Fast Deterministically Safe Proof-of-Work Consensus

Ali Farahbakhshf Giuliano Losa'

Cornell University

Abstract—Permissionless blockchains achieve consensus while
allowing unknown nodes to join and leave the system at any
time. They typically come in two flavors: proof of work (PoW)
and proof of stake (PoS), and both are vulnerable to attacks.
PoS protocols suffer from long-range attacks, wherein attack-
ers alter execution history at little cost, and PoW protocols
are vulnerable to attackers with enough computational power
to subvert execution history. PoS protocols respond by relying
on external mechanisms like social consensus; PoW protocols
either fall back to probabilistic guarantees, or are slow.

We present Sieve-MMR, the first fully-permissionless pro-
tocol with deterministic security and constant expected latency
that does not rely on external mechanisms. We obtain Sieve-
MMR by porting a PoS protocol (MMR) to the PoW setting.
From MMR we inherit constant expected latency and deter-
ministic security, and proof-of-work gives us resilience against
long-range attacks. The main challenge to porting MMR to the
PoW setting is what we call time-travel attacks, where attackers
use PoWs generated in the distant past to increase their
perceived PoW power in the present. We respond by proposing
Sieve, a novel algorithm that implements a new broadcast
primitive we dub time-travel-resilient broadcast (TTRB). Sieve
relies on a black-box, deterministic PoW primitive to implement
TTRB, which we use as the messaging layer for MMR.

1. Introduction

Cryptocurrencies like Bitcoin and smart-contract plat-
forms such as Ethereum aim to provide universal decentral-
ized access to services like payments, banking, insurance,
and e-commerce. They aspire to present users worldwide
with an open-access, secure, and fast transaction log. Typ-
ically, a total-order broadcast (TOB) protocol implements
the log abstraction, and participation in the protocol is
permissionless thanks to the use of proof-of-stake (PoS) or
proof-of-work (PoW). In PoW, participation requires solving
expensive computational puzzles; in PoS, it requires putting
cryptocurrency in escrow.

PoW and PoS paradigms are vulnerable to attacks that,
though paradigm-specific, share a similar goal: crafting an
alternate execution history to confuse newly joining nodes
who did not witness the past execution firsthand. No existing
protocol, in either paradigm, has satisfactorily addressed

We thank Ittay Eyal for numerous discussions that greatly improved this
work.
1 Equal contributions; the order is alphabetical.

Stellar Development Foundation

Youer Puf
Cornell University

Lorenzo Alvisi
Cornell University

these attacks. Long-range attacks are an instance of these
attacks specific to PoS systems: they consist in purchasing
keys belonging to former participants—Ilikely cheaply, as
those parties no longer have a skin in the game—and
using those keys to fabricate an alternate execution history.
Without mechanisms external to the system (e.g., secure
checkpoints, social consensus, etc.), there exists no defense
against such attacks [1], [2]. POW systems are not vulnerable
to long-range attacks; however, they are either prohibitively
slow [3], [4] or rely on proof-of-work puzzles with proba-
bilistic guarantees, which leave open the possibility that a
lucky attacker may successfully create an alternate history
(e.g., in Bitcoin, a fork of the longest chain). Even if in
practice the failure probability can be made sufficiently
small, proving safety for these probabilistic protocols is
quite tricky; for instance, it took the community considerable
effort to establish Bitcoin’s security (e.g., [5], [6]).

We present Sieve-MMR, the first permissionless PoW
TOB protocol with deterministic security and constant ex-
pected latency. Sieve-MMR relies on a cryptographic hash
function to obtain a deterministic proof-of-work primitive
DPoW. Generating a DPoW requires a deterministic number
of hash computations, and we assume that adversaries con-
trol a minority of the computation power. DPoW is similar to
a verifiable delay function [7], but without the requirement
that the computation steps be performed serially.

The design of Sieve-MMR is guided by a key principle:
decoupling the consensus logic from the logic used to control
the undesirable side-effects of permissionless participation.
This separation of concerns opens an intriguing new pos-
sibility: safely deploying existing low-latency consensus
protocols, originally developed under stronger models, in
a fully permissionless setting.

Accordingly, we design Sieve-MMR in two layers. The
top layer implements consensus. We use, with minimal
changes, the MMR protocol [8, Appendix A], a fast and de-
terministically safe protocol from the family of dynamically
available [9] PoS TOB protocols. Our main technical contri-
butions are in the bottom layer. For the first time, this layer
specifies and implements the message delivery guarantees
that dynamically available protocols like MMR must rely
on to maintain correctness in a fully-permissionless setting.

Time travel considered harmful. Embedding dynam-
ically available protocols in a fully-permissionless setting
exposes them to an insidious new threat. Not only must they
defend against adversaries using their current computing
power to modify past consensus decisions, but also against

adversaries leveraging their past computing power to alter
consensus decisions in the present!

This vulnerability stems from how dynamically available
protocols implement consensus [10], [11]: they build upon
traditional quorum intersection arguments, which in turn rely
on correct (i.e., protocol-abiding) nodes generating a suffi-
ciently strong majority of the messages being sent. However,
in a permissionless setting, nothing prevents corrupted nodes
from generating messages at some point in the past, holding
onto them, and sending them as if they were generated in
the present, thereby distorting the quorums correct nodes
perceive.

TTRB and Sieve. We capture the messaging properties
that MMR and similar protocols need to be immune to
such time travel attacks with a new broadcast primitive:
time-travel-resilient broadcast (ITRB). TTRB operates in
rounds and provides two guarantees: (%) all messages TTRB-
delivered in a given round were generated in the previous
round; and (¢7) all messages that correct nodes generated in
the previous round are TTRB-delivered by correct nodes in
the current round.

We implement TTRB with the novel protocol Sieve. Like
its namesake, we use Sieve to filter out “impurities”—in
our case, time-traveling messages. Sieve limits the number
of messages that a node can generate in a given round by
augmenting each message with the DPoW evaluation of its
payload. Furthermore, each message in Sieve is associated
with a timestamp, which intuitively represents the round in
which the message generation began. Messages carry this
timestamp as an attribute, and in any given round, Sieve
should only deliver messages that are timestamped from the
previous round. Of course, an adversary might attempt to
counterfeit the timestamp attribute, trying to pass off an
earlier message as a later one. To counter this, Sieve im-
plements a Byzantine-tolerant mechanism that can identify
and discard messages with counterfeit timestamps.

At the core of this mechanism is the DAG of DPoW
evaluations induced by requiring correct nodes to logically
include in each message they generate a “coffer” containing
all messages they accepted in the previous round. By itera-
tively analyzing and pruning the DAG, Sieve is able to tell
when a message m claiming a generation time s includes at
least one message generated by a correct node at time s —1;
inductively, this guarantees that m was generated no earlier
than time s, and Sieve filters out all messages that do not
pass this test.

Concretely, Sieve comprises two filtering policies:
Bootstrap-Sieve and Online-Sieve. Correct nodes execute
Bootstrap-Sieve upon joining the execution, in order to
catch up; once caught up, they can switch to Online-Sieve.
Bootstrap-Sieve operates over the entire DAG of DPoW
evaluations, using the full prior history to inform its analysis.
Online-Sieve is instead much cheaper: it requires only a set
of filtered messages from the previous messaging round.

Adversarial assumptions. Sieve’s guarantees hold when
adversaries are collectively 1/2-bounded, i.e., when over
any sufficiently long stretch of time—long enough for a
correct node to compute at least one DPoW—attackers

compute strictly less than half of the total number of DPoW
evaluations. This requirement is similar to the common PoW
majority assumption. The MMR protocol, on the other hand,
tolerates only a 1/3-bounded adversary, and Sieve-MMR
inherits this stronger assumption.

Determinism. Sieve-MMR’s claims of deterministic
safety are qualified: they apply within the confines of a
Dolev-Yao-style model [12] in which adversaries do not
break cryptographic primitives and do not guess messages.
Unlike Sieve, the guarantees of PoW protocols like Bitcoin
remain probabilistic even if adversaries do not break cryp-
tographic assumptions, as they rely on a non-deterministic
process that naturally lends itself to a stochastic analysis. As
noted before, establishing rigorously the security of these
protocols is notoriously difficult.

Practical limitations. While Sieve-MMR marks a sig-
nificant step towards practical PoW protocols that can de-
liver deterministic TOB with constant-latency, some key hur-
dles remain. Notably, Sieve-MMR assumes a synchronous
network and relies on all-to-all broadcast in every round,
incurring bandwidth costs that scale quadratically with the
number of active nodes. Moreover, running Bootstrap-Sieve
requires solving an exponential-time problem over a graph
that captures the protocol’s execution thus far. Although
nodes are not bound to complete this computation within
a fixed time, they must do so before they can actively
participate in the protocol.

Summary of the contributions. In conclusion, we make
the following contributions:

o We introduce time-travel-resilient broadcast (TTRB), a
new broadcast abstraction that guarantees a messaging
layer immune to time-travel attacks.

o We derive Sieve, a new algorithm that correctly imple-
ments TTRB assuming that attackers control a minority
of the computation power in the system.

o We present Sieve-MMR, the first consensus protocol
for the permissionless setting that, leveraging the guar-
antees of the Sieve-enabled TTRB primitive, achieves
constant expected latency and deterministic safety with-
out trusting external mechanisms.

PlusCal/TLA+ specifications of the Sieve and MMR
algorithms can be found online [13].

2. Background

Sieve and Sieve-MMR draw inspiration both from clas-
sic abstractions in fault tolerant distributed computing and
from prior work on permissionless consensus. Three essen-
tial notions are useful to contextualize Sieve and Sieve-
MMR within this broad landscape: total-order broadcast,
dynamically available protocols, and the sleepy model.

Total-Order Broadcast. Total-order broadcast
(TOB) [14], also known as atomic broadcast [15],
condenses into a specification the agreement and progress
aspects of State Machine Replication (SMR) [14], [16], the
most general approach for building fault-tolerant distributed
systems. SMR provides to its clients the abstraction of

a single state machine that never fails by replicating the
machine’s state and coordinating the replicas actions.

SMR uses the abstraction of a command log; each
replica has one such log, and one copy of the state. If correct
and deterministic replicas, starting from the same initial
state, agree on the ordering of the client-issued commands
within their logs, then executing the logs up to any fixed
index produces the same state, and the same reply to each
command, at each replica. Voting can then be used to ensure
that clients only process replies that a single correct deter-
ministic replica, given the same initial state and command
sequence, would have generated.

To support this approach, the TOB specification assumes
a set of nodes (e.g., replicas) that receive messages (e.g.,
commands in SMR) from clients, and broadcast the mes-
sages among themselves. Total-order broadcast requires of
all correct nodes to deliver messages consistently, z.e., the
sequence of messages delivered by any two correct nodes
(e.g., the command logs for two replicas) should satisfy
the prefix relation. The system must also make progress
infinitely often, i.e., all messages are eventually delivered.

Dynamically Available Protocols. Total-order broadcast
is a core technical challenge also for blockchain and decen-
tralized computing platforms. While the terminology may
differ, the underlying concern remains the same: nodes must
maintain a consistent view of the system state, which should
infinitely often progress by incorporating client transactions.

A key distinction between traditional fault-tolerant sys-
tems and modern blockchains lies in the treatment of node
availability. In classical settings, nodes are assumed to be
either active or faulty. In contrast, blockchains introduce
the notion of node churn, allowing nodes to become inactive
voluntarily—even when they are not faulty. Churn manifests
in various forms, recently formalized through degrees of
permissionlessness [9], [17]. At one end of the spectrum,
nodes lack tangible identities and may join or leave the
system unilaterally; at the other lies the traditional model,
where participation is more tightly controlled and nodes
have unique identities.

Dynamically available protocols—corresponding to the
model formalized by Lewis-Pye and Roughgarden [9],
[17]—occupy a middle ground on this spectrum. These pro-
tocols assume that nodes have unique identities and that the
pool of participants is globally known, while still allowing
nodes to become inactive at will. Joining the pool, however,
requires explicit approval from its current members.

