
On the Elimination of Hypotheses
in Kleene Algebra with Tests

Chris Hardin
Department of Mathematics

Cornell University
Ithaca, New York 14853-4201, USA
hardin@math.cornell.edu

Dexter Kozen
Department of Computer Science

Cornell University
Ithaca, New York 14853-7501, USA

kozen@cs.cornell.edu

November 18, 2002

Abstract

The validity problem for certain universal Horn formulas of Kleene algebra with
tests (KAT) can be efficiently reduced to the equational theory. This reduction is
known as elimination of hypotheses. Hypotheses are used to describe the interaction
of atomic programs and tests and are an essential component of practical program
verification with KAT. The ability to eliminate hypotheses of a certain form means
that the Horn theory with premises of that form remains decidable in PSPACE. It
was known (Cohen 1994, Kozen and Smith 1996, Kozen 1997) how to eliminate
hypotheses of the form q = 0. In this paper we show how to eliminate hypotheses
of the form cp = c for atomic p. Hypotheses of this form are useful in eliminating
redundant code and arise quite often in the verification of compiler optimizations
(Kozen and Patron 2000).

1 Introduction

Kleene algebra with tests (KAT), introduced in [12], is an equational system for program
verification that combines Kleene algebra (KA) with Boolean algebra. KAT has been
applied successfully in various low-level verification tasks involving communication pro-
tocols, basic safety analysis, source-to-source program transformation, concurrency con-
trol, and compiler optimization [3, 4, 5, 12, 15, 1, 2]. The system subsumes Hoare logic
and is deductively complete for partial correctness over relational models [14].

A useful feature of KAT in practical verification tasks is its ability to accommodate
basic equational hypotheses regarding the interaction of atomic instructions and tests.
This feature makes KAT ideal for static analysis of complicated code fragments based on
the behavior of their atomic parts.

For example, consider the case of an assertion b that holds at some point in a program
immediately before an action p, and suppose we know that the execution of p cannot affect
the truth of b. For instance, p might be an assignment such as x := 3 and b might be a
test such as y = 4 that refers to a different variable. In KAT, the independence of p and
b is modeled by a commutativity condition pb = bp, which is typically postulated as an
assumption. The rules of equational logic allow pb to be substituted for bp and vice-versa;
intuitively, if p and b are adjacent in the program, they can exchange positions.

Similarly, assertions arising from the execution of actions can be introduced and elim-
inated as needed using equational assumptions of the form p = pc. For example, if p is
the assignment x := 3 and c is the assertion x = 3, then any execution of p causes c to
hold immediately afterward. Using p = pc, one can introduce the assertion c immediately
following any occurrence of p in the program, then move it around using commutativity
conditions as described in the preceding paragraph. If an occurrence of c can be moved
to a position immediately preceding some other occurrence of p, then that occurrence of
p can be eliminated, since it is redundant: if x already has the value 3, there is no need
to assign 3 to it again. Formally, we postulate cp = c. This technique is useful in the
verification of various compiler optimizations that eliminate unnecessary code, such as
the loading of a register with a constant value inside a loop. See [15] for many examples
of this type.

In such proofs, the underlying first-order semantics of p and c (i.e., that p is x := 3
and c is x = 3) are used to establish the correctness of the premises p = pc and cp = c;
but once this is done, the argument reverts to purely propositional reasoning, using p = pc
and cp = c as equational assumptions without reference to their semantics.

Much attention has focused on the equational theory of KA and KAT. The axioms
of KAT are known to be deductively complete for the equational theory of language
and relational models, and validity is decidable in PSPACE [16, 6]. But because of the
practical importance of premises, it is the universal Horn theory that is of more interest;
that is, the set of valid sentences of the form

p1 = q1 ∧ · · · ∧ pn = qn → p = q, (1)

where the atomic symbols are implicitly universally quantified. Typically, the premises
pi = qi are assumptions such as bp = pb, p = pc, and cp = c regarding the interaction
of atomic programs and tests, and the conclusion p = q represents the equivalence of the
optimized and unoptimized program. The necessary premises are obtained by inspection
of the program and their validity may depend on properties of the domain of computation,
but they are usually quite simple and easy to verify by inspection, since they typically only
involve atomic programs and tests. Once the premises are established, the proof of (1) is
purely propositional. This ability to introduce premises as needed is one of the features
that makes KAT so versatile. By comparison, Hoare logic has only the assignment rule,

2

which is much more limited. In addition, this style of reasoning allows a clean separation
between first-order interpreted reasoning to justify the premises p1 = q1 ∧ · · · ∧ pn = qn

and purely propositional reasoning to establish that the conclusion p = q follows from
the premises.

