The Complexity of
Kleene Algebra with Tests

Ernie Cohen* Dexter Kozen'!
ernie@bellcore.com kozen@cs.cornell.edu

Frederick Smithf

fms@cs.cornell.edu

July 19, 1996

Abstract

Kleene algebras with tests provide a natural framework for equa-
tional specification and verification. Kleene algebras with tests and
related systems have been used successfully in basic safety analysis,
source-to-source program transformation, and concurrency control.
The equational theory of Kleene algebras with tests has been shown to
be decidable in at most exponential time by an efficient reduction to
Propositional Dynamic Logic. In this paper we prove that the theory
is PSPACE-complete.

1 Introduction

Kleene algebra with tests (KAT) [15] is an algebraic system intermediate to
Kleene algebra (KA) and Propositional Dynamic Logic (PDL) in expressive
power. One can use KAT for a range of common verification tasks without
resorting to the full power of PDL. KAT and related systems have been ap-
plied successfully to real problems in basic safety analysis, source-to-source

!Bell Communications Research Inc., 445 South St., Morristown, NJ 07960, USA
2Computer Science Department, Cornell University, Ithaca, NY 14853-7501, USA

program transformation, and concurrency control [3, 4, 5, 15], including a rig-
orous proof of a popular lazy caching protocol [4]. This paper is concerned
with the extent to which this system can be automated.

Kleene algebra dates to a 1956 paper of Kleene [10] and was further devel-
oped in the 1971 monograph of Conway [6]. Kleene algebra has appeared in
one form or another in relational algebra [19, 22|, semantics and logics of pro-
grams [11, 20|, automata and formal language theory [17, 18], and the design
and analysis of algorithms [1, 9, 13]. Many authors have contributed over
the years to the development of the algebraic theory; see [15] and references
therein.

Propositional Dynamic Logic (PDL) [7] is a logical system that blends
Kleene algebra with modal logic. Syntactically, PDL is a two-sorted logic
consisting of programs and propositions defined by mutual induction. A
basic operator in PDL is the test operator 7, by which a program ¢? can be
formed from any proposition ¢. Intuitively, ¢? acts as a guard that succeeds
with no side effects in states satisfying ¢ and fails or aborts in states not
satisfying . Tests are used to manipulate flow of control and are needed to
model conventional programming constructs such as conditionals and while
loops.

From a practical standpoint, many simple program manipulations such as
loop unwinding and basic safety analysis do not require the full power of PDL,
but can be carried out in a purely equational subsystem using the axioms of
Kleene algebra. However, tests are an essential ingredient for modeling real
programs, which motivates their inclusion in the system KAT.

It has been shown that Kleene algebra with extra conditions of the form
p = 0 reduces efficiently to Kleene algebra without extra conditions, therefore
remains decidable [3]; but that *-continuous Kleene algebra in the presence of
extra commutativity conditions of the form pq = gp, even for primitive p and
¢, is undecidable [2]. In [15], it was shown how this undecidability proof can
be used to establish that the universal Horn theory of *-continuous Kleene
algebras is not finitely axiomatizable.

In [16] it was shown that the equational theories of Kleene algebras with
tests and *-continuous Kleene algebras with tests coincide, and that these
theories are complete over certain language-theoretic and relational models.
The language-theoretic models involved regular sets of quarded strings over
finite alphabets ¥ and B of actions and tests, respectively. These sets play
the same role in Kleene algebra with tests that the regular sets play in Kleene

2

algebra. The completeness theorem of [16] is analogous to the completeness
theorem of [14] in which the regular sets over ¥ were shown to form the free
Kleene algebra on generators 3.

In [16] the proof of correctness of the reduction of [3] from Kleene algebra
with conditions p = 0 to Kleene algebra without conditions was simplified and
extended to handle Kleene algebras with tests. Since the extra commutativity
conditions needed in [15] were all of this form (if b is a test, the commutativity
condition pb = bp is equivalent to the condition bpb 4 bpb = 0), the system
used in [15] reduces efficiently to KAT without extra conditions, and is thus
no more difficult to decide than KAT. The complexity of KAT is therefore of
considerable practical interest.

