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Abstract

3D pose estimation from 2D image data is a
Sfundamental problem in computer vision. In this paper, a
pose estimation method based on planar-curved features
on the surface of an object is presented. This method is
linear and generally applicable to any high degree(> 2)
planar-curved features. So far, the 3D pose estimation
methods presented in the literature are based either on
point/line features or quadratic-curved features. The
methods based on point and line features have to solve the
correspondence problem. As there are so many edge
points and line segments in an image, to establish the
correspondences of these primitives between images is
very difficult and time consuming in practice. The
methods based on quadratic-curved features have to solve
non-linear equations which normally result in many
pseudo solutions. To eliminate these extra solutions and
choose the right solution is very difficult. Our method is
advantageous in these aspeclts.

1 Introduction

Inferring 3D information from 2D image data is a
fundamental problem in computer vision. 3D pose
estimation of objects in the scene has been addressed
considerably in the literature. Most of the work on 3D pose
estimation focuses on polyhedral objects, while some of it
tries to deal with curved objects.

For curved objects, pose estimation methods are based
on either local features such as the object boundary and
edges [1,2] or the object surface itself [3].

For polyhedral objects, the 3D pose estimation methods
presented in the literature are based on either point/line
features or curved features.
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The methods based on point features fall into three
categories, which is a 3-point problem [4], a 4-point
problem [5] or an N-point problem [6]. The methods based
on line features are mathematically similar to the methods
based on point features [7]. The method proposed in [8]
tends to unify the methods based on point/line features.

Using curved features to determine 3D pose of
polyhedral objects is another popular approach
[9,10,11,12]. In [9] Haralick et al developed a general
method for 3D location estimation based on quadratic-
curved features. They consider two cases: either the shape
and the size of a quadratic feature are both known, or only
its shape is known. Due to the nonlinearity of their
optimization process which generally yields a local
minimum depending on the initial estimates, it is difficult
for them to select the right solution from the many possible
pseudo solutions. In [10,11], R. Safaee-Rad et al presented
a 3D pose estimation method based on a quadratic-curved
feature. Their method is a big improvement as they
resolved the ambiguities that existed in [9]. But still they
have to solve nonlinear equations which result in extra
solutions. In [12], we presented a pose determination
method based on conics for a CAD based vision system in
which the object models are available and this makes it
possible to recognize 3D objects and to determine their
poses from a single image. It is shown that if there exist
two conics on the surface of an object, the object’s pose
can be determined by an efficient one-dimensional search.
In particular, if two conics are coplanar, a closed-form
solution of the object’s pose is presented. In this paper, we
do not assume a CAD based vision system and a conic
feature on the surface. However, we do assume that the
world around us is piecewise planar with rich surface
patterns. Our point for doing so is that planar-curved
features (including quadratic-curved features) are very
popular in human made objects [12,13].



2 3D pose Estimation Based on High Degree
Planar-Curved Features

2.1 Problem Formulation

Our 3D pose estimation method can be devided into
two steps. First, the 3D orientation of the planar-curved
feature’s plane is estimated. Second, based on the
estimated orientation, the 3D position and the third
orientation parameter of the feature is computed. The
second step is easy and generally varies from different
planar-curved features. Therefore in this paper only the
first step is considered.

The problem of 3D-orientation estimation of an object
surface which contains the same N-degree planar-curved
feature across two views can be expressed as follows:
Given camera calibration results, two images of the
feature, it is required to estimate the 3D orientation of the
feature’s plane with respect to the camera coordinate
system. This problem can be further reduced to the
following one: Given two 3D hypersurfaces defined by two
bases (the perspective projections of a high degree planar-
curved feature in two image planes) and two vertices (the
origins of the two camera coordinate systems) with respect
to a camera coordinate system (the first or second one), it
is required to determine the 3D orientation of a plane (with
respect to the same coordinate system) which intersects the
two hypersurfaces and generates a common curve identical
to the high degree planar-curved feature.

2.2 Solution in the Canonical Coordinate Systems

The canonical coordinate systems are defined as any
pair of coordinate systems as long as the following
conditions are met: ( 1 ) each of their two origins coincides
with each of the origins of the original camera coordinate
systems; (1) one of their axes (in this paper it’s the X
axis) are aligned with the translation vector of the original
two camera coordinate systems; (1) the Y (Z) axis of one
canonical coordinate system parallels to the Y (Z) axis of
the other canonical coordinate system.

