
Nuprl{Light: An Implementation Framework for

Higher-Order Logics

Jason J. Hickey?

Department of Computer Science
Cornell University

Ithaca, NY 14853, USA.
Tel: (607) 255-1372

Email: jyh@cs.cornell.edu.

Abstract. In this paper we describe a new theorem prover architecture
that is intended to facilitate mathematical sharing and modularity in
formal mathematics and programming. This system provides an imple-
mentation framework in which multiple logics, including the Nuprl type
theory and the Edinburgh Logical Framework (LF) can be speci�ed, and
even related. The system provides formal, object-oriented modules, in
which multiple (perhaps mutually inconsistent) logics can be speci�ed.
Logical correctness is enforced and derived from module dependencies.
Support is provided at a primitive level for modular proof automation.

1 Introduction

Recent developments in higher-order logics and theoremprover design have led to
an explosion in the amount of mathematics and programming that has been for-
malized, and the theorem proving community is a faced with a new challenge|
sharing and categorizing formalized mathematics from diverse systems. This
mathematics is valuable|in many case many man-months, or even man-years,
have been devoted to the development of these mathematical libraries. There
is potential for more rapid advance if theorem provers of the future provide a
means to relate logics formally, while providing adequate protection between
logics with di�ering assumptions.

In this paper we describe Nuprl-Light, a descendent of the Nuprl [5] theorem
prover, that addresses the issues of diversity and sharing by providing a modular,
object-oriented framework for specifying, relating, and developing type theories
and mathematical domains. The framework itself assumes (and provides) no type
theory or logic, as in LF [9], which is why we call it an implementation frame-
work. Instead, Nuprl-Light provides a meta-framework where logical frameworks
such as LF, Nuprl, set theory, and other theories can be de�ned and developed.

? Support for this research was provided by the O�ce of Naval Research through
grant N00014-92-J-1764, from the National Science Foundation through grant CCR-
9244739, from DARPA through grant 93-11-271, and from AASERT through grant
N00014-95-1-0985.

Since proof automation is such a critical part of theorem proving in these log-
ics, the implementation framework is tied closely to a programming language
(in this case Caml-Light) and the formal module system is tied closely to the
programming language modules.

Like the Isabelle [25] generic theorem prover, Nuprl-Light uses generalized
Horn clauses for logical speci�cation. Indeed, speci�cations in Nuprl-Light ap-
pear quite similar to those in Isabelle. However, where Isabelle uses higher or-
der uni�cation and resolution, Nuprl-Light retains a tactic{tree [8] of LCF [24]
style reasoning based on tactics and tacticals, and Nuprl-Light also allows theo-
ries to contain speci�cations of rewrites, using the computational congruence of
Howe [15]. Like LF, the Nuprl-Light meta-logic also relies on the judgments{as{
types principle (an extension of propositions{as{type), where proofs are terms
that inhabit the clauses.

The main departure from Isabelle and LF is in the module system. In Nuprl-

Light modules have �rst-class signatures and implementations, providing the
ability not only to specify multiple logics, but to relate them (using functors). In
addition, modules in Nuprl-Light are object{oriented, providing the ability to ex-
tend type theories and their reasoning strategies incrementally. Taken together,
these abilities provide a view of \theories{as{objects," encouraging incremental
and modular speci�cation of theories.

These are the results we present in the paper:

{ An implementation framework for specifying and relating type theories, and
their rules, theorems, and proofs.

{ A method for constructing formal types from module signatures, and formal
object for module implementations, based on recent theoretical work with
very{dependent function types [13].

{ An architecture for incrementally implementing algorithms for automated
reasoning.

{ A mechanism for generic shared tactics and derived rules.

Nuprl-Light is implemented in Caml-Light, and we have implemented the
Nuprl type theory and tactics, as well as a formalization of LF. The Nuprl for-
malization is modular, with a distinct module for each type constructor. The
rules for automated reasoning, including type inference, and forward and back-
ward chaining, have been speci�ed separately for each type constructor, and the
framework automatically constructs the type theory and its tactic collection.

