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Abstract. We give an explicit coinduction principle for recursively-defined stochastic
processes. The principle applies to any closed property, not just equality, and works
even when solutions are not unique. The rule encapsulates low-level analytic arguments,
allowing reasoning about such processes at a higher algebraic level. We illustrate the use
of the rule in deriving properties of a simple coin-flip process.

1. Introduction

Coinduction has been shown to be a useful tool in functional programming. Streams,
automata, concurrent and stochastic processes, and recursive types have been successfully
analyzed using coinductive methods; see [1, 7, 3, 11, 5] and references therein.

Most approaches emphasize the relationship between coinduction and bisimulation. In
Rutten’s treatment [11] (see also [5, 1]), the coinduction principle states that under certain
conditions, two bisimilar processes must be equal. For example, to prove the equality of infi-
nite streams σ = merge(split(σ)), where merge and split satisfy the familiar coinductive
definitions

merge(a :: σ, τ) = a :: merge(τ, σ)

#1(split(a :: b :: ρ)) = a :: #1(split(ρ))

#2(split(a :: b :: ρ)) = b :: #2(split(ρ)),

it suffices to show that the two streams are bisimilar. An alternative view is that cer-
tain systems of recursive equations over a certain algebraic structure have unique solutions.
Desharnais et al. [3, 7] study bisimulation in a probabilistic context. They are primarily
interested in the approximation of one process with another. Again, they focus on bisimu-
lation, but do not formulate an explicit coinduction rule.

In this paper we introduce a generalization of the coinduction principle that applies to
other properties besides equations and to situations in which solutions are not unique. We
illustrate its use with an extended example that demonstrates how the rule encapsulates low-
level analytic arguments involving convergent sequences in its proof of soundness, thereby
allowing reasoning about such processes at a higher algebraic level.
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2. An Example

Consider the following procedure for simulating a coin of arbitrary real bias q, 0 ≤ q ≤ 1,
with a coin of arbitrary real bias p, 0 < p ≤ 1/2. We assume unit-time exact arithmetic on
real numbers.

1 boolean Qflip(q) {

2 if (q > p) {

3 if (Pflip()) return true;

4 else return Qflip((q − p)/(1 − p));

5 } else {

6 if (Pflip()) return Qflip(q/p);

7 else return false;

8 }

9 }

Intuitively, if q > p and the bias-p coin flip returns heads (true), which occurs with proba-
bility p, then we halt and output heads; this gives a fraction p/q of the desired probability
q of heads of the simulated bias-q coin. If the bias-p coin returns tails, which occurs with
probability 1−p, we rescale the problem appropriately and call Qflip tail-recursively. Sim-
ilarly, if q ≤ p and the bias-p coin returns tails, then we halt and output tails; and if not,
we rescale appropriately and call Qflip tail-recursively.

On any input 0 ≤ q ≤ 1, the probability of halting is 1, since the procedure halts with
probability at least p in each iteration. The probability that Qflip halts and returns heads
on input q exists and satisfies the recurrence

H(q) =

{

p ·H( q
p
), if q ≤ p,

p + (1 − p) ·H( q−p
1−p

), if q > p.
(2.1)

Now H∗(q) = q is a solution to this recurrence, as can be seen by direct substitution. There
are uncountably many other solutions as well, but these are all unbounded (see Section 4).
Since H∗ is the unique bounded solution, it must give the probability of heads.

We can do the same for the expected running time. Let us measure the expected
number of calls to Pflip on input q. The expectation exists and is uniformly bounded on
the unit interval by 1/p, the expected running time of a Bernoulli (coin-flip) process with
success probability p. From the program, we obtain the recurrence

E0(q) =

{

(1 − p) · 1 + p · (1 + E0(
q
p
)), if q ≤ p,

p · 1 + (1 − p) · (1 + E0(
q−p
1−p

)), if q > p

=

{

1 + p ·E0(
q
p
), if q ≤ p,

1 + (1 − p) ·E0(
q−p
1−p

), if q > p.

The unique bounded solution to this recurrence is

E∗
0 (q) =

q

p
+

1 − q

1 − p
. (2.2)

That it is a solution can be ascertained by direct substitution; uniqueness requires a further
argument, which we will give later. As before, there are uncountably many unbounded
solutions, but since E∗

0 is the unique bounded solution, it must give the expected running
time for any q.
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The situation gets more interesting when we observe that slight modifications of the
algorithm lead to noncontinuous fractal solutions with no simple characterizations like (2.2).
The fractal behavior of stochastic processes has been previously observed in [6].

