Byzantine
failures and completes in two communication steps in
the common case when there are at mostt failures (we
say that it is (t,2)-step). We have seen that this is the
minimal number of servers with which it is possible to
implement (t,2)-step consensus.
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201 l e a d e r . o n S t a r t ( ) :

202 / / p r o p o s i n g (PC i s n u l l u n l e s s r e c o v e r i n g )

203 send (PROPOSE, va lue , number , PC) t o a l l a c c e p t o r s

204 u n t i l | S a t i s f i e d| >= ⌈ ( p+ f +1) / 2⌉

205

206 l e a d e r . o n E l ec t ed ( newnumber , p r o o f ) :

207 pnumber := newnumber / / no s m a l l e r t h an p r e v i o u s pnumber

208 i f ( n o t l e a d e r f o r pnumber ) t h en r e t u r n

209 send (QUERY, pnumber , p r o o f ) t o a l l a c c e p t o r s

210 u n t i l g e t (REP , 〈va lue , pnumber , commi tp roo f , j〉 ) ) f rom

211 a − f a c c e p t o r s

212 PC := t h e un ion o f t h e s e r e p l i e s

213 i f ∃ v ’ s . t . vouches−f o r (PC , v ’ , pnumber ) , t h en v a l u e := v ’

214 o n S t a r t ( )

215

216 p r o p o se r . onLearned ( ) : f rom l e a r n e r l

217 Learned := Learned un ion{ l }

218 i f | Learned| >= ⌈ ( l + f +1) / 2⌉ t h en

219 send ( SATISFIED ) t o a l l p r o p o s e r s

220

221 p r o p o se r . o n S t a r t ( ) :

222 w a i t f o r t i m eo u t

223 i f | Learned| < ⌈ ( l + f +1) / 2⌉ t h en

224 s u s p e c t t h e l e a d e r

225

226 p r o p o se r . o n S a t i s f i e d ( ) : f rom p r o p o se r x

227 S a t i s f i e d := S a t i s f i e d∪ {x}

228

229 a c c e p t o r . onPropose ( va lue , pnumber , p r o g c e r t ) : f rom le a d e r

230 i f pnumber != l ead e r−e l e c t i o n . getRegency ( ) t h en

231 r e t u r n / / on ly l i s t e n t o c u r r e n t l e a d e r

232 i f accep t ed ( v , pn ) and ( ( pnumber<=pn ) or ( ( v != v a l u e )

233 and n o t vouches−f o r ( p r o g ce r t , va lue , pnumber ) ) ) t h en

234 r e t u r n / / on ly change wi th p r o g r e s s c e r t i f i c a t e

235 accep t ed := ( va lue , number ) / / a c c e p t i n g

236 send (ACCEPTED , accep t ed ) t o a l l l e a r n e r s

237 / / i i s t h e number o f t h i s a c c e p t o r

238 send 〈ACCEPTED , va lue , pnumber , i〉i t o a l l a c c e p t o r s

239

240 a c c e p t o r . onAccepted ( va lue , pnumber , j ) :

241 i f pnumber>t e n t a t i v e c o m m i t p r o o f [ j ] . pnumber t h en

242 t e n t a t i v e c o m m i t p r o o f [ j ] := 〈ACCEPTED , v a l u e j , pnumber , j〉j

243 i f v a l i d ( t e n t a t i v e c o m m i t p r o o f , va lue , l ead e r−e l e c t i o n .

getRegency ( ) ) t h en

244 commi t p roo f := t e n t a t i v e c o m m i t p r o o f

245 send (COMMITPROOF, commi tp roo f ) t o a l l l e a r n e r s

246

247 a c c e p t o r s . onQuery ( pn , p r o o f ) : f rom p r o p o se r

248 l ead e r−e l e c t i o n . c o n s i d e r ( p r o o f )

249 i f ( l ead e r−e l e c t i o n . getRegency ( ) != pn ) t h en

250 r e t u r n / / i g n o r e bad r e q u e s t s

251 l e a d e r := l ead e r−e l e c t i o n . g e t Lead e r ( )

252 send (REP ,〈accep t ed . va lue , pn , commi tp roo f , i〉i ) t o l e a d e r

253 l e a r n e r . onAccepted ( va lue , ponumber ) : f rom a c c e p t o r ac

254 accep t ed [ ac ] := ( va lue , pnumber )

255 i f t h e r e a r e ⌈ ( a+3 f +1) / 2⌉ a c c e p t o r s x

256 such t h a t accep t ed [ x ] == ( va lue , pnumber ) t h en

257 l e a r n ( va lue , pnumber ) / / l e a r n i n g

258

259 l e a r n e r . onCommitProof( commi tp roo f ) : f rom a c c e p t o r ac

260 cp [ ac ] := commi tp roo f

261 ( va lue , pnumber ) := accep t ed [ ac ]

262 i f t h e r e a r e ⌈ ( a+ f +1) / 2⌉ a c c e p t o r s x

263 such t h a t v a l i d ( cp [ x ] , va lue , pnumber ) t h en

264 l e a r n ( va lue , pnumber ) / / l e a r n i n g

265

266 l e a r n e r . l e a r n ( va lue , pnumber ) :

267 l e a r n e d := ( va lue , pnumber ) / / l e a r n i n g

268 send (LEARNED) t o a l l p r o p o s e r s

269

270 l e a r n e r . o n S t a r t ( ) :

271 w a i t f o r t i m eo u t

272 whi le ( n o t l e a r n e d ) send (PULL) t o a l l l e a r n e r s

273

274 l e a r n e r . o n P u l l ( ) : f rom l e a r n e r l n

275 I f t h i s p r o cess l e a r n e d some p a i r ( va lue , pnumber ) t h en

276 send (LEARNED , va lue , pnumber ) t o l n

277

278 l e a r n e r . onLearned ( va lue , pnumber ) : f rom l e a r n e r l n

279 Learn [ l n ] := ( va lue , pnumber )

280 i f t h e r e a r e f + 1 l e a r n e r s x

281 such t h a t l e a r n [ x ] == ( va lue , pnumber ) t h en

282 l e a r n e d := ( va lue , pnumber )

283

284 v a l i d ( commi t p roo f , va lue , pnumber ) :

285 c := commi t p roo f

286 i f t h e r e a r e ⌈ ( a+ f +1) / 2⌉ d i s t i n c t v a l u es o f x such t h a t

287 ( c [ x ] . v a l u e == v a l u e ) and ( c [ x ] . pnumber == pnumber )

288 t h en r e t u r n t r u e

289 e l s e r e t u r n f a l s e

290

291 vouches−f o r (PC , va lue , pnumber ) :

292 i f t h e r e e x i s t ⌈ ( a−f +1) / 2⌉ x such t h a t

293 a l l PC[ x ] . v a l u e == d

294 and d != v a l u e

295 t h en r e t u r n f a l s e

296 i f t h e r e e x i s t s x , d != v a l u e such t h a t

297 v a l i d (PC[ x ] . commi tp roo f , d , pnumber )

298 t h en r e t u r n f a l s e

299 r e t u r n t r u e

Fig. 5. Parameterized FaB (with recovery)