It was shown in [16] that KAT is decidable in at most exponential time by
an efficient reduction to PDL. Since KA is known to be PSPACE-complete
[21], KAT is at least PSPACE-hard. It was conjectured in [15] that KAT is
no more difficult to decide than KA.

In this paper we verify that conjecture. We give a new decidability proof
that establishes that KAT is in PSPACE, therefore PSPACE-complete. In
contrast, PDL is complete for exponential time [7], which indicates that some
savings can be achieved by using KAT in applications where PDL would
previously have been used.

The algorithm makes use of the free language-theoretic model involving
sets of guarded strings introduced in [16] and matrices over Kleene algebras
with tests.

2 Kleene Algebra with Tests

A Kleene algebra with tests [15] is a Kleene algebra with an embedded
Boolean subalgebra. Formally, it is a two-sorted structure

(K, B, +, -, *, 7,0, 1)
where ~ is a unary operator defined only on 5, such that
e BCK,
e (K, +, -, *, 0, 1) is a Kleene algebra, and

e (B, +, -, 7, 0, 1) is a Boolean algebra.

3

The elements of B are called tests. We reserve the letters p, ¢, 7, s for arbitrary
elements of K and a, b, ¢ for tests. In PDL, a test would be written b7, but
since we are using different symbols for tests we can omit the 7.

This deceptively simple definition actually carries a lot of information.
The operators +, -, 0, and 1 play two roles: when applied to arbitrary el-
ements of K, they refer to choice, composition, fail, and skip, respectively;
and when applied to tests, they take on the additional meaning of join, meet,
falsity, and truth, respectively. The coexistence of these two usages admits
considerable economy of expression.

As is customary, we will omit -, writing pq instead of p-q. The precedence
of the operators is = >*> . > +. Thus p + ¢r* should be parsed p + q(r*).

2.1 Kleene Algebra

There have been many competing axiomatizations of Kleene algebra. The
formulation we adopt here (KA) is from [14]. Succinctly put, a Kleene algebra
is an (additively) idempotent, (multiplicatively) commutative semiring under
+,-,0, 1, satisfying the additional properties

1+pp* = p (1)
1+p*p = p* (2)
g+pr<r — pfg<r (3)
g+rp<r — gp* <r (4)

where < refers to the natural partial order on K:

P<q < ptqg=q.
The operation + gives the supremum with respect to the natural order <.
Instead of (3) and (4), we might take the equivalent axioms

pr<r — p'r<r (5)

rp<r — rpt <. (6)
These axioms say essentially that * behaves like the Kleene asterate opera-

tor of formal language theory or the reflexive transitive closure operator of
relational algebra.

Typical models include the family of regular sets over a finite alphabet,
the family of binary relations on a set, and the family of n X n matrices over
another Kleene algebra.

Some useful identities of Kleene algebra are

P*9)*p* = (p+9)* (7)
plgp)* = (pg)*p (8)
p* = (op)*(1+0p) . (9)

All the operators are monotone with respect to <. In other words, if p < ¢,
then pr < gr, p+7r < g+, and p* < ¢* for any r.
A Kleene algebra is said to be *-continuous if it satisfies the infinitary

condition
pg*r = suppg'r (10)
n>0
where
¢ =1
¢t g

and the supremum is with respect to the natural order <. We can think of
(10) as a conjunction of the infinitely many equational axioms

p"r < pg'r, n>0 (11)
and the infinitary Horn formula
/\ pg"r < s — pq*r <s. (12)
n>0

In the presence of the other axioms, the *-continuity condition (10) implies
(3-6), and is strictly stronger in the sense that there exist Kleene algebras
that are not *-continuous [12].

The main result of [14] is that all true identities between regular expres-
sions, interpreted as regular sets of strings, are derivable from the axioms of
Kleene algebra [14], and only such identities are derivable. In other words,
the algebra of regular sets of strings over the finite alphabet X is the free
Kleene algebra on generators ¥. It is also the free *-continuous Kleene alge-
bra on generators ¥; i.e., the equational theory of the Kleene algebras and
the *-continuous Kleene algebras coincide.