Inspired by Ethereum [18], many dynamically available
protocols have adopted probabilistic safety guarantees. More
recently, a new class of protocols has emerged that achieves
deterministic safety [8], [10], [11], [19], [20]. Their central
insight is that the core correctness argument behind tradi-
tional total-order broadcast—namely, quorum intersection—
remains applicable in the dynamically available setting.
These protocols typically follow a layered design: they first
solve a variant of graded agreement [21], [22], [23], and
then leverage it as a black box to implement total-order
broadcast. For this approach to apply, however, they must
rely on a strong and often restrictive model.

The Sleepy Model. The sleepy model [24] serves as
the de facto standard assumed by dynamically available
protocols. In this model, nodes are part of a public key
infrastructure (PKI), and all participants are known to one
another. Correct nodes may freely alternate between active
and inactive states, while faulty nodes are perpetually active.
Crucially, the model requires that a majority of active nodes
be correct at all times.

This model is restrictive: for example, it cannot capture
scenarios where the system size grows while maintaining a
constant fraction of Byzantine nodes. It also places a burden
on correct nodes, which must establish a strong presence
from the outset. Some dynamically available protocols in-
herit this limitation from the sleepy model [10], [20], while
others relax it by adopting a stronger majority assump-
tion [11] than what is standard in Bitcoin [25]. Specifically,
these protocols compare the number of correct nodes at a
given time with the number of faulty nodes over a time
interval. This interval always begins at the start of execution,
which means that the number of correct nodes at some
time ¢ must exceed the total number of Byzantine nodes
over some interval [0,¢'] for ¢ < ¢'.While this assumption
allows for some fluctuation in Byzantine participation, it
remains overly strong.

Time Travel is Harmful. Weakening the majority as-
sumption to exclude the entire execution history exposes
dynamically available protocols to time-travel attacks. In
such scenarios, Byzantine nodes can resurface messages
from the distant past, distorting the quorum views of correct
nodes in the present. This undermines the effectiveness of
the majority assumption, rendering it essentially useless.

Figure 1 illustrates a time-travel attack. Nodes nq, ns,
and ng are correct; nodes ng and ny are Byzantine. Time
progresses from left to right and is divided into two protocol
steps. Circles represent messages (e.g., votes in a consensus
algorithm), and arrows indicate when and where those mes-
sages are delivered. In step 0, all nodes are active; in step 1,
only nq, no, and ng remain active. Notably, in both steps
correct active nodes outnumber Byzantine active nodes.

However, even assuming authenticated messages, the
adversary controlling the Byzantine nodes can delay the
delivery of ns5’s step-0 messages until step 2 (possibly by
having ns forward its messages or share its signing keys
with n4). By so doing, the adversary causes correct nodes
to perceive a distorted quorum in step 2: a strict majority of
correct nodes appears to no longer be present! In consensus
protocols that rely on quorum intersection for safety, such
distortions can lead to violations of safety guarantees.

3. Model

We consider a synchronous system equipped with a
proof-of-work (PoW) primitive. The system is permission-
less in that the set of participating nodes is unknown, and
each node may become active or inactive at any time.

Nodes. The system consists of an infinite set of
nodes n1,nq, Each node is either correct or Byzantine.

m

n2

ng %

. g

step 0 step 1 step 2

Figure 1: Example of time-travel attack. Although active
correct nodes form a majority among active nodes in Step 1
(i.e., 2 out of 3), correct nodes in Step 2 receive as many
Byzantine messages as correct messages (i.e., 2 out of 4).

Correct nodes follow their assigned protocol, while Byzan-
tine nodes behave arbitrarily, subject to the POW constraints
described below.

Ticks and steps. Time progresses in discrete ficks num-
bered 0,1,2,.... Every node has a clock indicating the
current tick. For some fixed integer parameter K > 1,
every K ticks are grouped into a step; thus, each step ¢ > 0
consists of ticks {iK,iK +1,...,iK + K — 1}.

Active and inactive nodes. At each tick, a non-zero,
finite number of nodes are active; the rest are inactive. A
node’s status is determined by an unknown activity function.
Correct nodes change their status only at step boundaries—
they are either active or inactive for an entire step. We
assume at least one correct node is active in every step.

Computing power and the DPoW oracle. The DPoW
oracle produces DPoW evaluations and provides two meth-
ods. The first allows a node to indicate the work it is willing
to expend to obtain a DPoW; this value, in turn, determines
the time it takes the oracle to respond, depending on the
node’s fixed computing power P(n) > 0, which represents
its hardware and energy budget. The second method allows
a node to verify whether a DPoW evaluation was produced
by the oracle.

The DPoW oracle maintains a private map from pairs
of the form (vy,w), where v is any value and w is a
non-zero natural number called a weight, to pairs of the
form (dpow,s), where dpow is a unique value called
a DPoW evaluation and step s is ’s gemeration time.
When (v, w) is mapped to {dpow, s) for some s, we say
that dpow is a correct DPoW evaluation on (7y, w).

Nodes can access the DPoW oracle via two methods:

e DPOW(y,w), where v may be any value and w is a
weight, representing the amount of work the caller
wishes to expend. Upon a call DPOW(vy, w) at a tick ¢
by a node n, the oracle (¢) checks whether n has a
pending DPoW evaluation. If so, it returns immedi-

ately without further action. Otherwise, the oracle (i7)
checks whether it already has a mapping for (v, w).
If not, it picks uniformly at random a DPoW evalua-
tion dpow which does not appear in the map and reg-
isters it by inserting the mapping (v, w) — (dpow, s),
where s = |t/K | is the current step. Finally, (iii) the
oracle schedules the delivery of the DPoW evaluation
associated with (v, w) for the earliest tick ¢’ > ¢ such
that (a) n is active at ¢’ and (b) n has been active for
a number of ticks [wK/P(n)] between ¢ (included)
and ¢’ (excluded).

If a DPOW call and the corresponding delivery of its
evaluation happen in steps s and s’, respectively, we
say that the call is within [s,s']. If ' = s, we say the
DPoW belongs to step s. When clear from context, we
refer to a DPoW evaluation result as dpow.

e VERIFY(dpow,,w), a Boolean function where dpow
is a DPoW evaluation, ~ is any value, and w is a
weight. It returns true if and only if (v, w) appears in
the oracle’s internal map and is mapped to (dpow, s)
for some s.

Adopting a Dolev-Yao [12] approach, Byzantine nodes can-
not obtain the DPoW evaluation of an input (v, w) without
calling DPOW (7, w), unless they receive it in a message.

The correct supremacy assumption. For a fixed real
parameter 0 < p < 1/2, Byzantine nodes are p-bounded:
For every interval of steps [s, s, let ¥ be the sum of the
weights of the DPoW evaluations of Byzantine nodes within
the interval, and let 3 be the sum of the weights of DPoW
evaluations of all nodes within the interval. Then, X5 < pX.

Node and network behavior. At each tick, every active
correct node performs the following sequence of actions: (¢)
it receives a set of messages from the network, and possibly
a DPoW evaluation scheduled for delivery at that tick by the
DPoW oracle; (i7) it performs local computation, which may
include invoking the DPoW oracle; and (ii¢) it broadcasts
messages to the network. Each message that a correct node
disseminates is unique, i.e., it has never appeared before in
the system. This uniqueness can be enforced, for example,
by including random nonces in messages. Byzantine nodes,
when active, are not bound by the protocol. They may
perform arbitrary computations, invoke the DPoW oracle
with any arguments, and broadcast arbitrary messages.

The network is synchronous, reliable, and does not
duplicate or generate messages. A message sent by a correct
node at tick ¢ is received at tick ¢ + 1 by all correct nodes
that are active at tick ¢ + 1. That is, message delivery
occurs atomically as the system transitions from tick ¢ to
tick ¢t + 1. Nodes that are inactive at tick ¢ 4+ 1 will receive
these messages at the first tick ¢’ > ¢ at which they become
active. We define a correct message as one generated by a
correct node; all other messages are considered Byzantine.!
Additionally, at each tick, every active correct node receives
all Byzantine messages that have been observed in previous
ticks by any correct node since it was last active.

1. Recall that correct nodes send unique, fresh messages, so there is no
ambiguity in identifying them.

3.1. Total-Order Broadcast

A transaction is a string. A block is a data structure
comprising a set of transactions and a pointer to another
block. A chain is a collection (Bj, ..., By) of blocks where
for every 1 < i < k, B; points to B;_1.

Each node consists of two components: a total-order
broadcast (TOB) module and a client module. The client
module can submit new blocks to the TOB module via a
submit downcall. Conversely, the TOB module notifies
the client of newly committed chains via a commit upcall.

The client continuously submits new blocks, so that each
correct node always has at least one block that has been
submitted but not yet included in any committed chain.

To formalize the behavior of a TOB implementation, we
define the notions of compatible and incompatible chains.
Given two chains A; and A, we say they are compatible if
one is a prefix of the other; otherwise, they are incompatible.

Definition 1. A TOB algorithm satisfies the following prop-
erties:

o Consistency: If two correct nodes commit chains Ay
and Ao, then Ay and Ao are compatible.

o Progress: Let A be the longest chain committed by
all correct nodes. At all times, with probability 1, A
eventually includes at least one more block submitted
by a correct node.

4. Sieve: Fending Off Time Travel

Dynamically available protocols like that of Malkhi et
al. [11] use quorum intersection arguments. These proto-
cols count messages (carrying votes) and assume that each
round contains a minimum fraction of correct messages. In
a permissionless model, however, this assumption exposes
them to time travel attacks: even if correct nodes generate a
majority of the messages during any time interval, Byzantine
nodes can pre-generate messages and strategically release
them later to outnumber correct messages. We call such pre-
prepared and delayed messages antique messages.

To address this vulnerability, we introduce time-travel-
resilient broadcast (TTRB, §4.1), a broadcast abstraction
designed to filter out antique messages. We then present
Sieve, a protocol that implements TTRB using the DPoW
oracle. Sieve detects and prunes antique messages using two
distinct filtering policies: Online-Sieve and Bootstrap-Sieve.
Online-Sieve is efficient but can only be used by nodes
that were already online in the previous step; nodes that
newly become active must first catch up using Bootstrap-
Sieve before they can switch to Online-Sieve.

We begin with an overview of Sieve’s operation (§4.2),
and proceed to a detailed description of the Sieve protocol
followed by correct nodes (§4.3) treating the filtering poli-
cies as black-box functions. Finally, we describe the Online-
Sieve (§4.4) and Bootstrap-Sieve (§4.5) mechanisms.

I
Mempool /
Consensus client
G J
call provides
commit(chain) blocks
e N

Total-order
broadcast (TOB)
G J

call returns
TTRBDeliver(s, L) msg
-

Time-travel-resilient| PPo¥(7; @)

broadcast (TTRB)
- J
call Broadcast
UponNewTick(t, M,R) messages
e N

Runtime

@@ @@

Figure 2: Protocol stack of the Sieve-MMR algorithm.

4.1. Time-Travel-Resilient Broadcast

A time-travel-resilient broadcast protocol provides a
black-box broadcast abstraction. At each tick ¢, the runtime
invokes UPONNEWTICK(t, M, R), where M is a set of
messages received over the network and R is a set of
DPoW evaluations. In response, TTRB may interact with
the DPoW oracle (see Figure 2). When the tick ¢ is the
first tick of a step s, TTRB makes a TTRBDELIVER(s, L)
up-call to the application, delivering a set of messages L
of the form (m,v,w). For each tuple (m,v,w), v is a
DPoW evaluation with weight w and m is a message
payload. The application responds by returning a mes-
sage msg that the TTRB layer then broadcasts by execut-
ing TTRBCAST(msg). TTRB guarantees the following:

Definition 2 (TTRB implementation). For
correct node and every step s, if the
calls TTRBDELIVER(s, L) in step s, then:

every
node

TTRBI For every tuple (m,v,w) € L, v is a correct
DPoW evaluation on m with weight w and oracle
generation time s — 1.

TTRB2 For every correct node n active at step s — 1, if
upon executing TTRBDELIVER node n returns a
message m to be TTRBCAST in step s — 1, then m
appears in L with weight P(n).

A protocol is said to implement TTRB if it satisfies
Definition 2. When the step s is clear from the context,
we also say that the set L from Definition 2 satisfies TTRB.

4.2. Overview of Sieve

Sieve implements TTRB, assuming a p-bounded ad-
versary with p < 1/2. It does so by identifying antique
messages and filtering them out from the set of messages
received by a correct node at each step.

