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Abstract

Set constraints are relations between sets of terms� They have been
used extensively in various applications in program analysis and type
inference� Recently� several algorithms for solving general systems
of positive set constraints have appeared� In this paper we consider
systems of mixed positive and negative constraints� which are consid�
erably more expressive than positive constraints alone� We show that
it is decidable whether a given such system has a solution� The proof
involves a reduction to a number�theoretic decision problem that may
be of independent interest�

� Introduction

Set constraints are formal inclusions or negated inclusions between expres�
sions representing subsets of T�� the set of ground terms over a �nite ranked
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alphabet �� Formally� a positive set constraint is of the form E � F and a
negative set constraint is of the form E � � F � where E and F are expressions
built from a set X � fx� y� � � �g of variables ranging over subsets of T�� the
usual set�theoretic operators 	� �� �� �� and �� and an n�ary set operator f
for each n�ary symbol f � � with semantics

f
A�� � � � � An� � fft� � � � tn j ti � Ai� � � i � ng �

A system S of constraints is satis�able if there is an assignment of subsets
of T� to the variables satisfying all the constraints in S�

Set constraints have numerous applications in program analysis and type
inference �� �� �� ��� ��� ��� ��� �	� ���� Most of these systems deal with pos�
itive constraints only� Several algorithms for determining the satis�ability of
general systems of positive constraints have appeared ��� �� �� ��� ��� In ����
the satis�ability problem for a system S of positive constraints is shown to be
equivalent to deciding whether a certain �nite hypergraph constructed from
S has an induced subhypergraph that is closed 
see Section ��� This char�
acterization is used to obtain an exhaustive hierarchy of complexity results
depending on the number of elements of � of each arity�

In this paper we consider systems of mixed positive and negative con�
straints� Negative constraints considerably increase the power of the con�
straint language and have important applications in program analysis� For
example� in �� ��� opportunities for program optimization are identi�ed by
an ad hoc technique for checking the satis�ability of systems of negative con�
straints� Set constraints with only nullary symbols correspond to Boolean
algebras over a �nite set of atoms� in ���� general results on solving negative
constraints in arbitrary Boolean algebras are given�

In this paper we give a general decision procedure for determining whether
a given system of mixed positive and negative set constraints over an arbi�
trary signature is satis�able� The proof reduces the satis�ability problem to
a reachability problem involving Diophantine inequalities which may be of
independent interest� We reduce the satis�ability problem to the Diophan�
tine problem and then show that the Diophantine problem is decidable� The
proof has a nonconstructive step involving Dickson�s Lemma and does not
give any complexity bounds�

The decidability result for systems of mixed positive and negative set con�
straints was obtained independently by Gilleron� Tison� and Tommasi ����
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using automata�theoretic techniques� Stef�ansson ���� has subsequently shown
that the Diophantine satis�ability problem is NP �complete and the satis�a�
bility problem for systems of mixed positive and negative set constraints is
complete for NEXPTIME � Charatonik and Pacholski ��� have given an al�
ternative proof of this result based on the approach of ��� involving monadic
logic� and have extended the result to include projections ���� Relationships
between these various approaches have been drawn in �����

� Set Expressions and Set Constraints

There is some variation in the literature regarding the de�nition of set ex�
pressions and set constraints� depending on the operations allowed� The
following de�nition is taken from ����

Let � be a �nite ranked alphabet consisting of symbols f � each with an
associated arity arity
f� � N� Symbols in � of arity 	� �� �� and n are called
nullary� unary� binary� and n�ary� respectively� Nullary elements are often
called constants� The set of elements of � of arity n is denoted �n�

The set of ground terms over � is denoted T�� This is the smallest set such
that if t�� � � � � tn � T� and f � �n� then ft� � � � tn � T�� If X � fx� y� � � �g
is a set of variables� then T�
X� denotes the set of terms over � and X�
considering the elements of X as symbols of arity 	�

Let B � 
�� �� �� 	� �� be the usual signature of Boolean algebra� Other
Boolean operators such as � 
symmetric di�erence� are de�ned from these
as usual� Let � � B denote the signature consisting of the disjoint union of
� and B� A set expression over X is any element of T��B
X�� The following
is a typical set expression�

f
g
x � y���g
x � y�� � a

where f � ��� g � ��� a � ��� and x� y � X� We use E�F� � � � to denote set
expressions� A Boolean expression over X is any element of TB
X��

A positive set constraint is a formal inclusion E � F � where E and F

are set expressions� We also allow equational constraints E � F � although
inclusions and equations are interde�nable� E � F is equivalent to E �F �
F � and E � F is equivalent to E � F � 	� A negative set constraint is the
negation of a positive set constraint� E � � F or E �� F �





We interpret set expressions over the powerset �T� of T�� This forms an
algebra of signature � � B where the Boolean operators have their usual set�
theoretic interpretations and elements f � �n are interpreted as functions
f � 
�T��n 	 �T� such that

f
A�� � � � � An� � fft� � � � tn j ti � Ai� � � i � ng �

A set assignment is a map

� � X 	 �T�

assigning a subset of T� to each variable in X� Any set assignment � extends
uniquely to a 
� � B��homomorphism

� � T��B
X� 	 �T�

by induction on the structure of the set expression in the usual way� The set
assignment � satis�es the positive constraint E � F if �
E� � �
F �� and
satis�es the negative constraint E � � F if �
E� � � �
F �� We write � j� � if
the set assignment � satis�es the constraint �� A system S of set constraints
is satis�able if there is a set assignment � that satis�es all the constraints in
S� in this case we write � j� S� We write S j� � if all set assignments that
satisfy S also satisfy �� The satis�ability problem is to determine whether a
given �nite system S of set constraints over � is satis�able�

A truth assignment is a map u � X 	 � where � � f	� �g is the two�
element Boolean algebra� Any truth assignment u extends uniquely to a B�
homomorphism u � TB
X�	 � inductively according to the rules of Boolean
algebra� If X � fx�� � � � � xmg� we use the notation

B�xi �� ai�

to denote the truth value of the Boolean formula B under the truth assign�
ment xi 
	 ai� � � i � m�

� Expressibility

Systems of mixed positive and negative constraints are strictly more expres�
sive than systems of positive constraints alone� We will prove this as a
corollary of a general compactness theorem for positive constraints�

�



Theorem � �Compactness� A system S of positive set constraints is sat�
is�able if and only if all �nite subsets of S are satis�able�

Proof� The implication 
�� is straightforward� For the other direction�
suppose S is �nitely satis�able� We wish to construct a satisfying set as�
signment for S� By Zorn�s Lemma� there exists a maximal �nitely satis�able
set bS of positive constraints containing S� One can show that for all ground
terms t and set expressions E� exactly one of the constraints t � E� t ��E
is in bS� if neither is in bS� then bS is not maximal� and if both are� then bS is
not �nitely satis�able� Now de�ne a map

�
E� � ft j t � E � bSg �
One can show by induction on the structure of set expressions that � is a
valid set assignment and satis�es bS� For example� to show that