See [14] for a more thorough introduction.

5

2.2 The Boolean Subalgebra

The Boolean subalgebra B admits a Boolean negation operator —. The se-
quential composition operator - acts as conjunction when applied to elements
of BB, and the choice operator + acts as disjunction. Intuitively, a test bc suc-
ceeds iff both b and ¢ succeed, and b + ¢ succeeds iff either b or ¢ succeeds.

Since b < 1 for all b € B, it is tempting to define tests in an arbitrary
Kleene algebra K to be the set {p € K | p < 1}. Although this makes sense
in algebras of binary relations, in general the set {p € K | p < 1} may not
extend to a Boolean algebra. For example, p < 1 for all p in the (min,+)
Kleene algebra of the theory of algorithms (see [13]), but the multiplicative
idempotence law pp = p fails.

Even over algebras of binary relations, we would like to admit models with
programs whose input/output relations are subsets of the identity (i.e., have
no side effects) but whose complements are nevertheless uncomputable. We
intend tests b to be viewed as simple predicates that are easily recognizable
as such, and that are immediately decidable in a given state (and whose
complements are therefore also immediately decidable).

We remark that under the present definition, every Kleene algebra ex-
tends trivially to a Kleene algebra with tests by taking B to be the two-
element Boolean algebra consisting of 0 and 1.

2.3 The Language of Kleene Algebra with Tests

Let ¥ and B be disjoint finite sets of symbols. Elements of X are called
primitive actions and elements of B are called primitive tests. Terms and
Boolean terms are defined inductively:

e any primitive action p is a term
e any primitive test b is a Boolean term
e 0 and 1 are Boolean terms

e if p and ¢ are terms, then so are p + ¢, pg, and p* (suitably parenthe-
sized)

e if b and ¢ are Boolean terms, then so are b + ¢, be, and b (suitably
parenthesized)

e any Boolean term is a term.

The set of all terms over X and B is denoted Ty, g. The set of all Boolean
terms over B is denoted Tg.

A term p € Ty g is called a regular expression if all occurrences of ~ are
applied to primitive tests only; i.e., if p is a regular expression in the usual
sense over the alphabet ¥ U B U B, where B = {b | b € B}. The set of
all regular expressions over ¥ U B U B is denoted Rgg. Any term in Ty g
can be efficiently converted to an equivalent regular expression in Ry pg of

comparable size using the De Morgan laws and the law b = b of Boolean
algebra.

An interpretation over a Kleene algebra with tests K is a homomorphism
(function commuting with the distinguished operations and constants) de-
fined on Ty g and taking values in K such that the Boolean terms are mapped
to elements of the distinguished Boolean algebra of K. If K is a Kleene al-
gebra with tests and [is an interpretation over K, we write K, I F ¢ if the
formula ¢ holds in K under the interpretation I according to the usual se-
mantics of first-order logic. In this paper the only formulas we consider are
equations or equational implications.

We write KAT F ¢ if the formula ¢ is a logical consequence of KAT,
i.e. if ¢ holds under all interpretations over Kleene algebras with tests. We
write KAT* E ¢ if ¢ holds under all interpretations over *-continuous Kleene
algebras with tests.

3 A Language-Theoretic Model

The following language-theoretic model G and standard interpretation G were
introduced in [16]. We repeat the definitions here for completeness.

Let ¥ and B = {by,...,b;} be disjoint finite sets of symbols. An atom
of is a string of literals cyco - - - ¢, where each ¢; € {bi,@}. This assumes
an arbitrary but fixed order by,bs,...,b; on B; for technical reasons, we
require the literals in an atom to occur in this order. An atom is thus a
Boolean expression representing an atom (minimal nonzero element) of the
free Boolean algebra on generators B. There are exactly 2* atoms. We
denote atoms of B by a, 3, ag,... The set of all atoms of B is denoted 1g.

This notation is chosen because 1g will turn out to be the multiplicative
identity of our language-theoretic model G.

If b € B and « is an atom of B, we write a < b if b occurs positively in
o and a < b if b occurs negatively in . This notation is consistent with the
natural order in the free Boolean algebra generated by B.

