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Abstract

Kleene algebras with tests provide a natural framework for equa�

tional speci�cation and veri�cation� Kleene algebras with tests and

related systems have been used successfully in basic safety analysis�
source�to�source program transformation� and concurrency control�
The equational theory of Kleene algebras with tests has been shown to

be decidable in at most exponential time by an e�cient reduction to
Propositional Dynamic Logic� In this paper we prove that the theory

is PSPACE �complete�

� Introduction

Kleene algebra with tests �KAT� ���� is an algebraic system intermediate to
Kleene algebra �KA� and Propositional Dynamic Logic �PDL� in expressive
power� One can use KAT for a range of common veri	cation tasks without
resorting to the full power of PDL� KAT and related systems have been ap

plied successfully to real problems in basic safety analysis� source
to
source
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program transformation� and concurrency control ��� 
� �� ���� including a rig

orous proof of a popular lazy caching protocol �
�� This paper is concerned
with the extent to which this system can be automated�

Kleene algebra dates to a ���� paper of Kleene ���� and was further devel

oped in the ���� monograph of Conway ���� Kleene algebra has appeared in
one form or another in relational algebra ���� ���� semantics and logics of pro

grams ���� ���� automata and formal language theory ���� ���� and the design
and analysis of algorithms ��� �� ���� Many authors have contributed over
the years to the development of the algebraic theory� see ���� and references
therein�

Propositional Dynamic Logic �PDL� ��� is a logical system that blends
Kleene algebra with modal logic� Syntactically� PDL is a two
sorted logic
consisting of programs and propositions de	ned by mutual induction� A
basic operator in PDL is the test operator �� by which a program �� can be
formed from any proposition �� Intuitively� �� acts as a guard that succeeds
with no side e�ects in states satisfying � and fails or aborts in states not
satisfying �� Tests are used to manipulate �ow of control and are needed to
model conventional programming constructs such as conditionals and while
loops�

From a practical standpoint� many simple program manipulations such as
loop unwinding and basic safety analysis do not require the full power of PDL�
but can be carried out in a purely equational subsystem using the axioms of
Kleene algebra� However� tests are an essential ingredient for modeling real
programs� which motivates their inclusion in the system KAT�

It has been shown that Kleene algebra with extra conditions of the form
p � � reduces e�ciently to Kleene algebra without extra conditions� therefore
remains decidable ���� but that �
continuous Kleene algebra in the presence of
extra commutativity conditions of the form pq � qp� even for primitive p and
q� is undecidable ���� In ����� it was shown how this undecidability proof can
be used to establish that the universal Horn theory of �
continuous Kleene
algebras is not 	nitely axiomatizable�

In ���� it was shown that the equational theories of Kleene algebras with
tests and �
continuous Kleene algebras with tests coincide� and that these
theories are complete over certain language
theoretic and relational models�
The language
theoretic models involved regular sets of guarded strings over
	nite alphabets � and B of actions and tests� respectively� These sets play
the same role in Kleene algebra with tests that the regular sets play in Kleene
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algebra� The completeness theorem of ���� is analogous to the completeness
theorem of ��
� in which the regular sets over � were shown to form the free
Kleene algebra on generators ��

In ���� the proof of correctness of the reduction of ��� from Kleene algebra
with conditions p � � to Kleene algebra without conditions was simpli	ed and
extended to handle Kleene algebras with tests� Since the extra commutativity
conditions needed in ���� were all of this form �if b is a test� the commutativity
condition pb � bp is equivalent to the condition bpb � bpb � ��� the system
used in ���� reduces e�ciently to KAT without extra conditions� and is thus
no more di�cult to decide than KAT� The complexity of KAT is therefore of
considerable practical interest�

It was shown in ���� that KAT is decidable in at most exponential time by
an e�cient reduction to PDL� Since KA is known to be PSPACE 
complete
����� KAT is at least PSPACE 
hard� It was conjectured in ���� that KAT is
no more di�cult to decide than KA�

In this paper we verify that conjecture� We give a new decidability proof
that establishes that KAT is in PSPACE � therefore PSPACE 
complete� In
contrast� PDL is complete for exponential time ���� which indicates that some
savings can be achieved by using KAT in applications where PDL would
previously have been used�

The algorithm makes use of the free language
theoretic model involving
sets of guarded strings introduced in ���� and matrices over Kleene algebras
with tests�

� Kleene Algebra with Tests

A Kleene algebra with tests ���� is a Kleene algebra with an embedded
Boolean subalgebra� Formally� it is a two
sorted structure

�K� B� �� �� �� � �� ��

where is a unary operator de	ned only on B� such that

� B � K�

� �K� �� �� �� �� �� is a Kleene algebra� and

� �B� �� �� � �� �� is a Boolean algebra�
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The elements of B are called tests� We reserve the letters p� q� r� s for arbitrary
elements of K and a� b� c for tests� In PDL� a test would be written b�� but
since we are using di�erent symbols for tests we can omit the ��

This deceptively simple de	nition actually carries a lot of information�
The operators �� �� �� and � play two roles� when applied to arbitrary el

ements of K� they refer to choice� composition� fail� and skip� respectively�
and when applied to tests� they take on the additional meaning of join� meet�
falsity� and truth� respectively� The coexistence of these two usages admits
considerable economy of expression�

As is customary� we will omit �� writing pq instead of p �q� The precedence
of the operators is ��� � � �� Thus p � qr� should be parsed p � q�r���

��� Kleene Algebra

There have been many competing axiomatizations of Kleene algebra� The
formulation we adopt here �KA� is from ��
�� Succinctly put� a Kleene algebra

is an �additively� idempotent� �multiplicatively� commutative semiring under
�� �� �� �� satisfying the additional properties

� � pp� � p� ���

� � p�p � p� ���

q � pr � r � p�q � r ���

q � rp � r � qp� � r �
�

where � refers to the natural partial order on K�

p � q � p � q � q �

The operation � gives the supremum with respect to the natural order ��
Instead of ��� and �
�� we might take the equivalent axioms

pr � r � p�r � r ���

rp � r � rp� � r � ���

These axioms say essentially that � behaves like the Kleene asterate opera

tor of formal language theory or the re�exive transitive closure operator of
relational algebra�






Typical models include the family of regular sets over a 	nite alphabet�
the family of binary relations on a set� and the family of n�n matrices over
another Kleene algebra�

Some useful identities of Kleene algebra are

�p�q��p� � �p � q�� ���

p�qp�� � �pq��p ���

p� � �pp���� � p� � ���

All the operators are monotone with respect to �� In other words� if p � q�
then pr � qr� p � r � q � r� and p� � q� for any r�

A Kleene algebra is said to be ��continuous if it satis	es the in	nitary
condition

pq�r � sup
n��

pqnr ����

where

q�
def
� �

qn��
def
� qqn

and the supremum is with respect to the natural order �� We can think of
���� as a conjunction of the in	nitely many equational axioms

pqnr � pq�r� n 	 � ����

and the in	nitary Horn formula�
n��

pqnr � s � pq�r � s � ����

In the presence of the other axioms� the �
continuity condition ���� implies
������ and is strictly stronger in the sense that there exist Kleene algebras
that are not �
continuous �����

The main result of ��
� is that all true identities between regular expres

sions� interpreted as regular sets of strings� are derivable from the axioms of
Kleene algebra ��
�� and only such identities are derivable� In other words�
the algebra of regular sets of strings over the 	nite alphabet � is the free
Kleene algebra on generators �� It is also the free �
continuous Kleene alge

bra on generators �� i�e�� the equational theory of the Kleene algebras and
the �
continuous Kleene algebras coincide�

See ��
� for a more thorough introduction�
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��� The Boolean Subalgebra

The Boolean subalgebra B admits a Boolean negation operator � The se

quential composition operator � acts as conjunction when applied to elements
of B� and the choice operator � acts as disjunction� Intuitively� a test bc suc

ceeds i� both b and c succeed� and b � c succeeds i� either b or c succeeds�

Since b � � for all b 
 B� it is tempting to de	ne tests in an arbitrary
Kleene algebra K to be the set fp 
 K j p � �g� Although this makes sense
in algebras of binary relations� in general the set fp 
 K j p � �g may not
extend to a Boolean algebra� For example� p � � for all p in the �min���
Kleene algebra of the theory of algorithms �see ������ but the multiplicative
idempotence law pp � p fails�

Even over algebras of binary relations� we would like to admit models with
programs whose input�output relations are subsets of the identity �i�e�� have
no side e�ects� but whose complements are nevertheless uncomputable� We
intend tests b to be viewed as simple predicates that are easily recognizable
as such� and that are immediately decidable in a given state �and whose
complements are therefore also immediately decidable��

We remark that under the present de	nition� every Kleene algebra ex

tends trivially to a Kleene algebra with tests by taking B to be the two

element Boolean algebra consisting of � and ��

��� The Language of Kleene Algebra with Tests

Let � and B be disjoint 	nite sets of symbols� Elements of � are called
primitive actions and elements of B are called primitive tests� Terms and
Boolean terms are de	ned inductively�

� any primitive action p is a term

� any primitive test b is a Boolean term

� � and � are Boolean terms

� if p and q are terms� then so are p � q� pq� and p� �suitably parenthe

sized�

� if b and c are Boolean terms� then so are b � c� bc� and b �suitably
parenthesized�
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� any Boolean term is a term�

The set of all terms over � and B is denoted T��B� The set of all Boolean
terms over B is denoted TB�

A term p 
 T��B is called a regular expression if all occurrences of are
applied to primitive tests only� i�e�� if p is a regular expression in the usual
sense over the alphabet � � B � B� where B � fb j b 
 Bg� The set of
all regular expressions over � � B � B is denoted R��B� Any term in T��B
can be e�ciently converted to an equivalent regular expression in R��B of

comparable size using the De Morgan laws and the law b � b of Boolean
algebra�

An interpretation over a Kleene algebra with tests K is a homomorphism
�function commuting with the distinguished operations and constants� de

	ned on T��B and taking values in K such that the Boolean terms are mapped
to elements of the distinguished Boolean algebra of K� If K is a Kleene al

gebra with tests and I is an interpretation over K� we write K� I � � if the
formula � holds in K under the interpretation I according to the usual se

mantics of 	rst
order logic� In this paper the only formulas we consider are
equations or equational implications�

We write KAT � � if the formula � is a logical consequence of KAT�
i�e� if � holds under all interpretations over Kleene algebras with tests� We
write KAT� � � if � holds under all interpretations over �
continuous Kleene
algebras with tests�

� A Language�Theoretic Model

The following language
theoretic model G and standard interpretation G were
introduced in ����� We repeat the de	nitions here for completeness�

Let � and B � fb�� � � � � bkg be disjoint 	nite sets of symbols� An atom

of is a string of literals c�c� � � � ck� where each ci 
 fbi� big� This assumes
an arbitrary but 	xed order b�� b�� � � � � bk on B� for technical reasons� we
require the literals in an atom to occur in this order� An atom is thus a
Boolean expression representing an atom �minimal nonzero element� of the
free Boolean algebra on generators B� There are exactly �k atoms� We
denote atoms of B by �� �� ��� � � � The set of all atoms of B is denoted �G�
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This notation is chosen because �G will turn out to be the multiplicative
identity of our language
theoretic model G�

If b 
 B and � is an atom of B� we write � � b if b occurs positively in
� and � � b if b occurs negatively in �� This notation is consistent with the
natural order in the free Boolean algebra generated by B�

Intuitively� the symbols of � can be thought of as single instructions in
a computation and atoms as guards or conditions that must be satis	ed for
the computation to proceed� If � � ci� then � asserts that ci holds �and ci
fails� at that point in the computation�

De�nition � A guarded string over � and B is any element of ��G����G�
i�e�� any string of the form

��p��� � � ��n��pn�n � n 	 � �

where each �i is an atom of B and each pi 
 �� Note that a guarded string
begins and ends with an atom� In the case n � �� a guarded string is just a
single atom�

The set of all guarded strings over � and B is denoted GS��B� or just GS
when � and B are understood� �

We denote strings in ���B�B��� including guarded strings� by the letters
x� y� z� x�� � � ��

The analog of concatenation for guarded strings is coalesced product ����

De�nition � The coalesced product operation � is a partial binary operation
on GS de	ned as follows�

x� � �y
def
�

�
x�y � if � � �

unde	ned � otherwise�

In other words� if the terminal atom of the 	rst string is the same as
the initial atom of the second string� then the two strings can be coalesced�
This is like concatenation� except that the common intermediate atom is only
written once�

If A�B � GS� then

A �B
def
� fx � y j x 
 A� y 
 Bg �

Thus A � B consists of all existing coalesced products of guarded strings in
A with guarded strings in B� �
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Example � Let B � fb� cg and � � fp� q� r� sg� Let

A � fbcpbc� bc� bcqbcg

B � fbcrbc� bc� bcsbcg �

Then

A �B � fbcpbcrbc� bcpbc� bcrbc� bc� bcqbcsbcg �

�

Note that the identity for coalesced product is �G�
Whereas the operation � is partial when applied to guarded strings� it

is total when applied to sets of guarded strings� If there are no existing
coalesced products of strings from A and B� then A � B � �� It is not
di�cult to show that � is associative and that coalesced product distributes
over union�

For A � GS� de	ne inductively

A� def
� �G

An�� def
� A �An �

The asterate operation for sets of guarded strings is de	ned by

A�
def
�

�
n��

An �

Let denote set complementation in �G� That is� if A � �G� then A � �G
A�
Consider the structure

P��B � ��GS� ��G � �� �� �� � �� �G� �

We write P for P��B when � and B are understood� It is quite straightforward
to verify that P is a �
continuous Kleene algebra with tests� i�e� is a model of
KAT

�� The Boolean algebra axioms hold for ��G because it is a set
theoretic
Boolean algebra� on subsets of �G� � is set intersection�

The �
continuity condition follows immediately from the de	nition of �

and the distributivity of coalesced product over in	nite union� Since

B� �
�
n��

Bn �

�



we have that

A �B� �C � A � �
�
n��

Bn� �C �
�
n��

A �Bn �C �

Both of these expressions denote the set

fx � y � z j x 
 A� z 
 C� �n y 
 Bng �

��� Standard Interpretation

The standard interpretation G is de	ned to be the unique homomorphism
G � T��B � P��B whose values on primitive actions and primitive tests is
given by

G�p�
def
� f�p� j �� � 
 �Gg

G�b�
def
� f� 
 �G j � � bg �

The structure G � G��B is de	ned to be the image of T��B under this map�
i�e�� the subalgebra of P��B generated by the elements G�p� and G�b� for
p 
 � and b 
 B� Elements of G are called regular sets�

The map G thus associates a regular set of guarded strings with each
term in T��B�

G�p � q� � G�p� �G�q�

G�pq� � G�p� �G�q�

G��� � �G

G��� � �

G�b� � �G 
G�b�

G�p�� � G�p�� �

Let R denote the standard interpretation of regular expressions as regular
sets�

R�p� � fpg

R�p � q� � R�p� �R�q�

R�pq� � fxy j x 
 R�p�� y 
 R�q�g

R��� � �

R��� � �

R�p�� � R�p��

��



where xy denotes the concatenation of x and y and where � denotes the
empty string�

The following result of ���� is analogous to the corresponding result for
Kleene algebra and R as proved in ��
��

Theorem � ���	
�

KAT j� p � q �� G�p� � G�q� �

��� Relating G and R

For regular expressions p 
 R��B� the standard interpretation R applies�

giving a regular subset R�p� � �� � B � B���
By a slight abuse� we can regard strings in �� � B � B�� as regular ex


pressions in R��B� interpreting the null string � as the term �� As such� we
can apply G or R to them� Note that if x is a string� then R�x� � fxg� and
if x is a guarded string� then G�x� � fxg�

For A � T��B� de	ne

G�A�
def
�

�
t�A

G�t� � ����

It follows immediately that if A is a set of guarded strings� then

G�A� � A � ��
�

Lemma � If p 
 R��B� then G�p� � G�R�p���

Proof� The proof proceeds by a straightforward structural induction�
For the basis� if p 
 � � B � B� then

R�p� � fpg

G�R�p�� �
�

t�R�p�

G�t�

� G�p� �

��



This also takes care of the case of � so we do not need to treat this operator
separately� Also�

R��� � f�g

G�R���� �
�

t�R���

G�t�

� G���

R��� � �

G�R���� �
�

t�R���

G�t�

� �

� G��� �

For the induction step� we have

G�R�p � q�� � G�R�p� �R�q��

� G�R�p�� �G�R�q��

� G�p� �G�q� �induction hypothesis�

� G�p � q� �

G�R�pq�� �
�

t�R�pq�

G�t�

�
�

u � R�p�

v � R�q�

G�uv�

�
�

u � R�p�

v � R�q�

G�u� �G�v�

� �
�

u�R�p�

G�u�� � �
�

v�R�q�

G�v�� �distributivity�

� G�R�p�� �G�R�q��

� G�p� �G�q� �induction hypothesis�

� G�pq� �

G�R�p��� � G�
�
n��

R�pn��

�
�
n��

G�R�pn��

��



�
�
n��

G�pn� �induction hypothesis�

� G�p�� �

�

� Matrix Algebras

Let K be a Kleene algebra with tests B� The family M�n�K� of n � n

matrices over K again forms a KAT� The operations � and � are the usual
operations of matrix addition and multiplication� respectively� �n is the n�n

zero matrix� and In the n� n identity matrix� The operation � on matrices
is de	ned inductively��

A B

C D

��

�

�
�A � BD�C�� �A � BD�C��BD�

D�C�A � BD�C�� D� � D�C�A � BD�C��BD�

�
� ����

The distinguished Boolean subalgebra is the set ��n�B� of n � n diagonal
matrices with entries from the distinguished Boolean algebra B� The op

eration on ��n�B� just complements the diagonal elements� leaving the
o�
diagonal elements ��

Theorem 	 The structure

�M�n�K�� ��n�B�� �� �� �� � �n� In�

is a Kleene algebra with tests�

Proof� As shown in ��
�� the structure

�M�n�K�� �� �� �� �n� In�

forms a Kleene algebra� and it is easy to verify that ��n�B� forms a Boolean
algebra� �

��



De�nition 
 Let K� K� be Kleene algebras with tests B� B�� respectively� A
KAT�homomorphism is a Kleene algebra homomorphism h � K � K� whose
restriction to B is a Boolean algebra homomorphism h � B � B�� �

Lemma � Let h � K � K� be a KAT�homomorphism� and letH � M�n�K� �
M�n�K�� be its componentwise extension to matrices� Then H is a KAT�

homomorphism�

Proof� By de	nition� H�E�ij � h�Eij�� It is immediate that H�E �F � �
H�E� � H�F �� H�EF � � H�E�H�F �� H��� � �� and H�I� � I� For �� we
can use the inductive de	nition ���� to give a straightforward inductive proof
that H�E�� � H�E��� Finally� for E 
 ��n�B��

H�E�ij � h�E ij�

�

�
h�Eij� � if i � j�

h��� � if i �� j

�

�
h�Eij� � if i � j�

� � if i �� j

�

�
H�E�ij � if i � j�

� � if i �� j

� H�E�ij �

so H�E� � H�E�� �

A Kleene algebra or Kleene algebra with tests is called �nitary if for all
a 
 K there exists an m 	 � such that a� � �� � a�m� Any 	nite algebra is
	nitary� and any 	nitary algebra is �
continuous�

Lemma � If K is �nitary� then so is M�n�K��

Proof� We proceed by induction on n� For the basis� the algebras K and
M���K� are isomorphic� so there is nothing to prove� Now suppose n 	 ��
Break up E 
 M�n�K� arbitrarily into submatrices