In the next section we describe the framework more formally. Following that,
we give an example and discuss the implementation.

2 The Framework

One of our goals in the the design of the framework has been to tie the formal
system tightly with the underlying programming language used for its implemen-
tation to enhance the interplay between the formal and practical methodologies.
The main supplement to the language is the de�nition of a formal term language,

and a method for including and deriving formal assertions in the module calcu-
lus. In the following, we will assume a working knowledge of ML modules [10].

The presentation is in four parts. First we will cover the formal language and
syntax, and then we we will cover the rules for combining and deriving formal
judgments. Following the formal description, we cover the framework for proof
automation, and give a few examples.

2.1 Formal module system

The formal system uses a term language that is distinct from the programming
language. These terms include the usual objects such as numbers (0; 1; 2; : : :),
functions (�x:b), dependent function spaces (�x:A:B), as well as sequents (� `
�). The framework itself attaches no meaning to these terms|that is the duty
of the logic, not the framework, and so, for instance, the operator + does not
\perform" addition until that meaning is attached to it.

The underlying term language is uniform, based on the encoding of Allen et.
al. [3], where every term has this form.

opnamefparamsg(bterms)

Every class of terms has a unique name (the opname). The parameters are used
to specify the term constants, such as the numbers, and the bterms is a sequence
of subterms with optional binding occurrences. The following table lists some
examples of terms in this language. The print representation of these terms is
de�ned by declaring display forms, which we do not discuss in this paper. In
this paper we will use the print representation for terms, and the existence of a
uniform encoding is understood.

Term examples 0 � numberf0g()
1 � numberf1g()

t1 + t2 � addfg(t1; t2)
�x:b � lambdafg(x:b)

The meaning of sentences is given by specifying which sentences are true,
and which sentences can be derived from other true sentences. The speci�ca-
tion of these judgments uses a meta-notation involving explicit substitution and
extended Horn clauses. For example the rule for and-introduction in a sequent
calculus, normally written

� ` A � ` B
� ` A ^B

and intro

would be speci�ed as the clause

(� ` A)) (� ` B)) (� ` A ^B);

where the) is the Horn implication. Substitution is speci�ed with second-
order matching variables of the form t[v1; : : : ; vn], which speci�es terms with
possible free occurrences of the variables v1; : : : ; vn, and second-order instances

t[t1; : : : ; tn], which speci�es the term t with t1; : : : ; tn simultaneously substituted
for v1; : : : ; vn. In addition, judgments may specify contexts (terms C[] that con-
tain a \hole"). For instance, the judgment for beta-reduction might appear as
follows.

� ` C[(�x:M [x]) N]) � ` C[M [N]]

Let term+ denote terms extended with second-order variables and contexts,
then the general syntax for a judgment is as follows.

judgement ::= term+

j term+) judgement

Mathematical theories are formulated as theories, which are an extension of
the ML module system. The syntax for theories is shown in Figure 1. We discuss
the meaning of these statements in the next few paragraphs.

signature ::= theory sig name = sig stmts end

sig stmt ::= axiom name p1 : : : pn : judgement

j rewrite name t1 () t2
j include name

j declare term

j dform term = dform

j signature

j ML declaration

implementation ::= theory name = thy stmts end

thy stmt ::= axiom name p1 : : : pn : judgement

j prim name p0 : : : pn : (v1: t1) � � � (vm�1: tm�1) = t : tm
j thm name p0 : : : pn : t1 : : : tm�1 = tactic : tm
j include name

j primrw name t1 () t2
j rwthm name t1 () t2 = tactic

j ML implementation

Fig. 1. Theory syntax

axiom, prim, thm A signature declares the rules and structure of a theory,

without giving it an implementation, and a theory implementation provides
proofs for the declarations. A rule is declared in a theory with an axiom form.
The declaration

axiom name p1 : : : pn : t1) � � �) tm

speci�es that the term tm is true, if the antecedents t1; : : : ; tm�1 are true. This
axiom declares the inference rule, but it does not justify it. To justify an axiom,

the implementation may specify that the axiom is true by assumption, with the
prim form, or it may derive it from other rules as a thm. The prim form is used
to implement the rules that are primitive in the type theory, and for constructive
logics, it also speci�es the proof extract term. For instance, the and-introduction
rule might be \implemented" as follows.

