
Lexicographic Flow

Dexter Kozen
Department of Computer Science

Cornell University
Ithaca, New York 14853-7501, USA

June 25, 2009

Abstract

The lexicographic flow problem is a flow problem in which the edges are
assigned priorities, and we wish to find a flow that is lexicographically
maximum with respect to the priority assignment. The problem is re-
ducible to a weighted flow problem, but we show that exponentially large
weights are necessary in general. We then give an efficient direct algorithm
that does not use weights.

1 Introduction

There is a well-studied class of flow problems known variously as the transporta-
tion problem, transshipment problem, or circulation problem [1, 2, 3, 4, 5]. A
problem instance is specified by a pair of disjoint finite sets U, V called pro-
ducers and consumers (or sources and sinks), respectively; an edge relation
E ⊆ U × V ; and a capacity function bounding the amount of flow that can be
produced by each source and consumed by each sink.

In this paper we are interested in a variant of this problem in which the edges
are ordered by priority, and we wish to find a flow that is lexicographically
maximum with respect to priority. That is, as much flow as possible should be
assigned to the edges of highest priority; then fixing this value, as much flow
as possible should be assigned to the edges of the next highest priority; and so
on. This is called the lexicographic flow problem. A lexicographically max flow
is not necessarily a max flow, nor vice-versa.

The problem is not to be confused with the unrelated problem of a similar name
studied in [6]. The lexicographic flow problem can be reduced to a weighted flow
problem, but it is not immediately clear how to choose the weights. We show in
Section 3 that exponentially large weights are necessary. It is also easy to show
that a straightforward iterative greedy algorithm—find a max flow on the edges

1

of highest priority, form the residual graph, find a max flow on the edges of next
highest priority, form the residual graph, and so on—does not work.

The problem arises in modeling the migration of North American migratory
birds. In this application, we are given individual static observations of a bird
species at various locations throughout the year, and we wish to infer dynamic
migration patterns. Here U and V are copies of the same set, representing
physical locations in North America. The capacity of a source point u ∈ U is
the population at u on one day and the capacity of a sink point v ∈ V is the
population at v on the next day. The edges form a complete bipartite graph
E = U × V . The partition elements are the equivalence classes of equidistant
pairs, with closer pairs of higher priority; thus a ≤lex-maximum max flow is one
that favors shorter distances. The solution of the lexicographic flow problem
gives a reasonable model of the migration paths from one day to the next.

In Section 2, we formulate the lexicographic flow problem. In Section 3, we
show how to choose edge weights so as to reduce the problem to a weighted flow
problem. We determine necessary and sufficient conditions on the weights for
a maximum-weight flow to give a lexicographically maximum flow independent
of the choice of edge set, capacity function, and priority assignment. We show
that exponentially large weights are necessary in general (which is prohibitive
for our application to bird migration). Finally, in Section 4, we give an efficient
iterative flow-based algorithm that does not use weights.

2 Problem Statement

A problem instance is specified by a tuple (U, V,E, c,M), where (U, V,E) is a
bipartite graph, E ⊆ U × V , c : U ∪ V → {α ∈ R | α > 0} is the capacity
function, and M ⊆ U ∪ V is the set of anchors.

The sets U, V are called producers and consumers (or sources and sinks), re-
spectively. The capacity function c bounds the amount of flow that can be
produced by each source u ∈ U and consumed by each sink v ∈ V .

The anchors M are included for technical reasons that will become clear. They
are used to specify lower bounds of a restricted form. If a node is an anchor,
then a flow is not considered feasible unless it saturates that node; in other
words, the flow produced at a source or consumed at a sink must equal the
capacity of the node.

A flow is a map f : E → {α ∈ R | α ≥ 0}. A flow is feasible if the capacity

2

constraints are satisfied; thus∑
v∈V

(u,v)∈E

f(u, v) ≤ c(u), u ∈ U
∑
u∈U

(u,v)∈E

f(u, v) ≤ c(v), v ∈ V

∑
v∈V

(u,v)∈E

f(u, v) = c(u), u ∈ U ∩ M
∑
u∈U

(u,v)∈E

f(u, v) = c(v), v ∈ V ∩ M.