To filter out antique messages, Sieve leverages the syn-
chronous nature of the model: it requires correct nodes to
send messages only in the last tick of a step. This means
that a message generated by a correct node in some step
is received by other nodes only in the first tick of the
next step. Now, consider a correct node at the first tick of
some step s that has received a set of messages claiming
to be from step s — 1 and wants to identify the antique
ones among them. An antique message m that claims to
be from s — 1 when it is instead from some prior step s’
cannot causally depend on a correct message m’ sent in
step s — 2, because m was generated before m’ was sent
(m’ was sent in the last tick of step s — 2). Thus, Sieve
discards antique messages by filtering out, at each step,
the messages that are not causally preceded by a correct
message from the previous step. However, identifying these
causal relationships is challenging.

To make causal relationships between messages explicit
and to preclude costless generation of messages, Sieve re-
quires each node to include in every message (¢) a coffer
field containing messages from the previous step that the
node deems non-antique and (i7) the DPoW evaluation of
the tuple consisting of the message payload, its coffer, and
a random nonce (to make messages unique (§3)). This gives
rise to a DAG of DPoW evaluations (§4.3), where vertices
are messages and edges encode inclusion in message coffers.
Sieve analyzes the DAG by applying to it one of two filtering
policies: Bootstrap-Sieve and Online-Sieve.

At each step s, Bootstrap-Sieve computes a set of non-
antique messages from step s — 1, which includes all correct
ones, relying on all messages received thus far; Online-Sieve
does the same, but relying only on messages claiming to
belong to step s — 1 and a set of messages from step s — 2
satisfying TTRB (§4.1). A correct node thus uses Bootstrap-
Sieve at the first step it becomes active after a period of
inactivity and then switches to Online-Sieve as long as it
remains active. If a node becomes inactive, it must run
Bootstrap-Sieve again the next step that it becomes active.

4.3. Sieve

Sieve is detailed in Algorithm 1, where Bootstrap-Sieve
and Online-Sieve are treated as black-box function calls.
Each node n maintains four state components: the set M
of messages it has received so far, the step last-active in
which it was last active, the set of non-antique messages £
received in that step, and a TTRB message pending-ttrb-msg
whose DPoW evaluation is currently pending.

Node n starts the execution by running its MAIN pro-
cedure (Line 27). In this procedure, as long as n wants to
be active, it calls the procedure UPONNEWTICK (¢, M’ R)
(defined in Line 5) at each tick ¢, where M’ is the set of

messages that n has received since last-active, and R is the
set of oracle responses scheduled for ¢. Node n first adds all
messages in M’ to M (Line 6). Then, there are three cases,
depending on whether the current tick is the first tick of the
current step, the last tick of the current step, or neither:

« If ¢ is neither the first tick nor the last tick of the current
step, nothing else happens.

o If ¢ is the first tick of the current step s = |[t/K |

(so t mod K = 0), then n calls NEWSTEP(s) (Line 8).
In NEWSTEP(s), depending on whether n was active
in the last step or not, n determines the set £ of non-
antique messages from the previous step s — 1 using
either Online-Sieve (Line 15) or Bootstrap-Sieve (Line
17), and records this set in £. Then Sieve delivers s
and L to the application (Line 19).
The application returns a message for broadcast,
which is assigned to ftrb-msg. Node n then ex-
ecutes TTRBCAST(ttrb-msg) (defined in Line 21),
forming the triple v = (ttrb-msg, L, r), where r is a
random nonce. It then records #trb-msg as the current
message with a pending DPoW evaluation by assigning
it to the variable pending-ttrb-msg, and calls the DPoW
oracle (Line 26) to obtain a DPoW evaluation of ~ with
weight P(n). Note that the weight is chosen so that n
will receive the DPoW response in the last tick of the
current step, and thus n will be able to broadcast it to
all correct nodes by the end of the step.

o If ¢ is the last tick of the current step (so ¢ mod K =
K — 1), since n has called the DPoW oracle at the
first tick of the step with weight P(n), n receives a
set of DPoW responses R = {dpow} where dpow
is the DPoW evaluation corresponding to the pend-
ing TTRB message in the variable pending-ttrb-msg.
Node n then broadcasts on the network the mes-
sage m = (pending-ttrb-msg, |t/ K |, L, dpow, P(n)),
where |t/K | is the current step, £ is the set of non-
antique messages computed during the first tick of
the step, dpow is the DPoW evaluation just received,
and P(n) is the weight of dpow.

Before moving on to explain Online-Sieve and
Bootstrap-Sieve, we need the following concepts.

Step, weight, and timestamp of messages. Given
a Sieve message m = (ttrb-msg, s, L, dpow,w), we say
that m is a timestamp-s message with weight w, and we
also write weight(m) for w. Given a set M of messages,
we write M, for the set of timestamp-s messages in M.
Moreover, abusing notation, the weight weight (M) of M
is), o weight(m). Given two sets of messages M; C
My and 0 < p < 1, M is strictly more than a weighted frac-
tion 1 —p of My if weight(M;) > (1—p)-weight(Ms).

We say a message m is generated at step s if s is the
generation time associated in the DPoW oracle with the
DPoW that m carries. As guaranteed in our model by the
DPoW oracle, this is the step at which the DPoW oracle
was called to obtain the DPoW evaluation attached to the
message. We use it in our definitions and proofs, but it is not
accessible to the nodes. We sometimes refer to the coffer of

Algorithm 1 The Sieve algorithm, code for node n.

// State variables:

LM<+ {} // Set of messages received so far

2: last-active + —1 // Last step in which the node was
active

3 L+ {} // Non-antique messages received in last

active step
4: pending-ttrb-msg <— none
for DPoW evaluation
: procedure UPONNEWTICK(¢, M', R)
M~ MUuM
if ¢ mod K = 0 then
call NEWSTEP(t/K)
else if t mod K = K — 1 then // Last tick of the
step

// TTRB message waiting

// First tick of the step

© P W

10: {dpow} + R // extracts the single DPoW
response

11: m < (pending-ttrb-msg, |t/ K |, L, dpow, P(n))

12: call BROADCAST(m) // Broadcast on the
network

13: procedure NEWSTEP(s)

14: if last-active = s — 1 then

15: L + call ONLINESIEVE(s, M, L)

16: else

17: L < call BOOTSTRAPSIEVE(s, M)

18: last-active + s

19: ttrb-msg <+ TTRBDELIVER(s, £)// Call the upper
layer

20: TTRBCAST(ttrb-msg)
21: procedure TTRBCAST(ttrb-msg)

22: r < a random number

23: ~ « (ttrb-msg, L,)

24: w < P(n) // Weight of the DPoW
25: pending-ttrb-msg < ttrb-msg

26 call DPOW(~y, w) // Call the DPoW oracle
27: procedure MAIN // Execution starts from here
28: while n wants to be active do

29: t < TIME.now()

30: M’ < messages received since last-active

3L ‘R < oracle responses received for tick ¢

32: UPONNEWTICK (¢, M, R)

33: WAIT FOR TICK ¢ + 1

a message m as coffer(m).

Note that a timestamp-s message is not necessarily
generated at step s, as an antique message can maliciously
claim that it belongs to step s. Similarly, Byzantine nodes
can assign any weight they want to a message.

Message DAGs. A set of messages M forms a directed
acyclic graph (DAG) defined as the graph whose vertices
are the messages in M, such that there is an edge from
message mj to message myo if and only if my is in m;’s
coffer. No cycles are possible because the DPoW oracle is
a random oracle, and thus each new DPoW evaluation is a
fresh random value. Depending on the context, we will refer
to a collection of messages as both a set and a DAG.

Algorithm 2 Online-Sieve. Using the set £ of non-antique
messages computed in the previous step s — 1, Online-Sieve
filters out antique messages from the set M of timestamp-
(s — 1) messages received in step s.

1: procedure ONLINESIEVE(s, M, L)

2: M;_1 « {m € M | m has timestamp s — 1}

3: Vs—1 < {m € Ms_1 | m has a valid DPoW}

4 return {m € V,_; | weight(coffer(m) N L) >
(1-p)-weight(£)}

4.4. Online-Sieve

Consider a correct node n at some step s that is scru-
tinizing a correct timestamp-(s — 1) message m to check
whether it is antique, and assume that n has a set £ of
timestamp-(s — 2) messages satisfying TTRB. Moreover,
assume inductively that the execution up to step s — 1 >0
satisfies TTRB.

4.4.1. Intuition. Both £ and m’s coffer satisty TTRB.
Consider £: (i) it contains all the correct timestamp-(s — 2)
messages, and (ii) all messages in £ are generated at s — 2.
This means, according to our correct supremacy assumption,
that the set of correct timestamp-(s — 2) messages C C L is
strictly more than a weighted fraction 1 — p of L. The same
logic works for m’s coffer as well.

This observation gives us a filtering rubric that can be
checked efficiently. If a timestamp-(s — 1) message m is
correct, the intersection of £ and m’s coffer should be
strictly more than a weighted fraction 1 — p of L, as it
contains all correct timestamp-(s — 2) messages. If, on the
other hand, m is antique, its sender must have sent it before
receiving any of the correct messages in £, because they
did not exist yet. Thus the intersection of its coffer with £
will consist of less than a weighted fraction 1 — p of L.

4.4.2. Algorithm. The ONLINESIEVE sub-procedure re-
ceives three arguments: the current step s, the set M of
messages received in s, and the set £ of timestamp-(s — 2)
non-antique messages computed in the previous step s — 1
(except L = () if s < 2). It must return a subset of M con-
taining all correct timestamp-(s— 1) messages and excluding
any antique timestamp-(s — 1) message.

Algorithm 2 presents a pseudocode description of
Online-Sieve. First, Online-Sieve filters out from M all mes-
sages that are not timestamp-(s — 1) messages or that have
an invalid DPoW evaluation. Then, out of the remaining
messages, Online-Sieve selects every message m such that
the weight of the messages in common between m’s coffer
and £ is more than a weighted fraction 1 — p of L.

4.4.3. Example. Consider the execution depicted in Fig-
ure 3, where K = 3. Nodes n; and n, are correct and
have computing power 1, which means they obtain DPoW
evaluations of weight 1 every 3 ticks. Node ng is Byzantine
with computing power 1.5, and obtains DPoW evaluations of
weight 1 every 2 ticks. Note that correct supremacy holds: in

any interval of steps [s, s'], the ratio of Byzantine messages
is at most 3/7, which is smaller than 1/2.

Dashed horizontal segments represent time intervals
during which nodes are waiting for DPoW responses,
ending with a circle that represents a message and its
DPoW response; the edges connecting messages repre-
sent coffer inclusion. Red edges signify a coffer inclu-
sion relation between correct and Byzantine messages.
For example, messages 3 and @ hold messages (D
and @ in their coffers, while message (©)’s coffer con-
tains the correct messages (I), @), and the Byzantine mes-
sage (@). Messages (D, @), and (@) are timestamp-0 messages,
while 3, @, ®), and (©) are timestamp-1 messages. Note
that (b) is antique, since it has timestamp 1 but it started
before step 1, and that its coffer does not and cannot possibly
contain any of the correct timestamp-O0 messages because
they had not been generated yet when (D) started.

Consider n; at step 2 ({ = 6), applying Online-Sieve
to {®,d,®,©} to eliminate antique messages. Online-
Sieve does not filter any timestamp-O messages, so n;
has £ = {(D, @, @}. Let us scrutinize 3); the case for @
and (© is similar. The coffer of 3) is {(D, @}, so its inter-
section with £ is {(D, @}; the intersection accounts for 2/3
of L’s weight, and 3 will not be discarded. Now consider
®: its coffer is {@}, which has an intersection {@} with L.
The intersection accounts for less than 1/2 of L’s weight,
and (©) will be discarded. We conclude that n; obtains the
set {@,d,(©} via Online-Sieve, which satisfies TTRB:
() they are all timestamp-1 messages, and (i¢) correct
timestamp-1 messages are strictly more than a weighted
fraction 1/2 of the set.

4.5. Bootstrap-Sieve

Online-Sieve relies on an up-to-date set £ of non-antique
messages computed in the previous step. If the node was not
active in the previous step, it has no such set £ available
and it therefore cannot use Online-Sieve. This is where

n {1): f?;\
n2 \2,4\\\ W
—
n () 7 P
3 O U O

t=20 t=1 t=2 t=3 t=4 t

Il
o
-~

Il
=N

step 0 step 1

Figure 3: Example execution in which correct nodes 7,
and no use Online-Sieve and a Byzantine node ngs produces
an antique message (). When building their timestamp-2
messages at t = 6, correct nodes must filter out (®).