Unfortunately, the Horn theory is computationally more complex than the equational
theory. The general Horn theory for ∗-continuous algebras is Π1

1-complete. Even when
the premises are restricted to commutativity conditions of the form pq = qp for atomic
actions p and q, the validity problem is Π0

1-complete [13].
However, sometimes the validity of universal Horn formulas with premises of a cer-

tain restricted form can be efficiently reduced to the equational theory. This reduction
is known as elimination of hypotheses. Cohen [3] was the first to identify this as an im-
portant issue. He showed how to eliminate hypotheses of the form q = 0 in KA; thus
the Horn theory of KA with premises of this form remains decidable in PSPACE. These
results were generalized to KAT in [16]. This is good news for many of the program veri-
fication tasks mentioned above, since in many cases the premises are of this form. For ex-
ample, the commutativity condition bp = pb is equivalent to the condition bpb+ bpb = 0,
and the condition pc = p is equivalent to the condition pc = 0. All partial correctness
assertions of Hoare logic are of this form as well: the Hoare partial correctness assertion
{b} p {c} is equivalent to the equation bpc = 0. For this reason, we call Horn formulas
with premises of the restricted form q = 0 Hoare formulas.

The general question thus arises: under what conditions can hypotheses can be elim-
inated? In other words, under what restrictions on the premises does the validity of Horn
formulas reduce to the validity of equations? Although we do not have a general answer
to this question, we can extend the class of useful premises for which elimination is pos-
sible: we show in this paper how to eliminate hypotheses of the form cp = c for atomic
p. Equations of this form are not equivalent to equations of the form q = 0 in general.

Before we go further, there are several subtleties in the question itself that must be ad-
dressed. One issue is that unlike the equational theory, the question depends on the class
of models under consideration. In order of increasing restriction, one might consider va-
lidity over unrestricted (KAT),∗-continuous (KAT∗), or relational (REL) Kleene algebras
with tests. The equational theories of all these classes coincide [16], but this is not true
of their Horn theories. The Horn theories of KAT and KAT∗ must differ, since the for-
mer is recursively enumerable—it is defined by a finite quasiequational axiomatization—
whereas the latter is Π1

1-complete [13]; and the Horn theories of KAT∗ and REL differ,
since p ≤ 1→ p2 = p is valid in all relational models, but not in all∗-continuous KATs;
for example, not in the min,+ algebra.

The results of [3, 16] on the elimination of hypotheses of the form q = 0 were initially
shown to hold for ∗-continuous and general KA and KAT, but the corresponding result for
relational models does not follow from these results or their proofs. This was a subtle but
crucial oversight, since in programming language semantics, it is the relational models

3

that are of primary interest. The situation was rectified in [14], where it was established
that the Hoare theories of KAT, KAT∗, and REL coincide, and that the same reduction
also works for relational models.

Cohen [3] shows also that hypotheses of the form p ≤ 1 can be eliminated, provided
p contains no occurrence of a composition operator. However, this result is more prob-
lematic. His reduction is valid when interpreted over the classes of all Kleene algebras or
all ∗-continuous Kleene algebras; however, it fails when restricted to relational models.
In fact, an example formula on which it fails is the formula p ≤ 1 → p2 = p men-
tioned above. Since the reduction does not work for relational models, and since it is the
relational models that are of primary interest in program semantics, the situation is not
completely satisfactory.

Another issue is that one would like to eliminate hypotheses of the form p ≤ 1 or
q = 0 simultaneously. Cohen does not address this issue. In the case of premises of the
form q = 0, it is easy to see how to combine several of them into one: the conjunction
q1 = 0 ∧ · · · ∧ qn = 0 is equivalent to the single equation q1 + · · · + qn = 0. A
similar construction can be used to combine several premises of the form p ≤ 1 into one.
However, it is not immediately clear how to handle both forms simultaneously.

In this paper we consider premises of the form cp = c for atomic p. The utility
of such premises in practical verification has been argued above. Such equations are
not equivalent to any equation of the form q = 0, and the construction we use is quite
different. We show that an arbitrary finite set of premises of this form in conjunction with
arbitrarily many premises of the form q = 0 can be simultaneously eliminated, giving
an efficient reduction of the Horn theory with premises of the form cp = c for atomic
p or q = 0 to the equational theory. Moreover, this result holds irrespective of whether
the class of interpretations is KAT, KAT∗, or REL; that is, the Horn theories of these
three classes of models, restricted to premises of the form cp = c for atomic p or q = 0,
coincide. Thus the Horn theory with premises of this form remains decidable in PSPACE.

