
Chapter 15
On the Coalgebraic Theory of Kleene
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Abstract We develop a coalgebraic theory of Kleene algebra with tests (KAT) along
the lines of Rutten (1998) for Kleene algebra (KA) and Chen and Pucella (Electron
Notes Theor Comput Sci 82(1), 2003) for a limited version of KAT, resolving some
technical issues raised by Chen and Pucella. Our treatment includes a simple defi-
nition of the Brzozowski derivative for KAT expressions and an automata-theoretic
interpretation involving automata on guarded strings. We also give a complexity
analysis, showing that an efficient implementation of coinductive equivalence proofs
in this setting is tantamount to a standard automata-theoretic construction. It follows
that coinductive equivalence proofs can be generated automatically in PSPACE. This
matches the bound ofWorthington (2008) for the automatic generation of equational
proofs in KAT.
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15.1 Introduction

Kleene algebra (KA) is the algebra of regular expressions. The operations +, ·,
and ∗ of Kleene algebra can be used to model nondeterministic choice, sequential
composition, and iteration, respectively, on a set of actions.

Kleene algebra with tests (KAT) is an extension of KA obtained by identifying
a subset of tests, which must satisfy the axioms of Boolean algebra as well. The
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280 D. Kozen

two sorts, actions and tests, interact seamlessly: on tests, nondeterministic choice
becomes join and sequential composition becomes meet.

The presence of tests allows KAT to model basic programming and verification
constructs such as conditional tests, while loops, and Hoare triples. ThusKAT gives a
simple equational approach to partial correctness. By nowKAT has a well-developed
theory, including an extensive model theory and results on expressiveness, deductive
completeness, and complexity. It has been applied successfully in a number of areas,
including the verification of compiler optimizations and communication protocols
and various other program analysis tasks.

Traditionally,KAT is axiomatized equationally (Kozen 1997). InChen andPucella
(2003), Chen and Pucella develop a coalgebraic theory of KAT inspired by Rutten’s
coalgebraic theory of KA based on deterministic automata (Rutten 1998). Remark-
ing that “the known automata-theoretic presentation of KAT (Kozen 2003) does not
lend itself to a coalgebraic theory,” and that “the notion of derivative, essential to the
coinduction proof principle in this context, is not readily definable for KAT expres-
sions as defined in Kozen (1997),” Chen and Pucella develop a new interpretation of
KAT expressions and a corresponding automata theory differing from Kozen (2003)
in several respects. They give a coinductive proof principle and show how it can
be used to establish equivalence of expressions. This gives an alternative to equa-
tional proofs using the standard axiomatization (Kozen 1997) or by minimization of
deterministic automata (Kozen 2003).

The ability to generate equivalence proofs automatically has important implica-
tions for proof-carrying code. Chen and Pucella argue that the coalgebraic approach
makes this possible, since proofs can be generated purely mechanically via repeated
application of theBrzozowski derivative,whereas classical equational logic “requires
creativity” (Chen and Pucella 2003). This is not strictly true, as Worthington
(Worthington 2008) has shown that equational proofs can also be generated automat-
ically. However, it is fair to say that the coinductive approach does provide a more
natural mechanism.

Still unresolved is the issue of proof complexity in the coinductive setting. Chen
andPucella claim that coinduction cangive shorter proofs, but theygive no supporting
evidence. Worthington’s technique is known to require PSPACE and to produce
exponential-size proofs in the worst case. This worst-case bound is unlikely to be
significantly improved, as the equational theory ofKAT isPSPACE-complete (Cohen
et al. 1996).

Chen andPucella’s treatment has a few technical shortcomings, as they themselves
point out. In their words:

The “path independence” of a mixed automaton gives any mixed automaton a certain form
of redundancy. This redundancy persists in the definition of bisimulation…An open question
is to cleanly eliminate this redundancy; a particular motivation for doing this would be to
make proofs of expression equivalence as simple as possible. Along these lines, it would be
of interest to develop other weaker notions of bisimulation that give rise to bisimulations;
pseudo-bisimulations require a sort of “fixed variable ordering” that does not seem absolutely
necessary…
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15 On the Coalgebraic Theory of Kleene Algebra with Tests 281

Another issue for future work would be to give a class of expressions wider than our mixed
expressions for which there are readily understandable and applicable rules for computing
derivatives. In particular, a methodology for computing derivatives of the KAT expressions
defined by Kozen (1997) would be nice to see. Intuitively, there seems to be a tradeoff
between the expressiveness of the regular expression language and the simplicity of com-
puting derivatives (in the context ofKAT). Formal tools for understanding this tradeoff could
potentially be quite useful (Chen and Pucella 2003).

This paper addresses these issues.We develop a coalgebraic theory ofKAT, which
we call KCT, along the lines of Chen and Pucella (2003); Rutten (1998). Our treat-
ment includes a new definition of the Brzozowski derivative, but in the context of
the original automata-theoretic formulation of KAT involving automata on guarded
strings (Kozen 2003). The syntactic form of the Brzozowski derivative applies to all
KAT expressions as defined in Kozen (1997). The somewhat artificial concepts of
path independence, fixed variable ordering, and pseudo-bisimulation do not arise in
this setting. This treatment places KCT within the general coalgebraic framework
described by Bonsangue et al. (2007, 2009).