Algorithm 3 Bootstrap-Sieve on an input set of mes-
sages M for a correct node n at step s.

1: procedure BOOTSTRAPSIEVE(s, M)
2 L + VerifyDPoWsRecursively (M)
3: for s’ <~ 1...5 —1do // Removal Phase
4 for all m € Ly do // The outcome of
Removal Phase might depend on the order.

O <« a timestamp-(s’ — 1) consistent DAG
within £ containing m, with maximal weight

wn

6: if no such C' exists then

7: L+ L \ {m}

8: else

9: A < the seed of C

10: ifdIBC Ly_1:ANB=0and C has a
lower weight than a DAG consistent with B then

11: L+ L \ {m}

return L,_q

Bootstrap-Sieve enters the picture: it allows a node newly
active in a step s to compute, based on messages it has
received so far, a set £ of timestamp-(s — 1) messages
containing all correct timestamp-(s — 1) messages and no
antique messages.

4.5.1. Intuition. Consider a node n newly active in step s >
1. As per the model, in step s, n receives a set of messages
including all the messages sent by correct nodes in all
steps s’ < s. To implement TTRB, node n must now filter
out all antique timestamp-(s — 1) messages. To do this,
node n iteratively filters out antique timestamp-s’ messages
for 0 < s’ < s. Each iteration s’ relies on having filtered out
the antique messages in all steps before s’ (this is trivially
the case if s’ = 1 since by definition there cannot be antique
timestamp-0 messages).

Next we informally explain how node n filters out an-
tique timestamp-s’ messages assuming it has already filtered
out all antique messages from previous steps. The idea relies
on the notions of consistent successors of a set of messages
and of consistent DAGs of messages, which we define next.

Definition 3 (Consistent successor). Given a set of mes-
sages X, a message m is a consistent successor of X when
X is a subset of m’s coffer and X is strictly more than a
weighted fraction 1 — p of m’s coffer.

Definition 4 (DAG of messages consistent with a set of
timestamp-s messages). A set of messages C' is a consistent
DAG when C'is of the form C = XU X411 U Xg40U. ..,
where for every integer s' > s, every member of Xg 11 is
a consistent successor of Xg. When all messages in X
are timestamp-s messages, we say that C is a timestamp-
s consistent DAG, or just a timestamp-s DAG when clear
from the context. We also say that C is a DAG consistent
with X, and that X is the seed of C.

Let us call the set of correct messages sent in step s’ — 1
or later as C,_,. Note that, by the definition of TTRB, in

every execution satisfying TTRB, C;Ll forms a consistent
DAG.

Now consider an antique timestamp-s’ message m. Mes-
sage m’s generation time is before s’, which means it is also
before any correct timestamp-(s’ — 1) messages were sent.
Thus, m’s coffer does not contain any correct timestamp-
(s’—1) messages. Therefore, if B, _1 is a timestamp-(s’'—1)
consistent DAG containing the coffer of m, then B/ _1 must
be disjoint from C;[l; otherwise, some correct message’s
coffer would contain both a supermajority of correct mes-
sages and a supermajority of Byzantine messages, which is
not possible. We prove this formally in Lemma 4.

Finally, since we have assumed that node n has already
eliminated all antique timestamp-(s’ — 1) messages, we have
that all messages in both B,/_; and C;_l were generated
in step s’ — 1 or after. Thus, by the correct supremacy
assumption, By _; has strictly lower weight than C:Ll.
The idea is then, for each message m, to (¢) look for some
heaviest consistent DAG containing m, and to (¢7) discard m
if there exists a disjoint and heavier consistent DAG.

4.5.2. Algorithm. A pseudocode description of Bootstrap-
Sieve appears in Algorithm 3. Bootstrap-Sieve takes the
current step s and the set of messages received so far, M,
as input. Then, for each message m in M, the node n
verifies, using the DPoW oracle, that all the DPoWs of all
the messages reachable from m in the DAG M are valid.
Any message with an invalid DPoW is eliminated, and the
remaining set of messages is assigned to the variable £. The
node then starts the iterative pruning process (Line 3). At
each iteration s’ and for each timestamp-s’ message m it first
identifies a heaviest timestamp-(s’'—1) DAG C containing m
and consistent with some seed within £ (Line 5), and
rejects m if (¢) no such consistent DAG exists (Line 7)
or if (i¢) there exists a heavier timestamp-(s’ — 1) DAG
consistent with some other seed that is also disjoint from C'
(Line 11). It finally returns the set of timestamp-(s — 1)
messages remaining in L.

Note that the algorithm might produce different results
depending on the order in which messages are selected in
Line 4 of Algorithm 3. Specifically, while Bootstrap-Sieve
provably discards antique messages, it gives no guarantees
on other Byzantine messages. It might discard or keep
Byzantine messages that do contain at least one correct
message from the corresponding previous step, depending
on the order in which messages are selected for scrutiny.

4.5.3. Example 1: Online-Sieve is Not Enough. Consider
a node n that joins the execution in Figure 4 at step 2,
where objects have the same semantics as in Figure 3.
We show that iteratively running Online-Sieve leads to
a violation of TTRB, and we need Bootstrap-Sieve. The
Byzantine node ng poses messages {@,®} and {©} as
timestamp-0 and timestamp-1 messages, respectively. Let Lg
and £, be the set of timestamp-0 and timestamp-1 messages
that n obtains after removing antique messages, respectively.
Sieve does not discard timestamp-0 messages, so n will

)

m RS
No \24

d ¢

.*
Il
o~
Il
-
-
Il
)
o
Il
w
-~
Il
[
-~
Il
o
-
Il
o

step 0 step 1

Figure 4: An execution showing that Online-Sieve on its
own is not enough. It shows what a new node n joining at
step 2 sees; n has to identify antique messages—there are
none—but applying Online-Sieve at step 1 and then at step
2 ends up discarding correct timestamp-1 messages.

obtain Ly = {(D, D, @, ®}. Consider now the timestamp-
1 message @), whose coffer is {(D, @}. The intersection
of this coffer with Lo is {(D, @}, which is not strictly
more than a weighted fraction 1/2 of Ly. Node n thus
discards, in direct violation of TTRB, the correct timestamp-
1 message (3. This violation arises from the fact that Lg, at
the time that n derives it, does not satisfy TTRB: it has an
equal number of correct and Byzantine messages. A correct
node that was present during the entire execution would
have £y = {(D, D, @}, and thus would not have discarded
message 3. Note that our correct supremacy assumption
is intact: at step 0, message (b)) was still not around and
correct timestamp-0 messages were a majority. It is only
later on that Byzantine nodes can use their computational
power, represented by (b), to confuse a newly joining correct
node at step 2 when it is trying to reconstruct the history of
the execution. Also note that there are no antique messages
here; this attack simply shows that Online-Sieve on its own
is vulnerable even without time travel attacks.

4.5.4. Example 2: Bootstrap-Sieve Locates Antique Mes-
sages. Consider Figure 5, where nodes n; and no are
correct, ng is Byzantine, and message () is an antique
message claiming to belong to step 1. Consider a correct
node that at step 2 receives timestamp-1 messages 3), @,
®), and (©). We show that Bootstrap-Sieve (i) retains correct
messages Q) and @), and (i¢) discards .

Correct messages 3 and @ have identical coffers, so
Bootstrap-Sieve treats them the same; we are then only
going to focus on message (3. Since) is a timestamp-
1 message, to determine its fate we need to identify the
heaviest DAG — call it C — that includes) and is consistent
with a subset of timestamp-O messages (i.e., with some
subset of messages (D), @), and @).

In Figure 5, C comprises vertices {(D.@), @,3), @, ©}.
Note that C is timestamp-0 consistent, as {(D, @, @} is a
majority set in the coffers of all messages in {3®),®,©},

n {1): f?,\

N2 2 %E

n (L T P
3 A\ U AN

*
Il
o
Il
—_
-
Il
)
-
Il
w
-
Il
'~
-
Il
o
-~
Il
=N

step 0 step 1

Figure 5: An example execution showing Bootstrap-Sieve
in action. A newly joining correct node n at step 2 should
identify (b) as an antique timestamp-1 message.

and thus 3), @, and (© are all consistent successors
of {(D, D, @}. There are no heavier timestamp-0 consistent
DAGs disjoint from C; thus, Q) is retained.

Consider now message (). The heaviest consistent DAG
containing (®) — call it A — consists of vertices @ and (©).
This time, there exists a consistent DAG disjoint from and
heavier than A, i.e., the DAG with vertices {D, @, @,
@}. The set {(D, @} is a majority in the coffers of 3) and
@, which makes {(D, @, @, @} a timestamp-0 consistent
DAG. Bootstrap-Sieve thus discards (b).

Note that Bootstrap-Sieve does not discard Byzantine
message (©). This is how it should be, because (©) is not
antique: indeed, Bootstrap-Sieve cannot distinguish it from
a correct message! To see why, note that the heaviest
timestamp-0 consistent DAG containing ©), (i.e., {(D, @,
@, @, @, ©}), is identical to the heaviest such DAG for
correct messages 3 and @. Thus ©), like 3 and @), is
retained.

4.6. Practical Considerations

Our model (§3) is idealized and does not capture all as-
pects of real-world deployments. There are important points
that actual implementations of Sieve have to consider.

Atomicity of actions. We have assumed in Algorithm 1
that Bootstrap-Sieve and Online-Sieve execute atomically
within a tick. While this is plausible for Online-Sieve,
which processes only messages from the previous step, it
is not for Bootstrap-Sieve. Execution history grows linearly,
and the wall-clock time of executing Bootstrap-Sieve can
get arbitrarily long. Suppose that a node starts executing
Bootstrap-Sieve at a step s and has not finished by the end of
step s. The node must then buffer new messages it receives
in steps greater than s. When it finishes executing Bootstrap-
Sieve, it can execute Online-Sieve for every step s’ > s,
using the buffered messages, until it catches up with the
execution. It can then proceed normally as per Algorithm 1.

DPoW verification. We have assumed thus far that
DPoW verification is instantaneous. In practice, however,

it might take some time. This puts correct nodes at a
disadvantage: they have to verify all received messages,
whereas Byzantine nodes do not have to verify any mes-
sages. Thus, Byzantine nodes are effectively faster in pro-
ducing DPoW evaluations. Our results hold as long as the
correct supremacy assumption holds, which we state in
terms of the number of DPoW evaluations within a stretch
of steps. The speedup affects only the ratio of Byzantine
participation Sieve tolerates once we map number of DPoW
evaluations to concrete resources like energy or hardware.

One way to remedy this is for correct nodes to keep
upgrading their hardware to increase their power. Another
is to reduce the verification time of a DPoW, ideally to
a constant. This poses an interesting question for applied
cryptography: is there an implementation of our black box
DPoW abstraction that can be verified in constant time?

Network synchrony. Fully permissionless protocols re-
quire synchrony to achieve their guarantees [9]. In prac-
tice, however, all such protocols are deployed in the asyn-
chronous Internet. The usual way to approximate synchrony
in the Internet is to use a gossip protocol and to make
that protocol as robust as possible through a variety of
mechanisms, e.g., by using routers from different network-
ing domains or by blocking nodes that give you bogus
messages. An implementation of Sieve would also rely on
such mechanisms, the details of which are outside the scope
of this paper.

Coffers as pointers. Sieve requires coffers, which get
prohibitively expensive if they hold actual messages. In
practice, there should be a separate data dissemination layer
that makes sure nodes have access to all messages sent thus
far, and coffers should contain pointers to messages (e.g.,
message hashes). The aforementioned gossip protocol can
take care of this as well.

5. Correctness

We have specified TTRB as two propositions about the
coffers of the messages created by correct nodes. Correct
nodes pick the coffers as the output of one application of
either Bootstrap-Sieve or Online-Sieve. We show that both
Bootstrap-Sieve and Online-Sieve maintain an inductive in-
variant that implies TTRB, hence implying that TTRB is an
invariant of Sieve. We first express the Sieve invariant.