The value of a flow f , denoted |f |, is the sum of the flow value on all edges, which
is the same as the amount of flow produced by all sources and also the amount
of flow consumed by all sinks. A flow f is a max flow if |f | is maximum among
all flows. If there exists a flow, then there exists a max flow, which can be found
efficiently by any one of several standard algorithms; see [1, 3, 5]. Moreover, if
the capacities are integers, then there is an integral max flow.

The set of feasible flows forms a closed, bounded, convex polyhedron in RE . It
is convex in the sense that any convex combination of flows (that is,

∑
i αifi,

where the fi are flows and the αi are nonnegative reals such that
∑

i αi = 1)
is again a flow. A convex combination of flows is called non-extremal if all
coefficients αi are nonzero.

A node is saturated under a flow f if the amount of flow into or out of that
node is equal to the capacity of the node. Clearly, if f is a max flow, then for
all (u, v) ∈ E, either u or v is saturated under f , otherwise one could increase
the flow along the edge (u, v).

2.1 Lexicographic Flows

We are interested in finding a lexicographically maximum flow with respect to a
priority assignment π : E → N, the higher numbers of higher priority. We seek
a flow that prefers higher priority edges over lower priority ones.

Formally, any flow f can be decomposed as a sum

f =
∑

i

f �i, (f �i)(e) def=

{
f(e), if π(e) = i,

0, otherwise.

The summands f �i are not necessarily feasible flows, since lower bounds may
be violated.

Define f ≤lex g if either

(i) |f �i| = |g �i| for all i; or

(ii) |f �i| 6= |g �i| for some i, and |f �i| < |g �i| for the greatest such i.

3

We write f ≡lex g in case (i) and f <lex g in case (ii). The relation ≤lex is
a total preorder on the set of flows and is called lexicographic order. We are
interested in finding a ≤lex-maximum flow among all feasible flows.

A ≤lex-maximum flow is not necessarily a max flow, nor vice-versa. However, if
E = U×V (which is the case in our application of interest), any ≤lex-maximum
flow is automatically a max flow. Under any ≤lex-maximum flow, either all the
nodes of U are saturated or all the nodes of V are saturated; if not, there would
be an edge along which the flow could be increased, giving a ≤lex-greater flow.
But if either U or V is totally saturated, then the flow is a max flow.

2.2 Linear Programming Formulation

We can formulate the problem as a linear programming problem and give an
iterated solution. In fact, this might be a reasonable practical approach, since
there exist very good linear programming solvers based on the network simplex
method.

Let there be a real variable xe for each edge e ∈ E. Let Ai be the set of edges
of ith highest priority.

At stage k, suppose we have determined the lexicographically maximum flow
values mi on Ai for 1 ≤ i ≤ k − 1. To obtain mk, maximize

∑
e∈Ak

xe subject
to the capacity constraints plus the additional constraints mi =

∑
e∈Ai

xe for
1 ≤ i ≤ k − 1.

3 Weighted Flow

It is possible to reduce the lexicographic flow problem to a weighted flow prob-
lem, but it is not immediately obvious how to choose the weights. In this
section we determine necessary and sufficient conditions on the weights for a
maximum-weight flow to give a lexicographically maximum flow independent of
the choice of edge set, capacity function, anchor set, and priority assignment.
Exponentially large weights are necessary in general.

Given a sequence of weights w = w1, w2, . . . and a flow f , define w(f) def=∑
i wi |f �i|. A w-max flow is a flow that maximizes w(f).

For this analysis, we extend flows to f : (U×V) ∪ (V ×U) → R by skew symme-
try: f(v, u) def= −f(u, v). A flow f is lexicographically positive, lexicographically
nonnegative, or lexicographically negative according as f >lex 0, f ≥lex 0, or
f <lex 0, respectively.

Lemma 3.1 If f is lexicographically maximum and g is not, then f − g can
be decomposed as a sum of at most |E| lexicographically nonnegative paths or
cycles. At least one of these must be lexicographically positive.

4

Proof. Consider the flow f − g. Starting from any node u, trace a path along
edges of positive flow (that is, along edges e such that f(e) > g(e)) until en-
countering a node previously seen or a node with no exiting edges, and trace
a path from u backwards until encountering a node previously seen or a node
with no entering edges. Form a cycle or path flow of nonzero value, a cycle flow
if possible, a path flow from a node with no entering edges to a node with no
exiting edges if not. The value of the flow is the smallest flow value on any edge
on the path or cycle. Subtract off this flow and delete edges whose labels are
now 0; at least one edge vanishes. Repeat the process until there are no more
edges.

