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Set constraints are inclusions between expressions denoting sets of ground
terms� They have been used extensively in program analysis and type
inference� In this paper we investigate the topological structure of the
spaces of solutions to systems of set constraints� We identify a family
of topological spaces called rational spaces� which formalize the notion
of a topological space with a regular or self�similar structure� such as
the Cantor discontinuum or the space of runs of a �nite automaton� We
develop the basic theory of rational spaces and derive generalizations and
proofs from topological principles of some results in the literature on set
constraints�

� Introduction

Set constraints are inclusions between expressions denoting sets of ground
terms� They have been used extensively in program analysis and type in�
ference for many years ���������	��
��	��
����� Considerable recent e�ort has
focussed on the complexity of the satis�ability problem �����	����������������
Set constraints have also recently been used to de�ne a constraint logic pro�
gramming language over sets of ground terms that generalizes ordinary logic
programming over an Herbrand domain �����

Set constraints exhibit a rich mathematical structure� There are strong connec�
tions to automata theory �������� type theory �������� �rst�order monadic logic
�
�
�� Boolean algebras with operators ��
����� and modal logic ����� There are
algebraic and topological formulations� corresponding roughly to �soft� and
�hard� typing respectively� which are related by Stone duality �����
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Many results in the literature on set constraints are topological in �avor� For
example� Aiken et al� ��� prove that mixed positive and negative set constraints
are strictly more expressive than positive constraints alone� The proof of this
result is based on a compactness lemma which states that a system of positive
constraints is satis�able if and only if all �nite subsets are satis�able� It is
well known that the compactness of classical propositional and predicate logic
is essentially a topological result� logical compactness is equivalent to the
topological compactness of a dual space� This is also the case here�

In ����� Gilleron et al� introduce tree set automata� Among other results� they
establish various closure properties of these automata and show that every
satis�able �nite system of set constraints has a regular solution� The space of
runs of a tree set automaton can be viewed as a topological space� and analogs
of these results hold in a more general context�

One might wish to incorporate these observations into a theory from which
such results can be derived from general topological principles� This quest
leads us to the de�nition of rational spaces� This de�nition is meant to capture
the idea of a topological space with a regular or self�similar structure� The
Cantor discontinuum is a simple example of such a space� Another example
is provided by the space of runs of a B�uchi automaton or tree set automaton�
Sets of solutions to ��nite� systems of set constraints can also be represented
as ��nitary� rational spaces�

Once this de�nition has been made and the basic theory developed� it is pos�
sible to rederive some of the results mentioned above from general principles�
and in some cases give generalizations� For example� the result of ���� that
every satis�able �nite system of set constraints has a regular solution is tan�
tamount to the fact that every nonempty �nitary rational space contains a
rational point� �A rational point is a �nitary singleton rational subspace�� In
fact� every �nitary rational space is a complete metric space� and is the com�
pletion of its rational points� The signi�cance of this statement in terms of set
constraints is that every �nite system of set constraints is determined by its
regular solutions�

This paper is organized as follows� In x�� we review the basic de�nitions of
set constraints� termset algebras� regular sets� hypergraphs� and tree set au�
tomata� In x� we introduce rational spaces� give several examples� and develop
their basic theory� including the notions of rational maps� rational subspaces�
rational products� and rational equivalence� In x� we prove our main theorem�
which characterizes the spaces of solutions of systems of set constraints in
terms of rational spaces� In x	� we give several applications� Finally� in x
 we
draw conclusions and discuss future work�

�



� Preliminary De�nitions

��� Set Expressions and Set Constraints

Let � be a �nite ranked alphabet consisting of symbols f � each with an associ�
ated �nite arity� Symbols in � of arity �� �� �� and n are called nullary� unary�
binary� and n�ary� respectively� Nullary elements are called constants� To
avoid trivial special cases� we assume throughout that � contains at least one
constant and at least one nonconstant� The use of the expression f�x�� � � � � xn�
carries the implicit assumption that f is of arity n�

The set of ground terms over � is denoted T�� If X � fx� y� � � �g is a set of
variables� then T��X� denotes the set of terms over � and X� considering the
elements of X as symbols of arity ��

Let B � ��� �� � � �� �� be the usual signature of Boolean algebra� Other
Boolean operators such as � �set di�erence� and � �symmetric di�erence�
are de�ned as usual� Let � � B denote the signature consisting of the disjoint
union of � and B� A set expression over variablesX is any element of T��B�X��

A positive set constraint is a formal inclusion � � �� where � and � are set
expressions� We also allow equational constraints � � �� although inclusions
and equations are interde�nable� A negative set constraint is the negation of
a positive set constraint� � �� � or � �� ��

We interpret set expressions over the powerset �T� of T�� This forms an algebra
of signature � � B� where the Boolean operators have their usual set�theoretic
interpretations and elements f 	 � are interpreted as functions

f � ��T��n 
 �T�

f�A�� � � � � An� � ff�t�� � � � � tn� j ti 	 Ai� � � i � ng �
���

A set valuation is a map � � X 
 �T� assigning a subset of T� to each variable
in X� Any set valuation � extends uniquely to a �� � B��homomorphism

� � T��B�X�
 �T�

by induction on the structure of set expressions� We say that the set valuation
� satis�es the positive constraint � � � if ���� � ����� and satis�es the
negative constraint � �� � if ���� �� ����� We write � j� � if the set valuation
� satis�es the constraint �� A system S of set constraints is satis�able if there
is a set valuation � that satis�es all the constraints in S� in this case we write
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� j� S and say � is a solution of S� We write S j� � if � j� � whenever
� j� S� and say � is a logical consequence of S� We write S j� S � if S j� � for
all � 	 S �� We say S and S � are logically equivalent if S j� S � and S � j� S�

��� Termset Algebras

Termset algebras were introduced in ����� These are structures of signature
� � B satisfying axioms �����
��

axioms of Boolean algebra ���

f�� � � � x � y� � � �� � f�� � � � x� � � �� � f�� � � � y� � � �� ���

f�� � � � x� y� � � �� � f�� � � � x� � � ��� f�� � � � y� � � �� ����
f��

f��� � � � � �� �� �	�

f��� � � � � �� � g��� � � � � �� �� � f �� g � �
�

A termset algebra is called entire � if it satis�es �
��

f�x�� � � � � xn� � ���
n�
i��

�xi � �� � �
�

The ellipses in ��� and ��� indicate that the explicitly given arguments occur
in corresponding places� and that implicit arguments in corresponding places
agree�

The algebra �T� discussed in x��� forms a model of these axioms� Another
model is given by the subalgebra of regular subsets of T� described in x���
below�

Some immediate consequences of �����
� are

f�� � � � �� � � �� � � ���

f�� � � ��x� � � �� � f�� � � � �� � � �� � f�� � � � x� � � �� ���

f�� � � � x� y� � � �� � f�� � � � x� � � ��� f�� � � � y� � � �� ����

f�� � � � x � y� � � �� � f�� � � � x� � � �� � f�� � � � y� � � �� ����

f�x� � y�� � � � � xn � yn� � f�x�� � � � � xn� � f�y�� � � � � yn� ����

x � y��f�� � � � x� � � �� � f�� � � � y� � � �� ����

�f�x�� � � � � xn� �
�
g ��f

g��� � � � � ��

� The term closed was used in 
���� This terminology will be unsuitable in the
present context because of the potential of confusion with topological closure�
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�
n�
i��

f��� � � � � �� �z �
i��

��xi� �� � � � � �� �z �
n�i

� � ����

Property ���� is called the generalized DeMorgan law�

Let X be a �xed set of variables� Let F be a subset of T��B�X� closed under
subexpressions� Let F � denote the set of conjunctions of elements of F and
their negations� A literal is a variable or a negation of a variable�

Proposition � Any set constraint all of whose subexpressions are in F is
equivalent under the termset algebra axioms ��	
��	 to a �nite system of con�
straints of the form � � f���� � � � � �n� � �� where f 	 �� ����� � � � � �n 	 F ��
and � is a conjunction of literals�

PROOF� If the constraint is an equation� write it as two inclusions� Write
an inclusion � � � as �� � � � �� Use the DeMorgan laws and the law
��� � � of Boolean algebra to push negations occurring outside the scope
of any f 	 � down until any such negation is applied to a variable or an
expression f���� � � � � �n�� Use the generalized DeMorgan law ���� at the out�
ermost level only to transform the expression �f���� � � � � �n� to a disjunction
of expressions g���� � � � � �m�� where each �i is either ��j or �� Note both of
these expressions are in F � �� is the null conjunction�� The expression is now
a monotone Boolean combination of literals and expressions f���� � � � � �n��
where ��� � � � � �n 	 F �� Use the distributive laws of Boolean algebra outside
the scope of any f 	 � only to transform the expression to disjunctive nor�
mal form� Break the resulting disjunction up into several constraints� one
for each disjunct� using the rule � � � � � 
� � � � � � � �� Discard
any constraint containing f���� � � � � �n� and g���� � � � � �m�� f �� g� because
the constraint is automatically true by �
�� In each of the remaining con�
straints� combine all non�literals into one expression using ����� i�e�� replace
f���� � � � � �n� � f���� � � � � �n� with f��� � ��� � � � � �n � �n�� Replace any con�
straint � � �� where � is a conjunction of literals alone� with the constraints
�� f��� � � � � �� � � for all f 	 �� as justi�ed by �	�� The resulting constraints
are of the desired form� �

��� Regular Sets

A subset of T� is regular if it is described by a �nite bottom�up tree automaton
����� equivalently� if it is some set x� described by a system of simultaneous
set equations of the form

xi��i�x�� � � � � xm� � � � i � n ��	�

	



in which each variable xi occurs on the left hand side of exactly one equa�
tion and each right hand side is a disjunction of set expressions of the form
f�y�� � � � � yn�� where f 	 � and yi 	 fx�� � � � � xmg� � � i � n� It can be proved
by induction on the depth of terms that any such system has a unique solution�
For example� the system

x � a � g�y� y � g�x� ��
�

has the unique regular solution

��x� � fgn�a� j n eveng ��y� � fgn�a� j n oddg �

��
 Tree Set Automata and Hypergraphs

Tree set automata were introduced in ����� They are strongly related to the
hypergraphs introduced in ���� the only essential di�erence being the inclu�
sion of an acceptance condition in the former� The relation of �nite tree
set automata and �nite hypergraphs to set constraints has been well stud�
ied ������������������

De�nition � Let � be a �nite ranked alphabet� A ��hypergraph is a pair
�D� E�� where D is a set �not necessarily �nite	 and E is an indexed collection
of hyperedges

Ef � Dn
 �D � n � arity�f� �

one for each f 	 ��

Thus Ea gives a subset of D for constants a� Eg is an ordinary binary edge
relation for unary g� etc�

De�nition � A hypergraph �D�E� is said to be entire � if every Ef�d�� � � � � dn�
is nonempty� deterministic if every Ef �d�� � � � � dn� is a singleton� and unre�
stricted if every Ef �d�� � � � � dn� � D�

De�nition � A run of the hypergraph �D� E� is a map � � T� 
 D such that
for all f�t�� � � � � tn� 	 T��

��f�t�� � � � � tn��	Ef ���t��� � � � � ��tn�� � ��
�

� The term closed was used in 
��
����
��
��� This also corresponds to the condition
COND� of 
����






There exists a run in �D� E� if and only if �D� E� has an entire induced sub�
hypergraph� an entire induced subhypergraph on D� � D allows the de�nition
of a run � � T� 
 D� by induction� conversely� for any run �� the induced
subhypergraph on the image ��T�� is entire�

De�nition � Let X be a set of variables� A ��X�tree set automaton M is a
tuple �D� E� A�� where �D� E� is a ��hypergraph and A is an indexed family
Ax� x 	 X of subsets of D� called accept sets� A tuple Lx� x 	 X of subsets
of T� is accepted by M if there exists a run � such that Lx � ft j ��t� 	 Axg�
x 	 X�

In previous work ������������������ D and X are assumed to be �nite� but we
will �nd it convenient not impose these restrictions�

� Rational Spaces

��� De�nition of Rational Spaces

Let � be a �xed �nite ranked alphabet�

De�nition � A topological ��hypergraph is a ��hypergraph �D� E�� �nite
or in�nite� endowed with a topology on D whose hyperedges

f�d� d�� � � � � dn� j d 	 Ef �d�� � � � � dn�g

are closed in the product topology on Dn���

De�nition 	 A space of runs over � is the space R�D� of runs of a topological
��hypergraph D� where the topology on R�D� is inherited from the product
topology on DT�� The space R�D� is called �nitary if D is �nite�

Recall that the product topology on DT� is the smallest topology such that
all projections 	t � � �
 ��t� are continuous� In other words� it is generated by
subbasic open sets

f� j ��t� 	 xg � t 	 T� � x open in D� ����

The space R�D� of runs of D� being a space of functions T� 
 D� is a sub�
space of this space� The topology is thus generated by subbasic open sets ����
restricted to R�D��






De�nition 
 A rational space is a space of runs R�D� such that D is compact
and Hausdor��

We remark here that rational spaces are more than just Cantor spaces� the
representation in terms of D is germane� Formally� this will be re�ected in
the restricted class of morphisms de�ned below� called rational maps� First�
however� let us look at some examples of rational spaces�

Example � A simple but revealing example is the Cantor discontinuum� This
space can be constructed by starting from the closed real unit interval ��� ��
and applying the following operation� delete the �middle third�� i�e�� the open
interval ��� �

�
�
�� then delete the middle thirds of the remaining intervals� and

so on� The Cantor discontinuum consists of points that are never deleted�

Equivalently� these are all real numbers in the unit interval whose ternary
�base �	 expansion does not contain the digit �� This is a classical example of
an uncountable nowhere dense set of reals�

The topology on the Cantor discontinuum is inherited from the usual topology
on the real line� With that topology� it is homeomorphic to the topological
product ��� or the space of in�nite paths of the in�nite binary tree with the
intervals as basic open sets� where in this context an interval is a set consisting
of all extensions of some �nite pre�x�

The Cantor discontinuum has a representation as a �nitary rational space over
� � fa� gg� where a is a constant and g is unary� For D we take the discrete
space f�� �� �g with Eg�d� � Ea� � � f�� �g� Corresponding to each point x we
take the run whose value on gn�a� is the nth digit in the ternary expansion of
x�

Example �� Consider an in�nite tree that is binary branching at even lev�
els and ternary branching at odd levels� The basic open sets are the intervals�
Equivalently� take the subspace of the real unit interval consisting of all num�
bers whose ternary expansion contains no � in an even position� This space has
a representation as a �nitary rational space with � � fa� gg� D the discrete
space f�� �� �g � f�� �g� and

Ea� � � Eg��d� ���� f��� ��� ��� ��g

Eg��d� ���� f��� ��� ��� ��� ��� ��g �

�



The value on gn�a� of the run corresponding to x is �d� n mod ��� where d is
the nth digit in the ternary expansion of x�

Examples ��� and ���� exhibit a treelike structure� because there is only one
nonconstant symbol and it is unary� Already with two unary symbols� this
intuitive picture is no longer accurate�

Example �� The following is an example of a non��nitary rational space� Let
X be a set of variables ranging over subsets of T�� and consider the family of
set valuations � � X 
 �T�� Endow this set with smallest topology whose closed
sets include all sets of the form f� j � j� Sg for S a system of set constraints
over X� One can show that the topology on this space is generated by subbasic
clopen �closed and open	 sets f� j � j� t � xg and f� j � j� t �� xg for
t 	 T� and x 	 X� It was shown in ��� that this space is compact�

We will show in x
 below that this space has the following representation as a
rational space� Take D to be the topological product �X with Ef �d�� � � � � dn� �
D� �If X is countable� D is just the Cantor discontinuum�	 Associate with
every set valuation � the run


t�
x�

���
�	
� � if t 	 ��x�

� � otherwise�
����

This space is not �nitary unless X is �nite� However� it is a product of �nitary
spaces� one for each x 	 X� as can be seen by reversing the binding order of t
and x in the 
�expression ���	�

Example �� Every termset algebra has a set�theoretic representation as a
topological term automaton whose topology is Stone ����� These automata
were introduced in �����
�� They di�er from tree set automata in that they are
top�down instead of bottom�up� but they have a naturally de�ned hypergraph
structure in which the hyperedges are closed� giving rational spaces�

��� Basic Properties

Proposition �� Let R�D� be a space of runs�

�i	 If D is Hausdor�� then so is R�D��
�ii	 If D is compact� then so is R�D��
�iii	 If D is �nite and discrete �all sets are open	� then R�D� is a complete

metric space �all Cauchy sequences converge	 under the metric

�



d��� ��� �� depth�t� � ����

where t is a term of minimal depth on which � and � di�er� or � if no
such term exists�

PROOF� �i� Any product of Hausdor� spaces is Hausdor� and any subspace
of a Hausdor� space is Hausdor�� and R�D� is a subspace of the product DT��

�ii� Regarding Ef as an �n� ���ary relation� we can write

R�D� �



f�t������tn��T�

f� 	 DT� j ���f�t�� � � � � tn��� ��t��� � � � � ��tn�� 	 Efg �

The set in this conjunction corresponding to f�t�� � � � � tn� is the continuous
preimage of the closed set Ef under the projection �	f�t������tn�� 	t�� � � � � 	tn� �
DT� 
 Dn��� thus is closed� By Tychono��s Theorem� DT� is compact� and
any closed subspace of a compact space is compact� thereforeR�D� is compact�

�iii� It is easily veri�ed that d��� �� � � i� � � �� d��� �� � d��� ��� and
the triangle inequality holds� The two topologies coincide� every basic open
neighborhood in the metric topology is open in the product topology� since

N����� f� j d��� �� � 
g �



depth�t��� log �

f� j ��t� � ��t�g �

and vice�versa� since if ��t� � u� then

f� j ��t� � ug�f� j d��� �� � �� depth�t�g � N��depth�t���� �

The space R�D� is complete because it is compact by �ii�� and any compact
metric space is complete� �

Corollary �� Every rational space is compact and Hausdor�� Every �nitary
rational space is a complete metric space under the metric ���	�

��� Rational Maps

The spaces of Examples � and �� are homeomorphic� since both spaces are
compact Hausdor� spaces with countable clopen bases and no isolated points�
and all such spaces are homeomorphic� This is a consequence under Stone
duality of the fact that all countable atomless Boolean algebras are isomorphic�
Indeed� the space of paths in a tree that is binary branching at prime levels

��



and ternary branching at nonprime levels is also homeomorphic to the Cantor
space� but it is not clear at all how to assign a �nitary rational space structure
to it�

The homeomorphisms relating these spaces apparently do not preserve the
structure inherent in the representation as spaces of runs� Thus the relation
of homeomorphism is too coarse� Re�ecting on this observation� one is led to
the realization that rational spaces cannot be de�ned independent of some
representation� i�e�� there is no purely topological de�nition�

These observations motivate the de�nition of a restricted class of maps called
rational maps� which are continuous maps preserving the rational structure�
We take these maps as our morphisms in the category of rational spaces�

De�nition �� Let R�D� and R�E� be rational spaces over �� A rational map
R�D� 
 R�E� is a function  h � � �
 h � � induced by a continuous map
h � D 
 E such that

h�ED
f �d�� � � � � dn���EE

f �h�d��� � � � � h�dn�� � ����

A rational map R�D� 
R�E� is called a rational embedding if it is injective�
and a re�nement if it is bijective�

Note that the terms �injective� and �bijective� in this de�nition refer to  h�
not to h� There exist rational embeddings and re�nements in which h is not
bijective�

Any rational embedding or re�nement is a homeomorphism between its do�
main and image� since any continuous bijection from a compact space to a
Hausdor� space is a homeomorphism�

We mention in particular two special kinds of rational embeddings�

Narrowing If D � �D� E� and D� � �D� E�� are two hypergraphs on the
same set of vertices D� and if all Ef �d�� � � � � dn� � E�

f �d�� � � � � dn�� then the
identity map D 
 D induces an embedding R�D� 
 R�D��� Such an R�D�
is called a narrowing of R�D���

Induced Subspaces IfD � �D� E� is the induced subhypergraph of D� �
�D�� E�� on some subset D � D�� i�e� if Ef�d�� � � � � dn� � E�

f �d�� � � � � dn� � D
for all d�� � � � � dn 	 D� then the inclusion map D
 D� induces an embedding
R�D� 
R�D��� Such an R�D� is called an induced subspace of R�D���

��



Example �� The map �d� �� �
 �� �d� �� �
 � induces a rational map from
the space of Example �� into the space of Example �� The image consists of
the single point ������� � � �� This is not a rational embedding� since it is not
injective�

Example �	 The hypergraph with vertices f�� �� �g � f�� �g and hyperedges

Ea� � � Eg��d� ���� f��� ��g

Eg��d� ���� f��� ��� ��� ��g

constitutes a narrowing of the space of Example ��� This is the subspace con�
sisting of all numbers whose ternary expansion contains no � or � in an even
position or � in an odd position�

Example �
 The induced subhypergraph of f�� �� �g�f�� �g on f�� �g�f�� �g
generates an induced subspace of the space of Example ��� This is the subspace
of all numbers whose ternary expansion contains no ��

Example �� Here is an example of a rational embedding which is neither a
narrowing nor an induced subspace� Let � � fa� gg� where a is a constant and
g is unary� Consider the following hypergraph�

s s s s� � ��a g g g

� �
�

g

Map the �rst three vertices to � and the last vertex to �� This gives a rational
embedding of a singleton �nitary rational space into the Cantor discontinuum�
The image is the rational number ������������� � � ��

Example �� The induced subspace on the subhypergraph f�� �g is a re�ne�
ment of the Cantor discontinuum� as is the subspace of Example �� under the
map �d� c� �
 �d�

��
 Rational Products

De�nition �� The rational product of any indexed family R�Dx� of rational
spaces is the space R�!xDx�� where

E	xDx

f �d�� � � � � dn� �!xE
Dx

f �	x�d��� � � � � 	x�dn�� �

Intuitively� the runs in each factor space can develop independently� The topo�
logical product !xDx is Hausdor� and compact by Tychono��s Theorem� and

��



E	xDx

f is closed in the product topology� thus R�!xDx� is a rational space�

Strictly speaking� the rational product R�!xDx� is not the same as the set�
theoretic �Cartesian� product !xR�Dx�� although the two are in one�to�one
correspondence� as can be seen by exchanging the order of 
�bindings as in
Example ���

The projections 	y � !xDx 
 Dy induce projections  	y � R�!xDx� 
 R�Dy��
which are rational maps�

A �nite rational product of �nitary spaces is �nitary�

��� Rational Subspaces and Rational Points

De�nition �� A rational subspace of a rational space is any embedded image
of another rational space� In other words� a subspace R of a rational space
R�E� is a rational subspace if there exists a rational space R�D� and a rational
embedding  h � R�D� 
 R�E� such that R �  h�R�D���

A rational subspace is entire if it is the embedded image of a rational space
de�ned on an entire hypergraph�

De�nition �� A rational point of a rational space is a �nitary singleton
rational subspace�

Example �� The rational points of the Cantor discontinuum are the rational
numbers� i�e�� real numbers whose ternary expansion is ultimately periodic�

Proposition �� Let R�D� be any rational space� For any closed set x � D
and t 	 T�� the closed set 	��t �x� � f� j ��t� 	 xg is a rational subspace of
R�D�� Moreover� if R�D� is �nitary� then so is 	��t �x��

PROOF� Let F be the set of subterms of t� Let � be a new element not in
F � and let D� � F � f�g� Let D� be the discrete hypergraph on this set with
hyperedges

Ef�t�� � � � � tn��

���
�	
ff�t�� � � � � tn�g � if f�t�� � � � � tn� is a subterm of t

� otherwise�

Now take the rational product R�D���R�D�� then take the induced subspace
obtained by discarding the open set consisting all vertices of the form �t� d�
for d �	 x� �

��



Proposition �� The intersection of two ��nitary	 rational subspaces is again
a ��nitary	 rational subspace�

PROOF� Let h� � D� 
 E� h� � D� 
 E be maps inducing rational maps
 h� � R�D�� 
 R�E��  h� � R�D�� 
 R�E�� Construct the rational product
R�D�� �R�D�� with projections 	i � D� � D� 
 Di� i 	 f�� �g� and restrict
to the diagonal set C � f�d�� d�� j h��d�� � h��d��g� Let R�C� be the induced
rational subspace� The map h��d�� d��� � h��d�� � h��d�� gives the desired
intersection� �

De�nition �	 The essential subspace of a rational space R�D� is the induced
subspace on the set

S
��R�D� ��T���

In other words� we discard vertices not appearing in any run� The essential
subspace of R�D� is a re�nement of R�D��

��� Rational Equivalence

De�nition �
 Two spaces are rationally equivalent if they have a common
re�nement�

Proposition �� Rational equivalence is transitive�

PROOF� It su"ces to show the following Diamond Lemma� if R�D�� and
R�D�� are both re�nements of R�E�� then R�D�� and R�D�� have a common
re�nement� Let R�C� be the space constructed in the proof of Proposition
�
� The rational maps R�C� 
 R�D�� and R�C� 
 R�D�� induced by the
restriction of 	� and 	� to domain C are bijective� thus R�C� is the desired
common re�nement� �

� A Characterization of Set Constraints

In this section we give a complete characterization of the sets of solutions
to systems of set constraints in terms of rational spaces� Our main result
is a one�to�one correspondence� up to logical equivalence on one side and
rational equivalence preserving X on the other� between ��nite� systems of
set constraints over variables X and certain ��nitary� subspaces of a certain
rational space �Theorem ����
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Let � be a �xed �nite ranked alphabet and let X be a �xed set of variables
��nite or in�nite�� Let S be a �nite system of set constraints over � and X� In
��� it was shown how to construct a �nite hypergraph �D� E� whose runs are
in one�to�one correspondence with the solutions � � X 
 �T� of S� where X is
the set of variables occurring in S� This result is also implicit in ����� One can
construct �D� E� by various alternative methods ���������� Here is yet another
method�

Let F be any subset of T��B�X� ��nite or in�nite� containing X and closed
under subexpressions� Let �F be the topological product of F copies of the
discrete space � � f�� �g�

The space of all unrestricted runs � � T� 
 �F is homeomorphic to the space
of all functions � � F 
 �T�� taking the product topology on each� This can
be seen by writing

