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Set constraints are inclusions between expressions denoting sets of ground
terms. They have been used extensively in program analysis and type
inference. In this paper we investigate the topological structure of the
spaces of solutions to systems of set constraints. We identify a family
of topological spaces called rational spaces, which formalize the notion
of a topological space with a regular or self-similar structure, such as
the Cantor discontinuum or the space of runs of a finite automaton. We
develop the basic theory of rational spaces and derive generalizations and
proofs from topological principles of some results in the literature on set
constraints.

1 Introduction

Set constraints are inclusions between expressions denoting sets of ground
terms. They have been used extensively in program analysis and type in-
ference for many years [3,4,13,15,16,25-27,29]. Considerable recent effort has
focussed on the complexity of the satisfiability problem [1,2,5-8,11,12,14,28].
Set constraints have also recently been used to define a constraint logic pro-
gramming language over sets of ground terms that generalizes ordinary logic
programming over an Herbrand domain [21].

Set constraints exhibit a rich mathematical structure. There are strong connec-
tions to automata theory [11,12], type theory [23,24], first-order monadic logic
[6,7], Boolean algebras with operators [17,18], and modal logic [19]. There are
algebraic and topological formulations, corresponding roughly to “soft” and
“hard” typing respectively, which are related by Stone duality [19].
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Many results in the literature on set constraints are topological in flavor. For
example, Aiken et al. [2] prove that mixed positive and negative set constraints
are strictly more expressive than positive constraints alone. The proof of this
result is based on a compactness lemma which states that a system of positive
constraints is satisfiable if and only if all finite subsets are satisfiable. It is
well known that the compactness of classical propositional and predicate logic
is essentially a topological result: logical compactness is equivalent to the
topological compactness of a dual space. This is also the case here.

In [11], Gilleron et al. introduce tree set automata. Among other results, they
establish various closure properties of these automata and show that every
satisfiable finite system of set constraints has a regular solution. The space of
runs of a tree set automaton can be viewed as a topological space, and analogs
of these results hold in a more general context.

One might wish to incorporate these observations into a theory from which
such results can be derived from general topological principles. This quest
leads us to the definition of rational spaces. This definition is meant to capture
the idea of a topological space with a regular or self-similar structure. The
Cantor discontinuum is a simple example of such a space. Another example
is provided by the space of runs of a Biichi automaton or tree set automaton.
Sets of solutions to (finite) systems of set constraints can also be represented
as (finitary) rational spaces.

Once this definition has been made and the basic theory developed, it is pos-
sible to rederive some of the results mentioned above from general principles,
and in some cases give generalizations. For example, the result of [11] that
every satisfiable finite system of set constraints has a regular solution is tan-
tamount to the fact that every nonempty finitary rational space contains a
rational point. (A rational point is a finitary singleton rational subspace.) In
fact, every finitary rational space is a complete metric space, and is the com-
pletion of its rational points. The significance of this statement in terms of set
constraints is that every finite system of set constraints is determined by its
regular solutions.

This paper is organized as follows. In §2, we review the basic definitions of
set constraints, termset algebras, regular sets, hypergraphs, and tree set au-
tomata. In §3 we introduce rational spaces, give several examples, and develop
their basic theory, including the notions of rational maps, rational subspaces,
rational products, and rational equivalence. In §4 we prove our main theorem,
which characterizes the spaces of solutions of systems of set constraints in
terms of rational spaces. In §5, we give several applications. Finally, in §6 we
draw conclusions and discuss future work.



2 Preliminary Definitions

2.1 Set Frpressions and Set Constraints

Let ¥ be a finite ranked alphabet consisting of symbols f, each with an associ-
ated finite arity. Symbols in ¥ of arity 0, 1, 2, and n are called nullary, unary,
binary, and n-ary, respectively. Nullary elements are called constants. To
avoid trivial special cases, we assume throughout that ¥ contains at least one
constant and at least one nonconstant. The use of the expression f(x1,...,2,)
carries the implicit assumption that f is of arity n.

The set of ground terms over ¥ is denoted Tx. If X = {x,y,...} is a set of
variables, then Ty (X) denotes the set of terms over ¥ and X, considering the
elements of X as symbols of arity 0.

Let B = (U, N, ~, 0, 1) be the usual signature of Boolean algebra. Other
Boolean operators such as — (set difference) and & (symmetric difference)
are defined as usual. Let X + B denote the signature consisting of the disjoint
union of ¥ and B. A set expression over variables X is any element of Ty 15(.X).

A positive set constraint is a formal inclusion ¢ C ), where ¢ and v are set
expressions. We also allow equational constraints ¢ = v, although inclusions
and equations are interdefinable. A negative set constraint is the negation of
a positive set constraint: ¢» € ¢ or o # 1.

We interpret set expressions over the powerset 27> of T%. This forms an algebra
of signature > + B, where the Boolean operators have their usual set-theoretic
interpretations and elements f € ¥ are interpreted as functions
[ — 2t
FlAL, o AL = {f(t,. o ta) [ i€ Ay 1 <0 <n}.