prim and elim : (a:� ` A) (b:� ` B) = (ha; bi : � ` A ^B)

The prim form is used only when the type theory is de�ned. Afterwards, rules
are justi�ed as theorems, using the thm form, which provides a tactic to prove
the speci�ed goal. A tactic is a packaged rule for backward chaining that includes
a method for �nding the justi�cation of a rule from an implementation. When
an axiom is declared, the framework generates a tactic that is used for re�ning
a goal by backward chaining. The prim and thm forms also declare tactics, all
of which are bound as ML values of the same name. All of the forms also take
additional term arguments p1; : : : ; pn that are used to specify extra arguments
that may be needed for backward chaining. For instance, a declaration of the
\cut" rule would require two extra arguments, one for new assertion, and another
for its name.

prim cut x A : (a:� ` A) (b:�; x:A ` C) = (b[a=x] : � ` C)

include A include A

include B
include C

A

B C

D

•••
include The theories are object-oriented, in the sense
that a theory speci�es a class that can inherit rules
and implementations from other classes. All rules and
theorems that are valid in a superclass remain valid in
the subclass. Syntactically, a theory declares itself to
be a subclass of another class by using the \include
name," where name is the name of a theory signature.
Operationally, an include directive treats the included
theory is if it were inlined in the module, with one exception: modules are inlined
at most once (an implicit sharing constraint). In the diagram above, we describe
a scenario where modules B and C both include module A, and module D
includes both B and C. Only one copy of A is inlined, and the modules B and
share the common implementation.

In a theory implementation, an include directive speci�es that another im-
plementation should be inlined. As before, multiple implementations are sup-
pressed.

Other forms The rewrite form de�nes computational rewriting. For instance,

the declaration,

rewrite beta : (�x:M [x]) N ()M [N];

de�nes beta equivalence. The primrw and rwthm correspond to the prim and
thm forms, except that rewrites are assigned no proof extract, so the justi�cation

omits it. The rewrite form is really a derived form|it would also be possible
to declare rewrites as rules that allow the rewrite in any context:

axiom beta : C[(�x:M [x]) N]) C[M [N]]:

A theory may also extend the formal language by declaring a new term. For
instance, a module that de�nes number theory would extend the term language
with a term that speci�es addition using the declare form:

declare addfg(v1; v2):

Terms that are declared are associated with the module in which they are de-
clared. For instance, addition in a number theory is di�erent from addition in
real analysis. Each term also has a longer name pre�xed by the name of the mod-
ule, so that, for example, a module using both number theory and real analysis
can access both forms of addition.

De�nitions are a combination of a new term declaration, and a primitive
rewrite that gives a meaning to the new term. For instance, the predicate for
positive numbers might be de�ned as follows:

declare positivefg(i)
primrw rw positive : positivefg(i)() (i > 0):

2.2 Rules and Tactics

So far, we haven't spoken much about how theorems can be derived. The prim-
itive formal framework contains a term language and allows the declaration of
judgments. The primitive meta-logic contains a single rule, which is a restricted
version of modus-ponens in a meta-sequent calculus. We will denote these meta-
sequents with the turnstile j= to distinguish them from sequents in the term
language. The primitive inference rule allows a goal to be derived if the assump-
tions contain an assumed judgment that speci�es the goal as its result, and all
the antecedents of the judgment are derivable.