Intuitively, the symbols of ¥ can be thought of as single instructions in
a computation and atoms as guards or conditions that must be satisfied for
the computation to proceed. If o < ¢;, then « asserts that ¢; holds (and ;
fails) at that point in the computation.

Definition 1 A guarded string over ¥ and B is any element of (15%)*1g,
i.e., any string of the form

QpP1LOY *** Q1P Oy, N2> 0,

where each o; is an atom of B and each p;, € ¥. Note that a guarded string
begins and ends with an atom. In the case n = 0, a guarded string is just a
single atom.

The set of all guarded strings over ¥ and B is denoted GSy g, or just GS
when ¥ and B are understood. g

We denote strings in (ZUBUB)*, including guarded strings, by the letters
Ty Yy 2y L1y
The analog of concatenation for guarded strings is coalesced product (o).

Definition 2 The coalesced product operation ¢ is a partial binary operation
on GS defined as follows:

:L’Ozoﬁydzef {J:ay, ifa=p0

undefined , otherwise.

In other words, if the terminal atom of the first string is the same as
the initial atom of the second string, then the two strings can be coalesced.
This is like concatenation, except that the common intermediate atom is only
written once.

If A;B C GS, then

AoB ¥ {zoy|ze A, yeB).

Thus A ¢ B consists of all existing coalesced products of guarded strings in
A with guarded strings in B. a

Example 3 Let B = {b,c} and ¥ = {p,q,r,s}. Let

A = {bcpbe, be, begbe}
B = {berbe,be, besbe)

Then
Ao B = {bepberbe, bepbe, berbe, be, begbesbe)

Note that the identity for coalesced product is 1g.

Whereas the operation ¢ is partial when applied to guarded strings, it
is total when applied to sets of guarded strings. If there are no existing
coalesced products of strings from A and B, then A¢ B = &. It is not
difficult to show that ¢ is associative and that coalesced product distributes
over union.

For A C GS, define inductively

A" g,
Artl g

The asterate operation for sets of guarded strings is defined by

A* & A,

n>0

Let ~ denote set complementation in 1. That is,if A C 1g, then A = 15— A.
Consider the structure

PE,B = (2G87 21g7 U, o, *7 9, 19) .

We write P for Py g when X and B are understood. It is quite straightforward
to verify that P is a *-continuous Kleene algebra with tests, i.e. is a model of
KAT*. The Boolean algebra axioms hold for 2'¢ because it is a set-theoretic
Boolean algebra; on subsets of 1, ¢ is set intersection.
The *-continuity condition follows immediately from the definition of *
and the distributivity of coalesced product over infinite union. Since
B* = |JB",

n>0

9

we have that
AoB*oC = Ao(|UB")oC = |JAoB"oC.
n>0 n>0

Both of these expressions denote the set

{royoz|xz€eA, 2€C, Iny € B"}.

3.1 Standard Interpretation

The standard interpretation G is defined to be the unique homomorphism
G : Tyg — Py p whose values on primitive actions and primitive tests is
given by

Gp) < {apB|a,p € lg}
Gy ¥ faelg|a<h}.

The structure G = Gy, g is defined to be the image of 1%, g under this map;
i.e., the subalgebra of Py p generated by the elements G(p) and G(b) for
p € ¥ and b € B. Elements of G are called regular sets.

The map G thus associates a regular set of guarded strings with each
term in T, g:

Glp+q) = G(p)UG(g)
G(pg) = G(p)oGlq)
G(1) = 1g
G0) = @

G(b) = 1g—G(b)
G(p*) = Gp)*.

Let R denote the standard interpretation of regular expressions as regular
sets:

R(p) = {p}
R(p+q) = R(p)UR(q)
R(pg) = {zylz € R(p), y € R(q)}
R(1) = ¢
R(0) = ©
R(p*) = R(p)*

where zy denotes the concatenation of x and y and where ¢ denotes the
empty string.

The following result of [16] is analogous to the corresponding result for
Kleene algebra and R as proved in [14].

Theorem 4 ([16])

KAT Ep=q <= G(p)=Gl(q) -

3.2 Relating G and R

For regular expressions p € Ryp, the standard interpretation R applies,
giving a regular subset R(p) C (¥ UBUB)*.