Recall, a timestamp-s message declares s as its step in its
payload, and a message is generated at the step in which the
node generating it called DPOW to get a DPoW evaluation.

Definition 5 (Sieve Invariant). For every step s > 1 and
every correct node n, when n calls TTRBDELIVER(s, £),
the following property SI(n,s) holds:

SI1 Every m € L is generated at s — 1, and

SI2 all correct timestamp-(s — 1) messages are in L.

Lemma 1. The Sieve Invariant and the Sieve algorithm
together imply TTRB.

Proof. Sieve verifies the DPoW evaluations it receives at
each step, which, together with Property SII of the Sieve

Invariant, implies Property TTRB1 of TTRB. Each correct
message m TTRBCAST at step s — 1 declares s — 1 as its
timestamp, and is therefore a timestamp-(s — 1) message.
Together with Property SI2 of the Sieve Invariant, this
implies Property TTRB2 of TTRB. O

We now proceed to prove that what we call the Sieve
Invariant (henceforth, SI) holds. We do so by proving that
both Bootstrap-Sieve and Online-Sieve preserve SI induc-
tively: (i) the base case SI(n,1) for any correct node n
holds because at step 1 neither Online-Sieve nor Bootstrap-
Sieve discard timestamp-0 messages, and (i7) for any s > 1
and any correct node n, we assume that ST(n’, s") holds for
all 1 < ¢’ < s—1 and any correct node n/, and we prove
that SI(n,s) holds.

We start with the simpler case: Online-Sieve. For a set of
messages X, let X, be the set of all timestamp-s messages
in X. Let C; be the set of all correct timestamp-s messages
for all s > 0.

Lemma 2. Fix an arbitrary step s’ and an arbitrary correct
node n, and let X be the set of messages received at the
start of ' by n. If Cy_1 C X and all messages in X
are generated at s' — 1, then weight(Cy_1) > (1 —p) -
weight(X).

Proof. If all messages in X are generated at s’ — 1, then they
all called the DPoW oracle at step s’ — 1. Moreover, because
all messages in X have been received, their DPoW evalua-
tion also ended in step s’ — 1. Therefore, all messages in X
belong to step s’ — 1. Thus, based on the correct supremacy
assumption, correct timestamp-(s’ — 1) messages are strictly
more than a weighted fraction 1 — p of X. We should thus
have weight(Cy_1) > (1 — p) - weight(X). O

Lemma 3. For every correct node n and any step s > 1,
if SI(n',s") holds for all n’ and all s' < s, then SI(n,s)
holds after n executes Online-Sieve at s.

Proof. Consider a correct timestamp-(s— 1) message m and
suppose n is executing the call ONLINESIEVE(s, M, L).
Note that m € M, since m was produced by a cor-
rect node n’ and correct nodes broadcast their messages.
Since correct nodes set the coffer of their message to be
equal to their £ variable after they have executed Sieve,
the set coffer(m) satisfies properties SI1 and SI2 of SI,
based on SI(n’,s — 1). The set £ also satisfies those
properties based on SI(n,s — 1). We thus have Cs_o C
coffer(m) N £, which also implies weight(Cs_2) <
weight(coffer(m) N L£). Moreover, based on Lemma 2,
we have weight(Cs_2) > (1 — p) - weight(L). We thus
have weight(coffer(m)NL) > (1—p)-weight(L), which
means n will not discard m. We conclude that property SI2
of SI(n,s) holds.

Now consider any timestamp-(s — 1) message m’ € M
created by some Byzantine node n’”, where m’ belongs
to a step earlier than s — 1, i.e., an antique message.
Since messages in Cs_o were sent only after the end of
step s — 2, we have Cs_o N coffer(m’) = (), because n”
could not have received them. Once again, based on Lemma

2, we have weight(Cs_2) > (1 — p) - weight (L), which
implies weight (Cs_2) > 1 - weight(L) since p < 1/2.
Together, these imply that weight(coffer(m’) N £) <
1 -weight(L) < (1 — p) - weight(L). Therefore, m/
will be discarded, which implies that any message remaining
in £ by the end of the call is generated at s — 1, proving
property SI1 of SI(n,s). O

Before proceeding to Bootstrap-Sieve, we prove another
useful lemma. For every set of messages X and every step s,
let X be the subset of X consisting of all the messages
in X with a timestamp at least s.

Lemma 4. Consider two sets of timestamp-s messages S}
and S? and assume that X' and X? are two DAGs consis-
tent with S} and S?, respectively. Then S:NS? = () implies
X'nXx2=0.

Proof. Since X' and X2 are DAGs consistent with S}
and S2, respectively, we thus have X! = S! and X2 =
S? We show that, for every natural number s’ > s,
if X, NX2 =0then X!, NnX2 , = 0. The lemma
then follows by induction.

Consider s’ > s such that X!, N X2 = () and assume
toward a contradiction that there is some m such that m €
X}, NXZ,, Because X' is a consistent DAG, X, is
strictly more than a weighted fraction 1 — p of m’s coffer.
Similarly, X2 is strictly more than a weighted fraction 1—p
of m’s coffer. Since p < 1/2, there must be a message m’
such that m’ € X!, N X2 This contradicts our assumption
that X}, N X2 = (. We thus have X}, , NX2 , =0. O

We are now ready to tackle Bootstrap-Sieve.

Lemma 5. For every correct node n and any step s > 1,
if SI(n',s") holds for all n’ and all s' < s, then SI(n,s)
holds after n executes Bootstrap-Sieve at s.

Proof. Suppose that n is executing the
call BOOTSTRAPSIEVE(s, M), which proceeds in
iterations. There is an elegant connection between
these iterations and SI: the iterations preserve SI within the
history maintained by n during the call execution. In other
words, for every 1 < s’ < s — 1, the following hold at the
end of iteration s’

TH1(s") All correct timestamp-s’ messages are in £, and
TH2(s") every m € Ly is generated at a step greater than
or equal to s’.

Note that TH(s — 1) implies SI(n,s). It thus suffices to
prove properties IH1(s’) and TH2(s’) using induction on the
iteration s’.

Base case. Correct nodes broadcast their timestamp-0 mes-
sages, so they are all in M. Bootstrap-Sieve does not discard
any timestamp-0 messages, therefore, IH1(0) holds. TH2(0)
holds as messages cannot have a negative generation time.
Induction Hypothesis. TH1(s”) and IH2(s”) hold for
all 1 <s”" <5 —1.

Induction step. We have to prove that IH1(s’) and IH2(s')
hold. We first prove that Cj/,l is a DAG consistent
with Cy_1 within L.

Based on IHI(s" — 1), we have Cy_; C L. Since
Bootstrap-Sieve discards timestamp-r messages from £ only
at iteration 7, we also have C, C L for » > s’. Now, for
all » > s’ — 1 and any m € C,.y; created by some correct
node n’, according to SI(n’,r) and the Sieve algorithm we
have C,. C coffer(m), and also every message in coffer(m)
is generated at r. Applying Lemma 2 to C,. and coffer(m)
implies that C). is strictly more than a weighted fraction 1—p
of coffer(m), which establishes that CS+,71 =U,>g_1C, i
a DAG consistent with Cy/_; within L.

We now prove IHI(s’). Consider any correct mes-
sage m € Cy, and let, for any r, T'S(r) be the set of
all messages generated at a step greater than or equal to r
in £. Let C’ be one of the heaviest timestamp-(s’ — 1)
consistent DAGs containing m. Since C,_, is a timestamp-
(s’ — 1) consistent DAG containing m, then C’ exists and
we have weight(C’) > weight(CJ_,). Based on the
correct supremacy assumption, we have weight (CJ,_,) >
(1—p) weight(TS(s'—1)) > 1 - weight(T'S(s' — 1))
(note that p < 1/2), which allows us to further de-
duce weight(C’) > % - weight(T'S(s' — 1)). There-
fore, for any timestamp-(s’ — 1) consistent DAG C” such
that C” N C" = (), since both ¢’ C T'S(s’ — 1) and C” C
TS(s" — 1) hold based on the induction hypothesis IH, we
must have weight(C”) < weight(C’). We conclude that
Bootstrap-Sieve does not discard m, which completes our
proof of TH1(s').

Let us finally prove IH2(s’). Consider an antique mes-
sage m’ generated at a step less than s’. Since correct
timestamp-(s’ — 1) messages were only ready at the end
of step s’ — 1, m' does not contain any of them in its
coffer, i.e., Csy_1 Ncoffer(m’) = . Let C’ be any heaviest
timestamp-(s’ — 1) consistent DAG containing m’. Based on
Lemma 4, we get Cf | N C’ = (. Based on IH2(s" — 1),
every timestamp-(s’ — 1) message in the seed of C' is
generated at a step greater than or equal to s’ — 1; there-
fore, all messages in C’ are generated at a step greater
than or equal to s’ — 1 because they were generated after
the messages in the seed, ie, C' C TS(s' — 1). We
have already established that 0;71 C TS(s — 1) and
that weight(CS_,) > % - weight(T'S(s' — 1)). We thus
have weight(C’) < weight(CJ_,), which means n will
discard m/. This concludes the proof for IH2(s’). O

Theorem 1. TTRB is an invariant of the Sieve algorithm.

Proof. For every correct node n, SI(n,1) holds because
at step 1 neither Online-Sieve nor Bootstrap-Sieve dis-
card timestamp-0 messages, and according to the correct
supremacy assumption correct timestamp-0 messages are
strictly more than a weighted fraction 1 — p of messages
generated at step 0. Based on this, an inductive application
of Lemma 3 and Lemma 5, in addition to the fact that Sieve
picks the coffer of the message it wants to send running
either Online-Sieve or Bootstrap-Sieve, implies that SI is an
invariant of Sieve. Lemma 1 concludes our proof. O

6. Sieve-MMR: Fully-Permissionless Total-

Order Broadcast

Fully-permissionless TOB is now within reach: Sieve
implements TTRB, and TTRB is sufficient to enable the
MMR protocol by Malkhi et al. [8, Appendix A] to operate
correctly. To port MMR to a fully permissionless model, we
build Sieve-MMR by layering MMR atop Sieve, which pro-
vides the essential message delivery guarantees that MMR
requires. Specifically, MMR relies on the following:

Assumption 1. For every correct node n, for every step s >
1, if TTRB calls TTRBDELIVER(s, L) at node n at the start
of step s, then:

MMRI1 Messages TTRBcast by correct nodes in step s — 1
account for strictly more than a weighted frac-
tion 2/3 of the total weight of the messages in L.

MMR?2 Every message TTRBcast by a correct node in
step s — 1 appears in L.

TTRB with parameter p = 1/3 provides this guaran-
tee: Property TTRB2 immediately implies Property MMR?2
above, and Property TTRB1 implies the Property MMRI1
according to Lemma 2 from Section 5. As a result, Sieve-
MMR inherits MMR’s ability to tolerate a 1/3-bounded
adversary?.

Building on Assumption 1, Sieve-MMR implements
TOB as specified in Section 3. In a nutshell, nodes accept
blocks submitted by external clients and order them in a
growing chain that they periodically commit to their clients,
at which point all its prefixes are considered committed.

Sieve-MMR retains the TOB guarantees (§3.1):

o Consistency: If two correct nodes commit chains Ay
and As, then Ay and Ao are compatible.

o Progress: Let A be the longest chain committed by
all correct nodes. At all times, with probability 1, A
eventually includes at least one more block submitted
by a correct node.

Additionally, we care about the time it takes for a
transaction to become final, i.e., to appear in a committed
chain. For brevity, let us refer to a block submitted by a
correct node as a correct block. Then, a proxy for finality
is the number of steps necessary, starting from some step s,
for all active correct nodes to commit a new correct block
(i.e., the commit latency). Sieve-MMR inherits from MMR
the following commit latency guarantees:

CLI In the best case, all correct active nodes commit a new
correct block 3 steps after it was submitted.

CL2 In general, in expectation, all correct active nodes
commit a new correct block 7 steps after it was sub-
mitted.

The remainder of this section is dedicated to describing
Sieve-MMR; we provide a correctness proof in the Ap-
pendix.

2. Standalone Sieve tolerates a 1/2-bounded adversary.

6.1. The Sieve-MMR Algorithm

In Sieve-MMR, correct nodes implement TTRB using
Sieve and run the MMR algorithm on top of Sieve. The
MMR algorithm prescribes, at each step s, which mes-
sages to TTRBCast through Sieve in response to the set
of messages L;_1 delivered by Sieve (see Figure 2). The
composition of Sieve and the MMR algorithm is what we
call Sieve-MMR.