�
fE� � � �En� � fft� � � � tn j ti � �
Ei�� � � i � ng �

note

t � �
fE� � � �En� �� t � fE� � � � En � bS � 
���

Then t must be of the form ft� � � � tn� otherwise bS would not be �nitely
satis�able� Now we use the fact that

ft� � � � tn � fE� � � � En j� ti � Ei � � � i � n

fti � Ei j � � i � ng j� ft� � � � tn � fE� � � �En

to argue that t � fE� � � � En � bS i� ti � Ei � bS� � � i � n� otherwisebS would not be �nitely satis�able� Combining this with 
��� and using the
induction hypothesis� we get

t � �
fE� � � � En� �� ti � �
Ei� � � � i � n �

To show that � satis�es all constraints of bS� let E � F be any constraint
in bS� For any term t�

t � �
E� � t � E � bS
� t � F � bS 
���

� t � �
F � �
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the reason for the implication 
��� is that

ft � E� E � Fg j� t � F �

and if t � F were not in bS� then t ��F would be� and bS would not be
�nitely satis�able� �

Corollary � Finite systems of mixed positive and negative constraints are
strictly more expressive than systems of positive constraints only�

Proof� Consider the single negative constraint x �� 	 over any ranked
alphabet � with at least one constant and at least one symbol of higher
arity� Solutions are � � fxg 	 T� with �
x� nonempty� Let S be any set�
�nite or in�nite� of positive constraints over any set of variables X containing
x� We claim that it is not the case that the set

f�
x� j � � X 	 T�� � j� Sg

is exactly the set of nonempty subsets of T��
Consider the in�nite set of positive constraints

S � ft ��x j t � T�g �

Either this is satis�able or not� If so� then there is a satisfying set assignment
�� But t � �
�x� for all terms t� so �
x� �  and � j� S� and the claim is
veri�ed� If not� then by compactness there is a �nite subset F � T� such
that

S � ft ��x j t � Fg

is not satis�able� Therefore there is no solution � of S with �
x� � ftg�
where t is any term not in F � �

� Set Constraints and Hypergraph Closure

In ��� it is shown how to transform a given system of positive set constraints
into an equivalent system in a special normal form� The transformation
is linear for �xed �� Applying this transformation to a system containing
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negative constraints� we obtain the following normal form� Let X be a set of
variables� and for each f � �� let

Zf � fzfix j 	 � i � arity
f�� x � Xg

be a set of variables such that the sets X and Zf � f � � are pairwise disjoint�
A system of set constraints in normal form 
with respect to X and the Zf �
consists of

� a positive constraint B � �� B � TB
X�

� for each f � �� a positive constraint Cf � �� Cf � TB
Zf �

� positive constraints

zf�x � f � � � � �� �z �
n

� x

z
f
ix � f � � � � �� �z �

i��

x � � � � �� �z �
n�i

for each f � �n� � � i � n� and x � X

� a �nite set of negative constraints D �� 	� one for each element D of a
given �nite set D � TB
X��

The last component is absent with positive constraints only�
We outline here the translation of ��� along with the minor modi�cations

necessary to handle negative constraints�

�� For every occurrence of a subexpression fE� � � � En in S� let y�� y�� � � � � yn
be new variables� Replace fE� � � �En by y� and add new constraints
y� � fy� � � � yn and yi � Ei� � � i � n� Continue until all constraints
are either purely Boolean or of the form y� � fy� � � � yn� Let X be the
set of all variables occurring in S at this point�

�� For each f � �n� introduce a new set of variables

Zf � fzfix j 	 � i � n� x � Xg

and add the constraints

z
f
�x � f � � � � �� �z �

n

�x z
f
ix � f � � � � �� �z �

i��

x � � � � �� �z �
n�i

for all � � i � n and x � X�
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� Assume without loss of generality that there is a variable y � X and
constraint y � � in S� Each constraint x � fx� � � � xn obtained in step
� is equivalent to the constraint

x � fx� � � � � �� �z �
n��

�f�x� � � � � �� �z �
n��

� � � � � f � � � � �� �z �
n��

xn � f � � � � �� �z �
n

�


The last term on the right hand side is redundant except in the case
n � 	� This was erroneously omitted in the account of ����� This in
turn is equivalent to the conjunction of constraints

f � � � � �� �z �
n

�x � fx� � � � � �� �z �
n��

�f�x� � � � � �� �z �
n��

� � � � � f � � � � �� �z �
n��

xn � f � � � � �� �z �
n

g � � � � �� �z �
m

�x � 	 � g �� f � m � arity
g� �

Replace the constraint x � fx� � � � xn with the constraints

zf�x �
n�
i��

zfixi � zf�y zg�x � 	 � g �� f �

Because of the constraints introduced in step �� the resulting system is
equivalent�

�� At this point we have

� positive and negative Boolean constraints formed in step � involv�
ing only the variables X

� for each f � �� positive Boolean constraints formed in step 
involving only the variables Zf

� mixed constraints formed in step ��

Replace each positive Boolean constraint E � F involving variables
in X by the equivalent constraint �E � F � �� Let B be the con�
junction of all the left hand sides of such constraints� and replace all
these constraints in S with the single constraint B � �� Do the same
for the purely Boolean constraints involving the variables Zf to get a
single constraint Cf � � for each f � �� Finally� replace each negative
Boolean constraint E � � F by the equivalent constraint E� � F �� 	�
and let D be the set of all such negative constraints�
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As described in ���� a system of set constraints S in normal form deter�
mines a hypergraph

H � 
U� Ef j f � ��

as follows� The vertex set U is the set of all truth assignments u � X 	 �
satisfying B� Each such truth assignment corresponds to a conjunction of
literals 
also denoted u� in which each variable in X occurs exactly once�
either positively or negatively� such that u � B tautologically� The variable
x occurs positively i� u
x� � �� We often call the elements of U atoms
because they represent atoms 
minimal nonzero elements� of the free Boolean
algebra on generators X modulo B � �� where �minimal� is in the sense of
the natural order on the Boolean algebra� It follows from elementary Boolean
algebra that each Boolean expression over X is equivalent modulo B � � to
a disjunction of atoms�

For each f � �n� the hyperedge relation Ef of H is de�ned to be the set
of all 
n� ���tuples 
u�� � � � � un� � Un�� such that

Cf �z
f
ix �� ui
x�� � � � 
���

Intuitively� we think of the formula Cf as a Boolean�valued mapping on

n � ���tuples of truth assignments to X� To emphasize this intuition� we
abbreviate the left hand side of 
��� by

Cf �u�� � � � � un� �

Thus


u�� � � � � un� � Ef i� Cf �u�� � � � � un� � � �

In general� the size of H can be exponential in the size of S�
An 
n� ���ary hyperedge relation Ef of the hypergraph H is said to be

closed if for each n�tuple u�� � � � � un � Un� there exists u� � U such that

u�� u�� � � � � un� � Ef � In the case n � 	� this de�nition just says Ef �U �� �
Abusing notation� we can think of Ef as a function