By a slight abuse, we can regard strings in (X U B UB)* as regular ex-
pressions in Ry, g, interpreting the null string € as the term 1. As such, we
can apply G or R to them. Note that if z is a string, then R(x) = {«}, and
if z is a guarded string, then G(z) = {z}.

For A C Ty g, define

GA) ¥ G . (13)

teA

It follows immediately that if A is a set of guarded strings, then
G(A) = A. (14)
Lemma 5 Ifp € Ry g, then G(p) = G(R(p)).

Proof. The proof proceeds by a straightforward structural induction.
For the basis, if p € ¥ U B U B, then

R(p) = {p}
G(R(p)) = U()G(t)
= G(p) -

11

This also takes care of the case of ~, so we do not need to treat this operator
separately. Also,

For the induction step, we have

G(R(p+q))

G(R(pq))

R(1) = {¢
G(R(1)) = q)G@)
= G(1)
R(0) = o
G(R(0)) = q)G@)
= O
= G(0).
G(R(p) U R(q))
G(R(p)) U G(R(g))
G(p) U G(q) (induction hypothesis)
G(p+4q);
U &)
tcR(pq)
U Gluv)
u € R(p)
v € R(q)
U()G(u) o G(v)
€ R(q)

= (U Gu)o(U G) (distributivity)

(

G(p) ¢ G(q) (induction hypothesis)
(.
(

12

= U G (induction hypothesis)

4 Matrix Algebras

Let K be a Kleene algebra with tests B. The family M(n,K) of n x n
matrices over K again forms a KAT. The operations + and - are the usual
operations of matrix addition and multiplication, respectively, 0,, is the n xn
zero matrix, and I, the n x n identity matrix. The operation * on matrices
is defined inductively:

AlB1"

clD

B (A+ BD*C)* | (A + BD*C)*BD*

= | D*C(A+ BD*C)* | D* + D*C(A + BD*C)*BD*

(15)

The distinguished Boolean subalgebra is the set A(n,B) of n x n diagonal
matrices with entries from the distinguished Boolean algebra B. The op-
eration ~ on A(n,B) just complements the diagonal elements, leaving the
off-diagonal elements 0.

Theorem 6 The structure
(M(n,K), A(n,B), +, -, *, 7, O, L)
15 a Kleene algebra with tests.
Proof. As shown in [14], the structure
(M(n,K), +, -, %, O, L)

forms a Kleene algebra, and it is easy to verify that A(n, B) forms a Boolean
algebra. O

13

Definition 7 Let K, K’ be Kleene algebras with tests B, B, respectively. A
KAT -homomorphism is a Kleene algebra homomorphism A : K — K’ whose
restriction to B is a Boolean algebra homomorphism A : B — B'. a

Lemma 8 Leth: K — K' be a KAT-homomorphism, and let H : M(n,K) —
M(n,K') be its componentwise extension to matrices. Then H is a KAT-
homomorphism.

Proof. By definition, H(E);; = h(E;;). It is immediate that H(E + F) =
H(E)+ H(F), HEF) = H(E)H(F), H(0) = 0, and H(I) = I. For *, we
can use the inductive definition (15) to give a straightforward inductive proof
that H(E*) = H(E)*. Finally, for E € A(n, B),

H(E); = hEy)
=\ a0), ifi#j
_) MEy), ifi=,
=~ lo, if 4
=~ 1o, if i
= H(E)ij ’
so H(E) = H(E). O

A Kleene algebra or Kleene algebra with tests is called finitary if for all
a € K there exists an m > 0 such that a® = (1 + a)™. Any finite algebra is
finitary, and any finitary algebra is *-continuous.

Lemma 9 If K is finitary, then so is M(n, K).
Proof. We proceed by induction on n. For the basis, the algebras K and

M(1,K) are isomorphic, so there is nothing to prove. Now suppose n > 2.
Break up E € M(n, K) arbitrarily into submatrices

- [t

14

where A and D are square. Using (7),

AlBT"

c\|D - i
_([A]o]"[o]|B
~\l0o|D clo
T o [0 B\ [4%] 0
S\l o|D*]|C]O 0 | D¥
_ | |

By the induction hypothesis, there exists an m > 0 such that
A*| 0 o lu+A™| o0
0 [D - 0 |[(+D)™
_[I1+A] o "
- 0 |[I+D
< (I+E)™.