For the rest of this section, when we say that a node n
receives a message m in a step s, we mean that m belongs
to the set £ delivered by Sieve at n in step s. Moreover,
when we say that a node sends or broadcasts a message m,
we mean that it calls TTRBCast(m).

Sieve-MMR inherits its consensus logic almost verbatim
from the MMR algorithm. For safety, it relies solely on
Assumption 1, guaranteed by TTRB. For liveness, Sieve-
MMR relies on a probabilistic leader-election component,
accessible locally at each node, that, at each step s, de-
termines a leader message among all messages received in
step s. This leader-election component must guarantee that,
at each step s, with probability strictly greater than 2/3, all
active correct nodes obtain the same leader [and [was sent
by a correct node in step s—1. While MMR implements this
component using verifiable random functions [26], Sieve-
MMR relies on the assumption that the DPoW is a random
oracle (§6.2).

Next, we describe the MMR algorithm (Algorithm 4).
The algorithm is called by TTRB in each new step through a
TTRBDELIVER upcall. The MMR algorithm classifies each
step as either a proposal step, if the step number is even,
or a commit step, if the step number is odd. In a proposal
step, each node broadcasts a message that conveys a vote
for a chain and a proposal for a (possibly longer) chain.
In a commit step, each node may commit a new chain and
broadcasts a message that conveys a vote for a (possibly
longer) chain. In both types of steps, a vote for a chain A
also counts as a vote for all prefixes of A.

Before we describe the rules that nodes follow to vote
for, propose, and commit chains, we need the notions of
maximal chains, (maximal) grade-0 chains, and (maximal)
grade-1 chains.

Definition 6 (Grade-O and grade-1 chains). We say that a
chain A has grade 1 at a node n when, among the votes
received by n in the current step, the votes for extensions
of A account for strictly more than 2/3 of the proof-of-work
weight. We say that a chain A has grade 0 at a node n
when, among the votes received by n in the current step,
the votes for extensions of A account for strictly more than
1/3 of the proof-of-work weight.

Note that it follows that a chain that has grade 1 also has
grade 0, but the converse is not true; moreover, the empty
chain always has both grades 0 and 1.

Definition 7 (Maximal chains). We say that a chain A is
maximal among a set of chains if no chain in the set is a
strict extension of A (note that two different, incompatible

chains can both be maximal in the same set). We say that
a chain A is a maximal grade-1 chain (or maximal grade-0
chain) at n when A is maximal among the set of chains that
have grade 1 (respectively, grade 0) at n.

We are now ready to describe the algorithm in full. In
each step s, each node n must proceed as follows:

o If s = 0 (this is the first step), n votes for the empty
chain and proposes a chain consisting of an arbitrary
submitted block (we assume each correct node always
has at least one fresh submitted block available).

o If s = 2k + 1 for some k > 0, then s is a commit
step and n consults the leader-election oracle, obtains
a leader [, and, if [carries a proposal A; and A;
extends n’s maximal grade-O chain, n votes for Ay
otherwise, n votes for the maximal grade-0 chain?.
Moreover, n commits the maximal grade-1 chain.

o If s = 2k for some £ > 0, then s is a proposal
step and n votes for the maximal grade-1 chain'.
Moreover, n selects a submitted block not from its
last committed chain, appends it to a randomly chosen
maximal grade-0 chain?, and proposes the resulting
chain.

The Appendix includes a detailed correctness proof.

Note that the MMR algorithm is stateless: except for the
set of blocks submitted by clients, the algorithm’s actions
only depend on the set of messages received in the current
step. Thus, each node can become active or inactive at any
step without compromising MMR’s properties.

6.2. Leader Election

Each message delivered by Sieve to MMR is of the form
(m, dpow, w), where dpow is a DPoW evaluation, which
we assume to be a random oracle. Each round, each correct
node n picks a leader message as follows. For each message
{m, dpow, w) received by n in the current step, n creates w
tokens H (dpow), H (dpow+1), ..., H(dpow+w—1) where
H is a random oracle (e.g., a cryptographic hash function).
Then, n selects as leader the message m associated with the
largest token among all tokens generated for all messages
(assuming no collision).

By the correct supremacy assumption, with probability
2/3, a correct node has the largest token, and since all correct
nodes receive all messages from all correct nodes of the
previous step, with probability 2/3, all correct nodes agree
on their leader message. Depending on message weights, we
may have to create a large number of tokens: Swiper [27]
proposes algorithms to reduce the number of tokens needed.

7. Implementing Deterministic Proof-of-Work

In this section, we briefly present a concrete imple-
mentation of our DPoW primitive; our results rely on the

1. Lemma 6 implies that maximal grade-1 chains are locally unique.

2. We show in Lemma 9 that it is unique.

3. A simple intersection argument shows that there may be at most 2
maximal grade-0 chains at n.

Algorithm 4 The MMR algorithm, code for node n.

/I State variables:

1 B+0 // Set of non-committed blocks submitted

by clients (updated by upper layer)

2: procedure TTRBDELIVER(s, £) // Upcall from
TTRB

3 if s = 0 then

4 b < an element of B

5 m <+ [proposal : b, vote : ()]

6: return m // Return m to TTRB

7

8

9

// A proposal step

ifs=2k+1fork>0then // A commit step
my < call ELECTLEADER(L)
A; < proposal in my

10: Ag < the maximal grade-0 chain in £

11: if A; extends Ay then

12: m <+ [vote : Ay]

13: else

14: m <— [VOte : A()]

15: return m // Return m to TTRB

16: A; < the maximal grade-1 chain in £

17: call CoMMIT(A;) // Upcall to the consensus
module

18: B« B\ blocks(Ay) // Remove committed

blocks from B

19: if s = 2k for £ > O then // A proposal step

20: Ay < a random maximal grade-0 chain in £
21: Ay < the maximal grade-1 chain in £

22: b < an element of B

23: A+ Ag,b // Append b to A,
24 m < [vote : Ay, proposal : A]

25: return m // Return m to TTRB

black-box DPoW guarantees and any such implementation
would work. The construction is due to Coelho [28]. We
assume nodes have access to a random oracle function H
mapping binary strings of arbitrary length to binary strings
of length A, for some security parameter A. In practice, one
can use SHA-256.

The implementation consists of two algorithms: an al-
gorithm P to generate a proof-of-work and an algorithm V
for verifying a proof-of-work. Both algorithms are param-
eterized by a security parameter k. The algorithm P takes
as input a challenge x and an integer weight w, and returns
a proof dpow; the verification algorithm) takes as input a
proof dpow, a challenge y, and a weight w, and returns a
boolean indicating whether the proof is valid or not.

The two algorithms guarantee that:

e For every x and w > k, a node that faithfully exe-
cutes P on inputs x and w makes 2w + k calls to
the random oracle and outputs a proof dpow such
that V(dpow, x,w) returns true.

« For every dpow, x, and w > k, a node that faithfully
executes)V on inputs dpow, X, and w makes klogw
calls to the random oracle.

e For every x, w > k, and 0 < t < 1, if a node
creates a proof dpow by calling the random oracle less

than ¢(2w + k) times, then V(dpow, x, w) returns true
with probability less than t*.

Algorithm P works as follows. Given a challenge x and a
weight w, the algorithm computes a Merkle tree commit-
ment ® to the w leaves I = H(x), lo = H(x +1), ...,
ly = H(x +w — 1). Let ¢ be the root of this tree. The
algorithm determines & distinct leaf indices by computing
the natural number [kH (¢ +i)/2*], starting with i = 0 and
incrementing ¢ until it obtains k distinct natural numbers.
The proof dpow then consists of the k Merkle paths corre-
sponding to the % indices computed above, plus the root ¢.

Algorithm V works as follows. The algorithm first com-
putes the k indices in the same way as in algorithm P, and
then it checks that the provided Merkle paths are indeed
correct Merkle paths corresponding to the % indices.

In practice, we must pick a concrete number of Merkle
paths k£ that must be revealed by provers. A larger k
increases proof size and decreases the probability that an
adversary that does not compute the full tree will create
a proof that is accepted by some correct nodes. Given a
target security parameter p and a minimum-work thresh-
old 0 < ¢ <1, we can ensure that no adversary produces a
valid proof of work with probability higher than 277 using
fewer than n = ¢(2w + k) queries to the random oracle
by choosing k such that t* < 27P. Practical deployments
should then consider that Byzantine nodes are faster in pro-
ducing DPoW evaluations by a factor of 1/¢. This means that
an adversary that is 1/3-bounded in the model of Section 3
will in reality spend only a fraction ¢/3 of the energy or
other real-world resources spent by all nodes in the system.

8. Related Work

Permissionless settings. Lewis-Pye and Roughgar-
den [9] formally classify permissionless systems in three
settings: (i) the quasi-permissionless setting (e.g., Ten-
dermint [29] or Algorand [30]); (i¢) the dynamically-
available setting (e.g., Ouroboros [31]); and (i) the
Sfully-permissionless setting (e.g., Bitcoin [25]). The quasi-
permissionless setting and the dynamically-available setting
model proof-of-stake systems, which track their participants
on chain and typically assume that more than 1/2 or 2/3 are
correct. The first assumes always active correct participants,
while the second allows them to be inactive as long as the
remaining active correct participants still form a superma-
jority. The sleepy model [24] is similar to the dynamically-
available setting, but with a static list of nodes. The fully-
permissionless setting further generalizes the dynamically-
available setting by assuming no knowledge of participation.
Like Bitcoin, Sieve-MMR is fully-permissionless.

Sleepy/dynamically-available protocols. Sleepy con-
sensus [24] was the first consensus protocol to allow inactive
correct participants. Several other consensus protocols fol-
lowed [31], [32], [33], all guaranteeing safety and liveness
probabilistically, until Momose and Ren [20] achieved deter-
ministic safety. Later deterministically-safe protocols [10],
[11] achieve a latency of a few message delays. Sieve-MMR

borrows the consensus logic of MMR, a deterministically-
safe, dynamically-available TOB protocol [8, Appendix A],
and ports it to the fully-permissionless setting.

Mitigations against long-range attacks. PoS systems
are vulnerable to long-range attacks that cause safety vio-
lations at little cost to the attacker. Using VDFs (e.g., [34],
[35], [36], [37], [38]) or ephemeral keys (e.g., [30], [39])
is effective against posterior-corruption long-range attacks.
Nevertheless, in the absence of external trust assump-
tions, long-range attacks always prevent attaining slashable
safety [1]. Babylon and Pikachu [1], [2] prevent long-range
attacks by checkpointing their state onto Bitcoin, which is an
external trusted component. Sieve-MMR is a PoW protocol
and is resilient against long-range attacks. Budish et al. [40]
study the security of PoS, including long-range attacks, from
an economic perspective.

Proof-of-work protocols. PoW protocols operate in the
fully-permissionless setting and do not suffer from long-
range attacks. A line of work has improved PoW through-
put [41], [42] and latency [43], [44], with Garay et al. [44]
achieving expected constant latency. However, the protocol
of Garay et al. relies on high-variance probabilistic building
blocks that cannot be sensibly analyzed in a deterministic
model.

Gorilla [4], a BFT sequel to the Sandglass protocol [3],
achieves deterministic safety using verifiable delay functions
as a PoW primitive, but it has a latency exponential in
the number of participants. Gorilla and Sieve-MMR rely on
entirely different mechanisms to achieve consensus. Gorilla
executions proceed in asynchronous rounds, where a node
proceeds to the next round if it receives a certain threshold
of messages. Then, inspired by Ben-Or’s protocol [45], the
node proposes a value v in the next round if all of the
messages it received in the previous round proposed v unan-
imously; otherwise, it picks a random value. The node de-
cides v if it keeps receiving messages unanimously propos-
ing v for a sufficiently long sequence of rounds—a fortunate
event that is guaranteed to happen with positive probability.
However, since both the threshold of messages required to
move to the next round, and the length of the sequence
of unanimous rounds required to decide are proportional to
the upper bound on the number of nodes, the probability
of this fortunate event (and thus Gorilla average latency) is
exponential in that same upper bound. Sieve-MMR instead
relies on quorum intersection arguments and, for them to
work, depends on the correct supremacy assumption. These
arguments do not depend on the number of messages, nor
do they rely on the execution having produced a sufficient
number of messages.