Ef � U
n 	 �U

where

Ef 
u�� � � � � un� � fu� j 
u�� u�� � � � � un� � Efg �
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In this view� Ef is closed i� Ef
u�� � � � � un� ��  for each n�tuple u�� � � � � un �
Un� The hypergraph H is said to be closed if all its hyperedge relations are
closed�

The induced subhypergraph of H on vertices U � � U is the hypergraph

H � � 
U �� E�
f j f � ��

such that E�
f � Ef � 
U ��n�� for f � �n�

The hypergraph closure problem is the problem of determining whether a
given hypergraph H has a closed induced subhypergraph�

The following theorem was proved in ����

Theorem � The hypergraph H corresponding to a system S of positive set
constraints has a closed induced subhypergraph if and only if S is satis�able�

In brief� the proof of ��� establishes a one�to�one correspondence between
set assignments � satisfying S and maps � � T� 	 U such that for all f � �
and for all terms ft� � � � tn�

�
ft� � � � tn� � Ef 
�
t��� � � � � �
tn�� � 
����

The set assignment corresponding to � is

�
x� � ft j �
t�
x� � �g

�
zfix� � �
f � � � � �� �z �
i��

x � � � � �� �z �
n�i

�

�
zf�x� � �
f � � � � �� �z �
n

� x� �

Thus deciding the satis�ability of S is tantamount to determining the
existence of a map � satisfying 
����� In turn� this is equivalent to the
hypergraph closure problem� if such a � exists� then the induced subhy�
pergraph of H on the image of � is closed� and conversely� if there ex�
ists a closed induced subhypergraph on vertices U � � U � then one can
inductively de�ne �
ft� � � � tn� to be the lexicographically �rst element of
U � � Ef 
�
t��� � � � � �
tn���

In the presence of negative constraints D �� 	� D � D� the map � must not
only satisfy 
����� but must also take on some value u such that u
D� � � for
each D � D� Thus in the presence of negative constraints� the satis�ability
problem becomes�
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Problem � Given a �nite set D of Boolean formulas D � TB
X� and a
hypergraph H � 
U� Ef j f � �� speci�ed by B � TB
X� and Cf � TB
Zf ��
f � �� determine whether there exists a map � � T� 	 U satisfying �����
such that

for each D � D there exists an atom u in �
T�� satisfying D� 
����

where �
T�� denotes the image of T� under the map ��

� A Reachability Problem

Our decision procedure �rst reduces the satis�ability problem for mixed sys�
tems of positive and negative set constraints to a certain reachability problem
involving Diophantine inequalities� In this section we de�ne the reachability
problem and give the reduction�

First we describe the reachability problem on an intuitive level� Let X be
a set of variables ranging over N� the natural numbers� Suppose we are given
a �nite system C of formal inequalities p � q� where p and q are polynomials
in the variables X with coe�cients in N� such that

� each left hand side p is a sum of variables in X

� each variable occurs in at most one left hand side�

An assignment is a map u � X 	 N� Each assignment u extends uniquely to
an evaluation morphism u � N�X�	 N which evaluates polynomials at u� A
variable x is said to be enabled under an assignment u if either

� the variable x does not occur on the left hand side of any constraint in
C� or

� the unique constraint in C in which x appears on the left hand side is
a strict inequality under the assignment u�

Consider the following nondeterministic procedure� Starting with the
zero assignment� repeatedly choose a variable that is enabled and ��re� it by
incrementing it by �� The reachability problem is to decide whether there
exists a sequence of legal �rings that allows a particular distinguished variable
to be �red�
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We give a more rigorous presentation of this problem below� then reduce
the satis�ability problem to this problem� In Section � we show that the
reachability problem is decidable�

��� Polynomials and Assignments

We use the term ring to mean commutative ring with unit and semiring to
mean commutative semiring with unit�

Let Zdenote the ring of integers and N � Z the semiring of natural
numbers with the usual addition and multiplication operations� For X a
�nite set of variables� letZ�X� denote the ring of polynomials in the variables
X with integer coe�cients and N�X� � Z�X� the semiring of polynomials
with positive coe�cients� The ringZ�X� is the free ring on generators X and
the semiring N�X� is the free semiring on generators X�

Any map u � X 	 R to a ring R extends uniquely to a ring homomor�
phism u � Z�X� 	 R� If S is a semiring and S � R� and if u
x� � S for
x � X� then the restriction of u � Z�X�	 R to domain N�X� is a semiring
homomorphism N�X� 	 S� and is the unique semiring homomorphism ex�
tending u � X 	 S� We will concentrate on the case S � N and R � Z� we
call such a map an assignment� However� functional composition of polyno�
mials is e�ected by the same construction with S � N�X� and R �Z�X��

Intuitively� an assignment u � X 	 N should be regarded as an assignment
of values to the variables� and u
q� the result of evaluating the polynomial q
on those values�

The set of assignments� considered as functions of X� forms a commuta�
tive monoid V under pointwise addition u � v � x 
	 u
x� � v
x�� x � X�
with identity element the zero assignment � � x 
	 	� x � X� The monoid V
is isomorphic to the commutative monoid NjXj with ordinary addition under
the map v 
	 
v
x� j x � X��

Care must be taken here� it is not the case that 
u� v�
q� � u
q� � v
q�
for q �Z�X� in general� The value of 
u� v�
q� is governed by the de�nition
of the unique extension of assignments to homomorphisms� For example�


u� v�
x� �� � 
u� v�
x� � 
u� v�
�� � u
x� � v
x� � � �

whereas

u
x� �� � v
x� �� � u
x� � v
x� � � �

��



However� we do have the following useful inequality�

Lemma 	 For any q � N�X��


u� v�
q� � u
q� � v
q�� �
q�

with equality holding if q is a	ne �i�e�� linear plus a constant term��

Proof� This can be proved by induction on the form of q� Note that �
q�
is the constant term of q� For x � X� we have 
u� v�
x� � u
x� � v
x�� and
for constants a � N� 
u� v�
a� � a � u
a�� v
a���
a�� For polynomials of
the form pq where neither p nor q has a constant term�


u� v�
pq� � 
u� v�
p� � 
u� v�
q�

� 
u
p� � v
p�� � 
u
q� � v
q��

� u
p� � u
q� � v
p� � v
q�

� u
pq� � v
pq� �

Finally� for polynomials of the form p� q�


u� v�
p� q� � 
u� v�
p� � 
u� v�
q�

� u
p� � v
p�� �
p� � u
q� � v
q�� �
q�

� u
p� q� � v
p� q�� �
p� q�

with equality holding if p and q are a�ne� by the induction hypothesis� �

In particular� 
u� v�
q� � u
q� � v
q� if q is linear with constant coe�cient
	�

For v � X 	 N an assignment� let incv �Z�X�	Z�X� be the unique ring
homomorphism such that

incv
x� � x� v
x� � x � X �

Informally� incv
p� is the polynomial obtained from p by substituting x�v
x�
for x� Intuitively� incv says� �Automatically increase the value of x � X

by v
x��� Restricted to domain N�X�� incv is a semiring homomorphism
N�X�	 N�X�� for which we use the same name�

�



The homomorphism incv is the unique map such that the diagram

Z�X�

Z�X�
�

Z

H
H
H
Hj

�
�
�
��

u� v

u

incv 
����

commutes� i�e� such that u � incv � u� v� for x � X�


u� v�
x� � u
x� � v
x�

� u
x� v
x�� 
����

� u
incv
x�� �

Equation 
���� holds since v
x� is a constant� Since the homomorphisms u�v
and u � incv agree on X� they agree everywhere� The homomorphism incv
is unique� since it is determined by its values on x � X� and the polynomial
incv
x� is determined by its set of values u
incv
x�� � u
x� � v
x��

By composing two copies of 
����� one observes that the set

I � fincv j v an assignmentg

forms a monoid under functional composition � with identity inc�� Moreover�
I is isomorphic to the monoid of assignments V under the map v 
	 incv�
i�e��

incu�v � incu � incv �

The map v 
	 incv is bijective� since v can be recovered uniquely from incv
by taking u � � in 
�����

It follows immediately that incu and incv commute under composition�
i�e� incu � incv � incv � incu�

One application of particular importance will be incrementing the value
of a variable x under an assignment u by �� The new assignment is u � �x�
where �x
x� � � and �x
y� � 	 for y �� x� The e�ect of applying inc�x to a
polynomial q is the same as substituting x� � for x in q�

Let X� denote the monoid of �nite�length strings over X� This is the
free monoid on generators X� Elements of X� will be denoted �� �� 	� � � �

There is a unique monoid homomorphism �� �� � X� 	 V extending the
map x 	 �x� x � X� The image of � � x� � � �xn under this map is ����� �

��



Pn
i�� �xi� Applied to x� the function ����� gives the number of occurrences of x

in the string �� This is known in formal language theory as the Parikh map�
By a slight abuse of notation� we omit the braces �� �� when using ����� as a
function� thus �
x� denotes the number of occurrences of x in �� and �
q� is
the value of the polynomial q under the assignment ������

��� Systems of Diophantine Inequalities

We consider �nite systems C of Diophantine inequalities of the form p � q

where p� q � N�X� such that

� each left hand side p is a sum of distinct variables� and

� each variable in X occurs in at most one left hand side�

There is no restriction on the form of the right hand sides q except that they
be in N�X�� The inequalities in C are called �Diophantine� constraints� A
variable x � X is said to be constrained in C if x occurs on the left hand side
of some constraint in C� In this case we denote the unique such constraint
by con 
x�C�� If x does not occur on the left hand side of any constraint in
C� then x is said to be unconstrained in C� and we write con 
x�C� � ��

We say that the assignment u satis�es the constraint p � q if u
p� � u
q��
We say that u satis�es C if u satis�es all the constraints in C� We say that
� � X� satis�es a constraint or set of constraints if ����� does�

��� The Nonlinear Reachability Problem

Let C be a system of Diophantine constraints as described above and let
x� � X be a �xed distinguished variable�

De
nition � Let � � X�� The constraint p � q � C is said to be ��enabled
if �
p� 
 �
q�� i�e�� the inequality is strict under the assignment ������ The
variable x � X is said to be 
��C��enabled if either

� x is unconstrained in C� or

� x is constrained in C and con 
x�C� is ��enabled�

�

��



A tree� for our purposes� is a nonempty pre�x�closed subset T of X�� The
root of T is �� The parent of � �� � is the longest proper pre�x of �� A leaf
of T is an element of T that is not a parent� A path of T is a maximal subset
of T linearly ordered by the pre�x relation�

The system C gives rise to a tree

TC � f� � X� j for all pre�xes �x of �� x is 
�� C��enabled�g

The tree TC describes the possible legal sequences of �rings that can take
place according to the informal description of the nonlinear reachability prob�
lem given in Section ��

De
nition � The Nonlinear Reachability Problem �NRP� is to determine�
given C� whether TC contains an element � such that �
x�� � 	� Such a � is
called a solution of the given instance C of the NRP� �

In other words� determine whether there exists a legal �ring sequence such
that the distinguished variable x� is �red�

Note that � satis�es C since ����� � �� and if � satis�es C and x is 
��C��
enabled� then �x satis�es C� since ���x�� � ����� � �x� It follows by induction
that � satis�es C for every � � TC� In other words� if � satis�es C and x is

��C��enabled� then we can �re x and the resulting assignment still satis�es
C� The converse is false in general� i�e�� it is possible that both � and �x

satisfy C but x is not 
��C��enabled� consider the constraint x � x�

��� Reduction of Set Constraint Satis�ability to Non�

linear Reachability

Theorem  The satis�ability problem for systems of mixed positive and neg�
ative set constraints reduces e
ectively to a �nite disjunction of instances of
the Nonlinear Reachability Problem�

Proof� As argued in Section �� the satis�ability problem for systems of
mixed positive and negative constraints is equivalent to Problem �� Using
the notation of Problem �� let U be the set of all subsets V � U such that
for all D � D there exists a v � V with v
D� � �� Consider a modi�ed
version of Problem � in which condition 
���� is replaced by the condition

V � �
T�� � 
����

��



Then Problem � is equivalent to the disjunction over all V � U of instances
of the modi�ed version� Furthermore� we will only need to construct a �nite
partial approximation �� to � satisfying 
���� and 
����� provided

� the domain of �� is closed downward under the subterm relation

� there is a closed induced subhypergraph of H containing the image of
���

The second property will allow �� to be completed to a total function �� as
described below�

Thus the problem now becomes�

Problem � Given a hypergraph H � 
U� Ef j f � �� speci�ed by B and
Cf � f � �� and a subset V � U � determine whether there exist U � � U and
a partial map � � T� 	 U � with �nite domain such that

� the induced subhypergraph on U � is closed

� the domain of � is closed downward under the subterm relation

� � satis�es ����� on all terms in its domain

� V � �
T�� � U ��

Consider the following nondeterministic procedure for constructing �� We
�rst guess the subset U � containing the target set V and check that it is
closed� We start with � totally unde�ned� At any point� say we have a
partial � with �nite domain closed downward under the subterm relation�
We nondeterministically pick some term ft� � � � tn such that the �
ti� are
de�ned but �
ft� � � � tn� is not yet de�ned� nondeterministically choose some
u in Ef 
�
t��� � � � � �
tn�� � U �� and assign �
ft� � � � tn� �� u� We are always
able to continue� since U � is closed� We halt successfully when and if all
elements of V have been chosen as �
t� for some t�

During this process� we use an integer variable xu�f�u������un � n � arity
f��
to count the number of terms of the form ft� � � � tn such that

� �
ti� exists and equals ui� � � i � n� and

� �
ft� � � � tn� exists and equals u�

��



There is one such variable for each choice of f in �� u�� � � � � un � U � where
n � arity
f�� and u � U � � Ef 
u�� � � � � un��

Now for each f � �n and u�� � � � � un � U �� consider the formal inequality

X
u�U ��Ef�u������un�

xu�f�u� �����un �
nY
i��

MX
m��

X
v� � � � � � vm � U �

g � �m

xui�g�v������vm 
����

where M is the maximum arity of symbols in �� This inequality has the
following signi�cance� Given a partial map �� let