(1)

A set valuation is a map o : X — 27> assigning a subset of 7% to each variable
in X. Any set valuation o extends uniquely to a (¥ + B)-homomorphism

g . T2_|_B(X) — QTE

by induction on the structure of set expressions. We say that the set valuation
o satisfies the positive constraint ¢ C ¢ if o(¢) C o(v)), and satisfies the
negative constraint p € ¢ if o(p) € o(¢0). We write o |= « if the set valuation
o satisfies the constraint a. A system S of set constraints is satisfiable if there
is a set valuation o that satisfies all the constraints in &; in this case we write



o E S and say o is a solution of §. We write § = « if 0 |E o whenever

o |E S, and say «a is a logical consequence of S. We write S = 8" if S | « for
all @ € §'. We say S and S’ are logically equivalent if S =S8’ and §' E S.

2.2 Termset Algebras

Termset algebras were introduced in [19]. These are structures of signature

Y + B satisfying axioms (2)—(6):

axioms of Boolean algebra (2)
fl.oaUy, . )=f(.. .. )U (... y,...) (3)
floe—y,..)=f(.,x,..)=f(.hy,...) (4)

U r@,....1=1 (5)

fET

f,...,hng(l,...,1)=0, f+#g. (6)

A termset algebra is called entire® if it satisfies (7).

fa1,..,20) = 0= \/ (2, =0) . (7)
=1
The ellipses in (3) and (4) indicate that the explicitly given arguments occur
in corresponding places, and that implicit arguments in corresponding places
agree.

The algebra 27> discussed in §2.1 forms a model of these axioms. Another
model is given by the subalgebra of regular subsets of 7% described in §2.3
below.

Some immediate consequences of (2)—(6) are

f(..,0,..0) 0 (8)
flog~a,o) = fo L) —f(oo, 2, 9)
floedy,.) = flor )@ fly,.0) (10)
floeny,..) = floo,a, 0N flooy,..0) (11)

flar Ny, zn Nyn) = flo o 20) N (Y1, Yn) (12)
rCy=f(...,z,...)0C f(...,y,...) (13)

! The term closed was used in [19]. This terminology will be unsuitable in the
present context because of the potential of confusion with topological closure.



UL AL~ 1,1 (14)
. N—— ——

i—1 n—z
Property (14) is called the generalized DeMorgan law.

Let X be a fixed set of variables. Let F' be a subset of Txg(X) closed under
subexpressions. Let F’ denote the set of conjunctions of elements of [ and
their negations. A literal is a variable or a negation of a variable.

Proposition 1 Any set constraint all of whose subexpressions are in I' is
equivalent under the termset algebra axioms (2)—(6) to a finite system of con-
straints of the form ¢ N f(p1,...,0,) = 0, where f € X, @, 01,...,0, € F,
and @ is a conjunction of literals.

PROOF. If the constraint is an equation, write it as two inclusions. Write
an inclusion ¢ C ¢ as N ~ ¥ = 0. Use the DeMorgan laws and the law
~~ = @ of Boolean algebra to push negations occurring outside the scope
of any f € ¥ down until any such negation is applied to a variable or an
expression f(@1,...,%,). Use the generalized DeMorgan law (14) at the out-
ermost level only to transform the expression ~ f(¢1,...,¢,) to a disjunction
of expressions ¢(t1, ..., %), where each v, is either ~; or 1. Note both of
these expressions are in F” (1 is the null conjunction). The expression is now
a monotone Boolean combination of literals and expressions f(1,...,¢n),
where ©1,...,¢, € F'. Use the distributive laws of Boolean algebra outside
the scope of any f € Y only to transform the expression to disjunctive nor-
mal form. Break the resulting disjunction up into several constraints, one
for each disjunct, using the rule p Ut = 0 <= ¢ = 0 A ¢ = 0. Discard
any constraint containing f(¢1,...,¢s) and g(t1,...,%n), f # g, because
the constraint is automatically true by (6). In each of the remaining con-
straints, combine all non-literals into one expression using (12); i.e., replace
Flo1yeoyon) N f(h1, .. 1b,) with f(e1 Nbe, ..., @, Nab,). Replace any con-
straint ¢ = 0, where ¢ is a conjunction of literals alone, with the constraints
N f(1,...,1) =0 for all f € X, as justified by (5). The resulting constraints
are of the desired form. O

2.3  Regular Sets

A subset of Ty is regqular if it is described by a finite bottom-up tree automaton
[10]; equivalently, if it is some set 7 described by a system of simultaneous
set equations of the form

ri=@i(x1,..., 1), 1<i<n (15)



in which each variable x; occurs on the left hand side of exactly one equa-
tion and each right hand side is a disjunction of set expressions of the form
fy1, ... yn), where f € ¥ and y; € {21,..., 2}, | <o < n.lt can be proved
by induction on the depth of terms that any such system has a unique solution.
For example, the system

x=aUg(y) y = g(x) (16)

has the unique regular solution
o(x)={g¢"(a) | n even} o(y) ={9"(a) | n odd} .
2.4 Tree Set Automata and Hypergraphs

Tree set automata were introduced in [11]. They are strongly related to the
hypergraphs introduced in [1], the only essential difference being the inclu-
sion of an acceptance condition in the former. The relation of finite tree
set automata and finite hypergraphs to set constraints has been well stud-

ied [1,2,11,12,21,28].

Definition 2 Let ¥ be a finite ranked alphabet. A Y-hypergraph is a pair
(D, E), where D is a set (not necessarily finite) and E is an indexed collection
of hyperedges

E;:D"—2P  p=arity(f) ,

one for each [ € X.

Thus F, gives a subset of D for constants a, I, is an ordinary binary edge
relation for unary ¢, ete.