Currently, when q > p, we halt and output “heads” when Pflip gives heads, which
occurs with probability p. But note that we can save some time when q ≥ 1−p. In that case,
we can halt and report heads if Pflip gives tails, which occurs with the larger probability
1 − p. This allows us to take off a larger fraction of the remaining “heads” weight of the
bias-q coin. If Pflip gives tails, we must still rescale, but the rescaling function is different.
The new code is in lines 2–4.

1 boolean Qflip(q) {

2 if (q ≥ 1 − p) {

3 if (Pflip()) return Qflip((q − (1 − p))/p);

4 else return true;

5 } else if (q > p) {

6 if (Pflip()) return true;

7 else return Qflip((q − p)/(1 − p));

8 } else {

9 if (Pflip()) return Qflip(q/p);

10 else return false;

11 }

12 }

The recurrence for the expected running time is

E1(q) = 1 + r(q)E1(f1(q)), (2.3)

where

f1(q) =















q
p
, if q ≤ p

q−p
1−p

, if p < q < 1 − p

q−(1−p)
p

, if q ≥ 1 − p

(2.4)

r(q) =

{

1 − p, if p < q < 1 − p

p, otherwise.
(2.5)

Again, there is a unique bounded solution

E∗
1 (q) =

∞
∑

n=0

n−1
∏

j=0

r(f j
1 (q)),

but there is no longer a nice algebraic characterization like (2.2). The solution for p = 1/4 is
the noncontinuous fractal shown in Fig. 1, shown compared to the straight line E∗

0 running
from 4/3 to 4. The large discontinuity at q = 1 − p = 3/4 is due to the modification of the
algorithm for q ≥ 1− p, and this discontinuity is propagated everywhere by the recurrence.

Fig. 1 and intuition dictate that E∗
1 ≤ E∗

0 , but how do we prove this? Not by induction,
because there is no basis. One might briefly imagine that it is because the second process
halts no later than the first on any predetermined sequence of coin flips, but there are
trivial counterexamples. An analytic argument involving convergence of sequences seems
inevitable.
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Figure 1: Fractal solution of (2.3)

However, there is a simpler alternative. It will follow from our coinductive proof prin-
ciple that to conclude E∗

1 ≤ E∗
0 , it suffices to show that τ(E1)(q) ≤ E∗

0 (q) whenever
E1(f1(q)) ≤ E∗

0 (f1(q)), where τ is a suitably defined operator representing the unwinding
of the recurrence (2.3) once. This property is easily checked algebraically, and no analysis
is necessary.

We can modify the algorithm further to try to achieve more savings. If 1/2 < q < 1−p,
it would seem to our advantage to remove p from the tail probability of q rather than from
the head probability. The intuition behind this heuristic is that that when q is in one of the
regions [0, p] or [1 − p, 1], we can halt in the next step with the higher probability 1 − p.
If q > 1/2, then the proposed new action will cause q to move to the right toward the closer
good region [1 − p, 1] instead of to the left, thereby getting to a good region faster. The
new code is in lines 5–7.

1 boolean Qflip(q) {

2 if (q ≥ 1 − p) {

3 if (Pflip()) return Qflip((q − (1 − p))/p);

4 else return true;

5 } else if (q > 1/2) {

6 if (Pflip()) return false;

7 else return Qflip(q/(1 − p));

8 } else if (q > p) {

9 if (Pflip()) return true;

10 else return Qflip((q − p)/(1 − p));

11 } else {

12 if (Pflip()) return Qflip(q/p);

13 else return false;

14 }

15 }

The recurrence is

E2(q) = 1 + r(q)E2(f2(q)) (2.6)



COINDUCTIVE PROOF PRINCIPLES FOR STOCHASTIC PROCESSES 5

with

f2(q) =































q
p
, if q ≤ p,

q−p
1−p

, if p < q ≤ 1/2,

q
1−p

, if 1/2 < q < 1 − p,

q−(1−p)
p

, if q ≥ 1 − p,

and r(q) as given in (2.5). The symmetric fractal solution

E∗
2 (q) =

∞
∑

n=0

n−1
∏

j=0

r(f j
2 (q))

is shown in Fig. 2.