Keller and Bohme [46] propose a TOB protocol By
consisting of a sequence of instances of a consensus protocol
Ap. In Ag, roughly speaking, each node casts votes by
solving Bitcoin-style probabilistic PoW puzzles and votes
for the value that currently has the most votes; nodes decides
on a value when it reaches k votes. Compared to Sieve-
MMR, a disadvantage of this approach is that, like Bitcoin,
it cannot be meaningfully analyzed in a deterministic model.
Moreover, again like Bitcoin, the latency of this protocol

depends on the desired level of security. On the flip side,
thanks to the probabilistic PoOW puzzle, in expectation only
a few nodes send concurrent messages for each consensus
decision; in contrast, Sieve-MMR uses all-to-all communi-
cation at each protocol step.

9. The Road Ahead

This paper presents Sieve-MMR, a TOB protocol that
achieves deterministic safety and constant expected latency
in the fully permissionless model. Sieve-MMR is composed
of two layers: Sieve and MMR. Our main contribution is
Sieve, a novel algorithm that implements a novel broad-
cast primitive, TTRB. TTRB enables the MMR protocol to
operate in the fully permissionless model by providing the
assumptions it typically relies on in the more restrictive dy-
namically available model. This work opens two promising
directions for future research.

Practical, fast, and secure PoW consensus. Sieve
brings us to the threshold of a practical protocol, but
main challenges remain: the exponential complexity of
Bootstrap-Sieve when implemented naively, and the veri-
fication overhead of DPoWs. Bootstrap-Sieve, as presented
here, functions more as a specification than a fully realized
algorithm—it is largely declarative. Developing an effi-
cient implementation would elevate Sieve from a theoretical
construct to a protocol suitable for practical deployment.
Regarding DPoW verification, it is highly advantageous
for correct nodes to verify received messages in batches
and within a short time window. Achieving this level of
efficiency may require additional cryptographic tools, such
as zero-knowledge proofs [47].

Porting PoS protocols to the PoW setting. Given
the surgical nature of our construction, we conjecture that
TTRB may serve as a general mechanism for porting other
dynamically available protocols to the fully permissionless
model. This raises an intriguing open question: is TTRB
a canonical bridge between the dynamically available and
fully permissionless models?

References

[1] E. N. Tas, D. Tse, F. Gai, S. Kannan, M. A. Maddah-Ali, and
F. Yu, “Bitcoin-Enhanced Proof-of-Stake Security: Possibilities and
Impossibilities,” in 2023 IEEE Symposium on Security and Privacy
(SP), May 2023, pp. 126-145.

[2] S. Azouvi and M. Vukoli¢, “Pikachu: Securing PoS Blockchains
from Long-Range Attacks by Checkpointing into Bitcoin PoW using
Taproot,” in Proceedings of the 2022 ACM Workshop on Develop-
ments in Consensus, ser. ConsensusDay '22. New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp. 53-65.

[31 Y. Pu, L. Alvisi, and I. Eyal, “Safe permissionless consensus,”
in 36th International Symposium on Distributed Computing, DISC
2022, October 25-27, 2022, Augusta, Georgia, USA, ser. LIPIcs,
C. Scheideler, Ed., vol. 246. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2022, pp. 33:1-33:15. [Online]. Available:
https://doi.org/10.4230/LIPIcs.DISC.2022.33

https://doi.org/10.4230/LIPIcs.DISC.2022.33

(4]

[3]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

Y. Pu, A. Farahbakhsh, L. Alvisi, and I. Eyal, “Gorilla:
Safe permissionless byzantine consensus,” in 37th International
Symposium on Distributed Computing, DISC 2023, October 10-12,
2023, L’Aquila, Italy, ser. LIPIcs, R. Oshman, Ed., vol. 281. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023, pp. 31:1-31:16.
[Online]. Available: https://doi.org/10.4230/LIPIcs.DISC.2023.31

J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone
Protocol: Analysis and Applications,” in Advances in Cryptology
- EUROCRYPT 2015, E. Oswald and M. Fischlin, Eds. Berlin,
Heidelberg: Springer, 2015, pp. 281-310.

A. Dembo, S. Kannan, E. N. Tas, D. Tse, P. Viswanath, X. Wang,
and O. Zeitouni, “Everything is a race and nakamoto always wins,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 859-878.

D. Boneh, J. Bonneau, B. Biinz, and B. Fisch, “Verifiable Delay
Functions,” in Advances in Cryptology — CRYPTO 2018, ser. Lecture
Notes in Computer Science, H. Shacham and A. Boldyreva, Eds.
Cham: Springer International Publishing, 2018, pp. 757-788.

D. Malkhi, A. Momose, and L. Ren, “Towards practical sleepy
BFT,” Cryptology ePrint Archive, Paper 2022/1448, 2023. [Online].
Available: https://eprint.iacr.org/2022/1448

A. Lewis-Pye and T. Roughgarden, “Permissionless Consensus,” no.
arXiv:2304.14701, Mar. 2024.

E. Gafni and G. Losa, “Brief Announcement: Byzantine Consensus
Under Dynamic Participation with a Well-Behaved Majority,” in
37th International Symposium on Distributed Computing (DISC
2023), ser. Leibniz International Proceedings in Informatics (LIPIcs),
R. Oshman, Ed., vol. 281. Dagstuhl, Germany: Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2023, pp. 41:1-41:7, iSSN: 1868-
8969. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/
2023/19167

D. Malkhi, A. Momose, and L. Ren, “Towards Practical Sleepy BFT,”
in Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’23. New York, NY, USA:
Association for Computing Machinery, Nov. 2023, pp. 490-503.
[Online]. Available: https://doi.org/10.1145/3576915.3623073

D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198-208, 1983.

G. Losa, “Formal models of the Sieve-MMR protocol,” Oct. 2025.
[Online]. Available: https://doi.org/10.5281/zenodo.17291476

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558-565,
1978.

F. Cristian, H. Aghili, R. Strong, and D. Dolev, “Atomic broadcast:
From simple message diffusion to byzantine agreement,” Information
and Computation, vol. 118, no. 1, pp. 158-179, 1995.

F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” Acm Computing Surveys (CSUR),
vol. 22, no. 4, pp. 299-319, 1990.

A. Lewis-Pye and T. Roughgarden, “Byzantine generals in the per-
missionless setting,” in International Conference on Financial Cryp-
tography and Data Security. Springer, 2023, pp. 21-37.

“Ethereum proof-of-stake consensus specifications.” [Online].
Available: https://github.com/ethereum/consensus-specs/tree/dev

G. Losa and E. Gafni, “Consensus in the Unknown-Participation
Message-Adversary Model,” Oct. 2023. [Online]. Available: http:
/farxiv.org/abs/2301.04817

A. Momose and L. Ren, “Constant Latency in Sleepy Consensus,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’22. New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp. 2295-2308.
[Online]. Available: https://doi.org/10.1145/3548606.3559347

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

E. Gafni, “Round-by-round fault detectors, unifying synchrony and
asynchrony (extendeda abstract),” in Proc. 17th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC), Puerto
Vallarta, Mexico, June, 1998, pp. 143-152.

P. Feldman and S. Micali, “An optimal probabilistic protocol for
synchronous byzantine agreement,” SIAM Journal on Computing,
vol. 26, no. 4, pp. 873-933, 1997.

J. Katz and C.-Y. Koo, “On expected constant-round protocols for
byzantine agreement,” in Annual International Cryptology Confer-
ence. Springer, 2006, pp. 445-462.

R. Pass and E. Shi, “The Sleepy Model of Consensus,” in Advances
in Cryptology — ASIACRYPT 2017, ser. Lecture Notes in Computer
Science, T. Takagi and T. Peyrin, Eds. Cham: Springer International
Publishing, 2017, pp. 380—409.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), Oct. 1999, pp. 120-130.

A. Tonkikh and L. Freitas, “Swiper: A new paradigm for efficient
weighted distributed protocols,” in Proceedings of the 43rd ACM
Symposium on Principles of Distributed Computing, ser. PODC ’24.
New York, NY, USA: Association for Computing Machinery, Jun.
2024, pp. 283-294.

F. Coelho, “An (Almost) Constant-Effort Solution-Verification Proof-
of-Work Protocol Based on Merkle Trees,” in Progress in Cryptology
— AFRICACRYPT 2008, S. Vaudenay, Ed. Berlin, Heidelberg:
Springer, 2008, pp. 80-93.

E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT
consensus,” Nov. 2019.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,” in
Proceedings of the 26th symposium on operating systems principles,
2017, pp. 51-68.

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol,” in Advances
in Cryptology — CRYPTO 2017, ser. Lecture Notes in Computer
Science, J. Katz and H. Shacham, Eds. Cham: Springer International
Publishing, 2017, pp. 357-388.

P. Daian, R. Pass, and E. Shi, “Snow White: Robustly Reconfigurable
Consensus and Applications to Provably Secure Proof of Stake,” in
Financial Cryptography and Data Security, ser. Lecture Notes in
Computer Science, 1. Goldberg and T. Moore, Eds. Cham: Springer
International Publishing, 2019, pp. 23-41.

F. D’Amato, J. Neu, E. N. Tas, and D. Tse, “Goldfish: No More
Attacks on Proof-of-Stake Ethereum,” May 2023.

S. Deb, S. Kannan, and D. Tse, “PoSAT: Proof-of-Work Availability
and Unpredictability, Without the Work,” in Financial Cryptography
and Data Security, N. Borisov and C. Diaz, Eds. Berlin, Heidelberg:
Springer, 2021, pp. 104-128.

R. Khalil and N. Dulay, “Short paper: Posh proof of staked hardware
consensus,” Cryptology ePrint Archive, 2020.

J. Long, “Nakamoto consensus with verifiable delay puzzle,” arXiv
preprint arXiv:1908.06394, 2019.

R. Xu and Y. Chen, “Fairledger: a fair proof-of-sequential-work
based lightweight distributed ledger for iot networks,” in 2022 IEEE
International Conference on Blockchain (Blockchain). 1EEE, 2022,
pp. 348-355.

“Chia green paper,” https://docs.chia.net/files/ChiaGreenPaper_
20241008.pdf, accessed: 2025-01-02.

S. Azouvi, G. Danezis, and V. Nikolaenko, “Winkle: Foiling Long-
Range Attacks in Proof-of-Stake Systems,” in Proceedings of the 2nd
ACM Conference on Advances in Financial Technologies, ser. AFT
’20. New York, NY, USA: Association for Computing Machinery,
Oct. 2020, pp. 189-201.

https://doi.org/10.4230/LIPIcs.DISC.2023.31
https://eprint.iacr.org/2022/1448
https://drops.dagstuhl.de/opus/volltexte/2023/19167
https://drops.dagstuhl.de/opus/volltexte/2023/19167
https://doi.org/10.1145/3576915.3623073
https://doi.org/10.5281/zenodo.17291476
https://github.com/ethereum/consensus-specs/tree/dev
http://arxiv.org/abs/2301.04817
http://arxiv.org/abs/2301.04817
https://doi.org/10.1145/3548606.3559347
https://bitcoin.org/bitcoin.pdf
https://docs.chia.net/files/ChiaGreenPaper_20241008.pdf
https://docs.chia.net/files/ChiaGreenPaper_20241008.pdf

[40] E.Budish, A. Lewis-Pye, and T. Roughgarden, “The Economic Limits
of Permissionless Consensus,” Jun. 2024.

[41] 1. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-
NG: A scalable blockchain protocol,” in /3th USENIX symposium on
networked systems design and implementation (NSDI 16). USENIX,
2016, pp. 45-59.

[42] M. Fitzi, P. Gazi, A. Kiayias, and A. Russell, “Parallel Chains: Im-
proving Throughput and Latency of Blockchain Protocols via Parallel
Composition,” 2018.

[43] V. Bagaria, S. Kannan, D. Tse, G. Fanti, and P. Viswanath, “Prism:
Deconstructing the blockchain to approach physical limits,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 585-602.