Definition 3 A hypergraph (D, E) is said to be entire? if every E;(dy,. .., d,)
is nonempty, deterministic if every Fs(dy,...,d,) is a singleton, and unre-

stricted if every Es(dy,...,d,) = D.
Definition 4 A run of the hypergraph (D, E) is a map 0 : Ts — D such that
for all f(t1,...,t,) € Ty,

O(f(te, ... 1)) € Ep(0(t1), ..., 0(L)) . (17)

2 The term closed was used in [1,2,19,21,28]. This also corresponds to the condition

COND,, of [11].




There exists a run in (D, E) if and only if (D, F) has an entire induced sub-
hypergraph: an entire induced subhypergraph on D’ C D allows the definition
of arun 0§ : Ty — D' by induction; conversely, for any run 6, the induced
subhypergraph on the image 0(Ty) is entire.

Definition 5 Let X be a set of variables. A ¥, X-tree set automaton M is «
tuple (D, E, A), where (D, E) is a X-hypergraph and A is an indexed family
Az, v € X of subsets of D, called accept sets. A tuple L., x € X of subsets

of Ts is accepted by M if there exists a run 0 such that L, ={t | 0(t) € A},
z e X.

In previous work [1,2,11,12,21,28], D and X are assumed to be finite, but we
will find it convenient not impose these restrictions.

3 Rational Spaces

3.1  Definition of Rational Spaces

Let ¥ be a fixed finite ranked alphabet.
Definition 6 A topological ¥-hypergraph is a Y-hypergraph (D, E), finite
or infinite, endowed with a topology on D whose hyperedges

{(d,dy,...,d,) |d € E¢(dy,...,dy)}
are closed in the product topology on D",
Definition 7 A space of runs over ¥ is the space R(D) of runs of a topological
Y-hypergraph D, where the topology on R(D) is inherited from the product

topology on DT=. The space R(D) is called finitary if D is finite.

Recall that the product topology on D™* is the smallest topology such that
all projections m; : § +— 6(t) are continuous. In other words, it is generated by
subbasic open sets

{0160(t)ex}, teTy, xopeninD. (18)

The space R(D) of runs of D, being a space of functions Ty, — D, is a sub-
space of this space. The topology is thus generated by subbasic open sets (18)
restricted to R(D).



Definition 8 A rational space is a space of runs R(D) such that D is compact
and Hausdorff.

We remark here that rational spaces are more than just Cantor spaces; the
representation in terms of D is germane. Formally, this will be reflected in
the restricted class of morphisms defined below, called rational maps. First,
however, let us look at some examples of rational spaces.

Example 9 A simple but revealing example is the Cantor discontinuum. This
space can be constructed by starting from the closed real unit interval [0,1]
and applying the following operation: delete the “middle third”, i.e., the open
interval (%,%), then delete the middle thirds of the remaining intervals; and
so on. The Cantor discontinuum consists of points that are never deleted.

Equivalently, these are all real numbers in the unit interval whose ternary
(base 3) expansion does not contain the digit 1. This is a classical example of
an uncountable nowhere dense set of reals.

The topology on the Cantor discontinuum is inherited from the usual topology
on the real line. With that topology, it is homeomorphic to the topological
product 2¥, or the space of infinite paths of the infinite binary tree with the
intervals as basic open sets, where in this context an interval is a set consisting
of all extensions of some finite prefix.

The Cantor discontinuum has a representation as a finitary rational space over
Y ={a,g}, where a is a constant and g is unary. For D we take the discrete
space {0,1,2} with F,(d) = E,( ) ={0,2}. Corresponding to each point x we
take the run whose value on g™(a) is the n'™ digit in the ternary expansion of
x.

Example 10 Consider an infinite tree that is binary branching at even lev-
els and ternary branching at odd levels. The basic open sets are the intervals.
Equivalently, take the subspace of the real unit interval consisting of all num-
bers whose ternary expansion contains no 2 in an even position. This space has
a representation as a finitary rational space with ¥ = {a, g}, D the discrete

space {0,1,2} x {0,1}, and



The value on ¢g"(a) of the run corresponding to x is (d,n mod 2), where d is
the n™ digit in the ternary expansion of x.

Examples (9) and (10) exhibit a treelike structure, because there is only one
nonconstant symbol and it is unary. Already with two unary symbols, this
intuitive picture is no longer accurate.

Example 11 The following is an example of a non-finitary rational space. Let
X be a set of variables ranging over subsets of Tx,, and consider the family of
set valuations o : X — 275, Endow this set with smallest topology whose closed
sets include all sets of the form {o | o =8} for S a system of set constraints
over X. One can show that the topology on this space is generated by subbasic
clopen (closed and open) sets {o | o =t C a} and {0 | 0 =1 C~a} for
t €Ty and x € X. It was shown in [2] that this space is compact.

We will show in §4 below that this space has the following representation as a
rational space. Take D to be the topological product 2% with E¢(dy,...,d,) =
D. (If X is countable, D is just the Cantor discontinuum.) Associate with
every set valuation o the run

YT R ARt (19)

0 , otherwise.

This space is not finitary unless X is finite. However, it is a product of finitary
spaces, one for each x € X, as can be seen by reversing the binding order of t
and x in the A-expression (19).

Example 12 FEvery termset algebra has a set-theoretic representation as a
topological term automaton whose topology is Stone [19]. These automata
were introduced in [23,24]. They differ from tree set automata in that they are
top-down instead of bottom-up, but they have a naturally defined hypergraph
structure in which the hyperedges are closed, giving rational spaces.