Let C be the set of path and cycle flows obtained by this construction. For D ⊆
C, define hD =

∑
h∈D h. Then f = g+hC . For any D ⊆ C, g+hD and f −hD

are feasible flows, because their flow values on each edge lie between g(e) and
f(e), and both g and f are feasible flows. Moreover, every path or cycle flow h ∈
C is lexicographically nonnegative, otherwise f − h would be lexicographically
greater than f , contradicting the choice of f as a lexicographically maximum
flow; and at least one must be lexicographically positive, since f = g + hC . 2

Theorem 3.2 Let n = min |U |, |V | ≥ 2. Call a weighting w adequate if for all
edge relations E, all priority assignments π : E → N, all capacity functions c,
and all anchor sets M , the w-max flows and the lexicographically maximal flows
coincide. The following conditions are necessary and sufficient for adequacy:

(i) w0 > 0; and

(ii) wi+1 − 2w0 > n(wi − w0) for all i ≥ 0.

Proof. It follows from conditions (i) and (ii) that wi+1 > 2wi > 0 for all i, so
the weights must grow exponentially.

First we show that conditions are sufficient for adequacy. Certainly f ≡lex g
implies w(f) = w(g), so all lexicographically maximal flows have the same
weight. Thus it suffices to show that if f is lexicographically maximum and
g <lex f , then w(g) < w(f).

If there is only one priority class, we only need the one relevant weight to be
positive, which is ensured by condition (i). So assume that there are at least
two priority classes.

By Lemma 3.1, f − g decomposes into a sum of lexicographically nonnegative
path and cycle flows. It thus suffices to show that each lexicographically positive
path or cycle flow h has positive weight. Suppose the value of h is α > 0. To
be lexicographically positive, if i is the highest priority such that h�i 6= 0, the
number of edges of priority i on the path or cycle h in U × V must exceed the
number of edges of priority i in V × U . For edges of priority other than i, the
weight of h is minimized when edges from U to V are all of weight w0 and edges
from V to U are all of weight wi−1. The length of h is at most 2n, and there is
at most one more edge in V × U than in U × V . This gives a lower bound of

5

wiα − nwi−1α + (n − 2)w0α on the weight. Condition (ii) implies that this is
positive.

Now we show that the conditions are necessary for adequacy. For condition
(i), if w0 ≤ 0, consider the flow problem with two nodes and one edge e with
π(e) = 0. Then the lexicographically max flow is of minimum weight.

Suppose now that (i) holds but (ii) is violated. Then

wi+1 − 2w0 ≤ n(wi − w0) (3.1)

for some i. Consider the flow problem illustrated in Fig. 1 for n = 4. All

a

b

c

d

w

x

y

z

i + 1

i i

0 0

i i

Figure 1: A counterexample for condition (ii)

capacities are 1 and all nodes are anchored except d and z. The lexicographically
maximum flow assigns 1 to the edges (a,w), (b, y), and (c, x) and 0 to the other
edges, giving weight wi+1+2w0, whereas the lexicographically smaller flow using
edges (a, x), (b, w), (c, z), and (d, y) has weight 4wi, which by (3.1) is at least
at great as wi+1 + 2w0. In general, for even n, a similar figure with 2n nodes
would have a lexicographically maximum flow of weight wi+1 +(n− 2)w0 and a
lexicographically smaller flow of weight nwi, which by (3.1) is at least at great
as wi+1 + (n− 2)w0. 2

4 An Iterative Flow-Based Algorithm

4.1 Overview of the Algorithm

The algorithm is iterative. Before stage i, we have anchored some nodes Mi−1

and deleted some edges to get Ei−1 ⊆ E. These modifications are such that
any flow in (U, V,Ei−1, c, Mi−1) is forced to be lexicographically maximum on

6

A1, . . . , Ai−1, and all lexicographically maximum flows on E saturate the an-
chored nodes Mi−1 and do not use edges in E − Ei−1. We find a flow that
maximizes the flow on Ai, then anchor some more nodes and delete some more
edges that extend the invariant to A1, . . . , Ai.

Most of the following few subsections develop the properties that will be used
in each stage of this algorithm.