[44] J. Garay, A. Kiayias, and Y. Shen, “Proof-of-Work-Based Consensus
in Expected-Constant Time,” in Advances in Cryptology — EURO-
CRYPT 2024, M. Joye and G. Leander, Eds. Cham: Springer Nature
Switzerland, 2024, pp. 96-125.

[45] M. Ben-Or, “Another advantage of free choice (extended abstract)
completely asynchronous agreement protocols,” in Proceedings of
the second annual ACM symposium on Principles of distributed
computing, 1983, pp. 27-30.

[46] P. Keller and R. Bohme, “Parallel Proof-of-Work with Concrete
Bounds,” in Proceedings of the 4th ACM Conference on Advances
in Financial Technologies, ser. AFT ’22. New York, NY, USA:
Association for Computing Machinery, Jul. 2023, pp. 1-15.

[47] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complex-
ity of interactive proof-systems,” in Providing sound foundations for
cryptography: On the work of shafi goldwasser and silvio micali,
2019, pp. 203-225.

Appendix A.
Correctness of the Sieve-MMR Algorithm

In this section, we prove the correctness of the Sieve-
MMR algorithm. Since, in Section 5, we have shown that
Sieve implements TTRB, in this section we show that,
assuming a correct TTRB implementation, the MMR algo-
rithm implements TOB.

To simplify the terminology, we say that a message
is sent when it appears as an argument to a TTRBCAST
downcall to Sieve, and that it is received when it appears as
an argument of a TTRBDELIVER upcall from Sieve.

A.0.1. Key Properties of TTRB. We start with three key
properties that stem directly from the guarantees of TTRB
expressed in Assumption 1. Then we will show that these
three properties imply the correctness of MMR when run
on top of Sieve.

Property 1. Consider a step s > 0 and a correct node
n active in step s. Assume that M is a set of messages
consisting of strictly more than two thirds (by weight) of
the messages that n receives in step s. Then, M includes a
strict majority (by weight) of the correct messages sent in
step s — 1.

Proof. Let L be the set of messages delivered to n in step s
and let C be the set of all correct timestamp-(s—1) messages
sent. With p = 1/3 and Assumption 1, we have that C C £
and C accounts for at least two thirds (by weight) of the
messages in L. Hence, if M also consists of strictly more

two thirds (by weight) of £, then CN M is a strict majority
(by weight) of C. O

Property 2. Consider a step s > 0 and a correct node
n active in step s. Assume that M is a set of messages
consisting of a strict majority (by weight) of the correct
messages sent in step s — 1. Then, for every node n active
in step s, M consists of strictly more than one-third (by
weight) of the messages that n receives in step s.

Property 3. Consider a step s > 0 and a correct node
n active in step s. Assume that M is a set of messages
consisting of strictly more than one third (by weight) of
the messages that n receives in step s. Then M includes a
message sent by a correct node in step s — 1.

A.0.2. Key Protocol Lemmas. Next, we prove three lem-
mas that embody the key principles used in the MMR
algorithm. Once these lemmas are established, the rest of
the correctness proofs are almost routine.

In each of the three lemmas, we consider a single step s.
The first key lemma states that grade-1 chains are always
compatible:

Lemma 6. Consider a step s > 0, two nodes n and p', and
two chains A and A’ such that A has grade 1 at n and N’
has grade 1 at p’. Then A and A’ are compatible.

Proof. By Property 1, we have that a strict majority (by
weight) of the correct messages sent in step s — 1 votes for
an extension of A. Similarly, a strict majority (by weight)
of the messages sent in step s — 1 votes for an extension of
A’. Since two strict majorities must intersect, we obtain a
correct message sent in step s — 1 that votes for a chain A”
that is an extension of both A and A’. Thus A and A’ are
compatible. O

Note that Lemma 6 implies that, for each node n and
step s, there is a unique maximal grade-1 chain at n in
step s. This justifies our use of “the maximal grade-1 chain”
in Algorithm 4.

Next, we turn to the second key lemma: if all correct
nodes vote for compatible chains and if a chain A has
grade 1 at some node, then all chains that are maximal with
grade O at any node are extensions of A.

Lemma 7. Consider a step s > 0 and assume that all
correct nodes active in step s—1 vote for compatible chains.
Consider two nodes n and n’, and two chains A and N’ such
that A has grade 1 at n and N’ is maximal with grade 0 at
n'. Then A is a prefix of N'.

Proof. First, note that, since all correct nodes active in
step s — 1 vote for compatible chains, by Property 3, all
chains with grade 0 at a correct node in step s are compatible
and thus there is a unique maximal grade-O0 chain at n’
in step s. Moreover, since A has grade 1 at n in step s,
by Property 1, a strict majority (by weight) of the correct
messages sent in step s — 1 votes for an extension of A.
Thus, by Property 2, A has grade (at least) O at n’ in step s.

Finally, since A’ is the (unique) maximal grade-O chain at
n' in step s, we have that A is a prefix of A’. O

The third and last key lemma states that each correct
node n has at most two maximal grade-0 chains A; and Ao,
and that there is a unique chain A € {A;, A2} such that, for
every active correct node n’, if A’ has grade 1 at n/ then
A’ is a prefix of A (note that the order of quantification is
important here: it is the same A for every n’).

Lemma 8. Consider a step s > 0 and a correct node n
active in step s. There are at most two maximal grade 0
chains at n in step s and, if {\1, Ao} is the set of maximal
grade 0 chains at n in step s (possibly A1 = As), then there
is a chain A € {A1,Aa} such that, for every correct node
n' active in step s, if N’ is maximal with grade 1 at n', then
A is a prefix of A.

Proof. First note that, by a simple intersection argument,
there are at most two maximal grade-0 chains A; and A, at
n in step s.

Next, for every node n’ active in step s, let A, be the
maximal chain with grade 1 at n’. Note that, by Properties 1
and 2, we have that A, has grade O at n in step s. Thus,
for every node n’ active in step s, A, is a prefix of either
Ay or As. Tt remains to show that either (a) for every n’,
A, is a prefix of A; or (b) for every n’, A,/ is a prefix of
As.

Consider two correct nodes n’ and n” active in step s.
Suppose towards a contradiction that (a) A, is a prefix
of Ay but is incompatible with A; and (b) that A, is
a prefix of A; but is incompatible with A;. From (a)
and (b) we get that A,, and A, are incompatible. This
contradicts Lemma 6, which states that all chains that are
the maximal grade-1 chain of some node in step s are
compatible. O

A.0.3. Proof of the Consistency Property. First, we show
that, in every commit step, maximal grade-O chains are
unique. This justifies the use of “the maximal grade-0 chain”
in Algorithm 4, Step 2k, Item 2.

Lemma 9. For every k > 0, in every commit step 2k, for
every node n active in step 2k, there is a unique maximal
grade-0 chain at n.

Proof. Consider a node n active in commit step 2k and
suppose towards a contradiction that there are two different
chains A and A’ that are maximal with grade 0 at n. By the
definition of maximal, A and A’ are incompatible.

By Property 3, at least one active correct node n’ voted
for an extension of A in step 2k — 1 and at least one active
correct node n’ voted for an extension of A’ in step 2k — 1.
Moreover, by Lemma 6, all correct nodes that are active in
proposal step 2k —1 voted for compatible chains in step 2k —
1. Thus, A and A’ are compatible, which is a contradiction.

O

Next, we show that, once a chain is committed by a
correct node, all correct nodes forever vote for extensions
of that chain.

Lemma 10. If a chain A is committed by a correct node
in a step s, then, in step s and in all subsequent steps, all
online correct nodes vote for an extension of A.

Proof. Consider a chain A committed by a correct node n
in a step s, and consider a correct node n’ active in step s
and the chain A’ that n’ votes for in step s.

First, note that, by Lemma 6, all correct nodes active
in step s — 1 vote for compatible chains. Moreover, by the
algorithm, A has grade 1 at n. Moreover, by the algorithm,
A’ is maximal with grade O at n. Hence, by Lemma 7, A is
a prefix of A’.

We have just established that every correct node active
in step s votes in step s for an extension of A. It is easy to
see that, from there on, A remains a prefix of every vote by
every correct node. O

Lemma 10 easily leads us to our first theorem:

Theorem 2. The MMR algorithm satisfies its safety prop-
erty.

Proof. Consider two chains A and A’ committed by two
correct nodes n and n’ in steps s and s’. Note that, by the
algorithm, a correct node commits a chain A only when A
has grade 1. Thus, if s = s, then, by Lemma 6, A and A’
are compatible.

Now suppose that s < s’. By Lemma 10, in step s’ — 1,
all active correct nodes vote for an extension of A. There-
fore, A has grade-1 at n’ in step s’, and since A’ is the
maximal grade-1 chain at n’ in step s’, we have that A is a
prefix of A’. O

A.0.4. Proof of the Liveness Properties. Finally, we turn to
liveness. First we show that, for every proposal step 2k + 1,
k > 0, with probability greater than 1/3, there is a correct
node n in step 2k + 1 that proposes a chain A and A is
committed in step 2k + 4.

Lemma 11. For every proposal step 2k + 1, k > 0, with
probability greater than 1/3, a chain proposed by a correct
node in step 2k + 1 is committed in step 2k + 4.

Proof. Consider a proposal step s = 2k + 1, & > 0. First
note that, by assumption, with probability strictly more than
2/3 (by weight), all active correct nodes in step s+ 1 agree
on a leader message [that is sent by a correct node in
step s. Moreover, by Lemma 8 and by the algorithm, with
probability at least 1/2, in step s, the sender of the leader
message [proposes a chain A; that is an extension of every
chain that every correct node votes for in step s. A; is
therefore an extension of the maximal grade-0 chain of every
active correct node in step s+1, and thus, in step s+1, every
active correct node votes for A;. A; is therefore subsequently
decided in step s + 3.

We conclude that, with probability 2/3-1/2 = 1/3, a
proposal from a correct node is committed in step s+3. [

With Lemma 11, we easily obtain the liveness property
of total-order broadcast.

Theorem 3. The MMR algorithm satisfies its liveness prop-
erty.

Finally, we show that progress is made in an expected
7 steps despite Byzantine behavior.

Theorem 4. In the most general Byzantine case, for every
proposal step s, in expectation, the algorithm commits a
block that was proposed by a correct node during or after
step s in step s + 7.

Proof. By Lemma 11, successfully committing a block pro-
posed by a correct node is a Bernoulli process with parame-
ter 1/3 and with a trial every 2 steps. So, in expectation, the
first success happens after 3 trials, i.e., in step s + 4, and,
by the algorithm, the corresponding chain is committed 3
steps later, in step s + 7. O

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper focuses on the topic of permissionless con-
sensus that is based on Proof-of-Work. Specifically, the
paper presents a permissionless protocol that has constant
expected latency and which provides deterministic security.
Conceptually, the protocol is designed by “’porting” a Proof-
of-Stake protocol to the Proof-of-Work setting.

B.2. Scientific Contributions

6. Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) The paper pushes the theoretical boundary by showing
that permissionless protocols can have deterministic
constant latency, which is an improvement over prior
work.

2) The idea of decoupling the permissionless messaging
layer from consensus logic is deep.

3) The construction and analysis are both very interesting.

4) The paper tackles an important and challenging prob-
lem.

B.4. Noteworthy Concerns

Concerns were raised over several issues. For posterity,
these mainly pertained to the presentation, such as the expo-
sition of various technical aspects of the proposed protocol,
the necessary background information, and providing more
details on the road ahead towards a practical implementa-
tion. All were sufficiently addressed in the final version.

	Introduction
	Background
	Model
	Total-Order Broadcast

	Sieve: Fending Off Time Travel
	Time-Travel-Resilient Broadcast
	Overview of Sieve
	Sieve
	Online-Sieve
	Intuition
	Algorithm
	Example

	Bootstrap-Sieve
	Intuition
	Algorithm
	Example 1: Online-Sieve is Not Enough
	Example 2: Bootstrap-Sieve Locates Antique Messages

	Practical Considerations

	Correctness
	Sieve-MMR: Fully-Permissionless Total-Order Broadcast
	The Sieve-MMR Algorithm
	Leader Election

	Implementing Deterministic Proof-of-Work
	Related Work
	The Road Ahead
	References
	Appendix A: Correctness of the Sieve-MMR Algorithm
	Key Properties of TTRB
	Key Protocol Lemmas
	Proof of the Consistency Property
	Proof of the Liveness Properties

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