We also give a complexity analysis of the coinductive proof principle. We show
that an efficient implementation is tantamount to the construction of nondetermin-
istic automata from the given expressions by a Kleene construction, determinizing
the two automata by a standard subset construction, and constructing a bisimulation
on states of the resulting deterministic automata. It follows that coinductive equiva-
lence proofs can be generated automatically inPSPACE. ThismatchesWorthington’s
bound (Worthington 2008) for equational proofs.

15.2 KA and KAT

15.2.1 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions (Conway 1971; Kleene
1956). The axiomatization used here is from Kozen (1994). A Kleene algebra is a
structure (K ,+, ·,∗ , 0, 1) such that K is an idempotent semiring under +, ·, 0, and
1 and satisfies the axioms

1+ pp∗ ≤ p∗ q + pr ≤ r ⇒ p∗q ≤ r

1+ p∗ p ≤ p∗ q + rp ≤ r ⇒ qp∗ ≤ r

for ∗. There is a natural partial order p ≤ q def⇐⇒ p + q = q.
Standardmodels include the family of regular sets over a finite alphabet, the family

of binary relations on a set, and the family of n × n matrices over another Kleene
algebra. Other more unusual interpretations include the min,+ algebra, also known
as the tropical semiring, used in shortest path algorithms, and models consisting of
convex polyhedra used in computational geometry.
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282 D. Kozen

The completeness result of Kozen (1994) says that the algebra of regular sets
of strings over a finite alphabet ! is the free Kleene algebra on generators !. The
axioms are also complete for the equational theory of relational models.

15.2.2 Kleene Algebra with Tests

AKleene algebra with tests (KAT) (Kozen 1997) consists of a Kleene algebra K with
an embedded Boolean algebra B such that the semiring structure on B is a subalgebra
of the semiring structure on K . Elements of B are called tests. The Boolean negation
operator is defined only on tests.

Like KA, KAT has language and relational models and is deductively complete
over these interpretations (Kozen and Smith 1996). The chief language-theoretic
models are the regular sets of guarded strings over alphabets ! and T of primitive
action and test symbols, respectively (see Sect. 15.3.1). This is the free KAT on
generators !, T . The set of guarded strings represented by a KAT expression e is
denoted GS(e).

KAT can code elementary programming constructs and Hoare partial correctness
assertions and subsumes propositional Hoare logic (PHL). It is deductively complete
over relational models, whereas PHL is not. Moreover, KAT is no more difficult to
decide, as PHL, KA, and KAT are all PSPACE-complete.

For KAT expressions e1, e2, we write e1 ≤ e2 if this inequality holds in the free
KAT on generators !, T ; that is, if it is a consequence of the axioms of KAT.

See Kozen (1994, 1997, 2000) for a more detailed introduction.

15.3 Automata on Guarded Strings

Automata on guarded strings (AGS), also known as automata with tests, were intro-
duced in Kozen (2003). They are a generalization of ordinary finite-state automata
to include tests. An ordinary automaton with null transitions is an AGS over the
two-element Boolean algebra.

15.3.1 Guarded Strings

Guarded strings were first introduced in Kaplan (1969). A guarded string over !, T
is an alternating sequence α0 p1α1 p2α2 · · · pnαn , n ≥ 0, where pi ∈ ! and the αi are
atoms (minimal nonzero elements) of the freeBoolean algebra B generated by T . The
set of atoms is denoted At. The elements ofAt can be regarded either as conjunctions
of literals of T (elements of T or their negations) or as truth assignments to T . A
guarded string is thus an element of At · (! · At)∗. The set of all guarded strings is
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denotedGS. Guarded strings represent the join-irreducible elements of the free KAT
on generators !, T .

15.3.2 Nondeterministic Automata

A nondeterministic AGS consists of a labeled directed graph with two types of
transitions, action transitions labeled with elements of! and test transitions labeled
with elements of B. There is a set start of start states and a set accept of accept
states.

An input to an AGS is a guarded string α0 p1α1 p2α2 · · · pnαn . Intuitively, it oper-
ates as follows. It starts with a pebble on a nondeterministically chosen start state
and its input head scanning α0. In the course of the computation, say the pebble is
occupying state s and the input head is scanning αi . If i < n, it may read the next
action symbol pi+1 from the input string and move the pebble to any nondetermin-
istically chosen state t such that there is an action transition from s to t with label
pi+1. The input head is advanced past pi+1 in the input string and is now scanning
αi+1. Also while scanning αi , it may slide the pebble along an enabled test transition
at any time without advancing the input head. A test transition is enabled if αi ≤ b,
where b is the label of the transition. The automaton accepts if it is ever scanning αn

while the pebble is on an accept state. Thus the automaton accepts a guarded string
x if there is a directed path π from start to accept such that x ≤ e, where e is the
product of the labels of the edges along π .

Formally, a (nondeterministic) automaton on guarded strings (AGS) over ! and
T is a tuple

M = (Q,$, start,accept),

where Q is a set of states, start ⊆ Q are the start states, accept ⊆ Q are the accept
states, and $ is the transition function

$ : (! + At) → Q → 2Q,

where + denotes disjoint (marked) union.
The definition of acceptance involves the Kleisli composition • and asterate †

operations on maps Q → 2Q defined by:

R • S def= s *→
⋃

t∈S(s)
R(t) R0 def= s *→ {s}

R† def=
⋃

n≥0

Rn Rn+1 def= R • Rn.