2 Preliminary Definitions

2.1 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions [10, 7]. The axiomatization
used here is from [11]. A Kleene algebra is an algebraic structure (K, +, ·,∗, 0, 1) that
is an idempotent semiring under +, ·, 0, 1 such that p∗q is the≤-least solution to q+px ≤
x and qp∗ is the≤-least solution to q+xp ≤ x, where≤ refers to the natural partial order

on K: p ≤ q
def⇐⇒ p + q = q. This is a universal Horn axiomatization. A Kleene algebra

is ∗-continuous if it satisfies the stronger infinitary property pq∗r = supn pqnr.
The axioms for ∗ say essentially that ∗ behaves like the Kleene asterate operator of

4

formal language theory or the reflexive transitive closure operator of relational algebra.
Kleene algebra is a versatile system with many useful interpretations. Standard mod-

els include the family of regular sets over a finite alphabet; the family of binary relations
on a set; and the family of n × n matrices over another Kleene algebra. Other more un-
usual interpretations include the min,+ algebra, also known as the tropical semiring, used
in shortest path algorithms, and models consisting of convex polyhedra used in computa-
tional geometry.

The completeness result of [11] says that all true identities between regular expres-
sions interpreted as regular sets of strings are derivable from the axioms of Kleene alge-
bra. In other words, the algebra of regular sets of strings over the finite alphabet P is the
free Kleene algebra on generators P. The axioms are also complete for the equational
theory of relational models.

See [11] for a more thorough introduction.

2.2 Kleene Algebra with Tests

Kleene algebras with tests (KAT) were introduced in [12]. We give a brief introduction
here, but refer the reader to [12, 14, 17] for a more detailed treatment.

A Kleene algebra with tests is just a Kleene algebra with an embedded Boolean sub-
algebra. That is, it is a two-sorted structure

(K, B, +, ·, ∗, , 0, 1)

such that

• (K, +, ·, ∗, 0, 1) is a Kleene algebra,

• (B, +, ·, , 0, 1) is a Boolean algebra, and

• B ⊆ K.

The Boolean complementation operator is defined only on B. Elements of B are called
tests. The letters p, q, r, s, . . . denote arbitrary elements of K and a, b, c, . . . denote tests.

The encoding of the while program constructs is as in propositional Dynamic Logic
[8]:

p ; q
def= pq

if b then p else q
def= bp + bq

while b do p
def= (bp)∗b.

5

The Hoare partial correctness assertion {b}p{c} is expressed as an equation bpc = 0,
or equivalently, bp = bpc. All Hoare rules are derivable in KAT; indeed, KAT is de-
ductively complete for relationally valid propositional Hoare-style rules involving partial
correctness assertions [14] (propositional Hoare logic is not).

Let P and B be disjoint sets of symbols called the atomic actions and atomic tests,
respectively. We denote by RExpP,B the set of terms of the language of KAT over P and
B. A test over B is just a Boolean combination of elements of B. The set of tests over B
is denoted BoolB.

Lemma 2.1 The following are equivalent in KAT:

(i) cp = c

(ii) cp + c = 1

(iii) p = cp + c.

Proof. For (i)→ (ii), replace cp by c on the left-hand side of (ii) and use the Boolean
algebra axiom c+ c = 1. For (i)→ (iii), replace c by cp on the right-hand side of (iii) and
use distributivity and the Boolean algebra axiom c + c = 1. For (ii)→ (i) and (iii)→ (i),
multiply both sides of (ii) or (iii) on the left by c and use distributivity and the Boolean
algebra axioms cc = 0 and cc = c. �

We write KAT � ϕ (respectively, KAT∗ � ϕ) if ϕ holds under all interpretations over
Kleene algebras with tests (respectively, ∗-continuous Kleene algebras with tests).

2.3 Kripke Frames

For applications in program verification, we usually interpret programs and tests either as
sets of traces or as binary relations on a set of states. Both these classes of algebras are
defined in terms of Kripke frames. A Kripke frame over a set of atomic programs P and a
set of atomic tests B is a structure (K, mK), where K is a set of states, mK : P→ 2K×K ,
and mK : B→ 2K .

2.4 Relational Models

The set of all binary relations on a Kripke frame K forms a KAT under the standard
binary relation-theoretic interpretation of the KAT operators. The operator · is interpreted
as relational composition, + as union, 0 and 1 as the empty relation and the identity
relation on K, respectively, and ∗ as reflexive transitive closure. The Boolean elements

6

are subsets of the identity relation. One can define a canonical interpretation []K :
RExpP,B → 2K×K by

[p]K
def= mK(p), p ∈ P [b]K

def= {(u, u) | u ∈ mK(b)}, b ∈ B,

extended homomorphically. A binary relation is regular if it is [p]K for some p ∈
RExpP,B. The relational algebra consisting of all regular binary relations on K is denoted
RelK .

We write RelK � ϕ if the formula ϕ is true in this model under the canonical inter-
pretation []K , and we write REL � ϕ if ϕ is true under all such interpretations. If ϕ
is a single equation, we can omit KAT, KAT∗, or REL before the symbol �, since these
classes of algebras are known to have the same equational theory [16].