3.2 Basic Properties

Proposition 13 Let R(D) be a space of runs.

(i) If D is Hausdorff, then so is R(D).
(i) If D is compact, then so is R(D).
(tii) If D is finite and discrete (all sets are open), then R(D) is a complete
metric space (all Cauchy sequences converge) under the metric



d(f,n) =27 4Pt (20)
where t s a term of minimal depth on which 0 and n differ, or 0 if no
such term exists.

PROOF. (i) Any product of Hausdorff spaces is Hausdorff and any subspace

of a Hausdorff space is Hausdorff, and R(D) is a subspace of the product DT=.

(ii) Regarding Fy as an (n + 1)-ary relation, we can write

R(D)= () {0eD® [ (0(f(tr,... 1)), 0(t1), ... 0(t,)) € Ey} .
f(tl,...,tn)ETE
The set in this conjunction corresponding to f(¢1,...,t,) is the continuous
preimage of the closed set F; under the projection (Ff(t17...7tn),7'('t1, ey T, )

DT> — D™ thus is closed. By Tychonoff’s Theorem, D™ is compact, and
any closed subspace of a compact space is compact, therefore R(D) is compact.

(iii) It is easily verified that d(6,n) = 0 iff 8 = n, d(0,n) = d(n,0), and
the triangle inequality holds. The two topologies coincide: every basic open
neighborhood in the metric topology is open in the product topology, since

Ne(0)=A{n[d(n,0) < ¢} = (O {n [n(t)=0(1)}

and vice-versa, since if §(t) = u, then

{n In(t) = u} 2 {n | d(n.0) <27 PO} = Ny apann (9) -

The space R(D) is complete because it is compact by (ii), and any compact
metric space is complete. O

Corollary 14 FEvery rational space is compact and Hausdorff. Every finitary
rational space is a complete metric space under the metric (20).

3.3  Rational Maps

The spaces of Examples 9 and 10 are homeomorphic, since both spaces are
compact Hausdorff spaces with countable clopen bases and no isolated points,
and all such spaces are homeomorphic. This is a consequence under Stone
duality of the fact that all countable atomless Boolean algebras are isomorphic.
Indeed, the space of paths in a tree that is binary branching at prime levels

10



and ternary branching at nonprime levels is also homeomorphic to the Cantor
space, but 1t is not clear at all how to assign a finitary rational space structure
to it.

The homeomorphisms relating these spaces apparently do not preserve the
structure inherent in the representation as spaces of runs. Thus the relation
of homeomorphism is too coarse. Reflecting on this observation, one is led to
the realization that rational spaces cannot be defined independent of some
representation; i.e., there is no purely topological definition.

These observations motivate the definition of a restricted class of maps called
rational maps, which are continuous maps preserving the rational structure.
We take these maps as our morphisms in the category of rational spaces.

Definition 15 Let R(D) and R(E) be rational spaces over . A rational map
R(D) — R(E) is a function h : 0 — h o0 induced by a continuous map
h:D — & such that

WEP(dy, ... dy)) C ES(h(dy), ..., h(dy)) . (21)

A rational map R(D) — R(E) is called a rational embedding if it is injective,
and a refinement if it is bijective.

Note that the terms “injective” and “bijective” in this definition refer to /Az,
not to h. There exist rational embeddings and refinements in which h is not
bijective.

Any rational embedding or refinement is a homeomorphism between its do-
main and image, since any continuous bijection from a compact space to a
Hausdorff space is a homeomorphism.

We mention in particular two special kinds of rational embeddings:

Narrowing If D= (D, FE)and D' = (D, E') are two hypergraphs on the
same set of vertices D, and if all Ey(dy,...,d,) C E}(dy,...,d,), then the
identity map D — D induces an embedding R(D) — R(D'). Such an R(D)
is called a narrowing of R(D').

Induced Subspaces If D = (D, F)is the induced subhypergraph of D' =
(D', E') on some subset D C D', i.e. if E¢(dy,...,d,) = E(dy,...,d,)N D
for all dq,...,d, € D, then the inclusion map D — D’ induces an embedding
R(D) — R(D'). Such an R(D) is called an induced subspace of R(D').

11



Example 16 The map (d,0) — 0, (d,1) — 2 induces a rational map from
the space of Example 10 into the space of Example 9. The image consists of
the single point .020202---. This is not a rational embedding, since it s not
injective.

Example 17 The hypergraph with vertices {0,1,2} x {0,1} and hyperedges

constitutes a narrowing of the space of Example 10. This is the subspace con-
sisting of all numbers whose ternary expansion contains no 1 or 2 in an even
position or 1 in an odd position.

Example 18 The induced subhypergraph of {0,1,2} x{0,1} on {0,1} x{0,1}
generates an induced subspace of the space of Example 10. This is the subspace
of all numbers whose ternary expansion contains no 2.

Example 19 Here is an example of a rational embedding which is neither a
narrowing nor an induced subspace. Let ¥ = {a, g}, where a is a constant and
g 1s unary. Consider the following hypergraph:

g
a—»L»o—»og
g g g

Map the first three vertices to 0 and the last vertex to 2. This gives a rational
embedding of a singleton finitary rational space into the Cantor discontinuum.

The tmage is the rational number .000200020002 - - -.