�; r:T1) � � �) Tn;� j= Ti i 2 f1 : : : n � 1g

�; r:T1) � � �) Tn;� j= Tn

Conceptually, during a proof, the assumption list contains all rules that have
been previously declared in the theory containing the proof{including any rules
declared in parent theories. Each axiom statement declares an in�nite number of
rules, one for each substitution instance. For instance, the statement axiom hyp :
�; x:A;� ` A declares a rule for any variable for x, any term for A, and any
term sequences for � and �.

As we stated in Section 2.1, when an axiom is declared, the framework auto-
matically produces a tactic, which provides a handle that can be used request a
primitive application of the rule. The tactic for and-introduction, when applied,
would compute two subgoals, one for each branch of the conjunction. Tactics
are associated with the theories in which they are declared, and the framework

enforces the restriction by allowing the tactic to be applied only in proofs in
sub-theories.

Tactics can also be combined with a few combinators (also called tacticals).
The andthen : tactic -> tactic -> tactic tactical applies its �rst tactic,
and then applies the second tactic to all the subgoals. The orelse : tactic ->

tactic -> tactic applies the �rst tactic, and if it fails by raising a re�nement
exception, applies the second tactic. The thenL : tactic -> tactic list ->

tactic tactical applies the �rst tactic, and then maps the tactic list across the
subgoals, which must have the same number.

2.3 Formal Theories

One of the key features of the framework is that theories and their signatures
are �rst class. The framework provides a means to extract a formal type from
a theory signature, and a formal object from its implementation. The general
idea is to translate a module signature to a dependent record type, and translate
its implementation to a record inhabiting that type. As usual, the framework
does not assign meaning to a record and its type|that job is left to the type
theory designer. However, in logics that are expressive enough to reason about
dependent record types, it is expected that the normal record subtyping will
be derivable. In the Nuprl type theory, record types are interpreted as very-
dependent function types, where the functions range over the set of labels in the
record, and the expected subtyping holds since a function with a larger domain
can simulate a function with a smaller domain. A more complete description is
given in Hickey [13].

2.4 Proof Automation

Because of the undecidability of higher-order logics, higher order theoremprovers
are typically designed to be interactive. The goals are presented to the user and
interaction is typically by \re�nement" (backward-chaining). However, the vast
majority of steps in a formal proof are trivial, and a great deal of e�ort is
exerted to automate the \obvious" steps in the proof with decision procedures
or heuristics.

In a modular system, the task becomesmore di�cult because of the potential
for multiple distinct logics. In many cases, proofs occur in type-theory fragments
that may not include a complete collection of type constructors. In fact, the
situation potentially becomes even more di�cult. As rules are added to a logic,
the decision procedures may change drastically (consider the case where the
law of excluded middle is added intuitionistic propositional logic). We do not
address the algorithmic changes here. Instead, we address the issue of modular
proof automation with a device called resources.

Intuitively, a resource is a property of a type theory that can be produced by
combining the resources of its parts. Syntactically, a resource is like a method
that automatically includes the values of the methods it is inheriting. For exam-
ple, the resource S in the diagram in the next paragraph computes the union

of the multisets in each module. Note that the multiset in the root theory is
inherited only once.

add S { 1, 5 } add S { 3, 5 }

add S { 4, 2 }

resource S = { 1, 7 } { 1, 7 }

{ 1, 3, 5, 7 }

{ 1, 1, 2, 3, 4, 5, 5, 7 }

{ 1, 1, 5, 7 }

From the view of the implemen-
tation, a resource is really composed
of three methods, create, add, and
join. The create method creates an
empty resource in a root theory. The
add method adds a value to an in-
herited resource (in the diagram, the
statement add S f1; 5g computes the union of f1; 5g and f1; 7g and assigns it
to the resource). The join method combines the value of a resource that is in-
herited from multiple ancestors (the �nal class computes the join of the sets
f1; 1; 5; 7g and f1; 3; 5; 6g before the add S f4; 2g statement).