The map $ generates a map
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$̂ : (! + At) → Q → 2Q $̂α
def= $†

α $̂p
def= $p.

Intuitively, $̂α(s) accumulates all states accessible from s by a sequence of test
transitions enabled under α. The map $̂ extends further to a monoid homomorphism

$̂ : (! + At)∗ → Q → 2Q $̂ε
def= s *→ {s} $̂xy

def= $̂y • $̂x

from the free monoid (! + At)∗ to the monoid Q → 2Q under Kleisli composi-
tion. The guarded stringsGS = At · (! · At)∗ form a submonoid of (! + At)∗. The
automaton M accepts x ∈ GS if there exist s ∈ start and t ∈ accept such that
t ∈ $̂x (s). The set of guarded strings accepted by M is denoted GS(M).

15.3.3 Deterministic Automata

The definition of deterministic AGS here differs from that of Kozen (2003) so as to
conform to the coalgebraic structure to be introduced in Sect. 15.4, but the difference
is inessential. In Kozen (2003) the set of states of a deterministic AGS is separated
into disjoint sets of action states and test states, whereas here we have elided the
action states.

A deterministic automaton on guarded strings (AGS) over ! and T is a structure

M = (Q, δ, ε, start),

where Q is a set of states, start ∈ Q is the start state, and

δ : At · ! → Q → Q ε : At → Q → 2

with components

δαp : Q → Q εα : Q → 2

for α ∈ At and p ∈ !. The components εα play the same role as the accept states in
a nondeterministic automaton.

Define the function L : Q → GS → 2 inductively as follows:

L(u)(α) def= εα(u) L(u)(αpy) def= L(δαp(u))(y), (15.1)

where y ∈ GS, α ∈ At, and p ∈ !. The machine is said to accept x ∈ GS if
L(start)(x) = 1. The set of guarded strings accepted by M is denoted GS(M).
Identifying a subset of GS with its characteristic function GS → 2, we can write
GS(M) = L(start).
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The map δ extends to a monoid homomorphism δ̂ : (At · !)∗ → Q → Q from
the free monoid (At · !)∗ to the monoid Q → Q under functional composition.

15.3.4 Determinization

Determinization is effected by a subset construction similar to that for ordinary
automata. Given a nondeterministic AGS

N = (Q,$, start,accept),

there is an equivalent deterministic AGS

M = (2Q, δ, ε, start),

where for A ⊆ Q,

εα(A)
def=

{
1, if ∃s ∈ A ∃t ∈ accept t ∈ $̂α(s),
0, otherwise

δαp(A)
def=

⋃

s∈A

$̂αp(s).

One can show by a straightforward induction on the length of x ∈ GS that for all
A ⊆ Q,

L(A)(x) =
{
1, if ∃s ∈ A ∃t ∈ accept t ∈ $̂x (s),
0, otherwise;

in particular,

L(start)(x) = 1 ⇔ ∃s ∈ start ∃t ∈ accept t ∈ $̂x (s).

As these are exactly the acceptance criteria for M and N respectively, the two
machines accept the same set of guarded strings.

15.4 Kleene Coalgebra with Tests (KCT)

A Kleene coalgebra with tests (KCT) is very much like Kleene coalgebra (KC)
(Rutten 1998), but with the addition of Boolean tests. Formally, a Kleene coalgebra
with tests (KCT) over ! and T is a structure

M = (Q, δ, ε),
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where Q is a set of states and

δ : At · ! → Q → Q ε : At → Q → 2

for α ∈ At and p ∈ !, exactly as in deterministic automata on guarded strings. Thus
we can view a KCT as simply a deterministic AGS without a designated start state.

A KCT morphism h : (Q, δ, ε) → (Q′, δ′, ε′) is a set map h : Q → Q′ that com-
mutes with δ, δ′ and ε, ε′; that is,

δ′
αp(h(u)) = h(δαp(u)) ε′

α(h(u)) = εα(u).

We denote the category of KCTs and KCT morphisms over ! and T also by KCT.

15.4.1 The Brzozowski Derivative, Semantic Form

There is a natural KCT over ! and T defined in terms of the Brzozowski derivative
on sets of guarded strings. The traditional Brzozowski derivative (Brzozowski 1964)
is a kind of residuation operator on sets of ordinary strings. The current form is quite
similar, except that we extend the definition to accommodate tests.

We define two maps

D : At · ! → 2GS → 2GS E : At → 2GS → 2,

where for R ⊆ GS,

Dαp(R)
def= {y ∈ GS | αpy ∈ R} Eα(R)

def=
{
1, if α ∈ R,
0, if α /∈ R.

It is clear that the structure

Brz def= (2GS, D, E)

forms a KCT. Indeed, it is the final object in the category KCT: for any KCT M =
(Q, δ, ε), the function L : Q → 2GS defined in (15.1) is the unique KCT morphism
L : M → Brz.