4.2 Critical Nodes and Useless Edges

Let (U, V,E, c, M) be a flow problem. Call u ∈ U ∪ V critical if u is sat-
urated under all max flows. Note that all elements of M are automatically
critical.

Lemma 4.1 Every edge has a critical endpoint. There is an efficient algorithm
to determine whether a given node is critical.

Proof. Let (u, v) ∈ E. If neither u nor v is critical, then there exist max flows
f, g such that f does not saturate u and g does not saturate v. By linearity,
any non-extremal convex combination of f and g, say (f + g)/2, would be a
max flow that saturates neither u nor v. This is a contradiction, since one could
increase the flow along the edge (u, v).

To determine whether u is critical, we can solve the max flow problem with the
capacity of u reduced to c(u)− 1. The node u is critical iff either the resulting
flow problem is not feasible or the max flow value is strictly less. 2

Call an edge e useless if f(e) = 0 for all max flows f .

Lemma 4.2 There is an efficient algorithm to determine whether a given edge
is useless.

Proof. Place a small nonzero lower capacity bound on the edge e and solve for
a max flow. The edge e is useless iff either the resulting flow problem is not
feasible or the max flow value is strictly less. 2

A more efficient algorithm is given by the following lemma, which allows all the
useless edges to be found with a single max flow computation plus an additional
linear-time computation.

Lemma 4.3 Let f be a max flow in (U, V,E, c,M). Form the residual graph
Gf = (U, V,Ef), in which (u, v) ∈ Ef if (u, v) ∈ E or if (v, u) ∈ E and
f(v, u) > 0. Find the strongly connected components of Gf . Then

(i) any edge between two nodes in the same strongly connected component is
not useless;

(ii) any edge on a path in Gf from an unanchored node of V to an unsaturated
node of V is not useless;

7

(iii) any edge on a path in Gf from an unsaturated node of U to an unanchored
node of U is not useless;

(iv) all other edges are useless.

Proof. Note that we only need to consider edges e ∈ E such that f(e) = 0, since
any edge with nonzero flow falls in case (i).

For (i), there is a directed cycle in Gf through any edge between two nodes in
the same strongly connected component. A small nonzero amount of flow can
be circulated around the cycle without changing the flow value or violating any
constraints, ensuring that all edges on the cycle have nonzero flow.

For (ii), if there is a directed path from an unanchored node of V to an un-
saturated node of V , a small amount of flow can be routed along that path
without changing the flow value or violating any constraints, ensuring that all
edges along the path have nonzero flow. The argument for (iii) is symmetric.

Now we show that all other edges are useless. Add the following edges to the
graph:

(a) from each unsaturated node of V to each unsaturated node of U ;

(b) from each unsaturated node of V to each unanchored node of V ;

(c) from each unanchored node of U to each unsaturated node of U .

These extra edges may create new cycles, but we argue that any edge in E
contained in a cycle that was not previously contained in a cycle satisfies either
(ii) or (iii), therefore is not useless. First, consider the circular sequence of
new edges (those of type (a), (b), or (c)) in order around a new cycle. The
sequence cannot contain adjacent pairs of type (a)-(a), (a)-(b), (c)-(a), or (c)-
(b), otherwise there would be a path in Gf from an unsaturated node of U to an
unsaturated node of V . This would be an augmenting path, contradicting the
maximality of |f |. It follows that there can be no new cycle containing an edge
of type (a) and no new cycle containing both an edge of type (b) and an edge
of type (c). Thus the only new cycles contain edges of type (b) or (c), but not
both. If the cycle contains edges of type (b), then any edge in E on the cycle
lies on a path in Gf from an unanchored node of V to an unsaturated node of
V , therefore satisfies (ii). Similarly, if the cycle contains edges of type (c), then
any edge in E on the cycle satisfies (iii).

Now form the strongly connected components of this graph and topologically
sort the quotient graph to obtain a linear order of the strongly connected com-
ponents. (Note that this is not part of the algorithm, but only part of the proof
of the lemma.) Let X be a prefix of the sorted list of components and Y the
complementary suffix. Any edge of E not contained in a cycle crosses some such
cut X, Y , and all edges between X and Y go from X to Y and have no flow
under f . There are three cases to consider:

8

1. All unsaturated elements of V are in X and all unsaturated elements of
U are in Y .

2. X contains an unsaturated element of U .

3. Y contains an unsaturated element of V .

There is no other possibility due to the edges (a) above.