Typically, resources are used to collect the parts of a modular reasoning
method. For instance, a type theory may implement modules for each of its type
constructors, and it might provide a decision procedure that has a component for
each type constructor. These components would be collected in a resource, from
which a tactic would ultimately be extracted. An example of such a resource
is given in the �rst example, where a decision procedure is generated for the
intuitionistic propositional logic.

3 Examples

The following example illustrate three properties of the framework. The �rst
example is a basic speci�cation of a fragment of the intuitionistic propositional
logic (IPL). The second example is intended to illustrate how logics can be re-
lated, by providing an interpretation of IPL in the Nuprl type theory (ITT).
The �nal example illustrates the �rst{class object{oriented modules by devel-
oping the canonical one{dimensional point example. Due to space limitations,
these examples are quite brief. However, we have developed signi�cant examples,
including a speci�cation of LF and the Nuprl type theory in the framework. More
examples can be found at the WWW site [12].

3.1 Intuitionistic Propositional Logic (IPL)

The �rst example de�nes an intuitionistic propositional logic with only im-
plication and falsehood. This a simple example, but it covers many of steps in
de�ning a logic, including the construction of a modular decision procedure.
The logic is formalized with sequents, declared in the root theory ipl root sig.
The root signature also declares the resource prove that is used to construct
the decision procedure for the logic. The next two signatures are for the type
constructors? and). Each module declares the syntax for the type construc-
tor, as well as any de�nitions and inference rules. For instance, the signature
ipl implies sig de�nes a primitive term for implication, and de�nes negation
in terms of implication and falsehood.

theory sig ipl root sig =
declare � ` C
axiom assume : �; x:A;� ` A
resource prove : tactic! tactic

end

theory sig ipl false sig =
include ipl root sig
declare ?
declare any
axiom false elim : �; x:?; � ` C

end

theory sig ipl implies sig =
include ipl false sig
declare A) B

declare �x:b[x]
declare M N (* application *)

declare :A
rewrite neg rw : :A() (A) ?)

axiom imp intro a : (�; a:A ` B)) (� ` A) B)
axiom imp elim : (�;� ` A)) (�; x:B;� ` C)) (�; x:A) B;� ` C)

end

theory sig ipl sig =
include ipl false sig
include ipl implies sig
val decide : tactic
axiom example : � ` (A) B)) (A) :B)) :A

end

Fig. 2. Modular signature of propositional logic

The implementation ipl root implements the primitive resource, and also
provides the primitive proof extract for the assume rule. Each implementation
provides a primitive proof extract, as well as a part of the prove decision pro-
cedure speci�c to the module in question. In the �nal theory, the algorithm is
extracted and assigned to the tactic decide. This particular proof algorithm is
not complete, but a more complete implementation would give a decision pro-
cedure.

In this example, we make use of additional tacticals that are coded out of
the primitive tacticals. These include onsomehyp, which takes a tactic and ap-
plies it to each hypothesis until a proof is found (if there is none, it fails).
The tactical oneof : (tactic -> tactic) list -> tactic -> tactic, tries
each tactical in the argument list, applying it to the tactic argument until a proof

theory ipl root =
let prove = f

create = [];
add = function x l ! x::l;
join = function l1 l2 ! l1 @ l2;
extract = function l ! let rec prove p = oneof l prove p in prove

g
prim assum = x : (�; x:A;� ` A)
add prove (fun ! onsomehyp assum)

end

theory ipl false =
include ipl root
prim false elim = any : (�; x:?;� ` C)
add prove (fun ! onsomehyp false elim)

end

theory ipl implies =
include ipl false
primrw neg rw : :A() (A) ?)
prim imp intro a : b[a]: (�; a:A ` B) = �a:b[a] : (� ` A! B)
prim imp elim : (a: (�; � ` A)) (b[x]: (�; x:B;� ` C)) = b[a] : (�; x:A) B;� ` C)
add prove (fun t ! (imp intro andthen t) orelse ((onsomehyp imp elim) andthen t))

end

theory ipl =
include ipl implies
include ipl true
let decide = prove.extract
thm example = decide : � ` (A) B)) (A) :B)) :A

end

Fig. 3. Implementation of propositional logic

is found. The proof algorithm is collected as a list of tacticals to try. When the
proof algorithm is extracted, it saves a copy of the saved tactical list and proof
search is guided by the prove function.