Figure 2: Fractal solution of (2.6)

Intuition seems to say that this solution should be at least as good as E∗
1 , but it turns

out that this is not always the case. By unwinding the recurrences a few steps and using
the lower bound

E∗
2 (q) ≥

∞
∑

n=0

pn =
1

1 − p
,

it can be shown that for p = 1/4,

E∗
1 (11/20) = 5/2 = 2.5

E∗
2 (11/20) ≥ 323/128 ≈ 2.5234375 . . . .

Moreover, this inversion holds on an open interval containing 11/20 and countably many
other open intervals.

One might ask whether there is a slight modification of E∗
2 that is everywhere better

than E∗
1 . The answer is yes: take the breakpoint not at 1/2, but at

c = max((1 − p)2, 1 − (1 − p)2),

provided p ≤ (1 − p)2. For p = 1/4, this gives c = 9/16. Now the recurrence is

E3(q) = 1 + r(q)E3(f3(q)) (2.7)
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with

f3(q) =































q
p
, if q ≤ p,

q−p
1−p

, if p < q ≤ c,

q
1−p

, if c < q < 1 − p,

q−(1−p)
p

, if q ≥ 1 − p.

(Since p ≤ (1 − p)2 implies p ≤ (3 −
√

5)/2 ≈ 0.382, this modification will not work for all
p.)

Now we wish to show that E∗
3 ≤ E∗

1 on the whole unit interval. Note that we are
comparing two nowhere-differentiable functions1; we have no nice algebraic description of
them save as solutions of the recurrences Ei(q) = 1 + r(q)Ei(fi(q)). However, we can prove
the desired inequality purely algebraically using the coinductive principle below, without
recourse to analysis. We outline a proof below, after we have stated the principle and proved
its validity.

3. A Coinduction Principle

In this section we state and prove a coinduction principle that will allow us to derive
properties of stochastic processes. The version we will use is most conveniently formulated
in terms of bounded linear operators on a Banach space (complete normed linear space),
but is closely related to a coinduction principle that holds in arbitrary complete metric
spaces. We treat the metric version first.

Let (V, d) be a complete metric space. A function τ : V → V is contractive if there
exists a c < 1 such that for all u, v ∈ V , d(τ(u), τ(v)) ≤ c · d(u, v). The value c is called
the constant of contraction. A continuous function τ is said to be eventually contractive if
τn is contractive for some n ≥ 1. Contractive maps are uniformly continuous, and by the
Banach fixpoint theorem, any such map has a unique fixpoint in V .

The fixpoint of a contractive map τ can be constructed explicitly as the limit of a
Cauchy sequence u, τ(u), τ2(u), . . . starting at any point u ∈ V . The sequence is Cauchy;
one can show by elementary arguments that

d(τn+m(u), τn(u)) ≤ cn(1 − cm)(1 − c)−1 · d(τ(u), u).
Since V is complete, the sequence has a limit u∗, which by continuity must be a fixpoint of
τ . Moreover, u∗ is unique: if τ(u) = u and τ(v) = v, then

d(u, v) = d(τ(u), τ(v)) ≤ c · d(u, v) ⇒ d(u, v) = 0,

therefore u = v.
Eventually contractive maps also have unique fixpoints. If τn is contractive, let u∗ be

the unique fixpoint of τn. Then τ(u∗) is also a fixpoint of τn. But then d(u∗, τ(u∗)) =
d(τn(u∗), τn+1(u∗)) ≤ c · d(u∗, τ(u∗)), therefore u∗ is also a fixpoint of τ .

In this framework, the coinduction rule takes the following simple form. If ϕ is a closed
nonempty subset of a complete metric space V , and if τ is an eventually contractive map

1Hermite and Poincaré eschewed such functions, calling them a “dreadful plague”. Poincaré wrote:
“Yesterday, if a new function was invented, it was to serve some purpose; today, they are invented only to
debunk the arguments of our predecessors, and they will never have any other use.”
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on V that preserves ϕ, then the unique fixpoint u∗ of τ is in ϕ. Expressed as a proof rule,
this says for ϕ a closed property,

∃u ϕ(u) ∀u ϕ(u) ⇒ ϕ(τ(u))

ϕ(u∗)
(3.1)

This is quite easily proved. Since ϕ is nonempty, it contains a point u. Since ϕ is preserved
by τ , all elements of the sequence τn(u) are contained in ϕ. Finally, since ϕ is closed, the
fixpoint u∗ is contained in ϕ, since it is the limit of a Cauchy subsequence.