2.5 Trace Models

A trace in a Kripke frame K is a sequence u0p0u1 · · · un−1pn−1un, where n ≥ 0, ui ∈
K, pi ∈ P, and (ui, ui+1) ∈ mK(pi) for 0 ≤ i ≤ n − 1. The set of all traces in K is
denoted TracesK . We denote traces by σ, τ, The first and last states of a trace σ are
denoted first(σ) and last(σ), respectively. If last(σ) = first(τ), we can fuse σ and τ to
get the trace στ .

The powerset of TracesK forms a KAT in which + is interpreted as set union, · as the
operation

AB
def= {στ | σ ∈ A, τ ∈ B, last(σ) = first(τ)},

0 and 1 as ∅ and K, respectively, and A∗ as the union of all finite powers of A. The
Boolean elements are the subsets of K, the sets of traces of length 0. A canonical inter-
pretation [[]]K for KAT expressions over P and B is given by

[[p]]K
def= {upv | (u, v) ∈ mK(p)}, p ∈ P [[b]]K

def= mK(b), b ∈ B,

extended homomorphically. A set of traces is regular if it is [[p]]K for some KAT ex-
pression p. The subalgebra of all regular sets of traces of K is denoted TrK .

A homomorphism involving trace or relation algebras on Kripke frames over P,B is
canonical if it commutes with the canonical interpretations [[]]K or []K . For example,
the map Ext(A) = {(first(σ), last(σ)) | σ ∈ A} is a canonical homomorphism TrK →
RelK , since Ext([[p]]K) = [p]K for all p ∈ RExpP,B.

2.6 Guarded Strings

When B is finite, a language-theoretic interpretation is given by the algebra of regular
sets of guarded strings [9, 16]. Let AtomsB denote the set of atoms (minimal nonzero

7

elements) of the free Boolean algebra generated by B. We use the symbols α, β, . . .
exclusively for atoms. For an atom α and a test b, we write α ≤ b if α → b is a
propositional tautology.

A guarded string over P,B is a trace in the Kripke frame G whose states are AtomsB
and

mG(p) def= AtomsB × AtomsB, p ∈ P

mG(b) def= {α ∈ AtomsB | α ≤ b}, b ∈ B.

Thus a guarded string is just a sequence α0p0α1 · · ·αn−1pn−1αn, where the αi ∈ AtomsB
and pi ∈ P, and TracesG is the set of all guarded strings over P,B. Each KAT term
p ∈ RExpP,B denotes a set [[p]]G of guarded strings under the canonical interpreta-
tion defined in Section 2.5. A guarded string σ is itself a member of RExpP,B, and
[[σ]]G = {σ}.

The trace algebra TrG of regular sets of guarded strings over P,B forms the free
Kleene algebra with tests on generators P,B; in other words, [[p]]G = [[q]]G iff p = q
is a theorem of KAT [16].

3 Main Results

In this section we show how to eliminate hypotheses of the form cp = c for atomic p.
Before we do this, we argue that this result does not follow from any previously known
results on the elimination of hypotheses.

Theorem 3.1 Let p be an atomic action and c a test that does not vanish tautologically.
The equation cp = c is not equivalent to any inequality of the form x ≤ a for a test a.
In particular, cp = c is not equivalent to x ≤ 1 or x = 0. Moreover, this holds even
restricted to relational models.

Proof. Let a be a test. Suppose for a contradiction that

REL � cp = c ↔ x ≤ a. (2)

Let P and B be the sets of all atomic actions and tests, respectively, occurring in (2). Let
u be the universal expression (

∑
q∈P q)∗. We claim first that

� x ≤ uc(
∑
b∈B

bpb + bpb)u + aua. (3)

Let [[]]G be the canonical interpretation RExpP,B → TrG. Let

σ = α0p0α1 · · ·αn−1pn−1αn

8

be an arbitrary guarded string in [[x]]G. Suppose that

σ �∈ [[uc(
∑

b∈B bpb + bpb)u]]G. (4)

Then for all i in the range 0 ≤ i ≤ n − 1, if pi = p and αi ≤ c, then αi = αi+1. Let
(K, mK) be a Kripke frame with

K
def= AtomsB,

mK(b) def= {α | α ≤ b}, b ∈ B,

mK(p) def= {(α,α) | α ≤ c} ∪ {(α, β) | α ≤ c, β ∈ AtomsB}
mK(q) def= {(α, β) | α, β ∈ AtomsB}, q ∈ P, q �= p.

In this Kripke frame, for any i,

• if pi = p and αi ≤ c, then αi = αi+1, therefore (αi, αi+1) ∈ [pi]K ;

• if pi = p and αi ≤ c, or if pi �= p, then (αi, αi+1) ∈ [pi]K .