3.2 Relating IPL to Nuprl Type Theory

The propositional logic speci�cation just explored is axiomatic. The syntax and
rules for the logic are states, and the implementations provide primitive proof
extracts for each of the rules. It is also possible to derive an implementation by
relating the logic to another|in other words, by giving a model in terms of an-
other existing logic. In this example, shown in Figure 4, we show how to derive
an implementation fro ipl implies sig from the Nuprl type theory ITT. The
Nuprl type theory contains IPL as a proper sub-theory, and the justi�cation is

quite straightforward. We interpret the IPL implication as the ITT implication
(written implies(A; B) in the example), which allows the IPL rules to be justi-
�ed from the ITT rules by unfolding the de�nition of the implication. Although
this justi�cation is technically trivial, the pattern for more complex justi�cations
is similar{although the interpretations of the rules and symbols may be more
complex.

theory ipl implies =
include ITT
rewrite imp def : (A) B)() implies(A;B)
rewrite lam def : �x:b[x]() lambda(x:b[x])
rewrite apply def : (M N)() apply(M ;N)

thm imp intro a (�; a:A ` B) =
(unfold imp def andthen itt imp intro) : (� ` A! B)

thm imp elim (�;� ` A) (�; x:B;� ` C) =
(unfold imp def andthen itt imp elim) : (�; x:A) B;� ` C)

add prove ...
end

Fig. 4. Derivation of IPL implication from Nuprl

3.3 Point Objects

For the �nal example, we illustrate some of the object-oriented features of
the formal system by specifying one-dimensional movable points in the Nuprl
type theory. A point has a location, and two methods: the getX method returns
the location, and the bumpX method creates a new point with a shifted location.
In addition, the Point object contains the speci�cation that the getX and bumpX

have the correct behavior. In this example, we give only the signatures (although
implementation can be shown to exist). This example follows an encoding of
object similar to the existential interpretation of Pierce and Turner [27], with
the exception that the \state" or \carrier" of the object (car) is not abstract. A
deeper encoding would use existential types to hide the value of the car method.
More detail of this interpretation is given in Hickey [13].

In this example, the bumpX method must be polymorphic over subobjects.
Subobjects are speci�ed with the � relation, part of the type theory, and the
polymorphism is expressed using an intersection type, quanti�ed over all subob-
jects. The ColorPoint signature includes the Point signatures, and as a result,
the Point methods are inherited by the ColorPoint. It can be shown that the
type ColorPoint is a subtype of Point, i.e. ColorPoint � Point.

theory sig Point =
include ITT
axiom car : ` Type
axiom zero : ` car

axiom getX : ` car! Z

axiom bumpX : `
T
T�car

:(T ! Z ! T)

axiom spec : ` 8x: car:8i:Z :getX(bumpX x i) = getX(x) + i

end

theory sig ColorPoint =
include Point
axiom getC : ` car! color

axiom setC : `
T
T�car

:(T ! color! T)

end

theory sig PointWrapper =
include ITT
axiom zero : ` Point

axiom getX : ` Point! Z

axiom bumpX : `
T
P�Point

:(P ! Z ! P)

axiom spec : ` 8p: Point:8i:Z :getX(bumpX p i) = getX(p) + i

end

theory pointWrapper =
include ITT
thm getX p = p.getX p.car
thm bumpX p i = p.car (p.setX p.car i)
...

end

Fig. 5. One dimensional movable points

In the �nal signature, PointWrapper, the interface methods of the Point

are de�ned to operate directly on objects of type Point. In the implementa-
tion pointWrapper of this module, the getX method projects the value in car,
and applies the primitive getX method. The bumpX method operates similarly,
but repackages the object for the result value. We use loose notation in this
implementation|the method values listed are actually the proof extracts of the
proofs of the method type, and method construction follows the propositions-
as-types principle.