For our purposes, the coinduction principle is most conveniently expressed in the follow-
ing form. This form makes clear how the principle allows analytic arguments to be replaced
by simpler algebraic ones. See [4] for the necessary background.

Let B be a Banach space (complete normed linear space) over C and let R be a bounded
linear operator on B (bounded is synonymous with continuous for linear operators on B).
The spectrum of R, denoted σ(R), is the set of complex numbers λ such that λI −R is not
invertible. The spectral radius of R is

sup
λ∈σ(R)

|λ | = inf
n

n

√

‖Rn ‖, (3.2)

where

‖R ‖ = sup
‖x‖=1

‖R(x) ‖ .

Suppose that I − R is invertible; that is, 1 6∈ σ(R). Let a ∈ B. Then there is a unique
solution e∗ of the equation e = a+Re, namely e∗ = (I −R)−1a.

Theorem 3.1. Consider the affine operator τ(e) = a + Re, where R is a bounded linear

operator with spectral radius strictly less than 1. Let ϕ ⊆ B be a closed nonempty region

preserved by τ . Then e∗ ∈ ϕ.

Proof. By (3.2), if the spectral radius of R is less than 1, then R is eventually contractive;
that is, there exists n such that ‖Rn ‖< 1. Then τ is also eventually contractive, since

‖ τn(e) − τn(e′) ‖ = ‖
n−1
∑

i=0

Ri(a) +Rn(e) −
n−1
∑

i=0

Ri(a) −Rn(e′) ‖

= ‖Rn(e− e′) ‖
≤ ‖Rn ‖ · ‖ e− e′ ‖ .

It follows from (3.1) that the unique fixpoint of τn is contained in ϕ. But this fixpoint must
be e∗, since e∗ is a fixpoint of τ .

Restated as a proof rule, Theorem 3.1 takes the following form:

Theorem 3.2. Let τ be as in Theorem 3.1. Let ϕ be a closed property. The following rule

is valid:

∃e ϕ(e) ∀e ϕ(e) ⇒ ϕ(τ(e))

ϕ(e∗)
. (3.3)

More generally, for any n ≥ 1,

∃e ϕ(e) ∀e ϕ(e) ⇒ ϕ(τn(e))

ϕ(e∗)
. (3.4)
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Proof. The rule (3.3) is just a restatement of Theorem 3.1. The rule (3.4) follows by applying

(3.3) to the closed property ψ(e) =
∨n−1

i=0 ϕ(τ i(e)). This is a closed property because τ is
continuous on B.

For example, to show that E∗
1 ≤ E∗

0 using the rule (3.3), we take B to be the space
of bounded real-valued functions on the unit interval, a = λx.1, R : B → B the bounded
linear operator

R = λE.λq.r(q)E(f1(q)) (3.5)

with spectral radius 1 − p, ϕ(E) the closed property

∀q E(q) ≤ q

p
+

1 − q

1 − p
,

and

τ(E) = λq.(1 + r(q)E(f1(q))) = λq.(1 +RE(q)), (3.6)

where f1 and r are as given in (2.4) and (2.5). That the spectral radius of R is at most
1 − p follows immediately from (3.2), since

‖R ‖ = sup
‖E‖=1

sup
q

|RE(q) | = sup
‖E‖=1

sup
q

|r(q)E(f1(q)) | ≤ 1 − p.

That it is exactly 1 − p requires a further argument, which we defer to Section 4.
Now the desired conclusion is

∀q E∗
1 (q) ≤ q

p
+

1 − q

1 − p
, (3.7)

and the two premises we must establish are

∃E ∀q E(q) ≤ q

p
+

1 − q

1 − p
, (3.8)

∀E
(

∀q E(q) ≤ q

p
+

1 − q

1 − p
⇒ ∀q τ(E)(q) ≤ q

p
+

1 − q

1 − p

)

. (3.9)

The premise (3.8) is trivial; for example, take E = λq.0. For (3.9), let E be arbitrary. We
wish to show that

∀q E(q) ≤ q

p
+

1 − q

1 − p
⇒ ∀q τ(E)(q) ≤ q

p
+

1 − q

1 − p
. (3.10)

Picking q arbitrarily on the right-hand side and then specializing the left-hand side at f1(q),
it suffices to show

