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Abstract. First, we show with two examples that in test semirings with
an incomplete test algebra a domain operation may or may not exist.
Second, we show that two notions of separability in test semirings coin-
cide, respectively, with locality of composition and with extensionality
of the diamond operators in domain semirings. We conclude with a brief
comparison of dynamic algebras and modal Kleene algebras.

1 Basic Definitions

A test semiring [6] is a two-sorted structure (K, test(K)), where K is
an idempotent semiring and test(K) ⊆ K is a Boolean algebra em-
bedded into K such that the operations of test(K) coincide with the
restricted operations of K. In particular, p ≤ 1 for all p ∈ test(K).
In general, test(K) may be a proper subset of all elements below 1.

A domain semiring [1] is a structure (K, p), where K is an idempotent
semiring such that the domain operation p: K → test(K) satisfies,
for all a, b ∈ K and p ∈ test(K),

a ≤ pa a, (D1)

p(pa) ≤ p. (D2)

The conjunction of (D1) and (D2) is equivalent to each of

pa ≤ p ⇔ a = pa, (LLP)

pa ≤ p ⇔ ¬pa = 0, (GLA)

which constitute elimination laws for domain. (LLP) says that pa is
the least left preserver of a. (GLA) says that ¬pa is the greatest left



annihilator of a. Both properties obviously characterize domain in
set-theoretic relations. An important consequence of the axioms is
strictness of the domain operation:

a = 0 ⇔ pa = 0 . (1)

Moreover, we have the following useful proof principle.

Lemma 1.1 (Indirect Domain Inequality)

pa ≤ pb ⇔ (∀ p . pb = 0 ⇒ pa = 0) .

Proof. pa ≤ pb

⇔ {[ contraposition ]}
¬pb ≤ ¬pa

⇔ {[ indirect inequality ]}
∀ p . p ≤ ¬pb ⇒ p ≤ ¬pa

⇔ {[ by (GLA) ]}
∀ p . pb = 0 ⇒ pa = 0 .

ut

A domain semiring is called modal if it additionally satisfies

p(a pb) ≤ p(ab). (DLoc)

In a modal semiring, domain is local:

p(ab) = p(a pb).

Without (DLoc), only the inequality p(ab) ≤ p(apb) holds. The addi-
tional axiom (DLoc) guarantees that the domain of ab is independent
from the inner structure and the “far end” of b; information about
the domain of b in interaction with a suffices. By this property the
multimodal operators that can be defined in terms of domain become
well-behaved under composition.

A codomain operation q can easily be defined as a domain operation
in the opposite semiring, where, as usual in algebra, opposition just
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swaps the order of multiplication. We call a semiring K with local
domain and codomain a modal semiring.

A Kleene algebra [5] is a structure (K, ∗) such that K is an idempo-
tent semiring and the star ∗ satisfies, for a, b, c ∈ K, the unfold and
induction laws

1 + aa∗ ≤ a∗, 1 + a∗a ≤ a∗,
b + ac ≤ c ⇒ a∗b ≤ c, b + ca ≤ c ⇒ ba∗ ≤ c.

A Kleene algebra is ∗-continuous if it satisfies

ab∗c = t {abnc | n ∈ IN} .

A Kleene algebra with tests (KAT) [6] is a test semiring (K, test(K))
such that K is a Kleene algebra. Finally, a Kleene algebra with
domain (KAD) [1] is a Kleene algebra with tests that also provides
a domain operation.

Below we examine in how far the existence of a domain operation
depends on completeness of the test algebra and discuss the relation
of the domain axioms to separability of elements by tests.

2 Completeness of the Test Algebra

Consider a test semiring (K, test(K), +, 0, ·, 1). In the sequel, a, b, ...
range over K and p, q, ... range over test(K).

Define, for a ∈ K, the sets LP(a), LA(a) ⊆ test(K) of left-preservers
and left-annihilators of a by

LP(a)
def
= {p | a = pa} LA(a)

def
= {p | pa = 0}

Lemma 2.1 1. LP(a) is closed under upper bounds of arbitrary
non-empty subsets and under infima of finite subsets. Hence,
1 ∈ LP(a). In particular, LP(a) is a filter. Moreover,

LP(a) ∩ LP(b) ⊆ LP(a + b).
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2. LA(a) is closed under lower bounds of arbitrary non-empty sub-
sets and under suprema of finite subsets. Hence, 0 ∈ LA(a). In
particular, LA(a) is an ideal. Moreover,

LA(a) ∩ LA(b) = LA(a + b).