15.4.2 The Brzozowski Derivative, Syntactic Form

As with Brzozowski’s original formulation (Brzozowski 1964), there is also a syn-
tactic form of the Brzozowski derivative defined onKAT expressions. LetExp denote
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the set of KAT expressions over ! and T . We define a family of derivative operators

D : At · ! → Exp → Exp E : At → Exp → 2

consisting of components

Dαp : Exp → Exp Eα : Exp → 2

defined inductively as follows. For α ∈ At, p, q ∈ !, and b ∈ B,

Dαp(e1 + e2)
def= Dαp(e1)+ Dαp(e2)

Dαp(e1e2)
def= Dαp(e1) · e2 + Eα(e1) · Dαp(e2)

Dαp(e∗)
def= Dαp(e) · e∗

Dαp(q)
def=

{
1, if p = q,
0, otherwise,

Dαp(b)
def= 0.

Eα(e1 + e2)
def= Eα(e1)+ Eα(e2)

Eα(e1e2)
def= Eα(e1) · Eα(e2)

Eα(e∗)
def= 1

Eα(b)
def=

{
1, ifα ≤ b,
0, otherwise,

Eα(q)
def= 0.

These operators on KAT expressions are collectively called the syntactic Brzozowski
derivative.

The map Eα is just the evaluation morphism that for any KAT expression substi-
tutes 0 for any p ∈ !, 1 for any b ∈ T such that α ≤ b, and 0 for any b ∈ T such that
α ≤ b̄, then simplifies the resulting expression over the two-element Kleene algebra
2. It is easily shown that for any KAT expression e,

Eα(e) =
{
1, if α ≤ e,
0, if α ! e

=
{
1, if α ∈ GS(e),
0, if α /∈ GS(e).

The structure (Exp, D, E) is a KCT in the sense of Sect. 15.4, thus there is a
unique KCT morphism L : Exp → Brz to the final coalgebra Brz defined in (15.1).
We will show that L(e) = GS(e), whereGS is the traditional interpretation of KAT
expressions mentioned in Sect. 15.2.2.

Lemma 15.4.1 For all α ∈ At, p ∈ !, and e, e′ ∈ Exp,

αpe′ ≤ e ⇔ e′ ≤ Dαp(e).

Proof For the forward implication,

Dαp(αpe′) = Dαp(α)pe′ + Eα(α)Dαp(p)e′ + Eα(α)Eα(p)Dαp(e′) = e′.

By monotonicity of Dαp,
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αpe′ ≤ e ⇒ e′ = Dαp(αpe′) ≤ Dαp(e).

For the reverse implication, it suffices to show αpDαp(e) ≤ e. We proceed by induc-
tion on the structure of e. For p ∈ !,

αpDαp(p) = αp ≤ p.

For the case e1e2,

αpDαp(e1e2) = αpDαp(e1)e2 + αpEα(e1)Dαp(e2)

= αpDαp(e1)e2 + αEα(e1)αpDαp(e2)

≤ e1e2.

For the case e∗,

αpDαp(e∗) = αpDαp(e)e∗ ≤ ee∗ ≤ e∗.

All other cases are equally straightforward. !

Theorem 15.4.2 For all KAT expressions e, GS(e) = L(e). Thus the set accepted
by the automaton (Exp, D, E, e) is GS(e).

Proof We wish to show that for all x ∈ GS, x ∈ GS(e) iff L(e)(x) = 1. By the
completeness theorem for KAT (Kozen and Smith 1996), we have x ∈ GS(e) iff
x ≤ e, so it suffices to show that x ≤ e iff L(e)(x) = 1. We proceed by induction on
the length of x . The basis for x an atom α is immediate from the definition of Eα .
For x = αpy, by Lemma 15.4.1,

αpy ≤ e ⇔ y ≤ Dαp(e) ⇔ L(Dαp(e))(y) = 1 ⇔ L(e)(apy) = 1.

!

15.5 Completeness

15.5.1 Bisimulation on KCTs

A bisimulation between two KCTs M = (Q, δ, ε) and M ′ = (Q′, δ′, ε′) is a binary
relation ≡ between Q and Q′ such that if s ∈ Q, t ∈ Q′, and s ≡ t , then for all
α ∈ At and p ∈ !,

(i) εα(s) = ε′
α(t); and

(ii) δαp(s) ≡ δ′
αp(t).
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Lemma 15.5.1 The relation

s ≡̂ t def⇐⇒ L(s) = L(t)

is the unique maximal bisimulation between M and M ′.

Proof It is easily shown that ≡̂ satisfies (i) and (ii). Moreover, if ≡ is any relation
satisfying (i) and (ii), one can show by a straightforward inductive argument that ≡
refines ≡̂, thus ≡̂ is the unique maximal relation satisfying (i) and (ii). !

An autobisimulation is a bisimulation between M and itself. Bisimulations are
closed under relational composition and arbitrary union, and the identity relation
is an autobisimulation. Thus the reflexive, symmetric, and transitive closure of an
autobisimulation is again an autobisimulation. An autobisimulation that is so closed
is called a KCT-congruence. KCT-congruences are exactly the kernels of KCT-
morphisms.

A KCT is bisimilar to its quotient by any KCT-congruence under the map
{(s,[s]) | s ∈ Q}, where [s] is the KCT-congruence class of s. The quotient by
the unique maximal autobisimulation is a sub-coalgebra of Brz, the final coalgebra.