E(f1(q)) ≤
f1(q)

p
+

1 − f1(q)

1 − p
⇒ τ(E)(q) ≤ q

p
+

1 − q

1 − p
. (3.11)

Substituting the definition of τ , we need to show

E(f1(q)) ≤
f1(q)

p
+

1 − f1(q)

1 − p
⇒ 1 + r(q)E(f1(q)) ≤

q

p
+

1 − q

1 − p
. (3.12)

The proof breaks into three cases, depending on whether q ≤ p, p < q < 1− p, or q ≥ 1− p.
In the first case, f1(q) = q/p and r(q) = p. Then (3.12) becomes

E(
q

p
) ≤ q

p2
+

1 − q
p

1 − p
⇒ 1 + pE(

q

p
) ≤ q

p
+

1 − q

1 − p
.
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But

1 + pE(
q

p
) ≤ 1 + p(

q

p2
+

1 − q
p

1 − p
) =

q

p
+

1 − q

1 − p
.

The remaining two cases are equally straightforward. The last case, q ≥ 1− p, uses the fact
that p ≤ 1/2.

One can also prove closed properties of more than one function E. For example, as
promised, we can show that E∗

3 ≤ E∗
1 whenever

max((1 − p)2, 1 − (1 − p)2) ≤ c ≤ 1 − p.

For this application, B is the space of pairs (E,E′), where E and E′ are bounded real-
valued functions on the unit interval, a = (λx.1, λx.1), and R : B → B is the bounded
linear operator

R(E,E′) = (λq.r(q)E(f3(q)), λq.r(q)E
′(f1(q)))

with spectral radius 1 − p. The closed property of interest is E ≤ E′, but we need the
stronger coinduction hypothesis

ϕ(E,E′) = ∀q E(q) ≤ E′(q) (3.13)

∧ E(q) ≥ 1

1 − p
(3.14)

∧ p < q < 1 − p ⇒ E′(q) ≥ 2 (3.15)

∧ E′(q) ≤ q

p
+

1 − q

1 − p
(3.16)

∧ 0 ≤ q ≤ p ⇒ E(q) = E(q + 1 − p). (3.17)

Equivalent to (3.17) is the statement

1 − p ≤ q ≤ 1 ⇒ E(q) = E(q − (1 − p)). (3.18)

There certainly exist (E,E′) satisfying ϕ. We have also already argued that coinduction
hypothesis (3.16) is preserved by τ . The argument for (3.14) is similar. For (3.17), if
0 ≤ q ≤ p, then

1 − p ≤ q + 1 − p ≤ 1,

therefore

r(q) = r(q + 1 − p) = p

f3(q) =
q

p

f3(q + 1 − p) =
(q + 1 − p) − (1 − p)

p
=

q

p
.

It follows that

1 + r(q)E(f3(q)) = 1 + r(q + 1 − p)E(f3(q + 1 − p)) = 1 + pE(q/p).

For (3.15), if p < q < 1 − p, then

r(q) = 1 − p

E′(f1(q)) ≥ 1

1 − p
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by the coinduction hypotheses (3.13) and (3.14), thus

1 + r(q)E′(f1(q)) ≥ 1 + (1 − p)
1

1 − p
= 2.

Finally, for (3.13), we wish to show

1 + r(q)E(f3(q)) ≤ 1 + r(q)E′(f1(q)),

or equivalently,

E(f3(q)) ≤ E′(f1(q)). (3.19)

Since f1 and f3 coincide except in the range c < q < 1 − p, we need only show (3.19) for q
in this range.

It follows from the assumptions in effect that

p < f1(q) =
q − p

1 − p
< 1 − p <

q

1 − p
= f3(q),

thus

E(f3(q)) = E(
q

1 − p
− (1 − p)) by (3.17), in the form (3.18)

≤
q

1−p
− (1 − p)

p
+

1 − ( q
1−p

− (1 − p))

1 − p
by (3.16)

= (
q

1 − p
− 1)

1 − 2p

p(1 − p)
+ 2

≤ 2 since p, q ≤ 1 − p

≤ E′(f1(q)) by (3.15).

We can conclude from the coinduction rule that ϕ(E∗
3 , E

∗
1 ). Note that nowhere in this

proof did we use any analytic arguments. All the necessary analysis is encapsulated in the
proof of Theorem 3.1.