Also, using (9),

0 |4*B1" _ [4*BD*C| 0 I 1 |A*B
D*C| 0 B 0 |D*CA*B D*C'| I

_ l(A*BD*C)*\ 0 H ! \A*B] .

0 ‘ (D*CA*B)* D*C ‘ I
By the induction hypothesis, there exists a £ > 0 such that

[(A*BD*(C)* | 0]

0 | (D*C A*B)*
[(I+A*BD*C)* | 0
- 0 | (I + D*CA*B)*
_ [1+4*BD*C| 0 ¢
B 0 | I+ D*CA*B

15

(1 Frtor] Fete] o] Fete])

< (I+(I+E)"E(I+ E)"E)*
S (I + E)Qk‘(m+l))
Similarly,
I |A*B] I+ A*| 0 0|B
D*C| I - 0 [D*][C]oO

< I+({I+E)"E
< (I+ E)y™t.

Putting these all together, we have

E* < (_[_|_ E)ka+2k+2m+l]

4.1 Matrices over a Boolean Algebra

In this section we establish some special properties of matrices over a Boolean
algebra that will prove useful in the subsequent development.

If B is the distinguished Boolean algebra of a Kleene algebra with tests
K, then the algebra M(n, B) is a subalgebra of M(n,K). (Note that it is
not the distinguished Boolean algebra of M(n, K); in fact, it is not even a
Boolean algebra in general). The algebra A(n, B) of diagonal matrices over
B is the distinguished Boolean algebra of both M(n,K) and M(n, B).

Since b* = 1 for any b € B, it follows immediately from Lemma 9 that
M(n, B) is finitary. In fact, it can be established by combinatorial means
that if A € M(n,B), then A* = (I + A)*" 1, but we will not need this tighter
bound.

Let B denote the free Boolean algebra on generators B. Given a matrix
J € M(n,B) and an atom a, let J, be the 0-1 matrix

1, ifa<Jy
(Ja)iy = { 0, otherwise.

16

Lemma 10
a<(JM)y = (=1
In particular, one can determine whether a < (J*),; in linear time.

Proof. The first statement is a direct application of Lemma 8, using the
Boolean homomorphism A, : B — {0,1} defined by

1, ifa<b
ha(b) = { 0, otherwise.

Then J, = H,(J), where H, is the componentwise extension of h, to ma-
trices. The condition to be proved is equivalent to the statement H,(J*) =
Ho(J)*.

The entries of J, can be determined by testing whether o < b, which
essentially amounts to evaluating a Boolean expression on a given truth as-
signment. The matrix J, is a 0-1 matrix, so (JX);; can be determined in
linear time by depth first search on the corresponding directed graph. The
entire matrix J* can be computed efficiently using any standard transitive
closure algorithm. O

4.2 Matrix Representation of Terms

We eventually want to give an algorithm for deciding whether KAT = p = ¢.
By Theorem 4, it suffices to decide whether G(p) = G(q).

One possible approach, exploited in [16], is to construct from p € Typ a
regular expression p € Ry g such that

G(p) = R(p)- (16)

Then deciding whether G(p) = G(g) reduces to deciding whether R(p) =
R(G), which we know how to do in PSPACE.

The construction of p from p as given in [16] involves an exponential
blowup, which the following example shows to be unavoidable. Suppose
k = 2m. Consider the expression

p = (bibpi1+ B1Bm+1)(bzbm+2 + 525m+2) o (bnbr + BmBIc)

17

This expression represents the set of atoms in which the 7** and m 4" literal
have the same parity. Any nondeterministic finite automaton accepting G(p)
must store in its state the first half of the string so that it can verify that
the second half is correct. Therefore the automaton must have at least 2™
states. Since the translation between regular expressions and nondeterminis-
tic automata is linear, any regular expression p such that R(p) = G(p) must
be exponentially longer than p.