15.5.2 Bisimulation on Deterministic Automata

For deterministic automata, we add an extra condition. A bisimulation between two
deterministic AGS M = (Q, δ, ε, start) and M ′ = (Q′, δ′, ε′, start′) is a bisimula-
tion ≡ between the underlying KCTs (Q, δ, ε) and (Q′, δ′, ε′) such that start ≡
start′. Two automata are bisimilar if there exists a bisimulation between them.

Lemma 15.5.2 M and M ′ are bisimilar iff GS(M) = GS(M ′).

Proof Let ≡̂ be the relation defined in the proof of Lemma 15.5.1. If GS(M) =
GS(M ′), then L(start) = L(start′)by the definition of acceptance, thereforestart ≡̂
start′. Then M and M ′ are bisimilar under ≡̂.

Conversely, if there exists a bisimulation ≡ between M and M ′, then start ≡
start′, and by Lemma 15.5.1, ≡ refines ≡̂, therefore start ≡̂ start′. Thus ≡̂ is a
bisimulation of automata. !

The quotient of an automaton by its unique maximal autobisimulation gives the
unique minimal equivalent automaton (ignoring inaccessible states).

Theorem 15.5.3 (Completeness) The following are equivalent:

(i) the automata (Exp, D, E, e) and (Exp, D, E, e′) are bisimilar;
(ii) L(e) = L(e′);
(iii) GS(e) = GS(e′);

kozen@cs.cornell.edu



290 D. Kozen

(iv) e and e′ are equivalent modulo the axioms of KAT.

Proof The equivalence of (i)–(iii) follows from Theorem 15.4.2 and Lemma 15.5.2.
The equivalence of (iii) and (iv) are just the soundness and completeness of KAT for
the guarded string model (Kozen and Smith 1996). !

15.6 Complexity

LetExpe denote the subautomaton of (Exp, D, E, e) consisting of those expressions
that are accessible from e; that is, those expressions of the form D̂x (e) for some
x ∈ (At · !)∗. Theorem 15.5.3 by itself is not very useful as a deductive system or
decision procedure for equivalence, because Expe is not a finite system in general.
However, equivalent finite systems exist. In particular, by Theorem 15.5.3, KAT
equivalence is the maximal congruence on Exp. The quotient with respect to this
relation, ignoring inaccessible states, gives the minimal deterministic AGS accepting
GS(e), which is finite since GS(e) is regular.

Unfortunately, to construct this automaton directly, wewould need an independent
algorithm to decide KAT equivalence. However, we can obtain finite automata with
finer congruences that are easier to decide than full KAT equivalence. Chen and
Pucella (2003) use equivalence modulo additive associativity, commutativity, and
idempotence (ACI-equivalence). Here we consider equivalence modulo the axioms
of idempotent commutative monoids for +, 0 and the axioms

1 · x = x 0 · x = 0 (x + y) · z = xz + yz. (15.2)

Multiplicative associativity is not assumed, nor is left distributivity. We might call
structures satisfying these axioms right presemirings. We denote by ≈ the KAT-
congruence on terms generated by these axioms. We will show that Expe/≈ has
finitely many accessible classes. It is a coarser relation than ACI-equivalence, there-
fore has fewer classes, but is still easy to decide, as there are normal forms up to
additive commutativity. Of course, it makes themost sense to use the coarsest relation
possible that is easily decidable, because coarser relations give smaller automata.

Because there are only finitely many ≈-classes accessible from e, the quotient
automatonExpe/≈ is finite, andwe can use it to obtain finite coinductive equivalence
proofs. More interestingly, we will also show that Expe/≈ is a homomorphic image
of a deterministic automaton Me obtained by creating a nondeterministic AGS Ne

from the expression e by a Kleene construction, then determinizing Ne by a subset
construction as described in Sect. 15.3.4. This characterization gives a bound on the
size of Expe/≈, which we can then use to argue that coinductive equivalence proofs
can be generated automatically in PSPACE.

Lemma 15.6.1 The relation ≈ is a KCT-congruence on Exp.
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Proof We must show that if e ≈ e′, then Eα(e) = Eα(e′) and Dαp(e) ≈ Dαp(e′).
The first conclusion follows from Theorem 15.5.3 and the fact that ≈ refines KAT-
equivalence.

For the additive axioms of idempotent commutative monoids, the second conclu-
sion follows from the additivity of Dαp.

For the axioms (15.2),

Dαp(1x) = Dαp(1)x + Eα(1)Dαp(x) = 0x + 1Dαp(x) ≈ Dαp(x)

Dαp(0x) = Dαp(0)x + Eα(0)Dαp(x) = 0x + 0Dαp(x) ≈ Dαp(0)

Dαp((x + y)z) = (Dαp(x)+ Dαp(y))z + (Eα(x)+ Eα(y))Dαp(z)

≈ Dαp(x)z + Eα(x)Dαp(z)+ Dαp(y)z + Eα(y)Dαp(z)

= Dαp(xz + yz).