4 Implementation

Nuprl-Light is implemented in Caml-Light, with a total of about 25,000 lines of
source code to implement the theoremprover, and an additional 10,000 to specify

the Nuprl type theory and implement the tactics. The heart of the implementa-
tion is a rewriting engine that is used both for computational rewrites, and proof
re�nements. Care was taken to make term rewriting e�cient, and Nuprl-Light

pre-compiles rewrite speci�cations to an intermediate language. This rewriting
engine, together with abstract operations on terms, count for about 20% of the
code. The rest of the code is devoted to algorithms for proof search, display
printing, and �le processing.

The Nuprl type theory is implemented as a collection of modules, one for
each type constructor. One unexpected bene�t of this coding is that with the
use of derived rules the number of primitive inference rules needed to de�ne the
type theory and its type constructors has dropped by about a factor of �ve, since
most of the standard type constructors can be derived from the very-dependent
function type. Our plans for the future include further development of the tactic
collection and improvements to proof search algorithms.

5 Related Work

Our framework draws on the work of Jackson [18, 17], who formulated a great
deal of abstract constructive algebra in the Nuprl system. Jackson's system for-
malized algebraic objects in the type theory using dependent Cartesian products,
which su�ered from the lack of convenient subtyping properties. Our develop-
ment originally began as a means of addressing the problem of higher-order de-
pendent modules with the expected subtyping properties (a module with more
items is a subtype of a module with fewer). This led to the use of object{oriented
techniques where higher order modules are formalized as objects, and the ex-
pected subtyping properties are ful�lled by object subsumption. Our object in-
terpretation in this paper is closely modeled on the interpretation of Hofmann,
Pierce, and Turner [14, 27], where objects are abstracted over a \state" type.
We also draw on the interpretation of Abadi, Cardelli, and Viswanathan [1, 2],
where objects contain only methods and state update is provided by method
override.

There has been a great deal of research on logical frameworks. Our work de-
velops the meta-logical framework (in Nuprl) of Constable and Basin [4]. Nuprl
itself was developed out of the early work of Martin{L�of [20, 21], as well as the
Automath logical framework [22]. Our framework has much in common with the
Isabelle generic theorem prover [23, 25], which is based on hereditary Harrop for-
mulas. Both Nuprl-Light and Isabelle provide a theorem prover framework that
can be used to formalize generic logics, and in practice the logical speci�cation
is quite similar. A di�erence of the two is that logics in Nuprl-Light are intended
to be related. If, for instance, an interpretation of type theory is available in set
theory, the interpretation should be formalizable.

We can also compare Nuprl-Light to the (Edinburgh) Logical Framework [9]
(which is implemented in ELF [26], for instance). In a sense, our framework has
a di�erent purpose than LF|where LF provides a framework for logics, our
framework is for their implementations. Our basic logic is much weaker, and

type theories, including LF, are implemented by asserting their inference rules,
much like Isabelle. Harper and Pfenning [11] propose a module system for LF,
which is similar to ours in some ways. However, we place an additional emphasis
on relations between logics through object{oriented techniques.

On this theme, Mart��-Oliet and Mesegu�er [19] propose rewriting logics a so-
lution to the proliferation of logics; they also propose object{oriented theories.
Guinchiglia et. al. [6] are also exploring a general architecture where provers can
be combined in a \plug{and{play" manner. As this task proceeds, we need a
semantic basis for relating theories, as Howe [16] provides in his semantics for
HOL [7] and Nuprl.

6 Conclusion

We have described the Nuprl-Light framework, which extends the results of
generic theorem provers by adding formal, �rst{class theories. First{class theo-
ries enable a new style of reasoning where multiple type theories and theorem
provers participate in large scale reasoning. By allowing type theories to be re-
lated formally, provers may use multiple mathematical domains for their proofs,
relying on the framework to construct the foundational justi�cation.