Example 20 The induced subspace on the subhypergraph {0,2} is a refine-
ment of the Cantor discontinuum, as ts the subspace of Fxample 18 under the
map (d,c) — 2d.

3.4/ Rational Products

Definition 21 The rational product of any indexed family R(D,) of rational
spaces is the space R(11,D,), where

EfPe(dy, o d) = TLEP (m(dy), - o (d)

Intuitively, the runs in each factor space can develop independently. The topo-
logical product 11, D, is Hausdorff and compact by Tychonoff’s Theorem, and

12



E?IDE is closed in the product topology, thus R(11,D,) is a rational space.

Strictly speaking, the rational product R(Il,D,) is not the same as the set-
theoretic (Cartesian) product II,R(D,), although the two are in one-to-one
correspondence, as can be seen by exchanging the order of A-bindings as in
Example 11.

The projections =, : 11, D, — D, induce projections 7, : R(11,D,) — R(D,),
which are rational maps.

A finite rational product of finitary spaces is finitary.
3.5  Rational Subspaces and Rational Points

Definition 22 A rational subspace of a rational space is any embedded image
of another rational space. In other words, a subspace R of a rational space
R(E) is a rational subspace if there exists a rational space R(D) and a rational

embedding h : R(D) — R(E) such that R = iL(R(D))

A rational subspace is entire if it is the embedded image of a rational space
defined on an entire hypergraph.

Definition 23 A rational point of a rational space is a finitary singleton
rational subspace.

Example 24 The rational points of the Cantor discontinuum are the rational
numbers, i.e., real numbers whose ternary expansion is ultimately periodic.

Proposition 25 Let R(D) be any rational space. For any closed set @ C D
and t € Ts, the closed set 7' (x) = {0 | 0(t) € x} is a rational subspace of
R(D). Moreover, if R(D) is finitary, then so is 7; *(z).

PROOF. Let F' be the set of subterms of ¢. Let * be a new element not in
Fand let Dy = F'U {x}. Let Dx be the discrete hypergraph on this set with
hyperedges

t,...,tn ,'f t,...,tn 1 bt {4
Byt gy = 4 Yot} G f (1) is a subterm o

, otherwise.

Now take the rational product R(Dx) x R(D), then take the induced subspace
obtained by discarding the open set consisting all vertices of the form (¢,d)
ford¢ x. O

13



Proposition 26 The intersection of two (finitary) rational subspaces is again
a (finitary) rational subspace.

PROOF. Let hy : Dy — &, hy : Dy — £ be maps inducing rational maps
hy R(Dy) — R(E), hy R(Dy) — R(E). Construct the rational product
R(D1) x R(Dy) with projections 7; : Dy x Dy — D;, ¢« € {1,2}, and restrict
to the diagonal set C = {(dy,dz) | h1(d1) = ha(d2)}. Let R(C) be the induced
rational subspace. The map h((dy,d2)) = hi(dy) = ha(dz) gives the desired

intersection. O

Definition 27 The essential subspace of a rational space R(D) is the induced
subspace on the set Uger(p) 0(1x).

In other words, we discard vertices not appearing in any run. The essential

subspace of R(D) is a refinement of R(D).

3.6 Rational Fquivalence

Definition 28 Two spaces are rationally equivalent if they have a common
refinement.

Proposition 29 Rational equivalence is transitive.

PROOF. [t suffices to show the following Diamond Lemma: if R(D;) and
R(D,) are both refinements of R(E), then R(D;) and R(D,) have a common
refinement. Let R(C) be the space constructed in the proof of Proposition
26. The rational maps R(C) — R(D;) and R(C) — R(D) induced by the
restriction of 7 and 73 to domain C are bijective, thus R(C) is the desired
common refinement. O

4 A Characterization of Set Constraints

In this section we give a complete characterization of the sets of solutions
to systems of set constraints in terms of rational spaces. Our main result
is a one-to-one correspondence, up to logical equivalence on one side and
rational equivalence preserving X on the other, between (finite) systems of
set constraints over variables X and certain (finitary) subspaces of a certain
rational space (Theorem 31).

14



Let ¥ be a fixed finite ranked alphabet and let X be a fixed set of variables
(finite or infinite). Let S be a finite system of set constraints over ¥ and X. In
[1] it was shown how to construct a finite hypergraph (D, E) whose runs are
in one-to-one correspondence with the solutions o : X — 27> of S, where X is
the set of variables occurring in §. This result is also implicit in [11]. One can
construct (D, E) by various alternative methods [2,19,21]. Here is yet another
method.

Let F be any subset of Txyg(X) (finite or infinite) containing X and closed
under subexpressions. Let 2" be the topological product of F' copies of the
discrete space 2 = {0, 1}.

The space of all unrestricted runs 0 : Ty, — 2 is homeomorphic to the space
of all functions o : F' — 2™ taking the product topology on each. This can
be seen by writing

0: Ty = —2 o IN—=1T1s — 2 (22)

and exchanging the order of A-binding. Their respective topologies are gener-
ated by subbasic clopen sets

{0100)(e) =0y {o]ale)t) =10}
for be {0,1},t €1y and ¢ € F.

Note that the set of all functions ¢ : F — 27 includes some that are not
partial set valuations. In order to be a partial set valuation, o must be a
(¥ + B)-homomorphism on its domain, i.e., must satisfy the following require-
ments for expressions in [

o(pU)=a(p)Uo())
o(~p)=~o(p) (
o(fler,-pn)) ={f(t,.. . 1) [ ti € alwn), 1 <i<n} .