Finally, wemust show that if e1 ≈ e2, then Dαp(e1 + e3) ≈ Dαp(e2 + e3), Dαp(e1e3)
≈ Dαp(e2e3), Dαp(e3e1) ≈ Dαp(e3e2), and Dαp(e∗

1) ≈ Dαp(e∗
2). These arguments

are all quite easy. For example,

Dαp(e1e3) = Dαp(e1)e3 + Eα(e1)Dαp(e3)

≈ Dαp(e2)e3 + Eα(e2)Dαp(e3) = Dαp(e2e3)

and

Dαp(e∗
1) = Dαp(e1)e∗

1 ≈ Dαp(e2)e∗
2 = Dαp(e∗

2).

!

15.6.1 Closure

To establish the finiteness of the quotient automaton Expe/≈ and explain its rela-
tionship to the Kleene construction, we derive a formal relationship between the set
of accessible ≈-classes of derivatives {D̂x (e)/≈ | x ∈ (At · !)∗} and certain sets of
terms derived from e.

For KAT term e, we define the closure of e, denoted cl(e), to be the smallest set
of terms containing e and 1 and closed under the following rules:

e ∈ cl(e1)
e ∈ cl(e1 + e2)

e ∈ cl(e1)
ee2 ∈ cl(e1e2)

e ∈ cl(e1)
ee∗

1 ∈ cl(e∗
1)

e ∈ cl(e2)
e ∈ cl(e1 + e2)

e ∈ cl(e2)
e ∈ cl(e1e2)

e ∈ cl(b)

e ∈ cl(b̄)

(15.3)
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Lemma 15.6.2 The set cl(e) contains at most |e| + 1 elements, where |e| is the
number of subterms of e.

Proof We show by induction on e that cl′(e) contains at most |e| elements, where
cl′(e) = cl(e) − {1}. For e ∈ ! ∪ T , cl′(e) = {e}. For the other operators, from the
rules (15.3) we have

cl′(b̄) = {b̄} ∪ cl′(b),

cl′(e1 + e2) = {e1 + e2} ∪ cl′(e1) ∪ cl′(e2),

cl′(e1e2) = {e1e2} ∪ {ee2 | e ∈ cl′(e1)} ∪ cl′(e2),

cl′(e∗
1) = {e∗

1} ∪ {ee∗
1 | e ∈ cl′(e1)}.

The result follows. !

15.6.2 Set Representation of Derivatives

We now construct a nondeterministic transition function$ on the set of statesExp+
(At × Exp) as follows. The elements of Exp are called test states and the elements
of At × Exp are called action states. The test transitions go only from test states to
action states, and the action transitions go only from action states to test states. Thus
for α ∈ At and p ∈ !,

$α : Exp → 2At×Exp $p : At × Exp → 2Exp.

The test transitions are deterministic: $α(e)
def= {(α, e)}. The action transitions are

defined inductively:

$p(α, q)
def=

{
{1}, if q ∈ ! and q = p,
∅, if q ∈ ! and q ̸= p or q ∈ B,

$p(α, e1 + e2)
def= $p(α, e1) ∪ $p(α, e2),

$p(α, e1e2)
def=

{
{ee2 | e ∈ $p(α, e1)} ∪ $p(α, e2), if Eα(e1) = 1,
{ee2 | e ∈ $p(α, e1)}, if Eα(e1) = 0,

$p(α, e∗
1)

def= {ee∗
1 | e ∈ $p(α, e1)}.

Due to the bipartite structure of the states, we have $̂αp = $p • $α , where $̂ is the
extension of $ defined in Sect. 15.3.2. Then

$̂αp(e) = ($p • $α)(e) =
⋃

{$p(α, e)} = $p(α, e). (15.4)
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We thus have

$̂αp(q)
def=

{
{1}, if q ∈ ! and q = p,
∅, if q ∈ ! and q ̸= p or q ∈ B,

$̂αp(e1 + e2)
def= $̂αp(e1) ∪ $̂αp(e2),

$̂αp(e1e2)
def=

{
{ee2 | e ∈ $̂αp(e1)} ∪ $̂αp(e2), if Eα(e1) = 1,
{ee2 | e ∈ $̂αp(e1)}, if Eα(e1) = 0,

$̂αp(e∗
1)

def= {ee∗
1 | e ∈ $̂αp(e1)}.

Lemma 15.6.3 For all KAT terms e and x ∈ (At · !)∗, $̂x (e) ⊆ cl(e).

Proof We first show that for α ∈ At and p ∈ !, $̂αp(e) ⊆ cl(e) by induction on the
structure of e. The cases e ∈ ! or e ∈ B are easy. For the other operators,

$̂αp(e1 + e2) = $̂αp(e1) ∪ $̂αp(e2) ⊆ cl(e1) ∪ cl(e2) ⊆ cl(e1 + e2)

$̂αp(e1e2) =
{
{ee2 | e ∈ $̂αp(e1)} ∪ $̂αp(e2), if Eα(e1) = 1
{ee2 | e ∈ $̂αp(e1)}, if Eα(e1) = 0

⊆ {ee2 | e ∈ cl(e1)} ∪ cl(e2) ⊆ cl(e1e2)

$̂αp(e∗
1) = {ee∗

1 | e ∈ $̂αp(e1)} ⊆ {ee∗
1 | e ∈ cl(e1)} ⊆ cl(e∗

1).