E �

�
A B

C D

�

�




where A and D are square� Using ����

�
A B

C D

��
�

��
A �
� D

�
�

�
� B

C �

���

�

�	� A �
� D

�� �
� B

C �

�
A� � A �
� D

��

�

��
A� �
� D�

� �
� B

C �

��� �
A� �
� D�

�

�

�
� A�B

D�C �

�� �
A� �
� D�

�
�

By the induction hypothesis� there exists an m 	 � such that�
A� �
� D�

�
�

�
�I � A�m �

� �I � D�m

�

�

�
I � A �

� I � D

�m
� �I � E�m �

Also� using ����

�
� A�B

D�C �

��
�

�
A�BD�C �

� D�CA�B

�� �
I A�B

D�C I

�

�

�
�A�BD�C�� �

� �D�CA�B��

� �
I A�B

D�C I

�
�

By the induction hypothesis� there exists a k 	 � such that�
�A�BD�C�� �

� �D�CA�B��

�

�

�
�I � A�BD�C�k �

� �I � D�CA�B�k

�

�

�
I � A�BD�C �

� I � D�CA�B

�k

��



�

�
I �

�
A� �
� D�

� �
� B

C �

� �
A� �
� D�

� �
� B

C �

��k

� �I � �I � E�mE�I � E�mE�k

� �I � E��k�m��� �

Similarly� �
I A�B

D�C I

�
� I �

�
A� �
� D�

� �
� B

C �

�
� I � �I � E�mE

� �I � E�m�� �

Putting these all together� we have

E� � �I � E��km��k��m�� �

�

��� Matrices over a Boolean Algebra

In this section we establish some special properties of matrices over a Boolean
algebra that will prove useful in the subsequent development�

If B is the distinguished Boolean algebra of a Kleene algebra with tests
K� then the algebra M�n�B� is a subalgebra of M�n�K�� �Note that it is
not the distinguished Boolean algebra of M�n�K�� in fact� it is not even a
Boolean algebra in general�� The algebra ��n�B� of diagonal matrices over
B is the distinguished Boolean algebra of both M�n�K� and M�n�B��

Since b� � � for any b 
 B� it follows immediately from Lemma � that
M�n�B� is 	nitary� In fact� it can be established by combinatorial means
that if A 
M�n�B�� then A� � �I �A�n��� but we will not need this tighter
bound�

Let B denote the free Boolean algebra on generators B� Given a matrix
J 
 M�n�B� and an atom �� let J� be the �
� matrix

�J��ij �

�
� � if � � Jij
� � otherwise�

��



Lemma ��

� � �J��ij �� �J�� �ij � � �

In particular� one can determine whether � � �J��ij in linear time�

Proof� The 	rst statement is a direct application of Lemma �� using the
Boolean homomorphism h� � B � f�� �g de	ned by

h��b� �

�
� � if � � b

� � otherwise�

Then J� � H��J�� where H� is the componentwise extension of h� to ma

trices� The condition to be proved is equivalent to the statement H��J�� �
H��J���

The entries of J� can be determined by testing whether � � b� which
essentially amounts to evaluating a Boolean expression on a given truth as

signment� The matrix J� is a �
� matrix� so �J�� �ij can be determined in
linear time by depth 	rst search on the corresponding directed graph� The
entire matrix J�� can be computed e�ciently using any standard transitive
closure algorithm� �

��� Matrix Representation of Terms

We eventually want to give an algorithm for deciding whether KAT j� p � q�
By Theorem 
� it su�ces to decide whether G�p� � G�q��

One possible approach� exploited in ����� is to construct from p 
 T��B a
regular expression bp 
 R��B such that

G�p� � R�bp� � ����

Then deciding whether G�p� � G�q� reduces to deciding whether R�bp� �
R�bq�� which we know how to do in PSPACE �

The construction of bp from p as given in ���� involves an exponential
blowup� which the following example shows to be unavoidable� Suppose
k � �m� Consider the expression

p � �b�bm�� � b�bm����b�bm�� � b�bm��� � � � �bmbk � bmbk�

��



This expression represents the set of atoms in which the ith and m�ith literal
have the same parity� Any nondeterministic 	nite automaton accepting G�p�
must store in its state the 	rst half of the string so that it can verify that
the second half is correct� Therefore the automaton must have at least �m

states� Since the translation between regular expressions and nondeterminis

tic automata is linear� any regular expression bp such that R�bp� � G�p� must
be exponentially longer than p�

To circumvent this exponential blowup� we work with a matrix represen

tation of expressions� We 	rst produce a matrix P 
 M�n�F� with small
entries and �
� vectors u� v of length n such that

R�p� � R�uTP�v� � ����

where n is approximately the size of p and F is the free Kleene algebra
with tests on generators � and B� The construction of P is by induction
on the structure of p� and corresponds to the combinatorial construction of
an automaton from a regular expression as found for example in ���� The
matrix P is the transition matrix of the automaton equivalent to the regular
expression p over the input alphabet �� B� B� The vectors u and v specify
the start and 	nal states of the automaton� respectively� The elements of
P are �� �� and sums of primitive symbols� This construction is given in its
entirety in ��
�� so we do not repeat it here�

Since the entries of P are sums of primitive symbols� we can write P �
J � A� where the entries of J are sums of elements of B � B and the entries
of A are sums of elements of �� Using ���� we can then write

P� � �J�A��J� �

This form is particularly well suited to the treatment of guarded strings
��p��� � � ��m��pm�m� the guards �i being handled by J� and the symbols
pi by A�

We extend the de	nition of J� above to general matrices� For p 
 ��
de	ne the �
� matrix

�Ap�ij �

�
� � if p � Aij

� � otherwise�

Lemma �� ��p��� � � ��m��pm�m 
 G�uT �J�A��J�v� if and only if

uTJ���Ap�J
�
��
� � � J��m��ApmJ

�
�m
v � � �

��



Proof� Because of the restricted form of the entries in J� and A� all
guarded strings in G�uT �J�A�kJ�v� are of the form ��p��� � � ��k��pk�k�
Since

G�uT �J�A��J�v� �
�
k��

G�uT �J�A�kJ�v� �

we have that

��p��� � � � �m��pm�m 
 G�uT �J�A��J�v�

��

��p��� � � ��m��pm�m 
 G�uT �J�A�mJ�v� �

Furthermore� by the de	nition of matrix multiplication� this occurs i� there
exist s�� t�� s�� t�� � � � � sm� tm such that

� us� � �

� �i � �J��siti� � � i � m

� pi � Ati��si� � � i � m

� vtm � ��

By Lemma �� and the de	nition of Api� this occurs i� there exist s�� t�� s��
t�� � � � � sm� tm such that

� us� � �

� �J��i�siti � �� � � i � m

� �Api�ti��si � �� � � i � m

� vtm � ��

By the de	nition of Boolean matrix multiplication� this occurs i�

uTJ���Ap�J
�
��
� � � J��m��ApmJ

�
�m
v � � �

�

��



� A PSPACE Algorithm

In this section we give a PSPACE algorithm for deciding whether KAT j�
p � q� or equivalently by Theorem 
� whether G�p� � G�q��

The algorithm will nondeterministically guess a guarded string

��p��� � � � �m��pm�m 
 G�p� 
G�q� �

We 	rst produce the matrices u� P� v and y�Q� z such that

R�p� � R�uTP�v�

R�q� � R�yTQ�z�

as shown in x
��� By Lemma �� we also have

G�p� � G�uTP�v�

G�q� � G�yTQ�z� �

Writing P � J � A and Q � K � B where the entries of J and K are sums
of elements of B � B and the entries of A and B are sums of elements of ��
we have

G�p� � G�uT �J�A�J�v�

G�q� � G�yT �K�B�K�z� �

By Lemma ��� it su�ces to guess ��p��� � � � �m��pm�m such that

uTJ���Ap�J
�
��
� � � J��m��ApmJ

�
�m
v � � and

yTK���Bp�K
�
��
� � �K��m��BpmK

�
�m
z � � �

Let u� � u and y� � y� We guess ��� p�� ��� p�� ��� � � � in that order� After
guessing �i� i 	 �� we calculate J�i and K�i and their re�exive transitive
closures J��i and K��i � then calculate the �
� column vectors wi and xi such
that

wT
i � uTi J

�
�i

xTi � yTi K
�
�i
�

��



After guessing pi� i 	 �� we calculate Api and Bpi � then calculate the �
�
column vectors ui and yi such that

uTi � wT
i��Api

yTi � xTi��Bpi �

It follows inductively that

wT
i � uT� J

�
��
Ap�J

�
��
� � � J��i��ApiJ

�
�i

xTi � yT�K
�
��
Bp�K

�
��
� � �K��i��BpiK

�
�i
�

We halt and accept if at any point wT
i v � � and xTi z � ��

The correctness of this algorithm follows from Lemma ��� It uses at most
polynomial space� since in each stage of the computation only the vectors wi

and xi need be remembered�
The algorithm can be made deterministic using Savitch s Theorem �see

����� The problem is known to be PSPACE 
hard ����� We have thus shown

Theorem �� The equational theory of KAT is PSPACE�complete�
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