S S
DN DO DO
U =~ W
N g

Likewise, the set of functions 0 : Ty, — 2% is the unrestricted rational space
R(2). Let us narrow this space as follows.

Let S be any system of set constraints all of whose subexpressions are in F'.
Let F’ denote the set of conjunctions of elements of F' and their negations.
For each d € 2F, let d’ C F' be the smallest set of expressions including d
and {~ ¢ | ¢ € F'—d} and closed under conjunction. Call a set expression
¢ S-consistent if ¢ = 0 1s not a logical consequence of & and the equational
axioms (2)—(6) of termset algebra. Define the hyperedges
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E}S(dl,...,dn):{d | for every ¢ € d' and ¢, € di, 1 <@ < n,
© N f(@1y...,pn) is S-consistent} .

The (n + 1)-ary relation E}S is closed, as is any set

{u | for all basic open neighborhoods x of u, P(x)}

in any topological space for any property P of open sets whatsoever. Denote
the resulting rational space by R(2F,S).

Theorem 30 Let the function o : F — 2™ correspond to the unrestricted
run 0 @ Ts — 28 under the correspondence (22). Let S be any system of
set constraints all of whose subexpressions are in F. Then o is a partial set
valuation satisfying S if and only if 0 is a run of R(2F,S).

PROOF. If ¢ is a partial set valuation on F', then it extends uniquely by
induction to a total set valuation o’ : Tyyg(X) — 27> Such a map is a
(¥ + B)-homomorphism and its image is a subalgebra A of the set-theoretic
termset algebra 275, Moreover, since o = S, A satisfies the equations and
inequalities in S.

Let f(t1,...,t,) be any ground term. For any ¢ € 0(f(t1,...,t,)) and ¢; €
0(t;)', 1 < i < n, by (22) we have f(t1,...,1,) € d'(p) and t; € o'(p;), 1 <
i < n, thus f(t1,...,t,) € (N fl1,. - pn)). Then @ N fle1,...,00) is S-
consistent, since it is nonzero in the termset algebra A. Since the ¢, p1,..., ¢,

were arbitrary, 0(f(t1,...,1,)) € E}S(@(tl), ..., 0(t,)), and since f(t1,...,1,)
was arbitrary, 0 is a run of R(2!", S).

Conversely, suppose 0 is a run of R(27,8). Under the correspondence (22),
the properties (23)—(25) become

U €0(t) =@ € 0(t)or yp € 0(1) (26)

~p € 0(t) = € 0(1) (27)
F(P1seeyon) €0(1) =Ty, ..ty t = fty,... 1)

and , €0(t;), 1<i<n (28)

for expressions U, ~ @, and f(¢1,...,p,) € F. The first two of these follow
immediately from fact that §(¢)" is consistent with the laws of Boolean algebra
(2). For (28), suppose first that f(p1,...,¢,) € 0(t). For any g € ¥,

t=g(tr,....tn) = 0(t) € E;(0(t1),- ... 0(tn))
= fle1,...,0n) Ng(l,..., 1) is S-consistent
—m=nand f=yg by (6).
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Thust = f(t1,...,1,) and 0(t) € E}S(G(tl), ..., 0(t,)). Now each 6(¢;)" contains
some ©; € {@i,~p}, and f(@1,...,0.) N f(1,...,1,) must be S-consistent.
By properties (8) and (12), the only S-consistent possibility is ¢; = ¢, 1 <
i < n, thus p; € 0(t;), 1 <@ < n.

For the other direction of (28), suppose ¢, € 0(¢;), 1 < ¢ < n. Since 0
is a run, for any ¢ € 0(f(t1,...,t.)), ¥ 0 f(p1,...,9n) is S-consistent.
But 8(f(t1,...,t,))" contains at least one of f(p1,...,¢.), ~ fl@1,...,¢n),
and the former is the only S-consistent choice. Therefore f(¢1,...,0,) €

O(f(t1,... ta)).

Finally we show that o = S. If not, then by Proposition 1, there exists a
logical consequence © N f(¢1,...,¢n) =00f S, ¢, 01,...,0, € F', such that
o'l N fle1,...,¢,)) # 0. No term with head symbol g # f can be in ¢/(p N
fl@1,. ..y 0n)), thus there must be a term f(t1,...,t,) € o'(eNfl@1, ..., 0n)).
Then f(t1,...,1,) € 0'(p) and t; € 0'(¢i), 1 < i < n, and by the correspon-
dence (22), ¢ € O(f(t1,...,1,)) and @; € 0(¢;)', 1 < ¢ < n. But since 6 is
a run, O(f(t1,...,1,)) € E}S(@(tl), ..., 0(t,)), therefore © N f(p1,...,0n) is
S-consistent. This is a contradiction. O

Theorem 30 implies that if /7 C F;,, where F; and F, are subexpression-closed
families of set expressions over X, and if & is any system of set constraints
over Iy, then R(2%2,8) is a refinement of R(2/1,8) under the natural projec-
tion 22 — 211 In particular, for every subexpression-closed family F of set
expressions over X, R(2F, @) is a refinement of R(2%, @).

Similarly, if S; and S, are systems of set constraints over F' and §; E S,
then any logical consequence of Sy is a logical consequence of &7, therefore

R(2F,8;) is a narrowing of R(21,Ss).