As a final application, we show how to use the coinductive proof rule (3.3) of Theorem
3.2 to argue that for p < 1/2, the function E∗

1 is nowhere differentiable. We do this by
showing that E∗

1 has a dense set of discontinuities on the unit interval.
First we show that E∗

1 has discontinuities at p and 1 − p. We know from clause (3.15)
of the previous argument that for all q in the range p < q < 1 − p,

E∗
1 (q) ≥ 2. (3.20)

Also, by (3.7), we have that E∗
1 (q) ≤ 1/p for all q. Then for ε < p2, unwinding the defining

recurrence (2.3) for E∗
1 twice yields

E∗
1 (1 − p+ ε) = 1 + p+ p2E∗

1 (
ε

p2
) ≤ 1 + 2p (3.21)

E∗
1 (p− ε) = 1 + p+ p2E∗

1 (1 − ε

p2
) ≤ 1 + 2p. (3.22)

Since 1 + 2p < 2, (3.20)–(3.22) imply that E∗
1 has discontinuities at p and 1 − p.

Finally, we show that every nonempty open interval contains a discontinuity. Suppose
for a contradiction that E∗

1 is continuous on a nonempty open interval (a, b). The interval
(a, b) can contain neither p nor 1− p, so the entire interval must be contained in one of the
three regions (0, p), (p, 1 − p), or (1 − p, 1).
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Suppose it is contained in (0, p). Then

E∗
1 (q) = 1 + pE∗

1 (q/p)

for a < q < b, thus

E∗
1 (q/p) = (E∗

1 (q) − 1)/p

for a/p < q/p < b/p, so E∗
1 is also continuous on the interval (a/p, b/p). But the length of

this interval is (b−a)/p, thus we have produced a longer interval on which E∗
1 is continuous.

A similar argument holds if (a, b) is contained in one of the intervals (p, 1 − p) or
(1 − p, 1). In each of these three cases, we can produce an interval of continuity that is
longer than (a, b) by a factor of at least 1/(1 − p). This process can be repeated at most
log(b − a)/ log(1 − p) steps before the interval must contain one of the discontinuities p or
1 − p. This is a contradiction.

4. Unbounded Solutions

That these coinductive proofs have no basis is reflected in the fact that there exist un-
bounded solutions in addition to the unique bounded solutions. All unbounded solutions are
necessarily noncontinuous, because any continuous solution on a closed interval is bounded.

Theorem 3.1 does not mention these unbounded solutions, because they live outside
the Banach space B. Nevertheless, it is possible to construct unbounded solutions to any
of the above recurrences. All these recurrences are of the form

E(q) = a+ r(q)E(f(q)). (4.1)

Let G be the graph with vertices q ∈ [0, 1] and edges (q, f(q)). Note that every vertex in G
has outdegree 1. Let C be an undirected connected component of G. One can show easily
that the following are equivalent:

(i) C contains an undirected cycle;
(ii) C contains a directed cycle;
(iii) for some q ∈ C and k > 0, fk(q) = q.

Call C rational if these conditions hold of C, irrational otherwise. For example, for f1 given
in (2.4), the connected components of 0 and 1 are rational, since f1(0) = 0 and f1(1) = 1.
There are other rational components besides these; for example, if p = 1/4, the component
of q = 11/20 is rational, since f2

1 (11/20) = f4
1 (11/20) = 1/5.

Now any solution E of (4.1) must agree with the unique bounded solution E∗ on the
rational components: if fk(q) = q, then unwinding the recurrence k times gives

E(q) = a

k−1
∑

n=0

n−1
∏

i=0

r(f i(q)) +

(

k−1
∏

i=0

r(f i(q))

)

E(q),

therefore

E(q) =
a
∑k−1

n=0

∏n−1
i=0 r(f

i(q))

1 −∏k−1
i=0 r(f

i(q))
.

But the values of E on an entire connected component are uniquely determined by its
value on a single element of the component, since E(q) uniquely determines E(f(q)) and
vice-versa. Thus E and E∗ must agree on the entire component.
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We note in passing that this allows us to construct an E such that RE = (1 − p)E,
where R is the linear operator of (3.5), thereby establishing that the spectral radius of R
is 1− p. Take E(1) = 1, then inductively define E(q) = r(q)E(f1(q))/(1− p) for all other q
in the component of 1 and E(q) = 0 otherwise. Then ‖E ‖= 1, and

RE(q) = r(q)E(f1(q)) = r(q)E(q) · 1 − p

r(q)
= (1 − p)E(q).