Thus in any case, (αi, αi+1) ∈ [pi]K . Moreover, [αi]K = {(αi, αi)}. Thus

[σ]K = [α0]K ◦ [p0]K ◦ [α1]K ◦ · · · ◦ [αn−1]K ◦ [pn−1]K ◦ [αn]K

= {(α0, αn)}.

Also, [c]K = {(α,α) | α ∈ mK(c)} = {(α,α) | α ≤ c} and [p]K = mK(p), therefore

[cp]K = [c]K ◦ [p]K

= {(α,α) | α ≤ c} ◦ ({(α,α) | α ≤ c} ∪ {(α, β) | α ≤ c, β ∈ AtomsB})
= {(α,α) | α ≤ c}
= [c]K ,

thus RELK � cp = c. Using (2) in the direction →, we have RELK � x ≤ a. Since
σ ≤ x, RELK � σ ≤ a as well, thus [σ]K = {(α0, αn)} ⊆ [a]K = {(α,α) | α ≤ a},
therefore α0 = αn and α0 ≤ a. This says that

σ ∈ [[
∑

α≤a αuα]]G ⊆ [[aua]]G. (5)

We have derived (5) under the assumption (4) for arbitrary σ ∈ [[x]]G, thus

[[x]]G ⊆ [[uc(
∑

b∈B bpb + bpb)u + aua]]G.

By the completeness of KAT over the guarded string model [16], we have (3).

9

Now it follows from (3) that

� uc(
∑
b∈B

bpb + bpb)u + aua ≤ a → x ≤ a,

and combining this with (2) in the direction←, we have

REL � uc(
∑
b∈B

bpb + bpb)u + aua ≤ a → cp = c.

But then this should hold even under interpretations that assign 0 to each atomic action,
thus

REL � 0 + a ≤ a → 0 = c,

which implies that � 0 = c, contradicting the assumption that c is not tautologically false.
�

The following is our main theorem.

Theorem 3.2 Let s1, . . . , sm ∈ RExpP,B, c1, . . . , cn ∈ BoolB, r1, . . . , rn ∈ P ∪ BoolB,
and p, q ∈ RExpP,B. There exist p̂, q̂ ∈ RExpP,B such that the following are equivalent:

(i) KAT �
∧m

i=0 si = 0 ∧ ∧n
i=0 ciri = ci → p = q

(ii) KAT∗ �
∧m

i=0 si = 0 ∧ ∧n
i=0 ciri = ci → p = q

(iii) REL �
∧m

i=0 si = 0 ∧ ∧n
i=0 ciri = ci → p = q

(iv) � p̂ = q̂.

Furthermore, p̂ and q̂ can be calculated from s1, . . . , sm, c1, . . . , cn, r1, . . . , rn, p, and q
in PTIME , and any one of (i)–(iv) can be decided in PSPACE.

The remainder of this paper is devoted to the proof of Theorem 3.2. First we make
some simplifications.

As noted above, the conjunction s1 = 0 ∧ · · · ∧ sm = 0 is equivalent to the single
equation s1 + · · ·+ sm = 0. Thus we can assume without loss of generality that m = 1.

We can also assume that all the ri are in P, since if ri is a test, we can replace the
premise ciri = ci with the equivalent premise ciri = 0, which we can handle along with
the other premises si = 0.

Finally, we can assume without loss of generality that the ri are distinct. For c, d ∈
BoolB and r ∈ RExpP,B, we claim that

� cr = c ∧ dr = d ↔ (c + d)r = c + d.

10

If (c + d)r = c + d, then multiplying both sides on the left by c and using Boolean
algebra, we get cr = c. We can obtain dr = d similarly. Conversely, if cr = c and
dr = d, then (c + d)r = cr + dr = c + d. Thus, whenever ri = rj with i �= j, we
can replace the hypotheses ciri = ci and cjrj = cj with the single equivalent hypothesis
(ci + cj)ri = (ci + cj), repeating as necessary until all the ri are distinct.

Henceforth, we fix the ci and ri, fix s = s1, and make the additional assumptions
that m = 1 and the ri are all in P and distinct. As argued above, these assumptions are
without loss of generality. Our proof for this special case constructs a relational model
whose states are certain guarded strings, but we develop some theory first.

For t, e1, . . . , ek ∈ RExpP,B and p1, . . . , pk ∈ P, let t[p1/e1, . . . , pk/ek] denote the
result of simultaneously substituting ei for each occurrence of pi in t, 1 ≤ i ≤ k. We are
particularly interested in the substitution

H (t) def= t[r1/c1r1 + c1, . . . , rn/cnrn + cn].