In case 1, all elements of X ∩ U and all elements of Y ∩ V are saturated. In
this case,

|f | =
∑

u∈X∩U

rf (u) +
∑

v∈Y ∩V

rf (v) −
∑

e∈E∩X×Y

f(e)

=
∑

u∈X∩U

c(u) +
∑

v∈Y ∩V

c(v) − 0,

and if g is any other max flow,

|f | = |g| =
∑

u∈X∩U

rg(u) +
∑

v∈Y ∩V

rg(v) −
∑

e∈E∩X×Y

g(e)

≤
∑

u∈X∩U

c(u) +
∑

v∈Y ∩V

c(v) −
∑

e∈E∩X×Y

g(e),

therefore ∑
e∈E∩X×Y

g(e) = 0.

Since g was an arbitrary max flow, all edges in E ∩ X × Y are useless.

In case 2, all elements of Y ∩ V are saturated due to edges (a), and all elements
of Y ∩ U are anchored due to edges (c). In this case,∑
v∈Y ∩V

c(v) =
∑

v∈Y ∩V

rf (v) =
∑

u∈Y ∩U

rf (u) +
∑

e∈E∩X×Y

f(e) =
∑

u∈Y ∩U

c(u) + 0.

If g is any other max flow,∑
v∈Y ∩V

c(v) +
∑

e∈E∩X×Y

g(e) =
∑

u∈Y ∩U

c(u) +
∑

e∈E∩X×Y

g(e)

=
∑

u∈Y ∩U

rg(u) +
∑

e∈E∩X×Y

g(e)

=
∑

v∈Y ∩V

rg(v)

≤
∑

v∈Y ∩V

c(v),

9

therefore ∑
e∈E∩X×Y

g(e) = 0.

Since g was an arbitrary max flow, all edges in E ∩ X × Y are useless.

Case 3 and case 2 are symmetric. 2

The lemma allows the useless edges to be found in linear time plus the time to
find a max flow.

4.3 Finding a Min Cut

Let (U, V,E, c,M) be a flow problem. A connected component is an equivalence
class of the equivalence relation on U ∪ V generated by E. Two nodes are
in the same connected component if they are connected by a zigzag path in
(E ∪ E−1)∗.

Lemma 4.4 Let (U, V,E, c, M) be a flow problem with no useless edges. Let
C be a connected component. Either all elements of C ∩ U are critical or all
elements of C ∩ V are critical. There is a linear-time algorithm to determine
which.

Proof. Suppose for a contradiction that both U and V contain noncritical
elements of C. Then there exist noncritical elements u ∈ C ∩ U and v ∈ C ∩ V
and a zigzag E ∪ E−1-path p from u to v such that all intermediate nodes on
the path are critical. Since u and v are noncritical, there is a max flow that
does not saturate u and one that does not saturate v. Moreover, since there
are no useless edges, for each edge on the path p, there is a max flow assigning
nonzero flow to that edge. By linearity, any non-extremal convex combination
of these max flows is still a max flow, but has p as an augmenting path. This is
a contradiction.

If the total capacity of C ∩ U is less than that of C ∩ V , then all elements of
C ∩ U are critical and not all those of C ∩ V . Similarly, if the total capacity of
C ∩ V is less than that of C ∩ U , then all elements of C ∩ V are critical and
not all those of C ∩ U . All elements of C are critical iff the total capacities of
C ∩ U and C ∩ V are equal. 2

Let (U, V,E, c,M) be a feasible flow problem with no useless edges. Let M ′

be a set of critical nodes defined as follows. For each connected component C,
include C ∩ U in M ′ if all nodes of C ∩ U are critical, otherwise include C ∩ V
in M ′. All nodes of M ′ are critical by Lemma 4.4. (If all nodes of C are critical,
we might just as well have chosen to include C ∩ V in M ′ instead of C ∩ U ; the
choice is arbitrary.) The set M ′ can be found efficiently by comparing the total
capacities of C ∩ U and C ∩ V , as described in the proof of Lemma 4.4.