Combining these observations, we see that every R(2!",S) is a rational sub-
space of R(2X, @), since R(2!",8) is a narrowing of R(2"", &), which in turn
is a refinement of R(2%, ).

For € X, let us denote also by x the clopen set {d | @ € d} of any hypergraph
2. Let us say that a rational embedding between spaces R(2!", S) preserves X
if the map h on the underlying hypergraphs satisfies x = h=!(z) for all z € X.
Note that both the refinement R(272,S) — R(2!1,8) and the narrowing
R(2F,81) — R(2F',S;) preserve X in this sense. Let us say that a rational
equivalence preserves X if the functions hy : C — 2™ and hy : C — 272 from

the hypergraph underlying the common refinement R(C) satisfy the property
that hy'(x) = hy'(x) for all € X.

The following is our main theorem:.
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Theorem 31 Let X be any set of variables. Up to logical equivalence on one
stde and rational equivalence preserving X on the other, the systems S of set
constraints over X are in one-to-one correspondence with the rational sub-
spaces R(2F,8) of R(2X,@). If X is finite, then the finite systems of set con-
straints correspond to the finitary subspaces of R(2%,@). The correspondence
preserves the partial orders of logical entailment on one side and X -preserving
rational embedding on the other.

PROOF. For any system of set constraints &, let Fs be the smallest subex-
pression-closed subset of Ty 15(X) containing X and all expressions occurring

in S. Consider the map p : S — R(25,8).

First we show that up to X-preserving rational equivalence on the right hand
side, the map p is well-defined on logical equivalence classes on the left hand
side. Suppose 1 | Sy and S |E Sy. Let Iy = Fs,, Fy = Fs,, and F = Fy U Fy.
Then R(2F,S)) is a refinement of R(211,8;) and R(2F,Ss) is a refinement of
R(2F2 S2). But since S and Sy have the same logical consequences, the two
spaces R(2I",S;) and R(2F,S;) coincide, thus form a common refinement of

(
R(2!1,8;) and R(2!2,8;). Moreover, the natural refinements R(2",8;) —
R(211,8;) and R(2,S,) — R(2!2,8,) preserve X.

To show that the map y is bijective, suppose R(21,S8;) and R(2!2,S;) have a
common refinement R(D) with underlying maps hy : D — 21 hy : D — 212
such that h7'(z) = hy'(z), * € X. It follows that for any run # of R(D),
tely,and x € X,

A

hi(0)(t) € & <= hy(0)(t) € o .

Thus under the correspondence (22), the runs of R(2/1,8;) and R(2%2,S,)
correspond to the same family of set valuations. By Theorem 30, §; and &
have the same set of solutions, thus are logically equivalent.

Suppose X is finite. If S is finite, then R(2s,S) is finitary. Conversely, if
R(2Fs,8) is finitary, then by Proposition 1, S is logically equivalent to a
finite system.

Finally, let &1 and Sy be two systems of set constraints, and let Iy = Fg,,
Fy = Fs,, and ' = I} U F,. As argued above, if S; | S, then R(2F,S;) is
a narrowing of R(2F,8,), therefore gives a rational embedding preserving X.
Conversely, if h : R(211,81) — R(2!2,S,) is a rational embedding preserving
X induced by h : 2I1 — 282 then for any run 0 of R(211,8;) and ¢ € Tk,

A

0(t) € 2 <= h(0(t)) € h(z) <= h(O)(t) € x .
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Thus under the correspondence (22), the set valuation corresponding to the
run 0 of (271, 8;) also corresponds to the run A(f) of R(2!2,S,). By Theorem

30, every solution of S is also a solution of Sy, thus &1 E S;. O

We remark that the Stone dual St(Fx/S) of the free termset algebra on
generators X modulo S [19], embedded in 27+8(X) in the natural way, gives
rise to an induced subspace R(St(Fx/S)) of R(2T2+s(X) S).

5 Applications

In this section we apply the theory of rational spaces to set constraints. We
rederive several results in the literature on set constraints and tree set au-
tomata in terms of rational spaces. In many cases we are able to generalize
the results and give shorter proofs that reveal the topological principles at
work.

5.1 Positive and Negative Constraints

In [2], Aiken et al. prove that mixed positive and negative set constraints
are strictly more expressive than positive constraints alone. The proof of this
result is based on a compactness lemma which states that a system of positive
constraints is satisfiable if and only if all finite subsets are satisfiable. Under
the correspondence of Theorem 31, the compactness lemma of [2] is equivalent
to the compactness of the space R(2%, @).

Now the fact that negative constraints can express something that positive
constraints alone cannot is a simple consequence of the observation that all sys-
tems of positive set constraints define closed, therefore compact, sets; whereas
the set A of solutions of @ # 0 is not compact: if o, (x) = {t | depth(¢) > n},
then {o,, | n > 0} is an infinite subset of A with no limit point in A.

5.2 Entire Subspaces

In §2.4, we argued that a hypergraph has a run iff it has an entire induced
subhypergraph. This essential fact is used in several algorithms for satisfiabil-
ity of set constraints [1,2,11,12,28]. Similarly, a rational space is nonempty if
and only if it contains an entire subspace. This can be generalized as follows.
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Theorem 32 Fvery (finitary) rational space is a (finite) union of entire sub-
spaces. Qver a language with only constants and unary function symbols, every
rational space is essentially entire.