The substitutions can be performed simultaneously or sequentially, and the order does not
matter, since ri does not occur in cjrj + cj for i �= j. This particular substitution is of
interest because ciri = ci is KAT-equivalent to ri = ciri + ci, as shown in Lemma 2.1.

Another vital fact is that performing the substitution H once is equivalent to perform-
ing it any number of times; that is, � H (H (t)) = H (t). To see this, observe that

(ciri + ci)[ri/ciri + ci] = ci(ciri + ci) + ci = ciciri + cici + ci = ciri + ci.

The map H is a syntactic homomorphism RExpP,B → RExpP,B. We now indicate
how this homomorphism is reflected semantically in trace models. For this purpose, we
define a rewrite relation � on traces of a Kripke frame (K, mK). The relation � consists
of n rules

sris � s provided s ∈ [[ci]]K ,

one rule for each 1 ≤ i ≤ n. These rules may be applied to any subtrace of a trace.
Thus any trace σriτ can be rewritten to στ whenever last(σ) = first(τ) ∈ [[ci]]K .
Every �-reduction yields a shorter trace, and � is easily seen to be Church-Rosser, so
every trace σ has a unique �-normal form, which we denote by NK(σ). If X is a set of

traces of K, let NK(X) def= {NK(σ) | σ ∈ X}. Note that NK(NK(σ)) = NK(σ) and
NK(στ) = NK(σ)NK(τ). Also,

NK(XY) = {NK(στ) | σ ∈ X, τ ∈ Y }
= {NK(σ)NK(τ) | σ ∈ X, τ ∈ Y }
= NK(X)NK(Y).

11

Let u be the universal term u = (
∑

q∈P q)∗. Then [[u]]K = TracesK . Define

C
def= [[u(

∑
i ciri)u)]]K , (6)

the set of all traces of the form · · · sri · · · with s ∈ [[ci]]K for some i. Note that στ ∈ C

iff σ ∈ C or τ ∈ C . For X ⊆ TracesK , define h(X) def= NK(X)− C .

Lemma 3.3 The set {NK(X)−C | X ⊆ TracesK} is a Kleene algebra with tests under
the usual interpretation of the operators on sets of traces, and h is a KAT homomorphism.
Moreover, for all t ∈ RExpP,B, [[H (t)]]K = h([[t]]K); in other words, the following
diagram commutes:

RExpP,B

RExpP,B

TrK

TrK

�
�

�

�
H h

[[]]K

[[]]K

Proof. It is easily checked that the family of sets of the form NK(X) − C for X ⊆
TracesK is closed under the usual KAT operations on sets of traces and that h : X �→
NK(X) − C is a homomorphism. Specifically, for any sets X,Y,Xi of traces in K and
any set B ⊆ K,

NK(
⋃

i Xi)− C =
⋃

i (NK(Xi)− C)
NK(XY)− C = (NK(X) − C)(NK(Y)− C)
NK(X∗)− C = (NK(X) − C)∗

NK(∅)− C = ∅

NK(K)− C = K

NK(K −B)− C = K − (NK(B)− C).

To show that [[H (t)]]K = h([[t]]K) for all t ∈ RExpP,B, since all maps in question are
homomorphisms, it is enough to show it for atomic p and b. For ri,

[[H (ri)]]K = [[ciri + ci]]K

= [[ciri]]K ∪ [[ci]]K

= {sriv | s ∈ [[ci]]K} ∪ {s | s ∈ [[ci]]K}
= {NK(sriv) | NK(sriv) �∈ C}
= NK([[ri]]K)− C.

For p �= ri for any i, since elements of [[p]]K have no � redexes,

[[H (p)]]K = [[p]]K = NK([[p]]K) = NK([[p]]K)− C.

12

The case for tests is similar, since traces of length 0 are single states, therefore have no
�-redexes. �

Lemma 3.4 Let r1, . . . , rn be distinct elements of P, c1, . . . , cn tests, and s, p, q ∈ RExpP,B.
The following are equivalent:

(i) KAT � s = 0 ∧∧n
i=1 ciri = ci → p = q

(ii) KAT∗ � s = 0 ∧∧n
i=1 ciri = ci → p = q

(iii) REL � s = 0 ∧∧n
i=1 ciri = ci → p = q

(iv) � H (p + usu) = H (q + usu).

Proof. The implications (i)⇒ (ii)⇒ (iii) are trivial, since REL ⊆ KAT∗ ⊆ KAT.
To show (iii)⇒ (iv), we construct a Kripke frame R with associated relational model

RelR on the set of states

S
def= TracesG − (NG([[usu]]G) ∪ C).

Note that for any στρ ∈ TracesG, if τ ∈ NG([[usu]]G) ∪ C , then στρ ∈ NG([[usu]]G) ∪
C , so any subtrace of a trace in S is also in S. Moreover, any string with a �-redex is in
C , so every element of S is in �-normal form.