10

Lemma 4.5 Let (U, V,E, c,M) be a feasible flow problem. Let m = max |f | be
the max flow value. The set M ′ defined above is a min cut in the sense that

m =
∑

u∈M ′

c(u).

Proof. The inequality ≤ holds because every edge has exactly one endpoint in
M ′, thus every unit of flow passes through exactly one element of M ′. Equality
holds for max flows because every element of M ′ is critical, therefore saturated.

2

Lemma 4.6 Let (U, V,E, c,M) be a feasible flow problem and let M ′ ⊆ U ∪ V
be the min cut of Lemma 4.5. The flow problem (U, V,E, c,M ∪ M ′) is feasible,
and every flow is a max flow.

Proof. A max flow in (U, V,E, c,M) is a flow in (U, V,E, c, M ∪ M ′), and the
matching lower and upper bounds on M ′ force the flow value to match the
capacity of the cut. 2

4.4 An Algorithm

Let (U, V,E, c,M) be a flow problem. Let Bi = A1 ∪ · · · ∪ Ai. Define a
sequence of flows fi, an increasing sequence of anchor sets Mi ⊇ M , and a
decreasing sequence of edge sets Ei ⊆ E, 0 ≤ i ≤ n, inductively as follows. The
invariants of the algorithm are

(i) fi is a flow in (U, V,Ei ∩ Bi, c, Mi) (thus also in (U, V,Ei, c, Mi));

(ii) all flows in (U, V,Ei, c, Mi) are lexicographically equivalent with respect
to A1, . . . , Ai; that is,

f �Bi ≡lex g �Bi

for any flows f, g in (U, V,Ei, c, Mi);

(iii) all flows in (U, V,E, c, ∅) that are lexicographically maximum with respect
to A1, . . . , Ai are flows in (U, V,Ei, c, Mi).

Initially, f0 = 0, M0 = ∅, and E0 = E.

Now suppose we have computed fi−1, Mi−1, and Ei−1 satisfying the invariants.
Let m

def= |fi−1 �Bi−1|. By invariant (ii), all flows g in (U, V,Ei−1, c, Mi−1)
satisfy |g �Bi−1| = m.

Consider the flow problem (U, V,Ei−1 ∩ Bi, c, Mi−1). This problem is feasi-
ble, since fi−1 satisfies invariant (i) and Ei−1 ∩ Bi−1 ⊆ Ei−1 ∩ Bi. Find
a max flow fi. Then fi �Bi−1 is lexicographically maximum in (U, V,Ei−1 ∩
Bi−1, c, Mi−1), and |fi �i| = |fi| − |fi �Bi−1| = |fi| −m is maximum among all
flows in (U, V,Ei−1 ∩ Bi, c, Mi−1), therefore fi is lexicographically maximum in
(U, V,Ei−1 ∩ Bi, c, Mi−1).

11

Let Mi be the new set of anchors as described in Lemma 4.5, and let Ei consist
of Ei−1 less the edges in Ai+1 ∪ · · · ∪ An that have an endpoint in Mi. These
definitions force any flow in (U, V,Ei, c, Mi) to be lexicographically equivalent
with respect to A1, . . . , Ai to fi, which reestablishes invariant (ii). Moreover,
no flow in (U, V,E, c, ∅) that is lexicographically maximum with respect to
A1, . . . , Ai can use edges in Ei−1−Ei, thus invariant (iii) is reestablished.

We have shown

Theorem 4.7 The flow fn is a lexicographically maximum flow in (U, V,E, c, M).

Acknowledgements

Many thanks to Saleh Elmohamed, Bobby Kleinberg, Jon Kleinberg, Alexa
Sharp, Dan Sheldon, Éva Tardos, and David Williamson. This work was sup-
ported by NSF grant CCF-0635028.

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows. Prentice Hall, 1993.

[2] Vašek Chvátal. Linear Programming. W. H. Freeman, 1983.

[3] William J. Cook, William H. Cunningham, William R. Pulleyblank, and
Alexander Schrijver. Combinatorial Optimization. Wiley Interscience, 1998.

[4] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling
Language for Mathematical Programming. Duxbury Press, 2nd edition, 2002.

[5] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 1st
edition, 2005.

[6] N. Megiddo. A good algorithm for lexicographically optimal flows in multi-
terminal networks. Bull. AMS, 83(3):407–409, 1977.

12