3. If K is a domain semiring then pa is the least element of LP(a)
and hence the infimum of LP(a), whereas ¬pa is the greatest ele-
ment of LA(a) and hence the supremum of LA(a).

This implies that a test semiring can be a domain semiring only if its
test algebra has sufficiently many infima and suprema. Since infima
are unique, we have

Corollary 2.2 Every test semiring with a finite test algebra can be
extended uniquely to a domain semiring.

We now give an example of a test semiring that lacks infima and
suprema to such an extent that it cannot be extended to a domain
semiring.

Example 2.3 Consider an infinite set M and the test semiring K =
(P(M),Q,∪, ∅,∩, M) where

Q def
= {N ⊆ M | N finite or cofinite}.

Then Q = test(K) is a Boolean algebra that is incomplete.

For A ∈ K and Q ∈ Q we have

Q ∈ LP(A) ⇔ A ⊆ Q , Q ∈ LA(A) ⇔ Q ⊆ A .

Let A now be infinite and coinfinite. Suppose LP(A) has an infimum
Q ∈ Q. Then A ⊆ Q but A 6= Q, since A 6∈ Q. Let x ∈ Q−A. Now,
Q must be cofinite, since A ⊆ Q. But then also Q− {x} is cofinite
with Q − {x} ∈ LP(A) and Q − {x} ⊂

6=
Q, a contradiction. Hence

LP(A) does not have an infimum in Q. Symmetrically, LA(A) does
not have a supremum in Q.

Thus, pA is undefined in K for infinite and coinfinite A. ut
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Hence the question arises whether the test algebra needs to be com-
plete to admit a domain operation. This is not the case, as the fol-
lowing example shows.

Example 2.4 Consider an infinite set M . Choose a finite subset
N ⊆ M and set

K
def
= {R ⊆ M ×M | R ∩ I finite or cofinite ∧ R− I ⊆ N ×N}

where I
def
= {(x, x) | x ∈ M}. Moerover, set

test(K)
def
= {R | R ⊆ I . R finite or cofinite}.

Then K is closed under ∪ and ;, so that (K, test(K),∪, ∅, ;, I) is a
test semiring which under the standard definition

pR
def
= {(x, x) | ∃ y . (x, y) ∈ R}

becomes a domain semiring. But test(K) is incomplete.

K can even be extended into a KAD, since, for R ∈ K,

R∗ = ((R ∩ I) ∪ (R− I))∗ = (R ∩ I)∗ ; ((R− I) ; (R ∩ I)∗)∗

= (R− I)∗ = I ∪ (R− I)+ ∈ K .

The third step uses that R ∩ I ⊆ I implies (R ∩ I)∗ = I. ut

3 Separability, Locality and Extensionality

In [7] the following two separability properties are studied:

ab = 0 ⇒ ∃ q . a = aq ∧ b = ¬qb , (Sep1)

a 6≤ b ⇒ ∃ p, q . paq 6= 0 ∧ pbq = 0 . (Sep2)

Actually, both properties can be strengthened to equivalences. For
(Sep1), from the assumption a = aq ∧ b = ¬qb we get

ab = aq¬qb = a0b = 0 .
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So we will use

ab = 0 ⇔ ∃ q . a = aq ∧ b = ¬qb . (Sep1’)

For (Sep2) we first note that, by contraposition, it is equivalent to

(∀ p, q . pbq = 0 ⇒ paq = 0) ⇒ a ≤ b . (Sep2’)

Now from the assumptions a ≤ b and pbq = 0 we obtain paq = 0 by
isotonicity of multiplication.

It turns out that, in a domain semiring, (Sep1) is equivalent to
(DLoc) and (Sep2) is equivalent to

(∀ q . |a〉q ≤ |b〉q) ⇒ a ≤ b , (IDext)

where the forward modal diamond operator |a〉 is defined as

|a〉q def
= p(aq) .

This operator is the same as 〈a〉 in Dynamic Logic (see Section 4); the
notation |a〉 has been chosen, since in a test semiring with codomain
one can analogously define a backward diamond operator 〈a|.
Property (IDext) means extensional isotonicity. It can be expressed
more succinctly using the pointwise ordering on test transformers
f, g : test(K) → test(K):

f ≤ g
def⇔ ∀ q . f(q) ≤ g(q) ;

(IDext) then becomes

|a〉 ≤ |b〉 ⇒ a ≤ b .