PROOF. The essential subspace of R(D) is

R( U 0Ts)= U RO(Ty), (29)

0eR(D) R (D)

and #(Tx) is entire. This union is finite if D is, since there are only finitely
many induced subspaces. Any entire subspace of R(D) is a rational subspace
of an entire induced subspace of R(D).

Over a language with only constants and unary function symbols, the union
U, D, of any family D, of entire induced subhypergraphs of D is an entire
induced subhypergraph of D. (Note, however, that in general R(U, D,) #
U, R(D;)! A counterexample is given below in §5.4.) Applied to (29), this

says that the essential subspace of R(D) is entire. O

5.3  Density of Rational Points

Gilleron et al. [11] prove that every satisfiable finite system of set constraints
has a regular solution. Under the correspondence of Theorem 31, this reduces
to the following fact about finitary rational spaces:

Proposition 33 Every nonemply finitary rational space contains a rational
point.

PROOF. If R(D) is nonempty, then D has an entire induced subspace R(D’).
In turn, R(D’) has a deterministic narrowing R(D"), which is a rational
point. O

A rational point corresponds to a deterministic tree set automaton, which has
a unique run. Such automata accept regular sets, as can be seen by writing
down a system of regular equations of the form (15), one variable for each
state.

However, there are more rational points in a finitary rational subspace than
just those obtained by narrowings of entire induced subspaces. Indeed, there
are only finitely many narrowings of entire induced subspaces, whereas the
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number of rational points is infinite in general. For example, the Cantor dis-
continuum contains countably many rational numbers. An example of a ra-
tional point of the Cantor discontinuum that is not a narrowing of an entire
induced subspace is given in Example 19. This subspace cannot be represented
on a hypergraph of fewer than four vertices.

The following result says that the rational points of any nonempty finitary
rational space are dense. In terms of set constraints, the significance of this
theorem is that every finite system of positive set constraints is determined
by its regular solutions.

Theorem 34 FEvery finitary rational space is the completion of its rational
points.

PROOF. Let R(D) be a finitary rational space. Recall that R(D) is a com-
plete metric space. For any + C D and t € Tx, by Proposition 25 the subbasic
open set {0 | 9(t) € x} is a finitary rational subspace of R(D). Any basic
open set A of R(D) is a finite intersection of subbasic open sets, and A is a
finitary rational subspace of R(D) by Proposition 26. By Proposition 33, any
nonempty such A contains a rational point. Thus the set of rational points is

dense in R(D), and its closure is R(D). O

5.4  Closure Properties of Tree Set Automata

In [11], it is claimed without proof that the family of languages accepted by tree
set automata is closed under (finite) union, intersection, and cylindrification.

Closure under intersection can be shown as follows. Let D, be an indexed
family of tree set automata with tuples A, of accept sets. The tuple A, is
an indexed family A,; of subsets of D,. Take the induced subspace of the
product II,D, consisting of points N,(Il,A,; U I, ~ A,;). This corresponds
to the unification construction of [21,20]. The resulting automaton gives the
desired intersection.

Cylindrification is effected as follows. If D is a tree set automaton, take the
rational product D x {0,1} of D with a two-element unrestricted hypergraph.
For A an accept set in D, take A’ = 77'(A), and add the new accept set

w3 (1).

Contrary to the claim of [11], the family of languages accepted by tree set
automata is only closed under union for signatures ¥ containing at most one
constant or at least one symbol of arity two or greater. In those cases, a marked
union J, D, x {x} of the hypergraphs with the naturally induced hyperedges
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will give the desired union of sets of runs: in the case of one constant symbol
a,if (a) € D, then the entire image of § must be contained in D,; and in the
case of at least one symbol f of arity two or greater, there can be no run 6
taking a value d € D, and e € D, for x # y, since F¢(d,e) = &, so the run
cannot be completed.

For ¥ containing at least two constants a, b and no symbol of arity greater than
one, the family of languages accepted by tree set automata is not closed under
union. Consider the two systems of set constraints {x = 1} and {x = 0}. Let
M be any tree set automaton accepting at least the union of the two sets of
solutions. Because M accepts the solutions of the first system, it must admit a
run 6 with 8(Ty) C A,. Because M accepts the solutions of the second system,
it must admit a run 5 with 5(7y) C A.,. Let H denote any composition of
unary functions. Then the function

O(t) , ift = H(a) for some H,
n(t), if t = H(b) for some H

At.

is a legal run of M, but does not satisfy either of the constraints z = 1 or

xz=0.

6 Conclusion

In this paper we have investigated the topological structure of the spaces of so-
lutions of systems of set constraints. We have identified a family of topological
spaces called rational spaces, which formalize the notion of a topological space
with a regular or self-similar structure, such as the Cantor discontinuum. We
have developed the basic theory of rational spaces and applied this theory to
understand more fully the structure of set constraints.

We have not developed the idea of self-similarity, although it is clear that
rational spaces exhibit a high degree of self-similarity in the form of ubiquitous
self-embeddings. For example, it should be possible to derive an alternative
proof of Theorem 34 by taking fixpoints of contractive self-embeddings. Alfons
Geser has also pointed out a strong similarity to fractals, which is another
connection that may be worth investigating.

In [9], we apply these results further to provide a Gentzen-style axiomatization

involving sequents ® = W, where ® and U are finite sets of set constraints,
and give completeness and incompleteness results for this system.
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