For arbitrary x ∈ (At · !)∗, we proceed by induction on the length of x . The base
case x = ε is easy and the case x = αp is given by the previous argument. For x ̸= ε

and y ̸= ε,

$̂xy(e) = ($̂y • $̂x )(e) =
⋃

{$̂y(d) | d ∈ $̂x (e)}

⊆
⋃

{cl(d) | d ∈ cl(e)} = cl(e). !

Lemma 15.6.4 For all KAT terms e and x ∈ (At · !)∗, D̂x (e) ≈ ∑
$̂x (e).

Proof We first show that for α ∈ At and p ∈ !, Dαp(e) ≈ ∑
$̂αp(e) by induction

on the structure of e. For q ∈ !, we have

Dαp(q) =
{
1, if p = q
0, if p ̸= q

=
{∑{1}, if p = q

∑ ∅, if p ̸= q
=

∑
$̂αp(q).

For b ∈ B,

Dαp(b) = 0 =
∑

∅ =
∑

$̂αp(b).
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For the other operators,

Dαp(e1 + e2) = Dαp(e1)+ Dαp(e2) ≈
∑

$̂αp(e1)+
∑

$̂αp(e2)

≈
∑

($̂αp(e1) ∪ $̂αp(e2)) =
∑

$̂αp(e1 + e2),

Dαp(e1e2) = Dαp(e1)e2 + Eα(e1)Dαp(e2)

≈
(∑

$̂αp(e1)
)
e2 + Eα(e1)

∑
$̂αp(e2)

≈
{∑{ee2 | e ∈ $̂αp(e1)} +

∑
$̂αp(e2), if Eα(e1) = 1

∑{ee2 | e ∈ $̂αp(e1)}, if Eα(e1) = 0

≈
{∑

({ee2 | e ∈ $̂αp(e1)} ∪ $̂αp(e2)), if Eα(e1) = 1
∑{ee2 | e ∈ $̂αp(e1)}, if Eα(e1) = 0

=
∑

$̂αp(e1e2),

Dαp(e∗
1) = Dαp(e1)e∗

1 ≈
(∑

$̂αp(e1)
)
e∗
1

≈
∑

{ee∗
1 | e ∈ $̂αp(e1)} =

∑
$̂αp(e∗

1).

Now we show the result for arbitrary x ∈ (At · !)∗ by induction on the length of
x . The case x = ε is trivial, and the case x = αp is given by the previous argument.
Finally, for x ̸= ε and y ̸= ε,

D̂xy(e) = D̂y(D̂x (e))

≈ D̂y

(∑
$̂x (e)

)
by Lemma 6.1

=
∑

{D̂y(d) | d ∈ $̂x (e)}

≈
∑{∑

$̂y(d)
∣∣∣ ∈ $̂x (e)

}
≈

∑ ⋃
{$̂y(d) | d ∈ $̂x (e)}

=
∑

($̂y • $̂x )(e) =
∑

$̂xy(e).
!

Theorem 15.6.5 The automaton Expe/≈ has at most 2|e|+1 accessible states.

Proof The accessible states of Expe/≈ are {D̂x(e)/≈ | x ∈ (At · !)∗}, where d/≈
is the congruence class of d modulo ≈. The stated bound follows from Lemmas
15.6.2, 15.6.3, and 15.6.4. !
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15.6.3 Brzozowski Meets Kleene

It is possible to obtainExpe/≈ by a Kleene construction to obtain a nondeterministic
AGS Ne with finitelymany states, then apply the construction of Sect. 15.3.4 to obtain
a deterministic automaton Me with at most 2|e|+1 states. The automaton Expe/≈
is a homomorphic image of Me. A version of Kleene’s theorem for KAT terms
and automata on guarded strings has been described previously in Kozen (2003),
but the current treatment parallels more closely Brzozowski’s original treatment
for ordinary regular expressions (Brzozowski 1964) and aligns with the general
coalgebraic structure of Bonsangue et al. (2007, 2009).

Define the nondeterministic automaton

Ne
def= (Q,$, start,accept),

where the set of states Q is the disjoint union cl(e)+ (At × cl(e)), the transition
function $ is that defined in Sect. 15.6.2, and the start and accept states are

start def= {e} accept def= {(α, d) | Eα(d) = 1}.

That $α maps cl(e) to 2At×cl(e) is immediate from the definition of $α , and that $p

maps At × cl(e) to 2cl(e) is guaranteed by (15.4) and Lemma 15.6.3.
Now let

Me
def= (2cl(e), δ, ε, start)

be the deterministic automaton obtained from Ne by the subset construction as
described in Sect. 15.3.4. The start state of Me is {e}, and δ and ε are given by

δαp(A) =
⋃

d∈A

$̂αp(d) εα(A) =
{
1, if ∃d ∈ A Eα(d) = 1,
0, otherwise.

Note that the accessible states are all of the form A ⊆ cl(e), thus by Lemma 15.6.2,
Me has at most 2|e|+1 accessible states.

Theorem 15.6.6 For A ⊆ Exp, the map A *→ (
∑

A)/≈ is a KCT-morphism.
Ignoring inaccessible states, the quotient automaton Expe/≈ is the image of Me

under this map.