To circumvent this exponential blowup, we work with a matrix represen-
tation of expressions. We first produce a matrix P € M(n,F) with small
entries and 0-1 vectors u, v of length n such that

R(p) = R(u"P*v), (17)

where n is approximately the size of p and F is the free Kleene algebra
with tests on generators ¥ and B. The construction of P is by induction
on the structure of p, and corresponds to the combinatorial construction of
an automaton from a regular expression as found for example in [8]. The
matrix P is the transition matrix of the automaton equivalent to the regular
expression p over the input alphabet ¥ UBUB. The vectors u and v specify
the start and final states of the automaton, respectively. The elements of
P are 0, 1, and sums of primitive symbols. This construction is given in its
entirety in [14], so we do not repeat it here.

Since the entries of P are sums of primitive symbols, we can write P =
J + A, where the entries of J are sums of elements of B U B and the entries
of A are sums of elements of ¥. Using (7), we can then write

P* = (J*A*J*.

This form is particularly well suited to the treatment of guarded strings
QP10+ Qo 1Dm O, the guards a; being handled by J* and the symbols
p; by A.

We extend the definition of .J, above to general matrices. For p € X,
define the 0-1 matrix

_)1, ifp < Ay
(Ap)ij = {0, otherwise.

Lemma 11 qopiay -+ G 1Pmm € GuT (J*A)*T*v) if and only if

IR Ay JE A, JE v = 1.

P1% aq Am—1""PmYam

18

Proof. Because of the restricted form of the entries in J* and A, all
guarded strings in G(u? (J*A)*J*v) are of the form aopias -+ h_1PE0%-
Since

G (J*A)* T*v) = | G (J*A)FT*),

k>0

we have that

QOP1AL * * * Q1P € G(uT (J*A)* T*v)
R—s
QOPLOL * * * iy 1Py, € G(uT (J*A)™T*v) .

Furthermore, by the definition of matrix multiplication, this occurs iff there
exist sg, to, S1, t1, .-+, Sm, tm Such that

o u, =1
4 azS(J*)sthOSZSm

e p; < A

= i—184)

1<i<m
o U :1

™m

By Lemma 10 and the definition of A,,, this occurs iff there exist s, ?9, $1,
t1, .-, Sm, tm such that

By the definition of Boolean matrix multiplication, this occurs iff

W ITE AT T A TRy = 1

0“ " P1Y aq Am—1""Pm Y am

19

5 A PSPACFE Algorithm

In this section we give a PSPACE algorithm for deciding whether KAT |=
p < g, or equivalently by Theorem 4, whether G(p) C G(q).
The algorithm will nondeterministically guess a guarded string

WP1QT - 1 Pmm € G(p) — G(g) .
We first produce the matrices u, P,v and y, @), z such that

R(p) = R(u"P*v)
R(g) = R(y'Q"2)

as shown in §4.2. By Lemma 5, we also have

G(p) = G(ufP*v)
Glg) = GY'Q™2).

Writing P = J + A and @ = K + B where the entries of J and K are sums
of elements of B U B and the entries of A and B are sums of elements of ¥,
we have

G(p) = GuT(J*A)J*v)
Glq) = G (K*B)K*z).

By Lemma 11, it suffices to guess agpiay - -+ Quy 1Pm O Such that

ulJX A J*---J:m_A J¥v = 1 and

ap” " P1¥a; 177 Pm Y am

yTK:!kO Bpl K;kl e K:ka71BPm K;kmz = O "

Let up = u and yo = y. We guess ag, p1, @1, P2, Qa, ... in that order. After
guessing o, 1 > 0, we calculate J,, and K,, and their reflexive transitive
closures J and K, then calculate the 0-1 column vectors w; and x; such
that

-

I R e
w;, = u; J,,

T = y;‘pK* .

Qg

~

20

After guessing p;, ¢« > 1, we calculate A,, and B,,, then calculate the 0-1
column vectors u; and y; such that

T _ T
up = Wi A,

(2

y? = xiilgi’
It follows inductively that
wl = g JE AL IR ALY

7 P1% oy P oy
T
1

T = ngjo BP1 K;.kl e K:i‘,l Bpi Kj; .