By the definition of the natural order on idempotent semirings it is
equivalent to the property of extensionality:

(∀ q . |a〉q = |b〉q) ⇒ a = b , (Dext)

or, point-free,

|a〉 = |b〉 ⇒ a = b .

Property (Sep2) induces the following extensionality property.
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Corollary 3.1 In a domain semiring

(∀ p, q . pbq = 0 ⇔ paq = 0) ⇔ |a〉 = |b〉 .

If the test semiring K also has a codomain operation, we refer to
the analogues of the above locality and extensionality properties as
co-locality/co-extensionality properties.

Now we make the connections between the various properties precise.

Lemma 3.2 Consider a domain semiring K.

1. (Sep1) ⇔ (DLoc).
2. (Sep2) ⇔ (IDext).

Proof. 1. We prove the equivalent statement (Sep1′) ⇔ (DLoc).
(⇒)

p(a pb) ≤ p(ab)

⇔ {[ by (GLA) ]}
¬p(ab)a pb = 0

⇔ {[ by (Sep1’) ]}
∃ q . ¬p(ab)a = ¬p(ab)aq ∧ pb = ¬q pb

⇔ {[ Boolean algebra ]}
∃ q . ¬p(ab)a = ¬p(ab)aq ∧ pb ≤ ¬q

⇔ {[ by (LLP) ]}
∃ q . ¬p(ab)a = ¬p(ab)aq ∧ b = ¬q b

⇔ {[ by (Sep1’) ]}
¬p(ab)ab = 0

⇔ {[ by (GLA) ]}
TRUE .

(⇐)

ab = 0

⇔ {[ strictness (1) ]}
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p(ab) = 0

⇔ {[ by (DLoc) ]}
p(a pb) = 0

⇔ {[ strictness (1) ]}
a pb = 0

⇔ {[ by (GLA) ]}
a = a¬pb

⇔ {[ by(LLP) ]}
a = a¬pb ∧ b = pb b

⇒ {[ setting q = ¬pb ]}
(Sep1′) .

2. We prove the equivalent statement (Sep2′) ⇔ (IDext). It suf-
fices to transform the premise of (Sep2’) into that of (IDext):

∀ p, q . pbq = 0 ⇒ paq = 0

⇔ {[ indirect domain inequality (Lemma 1.1) ]}
∀ q . p(aq) ≤ p(bq)

⇔ {[ definition of | 〉 ]}
∀ q . |a〉q ≤ |b〉q .

ut

The main application of this lemma is a representation theorem that
follows immediately from Theorem 3.11 in [7].

Theorem 3.3 Every ∗-continuous extensional KAD is isomorphic
to a KAT of relations which, however, may be non-standard in that
the star operation need not coincide with reflexive-transitive closure.

The paper [7] also provides a sufficient condition for that algebra of
relations to be standard.

Another application of the Lemma is the following. Since (Sep1) and
(Sep2) are symmetric in the tests involved, we have
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Corollary 3.4 A semiring with domain and codomain is extensio-
nal/local iff it is co-extensional/co-local.

The part on locality has already been shown in [1] using that in a
semiring with domain and codomain one has

(DLoc) ⇔ (ab = 0 ⇔ aq pb = 0).

4 Modal Kleene Algebra and Dynamic Algebra

Obviously the setting of modal Kleene algebra with its forward dia-
mond operators is very similar to the one of dynamic algebra. Let us
therefore briefly relate them and point out some of their differences.
Roughly, a dynamic algebra is a structure (K, B, 〈 〉 ) where K has
operations +, · and ∗, B is a Boolean algebra and 〈 〉 : K×B → B is
a scalar multiplication satisfying Segerberg’s induction axiom. In the
original definition by Kozen [4] K was required to be a ∗-continuous
Kleene algebra. Later, Pratt [9] introduced a more liberal definition
in which K was not required to satisfy any axioms at all.

The class KAD now blends Kleene algebras and dynamic algebras
in a single-sorted structure. The forward diamond as defined above
satisfies all axioms of dynamic algebra including the induction axiom
(see [1] for details). Since the class KAD is based on KAT, it does not
require ∗-continuity; rather it uses Kozen’s later axiomatization [5]
of ∗ as the least fixed point of an appropriate isotone function. Hence
the class of dynamic algebras obtained via the diamond operator of
KAD is larger than that of Kozen’s dynamic algebras.

Another related structure is that of Kleene modules [3, 8]; these are
like dynamic algebras in the sense of Kozen, only with ∗-continuity
replaced by the least-fixpoint characterization of star. Further details
on the precise relation between the various structures mentioned can
be found in Section 5 of [2].
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