Proof We must show that the function A *→ ∑
A maps the start state of Me to the

start state of Expe, and that this function is a bisimulation modulo ≈. For δ,
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∑
δαp(A) =

∑⋃
{$̂αp(d) | d ∈ A}

≈
∑{∑

$̂αp(d)
∣∣∣d ∈ A

}

≈
∑

{Dαp(d) | d ∈ A} by Lemma 6.4

= Dαp

(∑
A
)
,

therefore
(∑

δαp(A)
) /

≈ =
(
Dαp

(∑
A
)) /

≈ = Dαp

((∑
A
) /

≈
)
.

For ε,

εα(A) =
{
1, if ∃d ∈ A Eα(d) = 1
0, otherwise

= Eα

(∑
A
)
= Eα

((∑
A
) /

≈
)
.

The map also preserves start states:

{e} *→
(∑

{e}
)/

≈ = e/≈.

Thus the map A *→ (
∑

A)/≈ is a KCT-morphism mapping Me to Expe/≈. !

15.6.4 Automatic Proof Generation in PSPACE

The results of Sects. 15.6.2 and 15.6.3 give rise to a nondeterministic linear-space
algorithm for deciding the equivalence of two givenKAT terms. By Savitch’s theorem
(Savitch 1970), there is a deterministic quadratic-space algorithm. The deterministic
algorithm can be used to create bisimulation proofs of equivalence or inequivalence
automatically.

To obtain the linear space bound, we first show that each element of cl(e) corre-
sponds to an occurrence of a subtermof e. This lets us use the occurrences of subterms
of e as representatives for the elements of cl(e). To define the correspondence, we
view terms as labeled trees; that is, as partial functions

e : ω∗ → ! ∪ T ∪ {+, ·,∗ , ¯, 0, 1}

with domain of definition dom e ⊆ ω∗ such that

• dom e is finite, nonempty, and prefix-closed;
• if σ ∈ dom e and e(σ ) is of arity n, then σ i ∈ dom e iff i < n. The arities of ele-
ments of! and T are 0 and those of+, ·,∗ , ¯, 0, 1 are 2, 2, 1, 1, 0, 0, respectively.

An occurrence of a subterm of e is identified by its position σ ∈ dom e. The subterm
at position σ is λτ.e(στ ), and its domain is {τ | στ ∈ dom e}.
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Define a partial function R : ω∗ × Exp → Exp inductively by

R(0σ, e1 + e2)
def= R(σ, e1) R(0σ, e1e2)

def= R(σ, e1) · e2
R(1σ, e1 + e2)

def= R(σ, e2) R(1σ, e1e2)
def= R(σ, e2)

R(0σ, e∗)
def= R(σ, e) · e∗ R(ε, e) def= e.

One can show by induction that R(σ, e) is defined iff σ ∈ dom e, and that a term is
in cl(e) iff it is either 1 or R(σ, e) for some σ ∈ dom e.

Nowwe show how to construct coinductive equivalence and inequivalence proofs
for two given terms e1 and e2. Construct the two nondeterministicAGS Ne1 and Ne2 as
described in Sect. 15.6.3, representing the states by dom e1 and dom e2, respectively
(assume without loss of generality that 1 = R(σ, e1) = R(τ, e2) for some σ and τ ).
If we like, we can also reduce terms modulo ≈, so that if R(σ, e1) ≈ R(τ, e1), we
only need one of σ , τ .

Place pebbles on the start states of the two automata. Nondeterministically guess
a string y ∈ (At · !)∗ and move the pebbles to all accessible states according to the
transition functions of the two machines. Halt and declare e1 and e2 inequivalent if
there exists α ∈ At such that

Eα

(
∑

τ∈A1

R(τ, e1)

)

̸= Eα

(
∑

τ∈A2

R (ρ, e2)

)

,

where A1 and A2 are the sets of states of Ne1 and Ne2 , respectively, currently occupied
by pebbles; we have found a guarded string x = yα accepted by one but not by the
other, since

L(ei )(x) = Eα(D̂y(ei )) = Eα

⎛

⎝
∑

τ∈Ai

R(τ, ei )

⎞

⎠

for i ∈ {1, 2}, therefore L(e1)(x) ̸= L(e2)(x).
Oncewe can decide equivalence in quadratic space,we can produce a bisimulation

proof of equivalence in the same amount of space. We first produce the deterministic
automata Me1 and Me2 equivalent to Ne1 and Ne2 . The states of Me1 and Me2 are
represented by the powersets of dom e1 and dom e2, respectively. These sets are
of exponential size, but they can be generated sequentially in linear space. The
transition function is the action on subsets as defined in Sect. 15.3.4, and this can
also be generated in linear space.

Now we attempt to construct the maximal bisimulation between the two deter-
ministic automata. We iterate through all pairs of states, testing equivalence of each
pair as described above. If the states are equivalent, we output the pair as bisimilar.
The set of pairs that are ever output is the maximal bisimulation.

In case e1 and e2 are not equivalent, a witness for inequivalence can also be
produced in PSPACE. A witness for inequivalence is a guarded string x accepted by
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one automaton but not the other. The shortest such string can be exponentially long
in the worst case, but can be produced in the same way that one would produce an
exponential-length accepting computation of a nondeterministic linear-space Turing
machine, by a straightforwardmodification of the proof of Savitch’s theorem (Savitch
1970).
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