� � T� 
 F 
 � � � F 
 T� 
 � ����

and exchanging the order of 
�binding� Their respective topologies are gener�
ated by subbasic clopen sets

f� j ��t���� � bg f� j �����t� � bg

for b 	 f�� �g� t 	 T� and � 	 F �

Note that the set of all functions � � F 
 �T� includes some that are not
partial set valuations� In order to be a partial set valuation� � must be a
�� � B��homomorphism on its domain� i�e�� must satisfy the following require�
ments for expressions in F �

��� � ������� � ���� ����

����������� ����

��f���� � � � � �n��� ff�t�� � � � � tn� j ti 	 ���n�� � � i � ng � ��	�

Likewise� the set of functions � � T� 
 �F is the unrestricted rational space
R��F �� Let us narrow this space as follows�

Let S be any system of set constraints all of whose subexpressions are in F �
Let F � denote the set of conjunctions of elements of F and their negations�
For each d 	 �F � let d� � F � be the smallest set of expressions including d
and f� � j � 	 F � dg and closed under conjunction� Call a set expression
� S�consistent if � � � is not a logical consequence of S and the equational
axioms �����
� of termset algebra� De�ne the hyperedges

�	



ES
f �d�� � � � � dn�� fd j for every � 	 d� and �i 	 d�i� � � i � n�

� � f���� � � � � �n� is S�consistentg �

The �n� ���ary relation ES
f is closed� as is any set

fu j for all basic open neighborhoods x of u� P �x�g

in any topological space for any property P of open sets whatsoever� Denote
the resulting rational space by R��F �S��

Theorem �� Let the function � � F 
 �T� correspond to the unrestricted
run � � T� 
 �F under the correspondence ���	� Let S be any system of
set constraints all of whose subexpressions are in F � Then � is a partial set
valuation satisfying S if and only if � is a run of R��F �S��

PROOF� If � is a partial set valuation on F � then it extends uniquely by
induction to a total set valuation �� � T��B�X� 
 �T�� Such a map is a
�� � B��homomorphism and its image is a subalgebra A of the set�theoretic
termset algebra �T�� Moreover� since � j� S� A satis�es the equations and
inequalities in S�

Let f�t�� � � � � tn� be any ground term� For any � 	 ��f�t�� � � � � tn��� and �i 	
��ti��� � � i � n� by ���� we have f�t�� � � � � tn� 	 ����� and ti 	 ����i�� � �
i � n� thus f�t�� � � � � tn� 	 ����� f���� � � � � �n��� Then �� f���� � � � � �n� is S�
consistent� since it is nonzero in the termset algebra A� Since the ����� � � � � �n

were arbitrary� ��f�t�� � � � � tn�� 	 ES
f ���t��� � � � � ��tn��� and since f�t�� � � � � tn�

was arbitrary� � is a run of R��F �S��

Conversely� suppose � is a run of R��F �S�� Under the correspondence �����
the properties �������	� become

� � � 	 ��t�
�� 	 ��t� or � 	 ��t� ��
�

�� 	 ��t�
�� �	 ��t� ��
�

f���� � � � � �n� 	 ��t�
��t�� � � � � tn t � f�t�� � � � � tn�

and �i 	 ��ti� � � � i � n ����

for expressions ���� ��� and f���� � � � � �n� 	 F � The �rst two of these follow
immediately from fact that ��t�� is consistent with the laws of Boolean algebra
���� For ����� suppose �rst that f���� � � � � �n� 	 ��t�� For any g 	 ��

t � g�t�� � � � � tm� �� ��t� 	 ES
g ���t��� � � � � ��tm��

��f���� � � � � �n� � g��� � � � � �� is S�consistent

��m � n and f � g by �
��

�




Thus t � f�t�� � � � � tn� and ��t� 	 ES
f ���t��� � � � � ��tn��� Now each ��ti�

� contains
some �i 	 f�i���ig� and f���� � � � � �n��f���� � � � � �n� must be S�consistent�
By properties ��� and ����� the only S�consistent possibility is �i � �i� � �
i � n� thus �i 	 ��ti�� � � i � n�

For the other direction of ����� suppose �i 	 ��ti�� � � i � n� Since �
is a run� for any � 	 ��f�t�� � � � � tn���� � � f���� � � � � �n� is S�consistent�
But ��f�t�� � � � � tn��� contains at least one of f���� � � � � �n�� � f���� � � � � �n��
and the former is the only S�consistent choice� Therefore f���� � � � � �n� 	
��f�t�� � � � � tn���

Finally we show that � j� S� If not� then by Proposition �� there exists a
logical consequence � � f���� � � � � �n� � � of S� ����� � � � � �n 	 F �� such that
���� � f���� � � � � �n�� �� �� No term with head symbol g �� f can be in ���� �
f���� � � � � �n��� thus there must be a term f�t�� � � � � tn� 	 �����f���� � � � � �n���
Then f�t�� � � � � tn� 	 ����� and ti 	 ����i�� � � i � n� and by the correspon�
dence ����� � 	 ��f�t�� � � � � tn��� and �i 	 ��ti��� � � i � n� But since � is
a run� ��f�t�� � � � � tn�� 	 ES

f ���t��� � � � � ��tn��� therefore � � f���� � � � � �n� is
S�consistent� This is a contradiction� �

Theorem �� implies that if F� � F�� where F� and F� are subexpression�closed
families of set expressions over X� and if S is any system of set constraints
over F�� then R��F� �S� is a re�nement of R��F� �S� under the natural projec�
tion �F� 
 �F� � In particular� for every subexpression�closed family F of set
expressions over X� R��F ��� is a re�nement of R��X ����

Similarly� if S� and S� are systems of set constraints over F and S� j� S��
then any logical consequence of S� is a logical consequence of S�� therefore
R��F �S�� is a narrowing of R��F �S���

Combining these observations� we see that every R��F �S� is a rational sub�
space of R��X ���� since R��F �S� is a narrowing of R��F ���� which in turn
is a re�nement of R��X ����

For x 	 X� let us denote also by x the clopen set fd j x 	 dg of any hypergraph
�F � Let us say that a rational embedding between spaces R��F �S� preserves X
if the map h on the underlying hypergraphs satis�es x � h���x� for all x 	 X�
Note that both the re�nement R��F� �S� 
 R��F� �S� and the narrowing
R��F �S�� 
 R��F �S�� preserve X in this sense� Let us say that a rational
equivalence preserves X if the functions h� � C 
 �F� and h� � C 
 �F� from
the hypergraph underlying the common re�nement R�C� satisfy the property
that h��� �x� � h��� �x� for all x 	 X�

The following is our main theorem�

�




Theorem �� Let X be any set of variables� Up to logical equivalence on one
side and rational equivalence preserving X on the other� the systems S of set
constraints over X are in one�to�one correspondence with the rational sub�
spaces R��F �S� of R��X ���� If X is �nite� then the �nite systems of set con�
straints correspond to the �nitary subspaces of R��X ���� The correspondence
preserves the partial orders of logical entailment on one side and X�preserving
rational embedding on the other�

PROOF� For any system of set constraints S� let FS be the smallest subex�
pression�closed subset of T��B�X� containing X and all expressions occurring
in S� Consider the map � � S �
 R��FS �S��

First we show that up to X�preserving rational equivalence on the right hand
side� the map � is well�de�ned on logical equivalence classes on the left hand
side� Suppose S� j� S� and S� j� S�� Let F� � FS�� F� � FS�� and F � F��F��
Then R��F �S�� is a re�nement of R��F� �S�� and R��F �S�� is a re�nement of
R��F� �S��� But since S� and S� have the same logical consequences� the two
spaces R��F �S�� and R��F �S�� coincide� thus form a common re�nement of
R��F� �S�� and R��F� �S��� Moreover� the natural re�nements R��F �S�� 

R��F� �S�� and R��F �S��
R��F� �S�� preserve X�

To show that the map � is bijective� suppose R��F� �S�� and R��F� �S�� have a
common re�nement R�D� with underlying maps h� � D 
 �F� � h� � D 
 �F�

such that h��� �x� � h��� �x�� x 	 X� It follows that for any run � of R�D��
t 	 T�� and x 	 X�

 h�����t� 	 x
�  h�����t� 	 x �

Thus under the correspondence ����� the runs of R��F� �S�� and R��F� �S��
correspond to the same family of set valuations� By Theorem ��� S� and S�
have the same set of solutions� thus are logically equivalent�

Suppose X is �nite� If S is �nite� then R��FS �S� is �nitary� Conversely� if
R��FS �S� is �nitary� then by Proposition �� S is logically equivalent to a
�nite system�

Finally� let S� and S� be two systems of set constraints� and let F� � FS��
F� � FS�� and F � F� � F�� As argued above� if S� j� S� then R��F �S�� is
a narrowing of R��F �S��� therefore gives a rational embedding preserving X�
Conversely� if  h � R��F� �S�� 
 R��F� �S�� is a rational embedding preserving
X induced by h � �F� 
 �F� � then for any run � of R��F� �S�� and t 	 T��

��t� 	 x
�h���t�� 	 h�x�
�  h����t� 	 x �

��



Thus under the correspondence ����� the set valuation corresponding to the
run � of R��F� �S�� also corresponds to the run  h��� of R��F� �S��� By Theorem
��� every solution of S� is also a solution of S�� thus S� j� S�� �

We remark that the Stone dual St�FX�S� of the free termset algebra on
generators X modulo S ����� embedded in �T��B�X� in the natural way� gives
rise to an induced subspace R�St�FX�S�� of R��T��B�X��S��

� Applications

In this section we apply the theory of rational spaces to set constraints� We
rederive several results in the literature on set constraints and tree set au�
tomata in terms of rational spaces� In many cases we are able to generalize
the results and give shorter proofs that reveal the topological principles at
work�

��� Positive and Negative Constraints

In ���� Aiken et al� prove that mixed positive and negative set constraints
are strictly more expressive than positive constraints alone� The proof of this
result is based on a compactness lemma which states that a system of positive
constraints is satis�able if and only if all �nite subsets are satis�able� Under
the correspondence of Theorem ��� the compactness lemma of ��� is equivalent
to the compactness of the space R��X ����

Now the fact that negative constraints can express something that positive
constraints alone cannot is a simple consequence of the observation that all sys�
tems of positive set constraints de�ne closed� therefore compact� sets� whereas
the set A of solutions of x �� � is not compact� if �n�x� � ft j depth�t� � ng�
then f�n j n � �g is an in�nite subset of A with no limit point in A�

��� Entire Subspaces

In x���� we argued that a hypergraph has a run i� it has an entire induced
subhypergraph� This essential fact is used in several algorithms for satis�abil�
ity of set constraints ��������������� Similarly� a rational space is nonempty if
and only if it contains an entire subspace� This can be generalized as follows�
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Theorem �� Every ��nitary	 rational space is a ��nite	 union of entire sub�
spaces� Over a language with only constants and unary function symbols� every
rational space is essentially entire�

PROOF� The essential subspace of R�D� is

R�
�

��R�D�

��T����
�

��R�D�

R���T��� � ����

and ��T�� is entire� This union is �nite if D is� since there are only �nitely
many induced subspaces� Any entire subspace of R�D� is a rational subspace
of an entire induced subspace of R�D��

Over a language with only constants and unary function symbols� the unionS
xDx of any family Dx of entire induced subhypergraphs of D is an entire

induced subhypergraph of D� �Note� however� that in general R�
S
xDx� ��S

xR�Dx�# A counterexample is given below in x	���� Applied to ����� this
says that the essential subspace of R�D� is entire� �

��� Density of Rational Points

Gilleron et al� ���� prove that every satis�able �nite system of set constraints
has a regular solution� Under the correspondence of Theorem ��� this reduces
to the following fact about �nitary rational spaces�

Proposition �� Every nonempty �nitary rational space contains a rational
point�

PROOF� IfR�D� is nonempty� thenD has an entire induced subspaceR�D���
In turn� R�D�� has a deterministic narrowing R�D���� which is a rational
point� �

A rational point corresponds to a deterministic tree set automaton� which has
a unique run� Such automata accept regular sets� as can be seen by writing
down a system of regular equations of the form ��	�� one variable for each
state�

However� there are more rational points in a �nitary rational subspace than
just those obtained by narrowings of entire induced subspaces� Indeed� there
are only �nitely many narrowings of entire induced subspaces� whereas the
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number of rational points is in�nite in general� For example� the Cantor dis�
continuum contains countably many rational numbers� An example of a ra�
tional point of the Cantor discontinuum that is not a narrowing of an entire
induced subspace is given in Example ��� This subspace cannot be represented
on a hypergraph of fewer than four vertices�

The following result says that the rational points of any nonempty �nitary
rational space are dense� In terms of set constraints� the signi�cance of this
theorem is that every �nite system of positive set constraints is determined
by its regular solutions�

Theorem �� Every �nitary rational space is the completion of its rational
points�

PROOF� Let R�D� be a �nitary rational space� Recall that R�D� is a com�
plete metric space� For any x � D and t 	 T�� by Proposition �	 the subbasic
open set f� j ��t� 	 xg is a �nitary rational subspace of R�D�� Any basic
open set A of R�D� is a �nite intersection of subbasic open sets� and A is a
�nitary rational subspace of R�D� by Proposition �
� By Proposition ��� any
nonempty such A contains a rational point� Thus the set of rational points is
dense in R�D�� and its closure is R�D�� �

��
 Closure Properties of Tree Set Automata

In ����� it is claimedwithout proof that the family of languages accepted by tree
set automata is closed under ��nite� union� intersection� and cylindri�cation�

Closure under intersection can be shown as follows� Let Dx be an indexed
family of tree set automata with tuples Ax of accept sets� The tuple Ax is
an indexed family Axi of subsets of Dx� Take the induced subspace of the
product !xDx consisting of points

T
i�!xAxi � !x �Axi�� This corresponds

to the uni�cation construction of �������� The resulting automaton gives the
desired intersection�

Cylindri�cation is e�ected as follows� If D is a tree set automaton� take the
rational product D�f�� �g of D with a two�element unrestricted hypergraph�
For A an accept set in D� take A� � 	��� �A�� and add the new accept set
	��� ����

Contrary to the claim of ����� the family of languages accepted by tree set
automata is only closed under union for signatures � containing at most one
constant or at least one symbol of arity two or greater� In those cases� a marked
union

S
xDx� fxg of the hypergraphs with the naturally induced hyperedges
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will give the desired union of sets of runs� in the case of one constant symbol
a� if ��a� 	 Dx then the entire image of � must be contained in Dx� and in the
case of at least one symbol f of arity two or greater� there can be no run �
taking a value d 	 Dx and e 	 Dy for x �� y� since Ef�d� e� � �� so the run
cannot be completed�

For � containing at least two constants a� b and no symbol of arity greater than
one� the family of languages accepted by tree set automata is not closed under
union� Consider the two systems of set constraints fx � �g and fx � �g� Let
M be any tree set automaton accepting at least the union of the two sets of
solutions� BecauseM accepts the solutions of the �rst system� it must admit a
run � with ��T�� � Ax� BecauseM accepts the solutions of the second system�
it must admit a run � with ��T�� � A�x� Let H denote any composition of
unary functions� Then the function


t�

���
�	
��t� � if t � H�a� for some H�

��t� � if t � H�b� for some H

is a legal run of M� but does not satisfy either of the constraints x � � or
x � ��

� Conclusion

In this paper we have investigated the topological structure of the spaces of so�
lutions of systems of set constraints� We have identi�ed a family of topological
spaces called rational spaces� which formalize the notion of a topological space
with a regular or self�similar structure� such as the Cantor discontinuum� We
have developed the basic theory of rational spaces and applied this theory to
understand more fully the structure of set constraints�

We have not developed the idea of self�similarity� although it is clear that
rational spaces exhibit a high degree of self�similarity in the form of ubiquitous
self�embeddings� For example� it should be possible to derive an alternative
proof of Theorem �� by taking �xpoints of contractive self�embeddings� Alfons
Geser has also pointed out a strong similarity to fractals� which is another
connection that may be worth investigating�

In ���� we apply these results further to provide a Gentzen�style axiomatization
involving sequents $ � %� where $ and % are �nite sets of set constraints�
and give completeness and incompleteness results for this system�
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