Atomic symbols are interpreted in R as follows:

mR(p) def= {(σ, σNG(αpβ)) | σNG(αpβ) ∈ S}, p ∈ P

mR(b) def= {σ ∈ S | last(σ) ≤ b}, b ∈ B.

We now show that for all t ∈ RExpP,B,

[t]R = {(σ, στ) | στ ∈ S, τ ∈ NG([[t]]G)} (7)

by induction on the structure of t. For p ∈ P and b ∈ B,

[p]R = {(σ, σNG(αpβ)) | σNG(αpβ) ∈ S}
= {(σ, στ) | στ ∈ S, τ ∈ NG(mG(p))}
= {(σ, στ) | στ ∈ S, τ ∈ NG([[p]]G)},

[b]R = {(σ, σ) | σ ∈ S, last(σ) ≤ b}
= {(σ, σ) | σ ∈ S, last(σ) ∈ [[b]]G}
= {(σ, στ) | στ ∈ S, τ ∈ NG([[b]]G)}.

13

For the constants 0 and 1, we have

[0]R = ∅ = {(σ, στ) | στ ∈ S, τ ∈ NG([[0]]G)}
[1]R = {(σ, σ) | σ ∈ S} = {(σ, στ) | στ ∈ S, τ ∈ NG([[1]]G)}.

For compound expressions,

[t1 + t2]R

= [t1]R ∪ [t2]R

= {(σ, στ) | στ ∈ S, τ ∈ NG([[t1]]G)} ∪ {(σ, στ) | στ ∈ S, τ ∈ NG([[t2]]G)}
= {(σ, στ) | στ ∈ S, τ ∈ NG([[t1]]G) ∪ NG([[t2]]G)}
= {(σ, στ) | στ ∈ S, τ ∈ NG([[t1 + t2]]G)},

[t1t2]R = [t1]R ◦ [t2]R

= {(σ, στρ) | (σ, στ) ∈ [t1]R ∧ (στ, στρ) ∈ [t2]R}
= {(σ, στρ) | στρ ∈ S, τ ∈ NG([[t1]]G), ρ ∈ NG([[t2]]G)}
= {(σ, συ) | συ ∈ S, υ ∈ NG([[t1]]G)NG([[t2]]G)} taking υ = τρ

= {(σ, συ) | συ ∈ S, υ ∈ NG([[t1t2]]G)},

[t∗]R =
⋃
n

[t]n
R

=
⋃
n

{(σ, στ) | στ ∈ S, τ ∈ NG([[tn]]G)}

= {(σ, στ) | στ ∈ S, τ ∈ NG([[t∗]]G)},

[b]R = [1]R − [b]R

= {(σ, σ) | σ ∈ S} − {(σ, στ) | στ ∈ S, τ ∈ NG([[b]]G)}
= {(σ, σ) | σ ∈ S} − {(σ, σ) | σ ∈ S, last(σ) ∈ [[b]]G}
= {(σ, σ) | σ ∈ S, last(σ) ∈ [[b]]G}
= {(σ, στ) | στ ∈ S, τ ∈ NG([[b]]G)}.

It follows from (7) that [t1]R = [t2]R iff NG([[t1]]G) ∩ S = NG([[t2]]G) ∩ S.
The direction⇐ is clear. Conversely, if [t1]R = [t2]R, then

NG([[t1]]G) ∩ S = {τ | (first(τ), τ) ∈ [t1]R} by (7)

= {τ | (first(τ), τ) ∈ [t2]R}
= NG([[t2]]G) ∩ S.

14

Now for 1 ≤ i ≤ n, observe that NG([[ciri]]G) ∩ S = NG([[ci]]G) ∩ S by
considering the two types of strings in [[ciri]]G, namely αriα and αriβ for atoms α ≤ ci

and β �= α. The former reduce to α ∈ [[ci]]G under �, and the latter are in �-normal
form but not in S. It follows that [ciri]R = [ci]R.

Moreover, NG([[s]]G) ∩ S ⊆ NG([[usu]]G) ∩ S = ∅ = NG([[0]]G) ∩ S, so
[s]R = [0]R.

We have shown that

RelR � s = 0 ∧
n∧

i=1

ciri = ci,

therefore RelR satisfies all the premises of (iii) in the statement of the lemma. It follows
from (iii) that [p]R = [q]R, from which we can conclude

NG([[p]]G) ∩ S = NG([[q]]G) ∩ S. (8)

But

[[H (p + usu)]]G = h([[p + usu]]G) by Lemma 3.3

= (NG([[p]]G) ∪ NG([[usu]]G))−C

= (NG([[p]]G)− C −NG([[usu]]G)) ∪ (NG([[usu]]G)− C)
= (NG([[p]]G) ∩ S) ∪ (NG([[usu]]G)− C),

and similarly [[H (q + usu)]]G = (NG([[q]]G) ∩ S) ∪ (NG([[usu]]G)−C), therefore
by (8), [[H (p + usu)]]G = [[H (q + usu)]]G. Since TrG is the free KAT on generators
P,B [16], we have � H (p + usu) = H (q + usu). This completes the proof of (iii) ⇒
(iv).