For an irrational component, since there are no cycles, it is connected as a tree. We
can freely assign an arbitrary value to an arbitrarily chosen element q of the component,
then extend the function to the entire component uniquely and without conflict.

For f ∈ {f1, f2, f3} of the examples of Section 2, there always exists an irrational
component. This follows from the fact that if fk(q) = q, then q is a rational function of p;
that is, q is an element of the field Q(p). To see this, note that any fk(q) is of the form

q

pm(1 − p)k−m
− r

for some 0 ≤ m ≤ k and r ∈ Q(p). This can be shown by induction on k. Solving fk(q) = q
for q gives

q =
rpm(1 − p)k−m

1 − pm(1 − p)k−m
∈ Q(p).

Thus the component of any real q 6∈ Q(p) is an irrational component. There exist uncount-
ably many such q, since Q(p) is countable. In fact, there are uncountably many irrational
components, since each component is countable, and a countable union of countable sets
is countable. Moreover, it can be shown that if q1 and q2 are in the same component,
then Q(p, q1) = Q(p, q2). This is because if q1 and q2 are in the same component, then
fk1(q1) = fk2(q2) for some k1, k2 ∈ N, so

q1
pm1(1 − p)k1−m1

− r1 =
q2

pm2(1 − p)k2−m2

− r2,

therefore q1 ∈ Q(p, q2) and q2 ∈ Q(p, q1).
We have thus characterized all possible solutions.

5. Why Is This Coinduction?

The reader may be curious why we have called the rule (3.3) a coinduction rule, since
it may seem different from the usual forms of coinduction found in the literature. The form
of the rule and its use in applications certainly bears a resemblance to other versions in the
literature, but to justify the terminology on formal grounds, we must exhibit a category of
coalgebras and show that the rule (3.3) is equivalent to the assertion that a certain coalgebra
is final in the category.

Say we have a contractive map τ on a metric space B and a nonempty closed subset
ϕ ⊆ B preserved by τ . Define τ(ϕ) = {τ(s) | s ∈ ϕ}. Consider the category C whose objects
are the nonempty closed subsets of B and whose arrows are the reverse set inclusions; thus
there is a unique arrow ϕ1 → ϕ2 iff ϕ1 ⊇ ϕ2. The map τ̄ defined by τ̄(ϕ) = cl(τ(ϕ)), where
cl denotes closure in the metric topology, is an endofunctor on C, since τ̄(ϕ) is a nonempty
closed set, and ϕ1 ⊇ ϕ2 implies τ̄(ϕ1) ⊇ τ̄(ϕ2). A τ̄ -coalgebra is then a nonempty closed set
ϕ such that ϕ ⊇ τ̄(ϕ); equivalently, such that ϕ ⊇ τ(ϕ). The final coalgebra is {e∗}, where
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e∗ is the unique fixpoint of τ . The coinduction rule (3.3) says that ϕ ⊇ τ(ϕ) ⇒ ϕ ⊇ {e∗},
which is equivalent to the statement that {e∗} is final in the category of τ̄ -coalgebras.

6. Future Work

There is great potential in the use of proof principles similar to those of Theorem 3.2 for
simplifying arguments involving probabilistic programs, stochastic processes, and dynamical
systems. Such rules encapsulate low-level analytic arguments, thereby allowing reasoning
about such processes at a higher algebraic or logical level. A few such applications have
been described in the theory of streams, Markov chains and Markov decision processes, and
non-well-founded sets [10]. Other possible application areas are complex and functional
analysis, the theory of linear operators, measure theory and integration, random walks,
fractal analysis, functional programming, and probabilistic logic and semantics.

In particular, probabilistic programs can be modeled as measurable kernels R(x,A),
which can be interpreted as forward-moving measure transformers or backward-moving
measurable function transformers [2, 8]. The expectation functions considered in this paper
were uniformly bounded, but there are examples of probabilistic programs for which this is
not true. It would be nice to find rules to handle these cases.

An intriguing open problem is whether the optimal strategy for the coin-flip process
of Section 2 is decidable. Specifically, given rational p, q, 0 < p, q < 1, and a flip of the
bias-p coin, can we decide what action to take to minimize the expected running time? It
is known that E∗

3 is not necessarily optimal.
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