The two hypersurfaces expressed in the canonical
coordinate systems are as follows:
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where x;=x,+d, dis the distance between the left

and right canonical coordinate systems. Given equations

(1) and (2), it is required to find the parameters r,S,t of
the following plane equation:
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Theorem 1

Equations (1) and (3) represent the planar-curved
feature. From the viewpoint of the right canonical
coordinate system, hypersurface fi, has the following
expression:
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Altogether it has (n+1)(n+2)/2 terms. This theorem can
be easily (although very tedious) proved by applying Wu’s
method proposed in [14].

Equations (4) and (2) represent the same hypersurface.
By comparing the coefficients of the two equations, we
obtain (n+1)(n+2)/2 equations. We can always choose a

canonical pair of coordinate systems such that:
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We see that the relationship for conics proposed in [14]
is only a special case of the general high degree planar-
curved feature.

Equation (6) generally establishes correspondence
between different high degree planar-curved features. We
propose the following correspondence criterion.
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The expressions of k;q,kzq,ks, are similar to the

expressions of ki,,kzp,Ks,. m is the number of high
degree planar-curved features. For the left p -th curved-
feature, the g -th curved feature in the right image which
minimizes the above criterion is its cotrespondence. In
case of ambiguity, the other (n+1)(n+2)/2-5 equations
should be considered.

Equation (7) gives two solutions. one solution can be
obtained by imposing a visibility constraint.

Suppose we have obtained two planes (P;,P,denote
their surface norms). Let M be an arbitrary point on the
plane. The one that satisfies the following constraint is the
actual physical planar surface on which the high degree
planar-curved feature lies.

- - - -
(O/MsP; Ye( O,MeP; )>0, (i=12) )
In our real experiment, the plane thus obtained is used
as an initial solution. A much more accurate solution is
obtained by Newton iteration method which takes the rest
of the redundant equations into account.
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2.3 Solution in the Reference Camera
Coordinate System

Once the parameters 1,S,1 in the canonical coordinate
system is obtained, a simple coordinate transformation can
bring the solution back to the original camera coordinate
system.

3 Experiments

In our paper, without loss of generality, we take cubic
planar-curved features as an example of high degree
planar-curved features. In the canonical coordinate
systems, the hypersurfaces and the plane on which the
high degree planar-curved feature lies are expressed as
follows:
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Let the following equation represents the plane in the first
camera frame:
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[a b c]relates [r s t] by the following equation:
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Where R, is the rotation matrix which transforms the
coordinates of the first camera frame into the first
canonical frame.



We obtain two images (see Fig. 1) from our two CCD
cameras mounted on our mobile vehicle. The calibration
result is obtained by the method proposed in [15]. The
cubic planar-curved feature is fitted by a least meari square
method. In our real experiment, we directly fit the
hypersurface in the canonical coordinate system. The
points used for fitting are obtained by transforming the
points in the retinal plane (assuming f=1) into the
canonical coordinate systems. Table 1&2 are the results
for correspondence and 3D orientation estimation

respectively. Comparing the results of the estimated 3D
orientation of the planar surface with those derived directly
from the calibration results, we see our estimation results
are quite accurate.

Figure 1. Two real images

1st Curved 2nd Curved
o ii=12 Feature in Left | Feature in Left
Image Image
1st Curve in 6.633 x10~7 3.051x10°
Right Image
2nd Curve in 3.052 x10° 2.021x107*
Right Image

Table 1. Values of the Correspondence Criterion

3D Horizontal Plane Vertical Plane
Orientation ’
Calibration | 0439,-0.0125,0364| 0306,-0.401,-0382
Results
Estimated | 0.440,-0.0112,0364} 0311,-0404,~0382
Results
Table 2. 3D Orientation of the Planar Surfaces

4 Conclusion

We have presented a pose estimation method based on
planar-curved features on the surface of an object. This
method is linear and generally applicable to any high
degree(= 2) planar-curved features. It’s soundness has
also been verified by our experimental results.
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