Finally, to show (iv) ⇒ (i), suppose � H (p + usu) = H (q + usu). Let I be an
arbitrary interpretation over a Kleene algebra with tests K such that

K, I � s = 0 ∧
n∧

i=0

ciri = ci.

By Lemma 2.1,

K, I �
n∧

i=0

ri = ciri + ci,

so K, I � H (t) = t for any t ∈ RExpP,B. Thus the following equations all hold under
the interpretation I:

p = p + usu = H (p + usu) = H (q + usu) = q + usu = q.

Thus K, I satisfies the Horn formula of (i). Since K and I were arbirtrary, this formula
holds in all Kleene algebras with tests. �

15

We have proved Theorem 3.2 except for the complexity argument. The above trans-
formation of our hypotheses can clearly be done in PTIME. In general, sequences of
substitutions can cause exponential blowup in term size; for example,

a1[a1/a
2
2][a2/a

2
3] · · · [aj/a

2
j+1] = a2j

j+1.

However, this cannot occur in our case because ri does not appear in cjrj + cj for i �= j,
and otherwise it is clear that the calculation of p̂ = H (p + usu) and q̂ = H (q + usu) is
in PTIME. Note that this is relative to s1, . . . , sm, c1, . . . , cn, r1, . . . , rn, p, q, and P. We
must know P for the “+ usu” part of H (p + usu) and H (q + usu).

In [6], it is shown that the equational theory of KAT is decidable in PSPACE. Because
p̂, q̂ can be calculated in PTIME, (i)–(iii) are decidable in PSPACE as well.

Acknowledgments

This work was supported in part by NSF grant CCR-0105586 and ONR Grant N00014-
01-1-0968. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of these organizations or the US Government.

References

[1] Allegra Angus and Dexter Kozen. Kleene algebra with tests and program schematology.
Technical Report 2001-1844, Computer Science Department, Cornell University, July 2001.

[2] Adam Barth and Dexter Kozen. Equational verification of cache blocking in LU decom-
position using Kleene algebra with tests. Technical Report 2002-1865, Computer Science
Department, Cornell University, June 2002.

[3] Ernie Cohen. Hypotheses in Kleene algebra. Unpublished, April 1994.

[4] Ernie Cohen. Lazy caching. Unpublished, 1994.

[5] Ernie Cohen. Using Kleene algebra to reason about concurrency control. Unpublished,
1994.

[6] Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with
tests. Technical Report 96-1598, Computer Science Department, Cornell University, July
1996.

[7] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, London,
1971.

[8] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979.

16

[9] Donald M. Kaplan. Regular expressions and the equivalence of programs. J. Comput. Syst.
Sci., 3:361–386, 1969.

[10] Stephen C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shan-
non and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press,
Princeton, N.J., 1956.

[11] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput., 110(2):366–390, May 1994.

[12] Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, 19(3):427–443, May 1997.

[13] Dexter Kozen. On the complexity of reasoning in Kleene algebra. In Proc. 12th Symp. Logic
in Comput. Sci., pages 195–202, Los Alamitos, Ca., June 1997. IEEE.

[14] Dexter Kozen. On Hoare logic and Kleene algebra with tests. Trans. Computational Logic,
1(1):60–76, July 2000.

[15] Dexter Kozen and Maria-Cristina Patron. Certification of compiler optimizations using
Kleene algebra with tests. In John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Ker-
ber, Kung-Kiu Lau, Catuscia Palamidessi, Luis Moniz Pereira, Yehoshua Sagiv, and Peter J.
Stuckey, editors, Proc. 1st Int. Conf. Computational Logic (CL2000), volume 1861 of Lec-
ture Notes in Artificial Intelligence, pages 568–582, London, July 2000. Springer-Verlag.

[16] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decid-
ability. In D. van Dalen and M. Bezem, editors, Proc. 10th Int. Workshop Computer Sci-
ence Logic (CSL’96), volume 1258 of Lecture Notes in Computer Science, pages 244–259,
Utrecht, The Netherlands, September 1996. Springer-Verlag.

[17] Dexter Kozen and Jerzy Tiuryn. Intuitionistic linear logic and partial correctness. In Proc.
16th Symp. Logic in Comput. Sci. (LICS’01), pages 259–268. IEEE, June 2001.

17