We halt and accept if at any point wlv = 1 and z72 = 0.

The correctness of this algorithm follows from Lemma 11. It uses at most
polynomial space, since in each stage of the computation only the vectors w;
and z; need be remembered.

The algorithm can be made deterministic using Savitch’s Theorem (see
[8]). The problem is known to be PSPACE-hard [21]. We have thus shown

Theorem 12 The equational theory of KAT is PSPACE -complete.

Acknowledgements

The support of the National Science Foundation under grant CCR-9317320
is gratefully acknowledged. The third author is supported on a National
Science Foundation Graduate Fellowship.

References

[1] A. V. Ao, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis
of Computer Algorithms, Addison-Wesley, 1975.

[2] E. COHEN, February 1994. Personal communication.

[3] ——, Hypotheses in Kleene algebra.
ftp://ftp.bellcore.com/pub/ernie/research/homepage.html, April
1994.

[4] ——, Lazy caching.

ftp://ftp.bellcore.com/pub/ernie/research/homepage.html, 1994.

21

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

——, Using Kleene algebra to reason about concurrency control.
ftp://ftp.bellcore.com/pub/ernie/research/homepage.html, 1994.

J. H. CoNnwAY, Regular Algebra and Finite Machines, Chapman and Hall,
1971.

M. J. FISCHER AND R. E. LADNER, Propositional dynamic logic of reqular
programs, J. Comput. Syst. Sci., 18 (1979), pp. 194-211.

J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, 1979.

K. TwaNO AND K. STEIGLITZ, A semiring on convex polygons and zero-sum
cycle problems, STAM J. Comput., 19 (1990), pp. 883-901.

S. C. KLEENE, Representation of events in nerve nets and finite automata, in
Automata Studies, Shannon and McCarthy, eds., Princeton University Press,
1956, pp. 3-41.

D. KozeN, On induction vs. *-continuity, in Proc. Workshop on Logic of
Programs, Kozen, ed., vol. 131 of Lect. Notes in Comput. Sci., Springer,
1981, pp. 167-176.

——, On Kleene algebras and closed semirings, in Proc. Math. Found. Com-
put. Sci., Rovan, ed., vol. 452 of Lect. Notes in Comput. Sci., Springer, 1990,
pp. 26-47.

——, The Design and Analysts of Algorithms, Springer-Verlag, 1991. ISBN
0-387-97687-6. 322 pages.

—, A completeness theorem for Kleene algebras and the algebra of reqular
events, Infor. and Comput., 110 (1994), pp. 366—390.

, Kleene algebra with tests and commutativity conditions, in Proc. Second
Int. Workshop Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’96), T. Margaria and B. Steffen, eds., vol. 1055 of Lect.
Notes in Comput. Sci., Springer, March 1996, pp. 14-33.

D. KOZEN AND F. SMITH, Kleene algebra with tests: completeness and de-
cidability, Tech. Rep. TR96-1582, Cornell University, April 1996.

W. KuicH, The Kleene and Partkh theorem in complete semirings, in Proc.
14th Colloq. Automata, Languages, and Programming, Ottmann, ed., vol. 267
of Lect. Notes in Comput. Sci., EATCS, Springer, 1987, pp. 212-225.

22

[18] W. KUuICH AND A. SALOMAA, Semirings, Automata, and Languages,
Springer, 1986.

[19] K. C. Ng, Relation Algebras with Transitive Closure, PhD thesis, University
of California, Berkeley, 1984.

[20] V. PrRATT, Dynamic algebras as a well-behaved fragment of relation algebras,
in Proc. Conf. on Algebra and Computer Science, D. Pigozzi, ed., vol. 425 of
Lect. Notes in Comput. Sci., Springer, June 1988, pp. 77-110.

[21] L. J. STOCKMEYER AND A. R. MEYER, Word problems requiring exponential
time, in Proc. 5th Symp. Theory of Computing, ACM, 1973, pp. 1-9.

[22] A. TARSKI, On the calculus of relations, J. Symb. Logic, 6 (1941), pp. 65-106.

23