Bu � ft j �
t� exists and equals ug

Af�u������un � fft� � � � tn j ti � Bui� � � i � ng �

The value of the right hand side of 
���� is the size of Af�u������un� which is the
the size of the direct product Bu� � � � � � Bun � The value of the left hand
side of 
���� is the size of the subset of Af�u������un consisting of all elements t
for which �
t� is de�ned� The inequality expresses the fact that � is de�ned
on the subterms of t before being de�ned on t�

Consider the collection C of all such inequalities 
����� To say that a
variable xu�f�u������un is enabled says that there exists a term t with head sym�
bol f such that � is de�ned on the n immediate subterms and takes values
u�� � � � � un on those subterms respectively� but �
t� is not yet de�ned� To �re
xu�f�u������un says that we choose one such t and de�ne �
t� �� u�

The process of de�ning � from the bottom up as described above corre�
sponds to a sequence of legal �rings� Conversely� any legal sequence of �rings
gives a corresponding sequence of de�nitions of � starting with the totally
unde�ned map�

We have thus reduced the satis�ability problem for systems of mixed
positive and negative set constraints to a disjunction of instances of the
problem of determining� given C and V � whether there is a �nite sequence
of legal �rings after which for all v � V there are f and u�� � � � � un such that
the value of xv�f�u������un is nonzero�

We reduce this problem to a �nite disjunction of instances of the NRP
as follows� For each v � V � choose f and u�� � � � � un and let yv � xv�f�u������un�
Add the constraint

x� �
Y
v�V

yv

��



where x� is a new variable� and make x� the distinguished variable of the
NRP so obtained� The variable x� can be �red only after all the yv have
been �red� The problem above is equivalent to the disjunction of all such
instances of the NRP over all possible choices of the yv� �

� Decidability of the Nonlinear Reachability

Problem

In this section we prove the decidability of the NRP�We will start by de�ning
several technical concepts on which our proof is based and deriving their
basic properties� The most important of these concepts are the notions of
exposed and inhibited variables and admissible strings� Intuitively� a variable
is exposed in a polynomial q if incrementing it causes the value of q to increase�
The intuition behind the de�nition inhibited variable is that it does no good
to increment such a variable under the current state of a�airs� A string � is
admissible if it never increments any inhibited variable� We show that if there
exists a solution� then there exists an admissible one� The �nal argument
shows that if we construct the tree TC breadth��rst� ignoring nonadmissible
strings� then along any path we will eventually encounter either a solution� a
leaf with no admissible extensions� or a con�guration that allows us to reduce
the size of the system�

	�� Reset

We �rst describe a useful technical device called a reset� Intuitively� after
executing a �ring sequence � that is legal with respect to a set of constraints
C� we can construct a new instance of the problem inc�
C� 
de�ned below�
which allows us to proceed as if we were starting afresh�

De
nition �� Let C be a system of Diophantine constraints as de�ned in
Section ���� If � � TC � we de�ne T �

C to be the subtree of TC rooted at ��

T �
C � f� � X� j �� � TCg �

This set is nonempty and pre�x�closed� therefore a tree� �

��



Note that ����� alone determines whether a variable is ��enabled� It follows
inductively that if �� � � TC and ����� � ��� ��� then T �

C � T �
C�

Let v be any assignment satisfying C� and let incv be as in Section ����
Let incv
C� denote the system of constraints

incv
C� � fp � incv
q�� v
p� j p � q � Cg �

The right hand sides incv
q��v
p� are in N�X�� since the constant coe�cient
of incv
q� is at least v
p�� This is a consequence of the fact that v satis�es
C�

v
p� � v
q� � �
incv
q�� �

Moreover� x is constrained in C i� it is constrained in incv
C�� since all the
left hand sides are the same�

Note also that the constraint p � incv
q�� v
p� � incv
C� is equivalent
to incv
p� � incv
q�� since incv
p� � p � v
p� for p a sum of variables�

Lemma �� Let C be a set of constraints and � � TC� Then

T �
C � Tinc��C� �

Proof� Certainly � is a member of both trees� Moreover� for any constraint
p � q � C� we have from 
���� that

� 
inc�
q � p�� � ��
q � p� �

and con 
x�C� � con 
x� inc�
C��� thus x is 
�� inc�
C���enabled i� x is

���C��enabled� Thus the trees are identical� �

	�� Order

Our algorithm will construct part of the tree TC � During this construction�
we will want to keep track of the values of q � p for p � q � C� since this
information will help us determine when we have reached a situation in which
progress has been made� We de�ne the order �C for this purpose� We also
de�ne the order �X� which is just the natural order on the set of assignments�

De
nition �� For C a system of constraints and �� � � X�� de�ne

�	



� � �X � if �
x� � � 
x� for all x � X

� � �C � if �
q � p� � � 
q � p� for all p � q � C

� � �X�C � if both � �X � and � �C �

� � �C � if both � �C � and � �C ��

�

It follows from Lemma � and the observation that �
q� is the constant
coe�cient of q that for q � N�X�� if � �X � then �
q� � � 
q��

Note that the relations �X and �C depend only on the assignments �����
and not on the strings � themselves� Note also that if �� � TC then � �X �� �
The same statement is not true in general for �C� for example� take � � ��
� � x� and C � fx � y � �g�

Lemma �� Let x � X� �� � � X� such that � �X � � and p � q � C� Then

�x
q � p� � �
q � p� � �x
q � p� � � 
q � p� �

Proof� Using Lemma � and the facts that ���x�� � ������ �x and p is linear�
it follows that the inequality in the statement of the Lemma is equivalent to

�x
q�� �
q� � �x
q�� � 
q� �

By 
����� this is equivalent to

�
incx
q�� q� � � 
incx
q�� q� �

But this inequality follows from the assumptions of the Lemma� since � �X �

and incx
q�� q � N�X�� �

Lemma �� Let �� � � TC and x � X�

�i� If x is 
��C��enabled and � �C � � then x is 
�� C��enabled�

�ii� If � �X � then �x �X �x�

�iii� If � �X�C � � then �x �X�C �x�

Proof� The assertions 
i� and 
ii� are straightforward consequences of the
de�nitions� The assertion 
iii� follows from 
ii� and Lemma �� �

��



	�� Well Partial Orders and Dickson
s Lemma

A well partial order is a partially ordered set in which every in�nite se�
quence has an in�nite monotone nondecreasing subsequence� That is� for
every in�nite sequence d�� d�� � � �� there exist indices i� 
 i� 
 � � � such that
di� � di� � � � ��

Lemma �	 �Dickson�s Lemma� The set Nk of k�tuples of natural num�
bers under the componentwise order is a well partial order�

For a proof of Dickson�s Lemma� see ��	��
We will use Dickson�s Lemma in the argument below to conclude that

along any in�nite path in TC � we must eventually have � �C �� � Here we
are taking k � jCj and comparing the k�tuples 
�
q � p� j p � q � C��

	�� Exposed Variables

Intuitively� a variable x is ��exposed in a polynomial q i�� after executing
�� �ring x would cause the value of q to increase strictly� The following
de�nition and lemma make this intuition precise�

De
nition �� Let x � X and � � TC � We say that x is ��exposed in a
monomial qxi� where x does not appear in q� if i � � and �
q� �� 	� For
q � N�X�� we say that x is ��exposed in q if x is ��exposed in some monomial
of q� We say that x is 
��C��exposed if x is ��exposed in q for some p � q � C�

�

Lemma �� Let x � X� q � N�X�� and � � TC� Then x is ��exposed in q i

�
q� 
 �x
q��

Proof� Since � and �x are homomorphisms and all values are nonnegative�
it su�ces to show the result for monomials axi� a � N�X � fxg�� Since
�x
a� � �
a��

�x
axi�� �
axi� � �
a�

�
x� � ��i � �
x�i� � 	 �

with equality holding i� i � 	 or �
a� � 	� �

The following lemma establishes some basic properties of the notion of
exposure and its relation to enabling and the relation �C�

��



Lemma � Let x � X� p � q � C� and �� � � TC �

�i� If x is ��exposed in q and � �X � � then x is � �exposed in q �once
exposed� always exposed��

�ii� If x is ��exposed in q� then �x
q � p� � �
q � p�� moreover� if x does
not occur in p� then the inequality is strict�

�iii� If x is not 
��C��exposed� then �x �C ��

�iv� The property of exposure in the right hand side of a constraint p � q �
C is preserved under a reset� Formally� x is �� �exposed in q i
 x is
� �exposed in inc�
q�� �
p��

�v� If �
x� � 	� x is not ��exposed in q� and x is �y�exposed in q� then y

is ��exposed in q�

Proof� Except for 
iv� and 
v�� all statements are direct consequences of
De�nition �� and Lemma ���

To prove 
iv�� we use 
���� and Lemma ���

��x
q�� �� 
q� � �x
inc�
q��� � 
inc�
q��

� �x
inc�
q�� �
p��� � 
inc�
q�� �
p�� �

since �
p� is a constant�
For 
v�� there must be a monomial axi of q� i � �� a � N�X � fxg��

such that �
a� � 	 and �y
a� � 	� Since �y
x� � �
x� � 	� we have
�y
axi� � 	 � �
axi�� thus �y
q� � �
q�� By Lemma ��� y is ��exposed in
q� �

	�� Inhibited Variables and Admissible Strings

The technical notion of an inhibited variable captures the idea that� under
the current state of a�airs� �ring the variable makes no progress toward a
solution� Intuitively� �ring a variable makes progress only if the variable is
exposed� so that �ring it might enable another variable� or has value 	� so
that �ring it might contribute to the exposure of another variable�

We will formalize and prove a result that says intuitively that any string
� can be simulated by another string � in which no inhibited variable is ever
�red� Such a string � is called admissible�

�



De
nition �� Let C be a system of Diophantine constraints and � � TC�
We say x � X is 
��C��inhibited if

� x is unconstrained in C�

� x is not 
��C��exposed� and

� �
x� � 	�

We say that � � X� is C�admissible if � � TC� and for all pre�xes �y of ��
y is not 
�� C��inhibited� �

Lemma �� �i� If y is 
��C��inhibited� then �
p� � �y
p� and �
q� �
�y
q� for all constraints p � q � C� In particular� �y �C ��

�ii� If y� z are 
��C��inhibited� then z is 
�y�C��inhibited� �This also ap�
plies to the case y � z��

Proof�


i� Since y is unconstrained� it does not appear in p� therefore �
p� �
�y
p�� Since y is not ��exposed in q� we have �
q� � �y
q� by Lemma
���


ii� Surely �y
z� � �
z� � 	 and z is still unconstrained in C� Since y and
z are not 
��C��exposed� they are not exposed in q for any p � q � C�
Since �
z� � 	� it follows from Lemma ��
v� that z is not �y�exposed
in q� Thus z is not 
�y�C��exposed�

�

The following two lemmas imply that we can restrict our attention to
admissible strings when looking for solutions�

Lemma �� For every � � TC� there exists a C�admissible string � � TC
such that � �C � �

��



Proof� Let us call a pre�x ��y of � bad if y is 
��� C��inhibited� The
proof is by lexicographical induction on the length of �� among strings of
the same length� the number of bad pre�xes� and among strings of the same
length and same number of bad pre�xes� the length of the longest bad pre�x

�longer� is �smaller� in the induction�� If � is null or has no bad pre�x�
there is nothing to prove� If the longest bad pre�x ��y is � itself� then since
y is not 
��� C��exposed� we have by Lemma ��
iii� that ��y �C ��� and we
are done by the induction hypothesis� Otherwise� there exists a z and ��
such that � � ��yz��� Now z is not 
��y�C��inhibited� by the maximality of
��y� Neither is it 
��� C��inhibited� by Lemma �	
ii�� Moreover� z is 
��� C��
enabled� by Lemma �	
i� and the fact that it is 
��y�C��enabled� and y is

��z�C��enabled since it is unconstrained� Therefore ��zy�� � TC is of the
same length as �� but with either strictly fewer bad pre�xes 
if ��zy is not a
bad pre�x� or the same number of bad pre�xes and a strictly longer maximal
one 
if it is�� The result follows from the induction hypothesis� �

Lemma �� If a given instance of the NRP with constraints C has a solution�
then it has an admissible solution�

Proof� Let � be a solution of minimal length� Then � is of the form
�x� and � 
x�� � 	� By Lemma ��� there exists an admissible 	 such that
� �C 	� If 	
x�� � 	� then 	 is the desired admissible solution� Otherwise�
x� is 
	�C��enabled 
since � �C 	 and x� is 
�� C��enabled� and not 
	�C��
inhibited 
since 	
x�� � 	�� therefore 	x� is the desired admissible solution�

�

	�	 The Graphs H���C�

We now describe a family of graphs H
��C� de�ned in terms of a given
system C of constraints and � � TC� The purpose of these graphs is to
keep track of the exposed variables and how �ring them can enable other
constraints� so that we can monitor the progress of a �ring sequence�

Formally� H
��C� is a �nite labeled directed graph with vertices C �f�g�
For each p � q � C and x � X such that x is ��exposed in q� there is an
edge labeled x from con 
x�C� to p � q� 
Recall that con 
x�C� is � if x is
unconstrained in C� otherwise con 
x�C� is some constraint p � q � C�� Self�
loops are allowed in this de�nition� if x is constrained in C by the constraint

��



p � q and x is ��exposed in q� H
��C� has a self�loop labeled x on the vertex
p � q�

It follows from Lemma ��
i� that if � �X � then H
��C� is a subgraph
of H
�� C�� In particular� H
��C� is a subgraph of H
�x�C�� Moreover� it
follows from Lemma ��
ii� that if � � TC� x is 
��C��enabled� and H
��C�
contains an edge labeled x into p � q� then p � q is �x�enabled�

We can think of H
��C� as a net in which tokens are passed around as
variables are �red� Firing a variable x causes at least one token to be passed
from con 
x�C� along all edges labeled x to other constraints in which x is
exposed� enabling those constraints� The number of tokens that are passed
depends on the values of �
q � p� for p � q � C� but by Lemma ��
ii�� it is
always at least one�

Lemma �� Let �� � TC such that � �C �� � Assume further that � contains
at least one variable constrained in C� Then H
���C� contains either a cycle
all of whose labels are in � or an edge out of � whose label is in � �

Proof� Let x be constrained in C by the constraint p � q� and suppose
that x occurs in � at least once� Then �
p� 
 �� 
p�� Also� �
q�p� � �� 
q�
p�� since � �C �� � Combining these inequalities� we obtain �
q� 
 �� 
q��
By Lemma ��� there must be a y � X and a pre�x 	y of � such that y is
�	�exposed in q� Then H
�	�C� contains an edge labeled y from con 
y�C�
to con 
x�C�� Since H
�	�C� is a subgraph of H
���C�� this edge also exists
in H
���C��

Now either y is unconstrained in C� in which case con 
y�C� � � and we
are done� or we can continue in the same fashion with y� Following these
edges backwards� we must eventually either arrive at � or cycle� �

	�� Equivalence of Problem Instances

In our decidability proof� we will show that as a computation � unfolds� the
graph H
��C� develops in certain ways that occasionally allow us to simplify
C� for instance by discarding a constraint or a variable� In such cases we will
construct a new system D that is structurally simpler than C but equivalent
in the sense that D has a solution i� C does� The following de�nition gives
the formal notion of equivalence of systems that we have in mind�

��



De
nition �� Let C�D be systems of constraints� We write C � D if for
every � � TC there is a � � TD such that � �X � � We write C � D and say
that C and D are equivalent if both C � D and D � C� �

It follows immediately from this de�nition that if C � D� then C has a
solution if and only if D does�

	�� Proof of Decidability

Let C be a system of Diophantine constraints� The following three lemmas�
Lemmas ��� ��� and ��� identify three situations that will allow a structural
simpli�cation of the system C� We suggest that the reader skip the proofs
of these lemmas on �rst reading and go directly to Theorem ���

Lemma �	 Let p � q � C� If C has an unconstrained variable ��exposed in
q� then

C � C � fp � qg �

Proof� Let C � � C � fp � qg� The easier direction is C � C �� If y
is 
��C��enabled then y is also 
��C ���enabled� since y is either constrained
by the same constraint in C and C � or unconstrained in C �� It follows that
TC � TC��

For the other direction� suppose � � TC�� Let x be a C�unconstrained
variable ��exposed in q� Let n � j�j and let

� � xx � � �x� �z �
n

� � xn� �

Then � �X � � We show that � � TC� Certainly xn � TC� since x is
unconstrained� It remains to show that � � T xn

C � Resetting and using Lemma
��� it su�ces to show � � Tincxn �C�� Thus we need to show that for any
pre�x 	y of �� y is 
	� incxn
C���enabled� This follows from the fact that y
is 
	�C ���enabled� for any f � g � C ��

	
incxn
g � f�� � 	xn
g�� 	
f� since x does not occur in f

� 	
g � f� �

��



and for the constraint p � q�

	
incxn
q � p�� � 	xn
q�� 	
p� since x does not occur in p

� 	
q� � n � 	
p� by Lemmas �� and ��
i�

� 	
q� � n � j	j since p is linear

� 	 since j	j 
 n�

�

Lemmas �� and �� deal with two di�erent kinds of cycles that can arise
in H
��C�� The �rst is used when the cycle is a self�loop on a single vertex�
and the latter is used when the cycle has at least two vertices�

Lemma �� If H
�� C� has a self�loop labeled x on vertex p � q� and if x is

�� C��enabled� let

C � �

�

C � fp � qg� � fp� x � q � xg � if q � x � N�X�
C � fp � qg � otherwise�

Then C � C ��

Proof� Since x is ��exposed in q� by De�nition �� that q has a term of
the form axk where a� k � N and a� k � �� i�e�� q can be written q� � xk

with q� � N�X�� If the �rst alternative in the de�nition of C � holds� i�e� if
q has a linear term ax� then we can take k � �� If the second alternative
holds� we can take k � �� Let us call these two cases 
i� and 
ii�� respectively�
Either way� since con 
x�C� is p � q� x also occurs in p� and since p is linear�
p � p� � x for some p� � N�X��

First we show C � C �� This is immediate for case 
ii� as in Lemma
��� For case 
i�� note that q � p � q� � p�� Thus for any � � X�� any
variable y � X � fxg is 
��C��enabled i� it is 
��C ���enabled� and since x is
unconstrained in C �� x is always 
��C ���enabled� It follows that TC � TC��
thus C � C ��

Now we show C � � C for both cases� Let � � TC� � and let n � maxf�� j�jg�
Let �� be obtained by deleting all occurrences of x from �� and let � � xn���
Then � �X � � We claim that � � TC� Since x is ��exposed in q and 
�� C��
enabled� by Lemmas �� and ��
i�� xn � TC� so we need only prove that

��



�� � T xn

C � Resetting by Lemma ��� it su�ces to prove that �� � Tincxn�C��
We need to show that for any pre�x 	�y of ��� y is 
	�� incxn
C���enabled�
This will follow from the fact that y is 
	�C ���enabled� where 	y is the unique
pre�x of � such that 	�y is 	y with all occurrences of x removed 
note y �� x�
since it occurs in ����

Suppose 	 has m occurrences of x� For any f � g � C � fp � qg�

	�
incxn
g � f�� � 	�xn
g�� 	
f� since x does not occur in f

� 	xn�m
g�� 	
f�

� 	
g�� 	
f�

� 	
g � f� �

For the argument involving constraint p � q� we split on cases� In case 
i��

	�
incxn
q � p�� � 	�xn
q� � p��

� 	�xn
q��� 	
p�� since x does not occur in p�

� 	xn�m
q��� 	
p��

� 	
q��� 	
p��

� 	
q� � p�� �

In case 
ii��

	�
incxn
q � p�� � 	�xn
q � p�

� 	�xn
q�� � 	�xn
xk�� 	�xn
p��� 	�xn
x�

� �nx
x
k�� 	�
p��� �nx
x�

� nk � 
n� ��� n

� 
n� ���

� 	 �

�

Lemma �� If there is a cycle in H
�� C� on vertices

D � fp� � q�� � � � � pn�� � qn��g �

��



then C � C �� where

p� �
n��X
i��

pi

q� �
n��X
i��

qi

C � � 
C �D� � fp� � q�g �

Proof� First we show C � C �� As above� it su�ces to show that for any
assignment � � TC and variable y� if y is 
��C��enabled then y is 
��C ���
enabled� If con 
y�C� �� D� then con 
y�C �� � con 
y�C�� thus y is 
��C��
enabled i� it is 
��C ���enabled� Otherwise� if con 
y�C� � D� say pk � qk
for some 	 � k � n � �� then con 
y�C �� is p� � q�� Since � � TC � we have
�
pi� � �
qi�� 	 � i � n � �� Moreover� since y is 
��C��enabled� we have
�
pk� 
 �
qk�� Thus �
p�� 
 �
q��� so y is 
��C ���enabled�

Now we show C � � C� Assume without loss of generality that the vertices
in D occur on the cycle of H
�� C� in the order p� � q�� � � �� pn�� � qn�� and
that yi is the label on the edge from pi � qi to pi�� � qi��� 	 � i � n � �

arithmetic on subscripts is modulo n��

The intuitive idea behind the following argument is that if some yi is
enabled� then �ring yi enables yi��� and so on� thus we can imagine a token
being passed around the cycle D� enabling whichever pj � qj � D is needed�

Let � � TC� � We construct by induction on the length of � a string
�� � TC such that � �X�C� ��� De�ne �� � �� Now suppose �y � TC� and ��

has been de�ned� By the induction hypothesis�


i� � �X�C� ��


ii� �� � TC�

Since y is 
��C ���enabled� by 
i� we have that y is 
��� C ���enabled�
If con 
y�C� is in C �D or con 
y�C� � �� let 
�y�� � ��y� Then �y �X


�y��� and since con 
y�C� � con 
y�C ��� y is 
��� C��enabled� Moreover�
�y �C� ��y by Lemma ��
iii��

If con 
y�C� is in D� say pk � qk� then con 
y�C �� is p� � q�� By 
i� and

ii��

��
p�� 
 ��
q�� �

��
pi� � ��
qi� � 	 � i � n� � �

	



It follows that there must exist an i� 	 � i � n� �� such that

��
pi� 
 ��
qi� � 
���	�

De�ne


�y�� � ��yiyi��yi�� � � � yk��y


the sequence i� i� �� � � � � k � � wraps modulo n if necessary�� Then �y �X


�y��� By 
���	�� yi is 
��� C��enabled� Since each yj is ��exposed in qj���
	 � j � n � �� it follows inductively that each yj is 
��yiyi�� � � � yj��� C��
enabled� and y is 
��yiyi�� � � � yk��� C��enabled� Thus ��yiyi�� � � � yk��y � TC�

It remains to show that �y �C� 
�y��� For p � q in C �D�


�y��
q � p� � 
�y��
q�� 
�y��
p�

� �y
q�� 
�y��
p�

� �y
q�� �y
p� since the yi do not appear in p

� �y
q � p� �

For p� � q�� since each yj is ��exposed in qj�� and hence also in q�� by Lemma
��
ii� we have


�y��
q� � p�� � ��yiyi��yi�� � � � yk��y
q
� � p��

� ��yi��yi�� � � � yk��y
q
� � p��

� ��yi�� � � � yk��y
q
� � p��

� � � �

� ��y
q� � p�� 
�����

By Lemma ��
iii� and the induction hypothesis� 
����� is bounded below by
�y
q� � p��� �

Theorem � It is decidable whether a given instance C of the NRP has a
solution�

Proof� We proceed by induction on the complexity of C� If C � � then
all variables are unconstrained and therefore enabled� thus we can increment
x� immediately� Otherwise assume C is nonempty�

We identify a number of cases below� each of which allows us to reduce
the size of C in some respect 
either fewer constraints or fewer constrained
variables�� In each case� the induction hypothesis gives a procedure for de�
ciding whether the smaller system has a solution� and this will determine
whether C has a solution�

�



Case � C contains an unconstrained 
�� C��exposed variable� By Lemma
��� C is equivalent to a system with fewer constraints�

Case � H
�� C� has a self�loop labeled x� and x is 
�� C��enabled� By
Lemma ��� C is equivalent to a system with either fewer constrained variables
or fewer constraints�

Case � H
�� C� has a cycle on a set of at least two vertices� By Lemma
��� C is equivalent to a system with fewer constraints�

Case � None of Cases �� �� or  apply� In this case� consider the set T adm
C

consisting of all admissible strings in TC� The set T adm
C contains the empty

string � and is closed under the pre�x relation� so it is a tree� For any
� � T adm

C � �x � T adm
C i� x is 
��C��enabled but not 
��C��inhibited� By

Lemma ��� C has a solution if and only if it has one in T adm
C �

Now let T �
C be the subtree of T adm

C obtained by deleting all strings con�
taining a proper pre�x of the form �� � where j� j � jXj and � �C �� � The
tree T �

C has no in�nite paths� since Dickson�s Lemma 
Lemma ��� says that
any in�nite path must contain �� �� �� � � � such that each i is a proper
pre�x of i�� and each i �C i��� thus � �C jXj�� and the di�erence in
their lengths is at least jXj � �� so this in�nite path would be pruned in
the construction of T �

C� By K�onig�s Lemma� T �
C is �nite� since it is �nitely

branching� The tree T �
C can be constructed e�ectively since the conditions

for extending a branch and for pruning are e�ective�
Since any extension in TC of a solution is a solution� C has a solution i�

it has a solution of the form �� � T adm
C for some leaf � of T �

C� The leaves �
are of two types� not necessarily mutually exclusive�


i� All 
��C��enabled variables are 
��C��inhibited� Leaves of this form
are leaves of T adm

C � since they have no C�admissible extensions�


ii� The leaf � is of the form �	� where � �C �	 and j	j � jXj� Leaves
of this form are not necessarily leaves of T adm

C � but are obtained by
pruning T adm

C in the construction of T �
C�

If �
x�� � 	 or x� is 
��C��enabled for some leaf �� we are done� in the
former case� � is a solution� and in the latter� �x� is a solution� Otherwise�

�



there is no admissible solution extending a leaf of the form 
i�� Thus we are
left with leaves of the form 
ii�� For each such leaf �	� where � �C �	 and
j	j � jXj� since �	 is C�admissible� for every pre�x x of 	� either

� x is constrained in C�

� x is 
��C��exposed� or

� �
x� � 	�

Suppose 	 contains a variable constrained in C� By Lemma �� H
�	�C�
contains either an edge out of � or a cycle whose labels are in 	� If the
former� we revert to Case � after resetting� If the latter and the cycle is
of length at least two� we revert to Case  after resetting� Otherwise there
is a self�loop in H
�	�C� with label x� where x is a pre�x of 	� If that
self�loop already exists in H
��C�� then since x is ��enabled� we revert to
Case � after resetting� Otherwise� let y be the shortest pre�x of 	 such that
H
�y�C� contains that self�loop� By Lemma ��
v�� x is �y�enabled� and
we revert to Case � after resetting�

If all variables occurring in 	 are unconstrained in C and at least one is

��C��exposed for some pre�x  of 	� then H
��C� has an edge out of ��
and we revert to Case � after resetting�

Finally� if all variables occurring in 	 are unconstrained in C and not

�	�C��exposed� we must have �
x� � 	 for every pre�x x of 	� otherwise
the string would not be admissible� But since j	j � jXj� at least one variable
must be �red twice� so this situation cannot occur� �
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