References

1. Mart��n Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.

2. Mart��n Abadi, Luca Cardelli, and Ramesh Viswanathan. An Interpretation of
Objects and Object Types. In ACM Symposium on Principles of Programming

Languages, 1996.

3. Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and Willaim Aitken. The
semantics of re
ected proof. In Proceedings of the Fifth Conference on Logic in

Computer Science, pages 195{197, June 1987.

4. David A. Basin and Robert L. Constable. Metalogical Frameworks, pages 1{29.
Cambridge University Press, 1993.

5. R.L. Constable et.al. Implementing Mathematics in the NuPRL Proof Develop-

ment System. Prentice{Hall, 1986.

6. F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning Theories: Towards an Ar-
chitecture for Open Mechanized Reasoning Systems. Technical Report 9409-15,
IRST, Trento, Italy, 1994.

7. M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge University
Press, 1993.

8. Timothy G. Gri�n. Notational De�nition and Top-Down Re�nement for Interac-

tive Proof Development Systems. PhD thesis, Cornell University, 1988.

9. Rober Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics.
Journal of the ACM, 40(1), January 1993.

10. Robert Harper and Mark Lillibridge. A type{theoretic approach to higher{order
modules with sharing. In 21st Annual ACM Symposium on Principles of Program-

ming Languages, pages 123{137. ACM, January 1994.

11. Robert Harper and Frank Pfenning. A module system for a programming language
based on the LF logical framework. Journal of Logic and Computation, To appear.
A preliminary version is available as Technical Report CMU-CS-92-191.

12. Jason J. Hickey. Nuprl-light. http://www.cs.cornell.edu/home/jyh.
13. Jason J. Hickey. Formal objects in type theory using very dependent types.

In Foundations of Object Oriented Languages 3, 1996. Available electronically
through the FOOL 3 home page at Williams College.

14. Martin Hofmann and Benjamin Pierce. A unifying type-theoretic framework for
objects. Journal of Functional Programming, 5(4):593{635, October 1995.

15. Douglas J. Howe. Equality in Lazy Computation Systems. In Fourth Annual Sym-

posium on Logic in Computer Science, pages 198{203. IEEE Computyer Society
Press, 1989.

16. Douglas J. Howe. Semantic foundations for embedding HOL in Nuprl. In AMAST

'96, 1996.
17. Paul Jackson. Exploring Abstract Algebra in Constructive Type Theory. In 12th

International Conference on Automated Deduction, pages 590{604. Springer, 1994.
18. Paul Bernard Jackson. Enhancing the NuPRL Proof Development System and

Applying it to Computational Abstract Algebra. PhD thesis, Cornell University,
January 1995.

19. Narciso Mart��-Oliet and Jos�e Meseguer. Rewriting logic as a logical and semantic
framework. Technical Report SRI-CSL-93-05, SRI International, 1993.

20. Per Martin{L�of. An intuitionistic theory of types: Predicative part. In Logic

Colloquium '73, pages 73{118. North{Holland, 1975.
21. Per Martin{L�of. Intutionistic Type Theory. Bibliopolis, Napoli, 1984.
22. R.P. Nederpelt, J.H. Geuvers, and editors R.C.~de Vrijer. Selected Papers on Au-

tomath, volume 133. North-Holland, 1994.
23. Tobias Nipkow and Lawrence C. Paulson. Isabelle-91. In Proceedings of the 11th

International Conference on Automated Deduction, pages 673{676, 1992.
24. Lawrence C. Paulson. Logic and Computation: Interactive proof with Cambridge

LCF. Cambridge Univ. Press, 1987.
25. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer LNCS 828,

1994.
26. Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy, editor,

Proceedings of the 12th International Conference on Automated Deduction, pages
811{815. Springer LNAI 814, June 1994.

27. Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for
object-oriented programming. Journal of Functional Programming, 4(2):207{247,
April 1994.

This article was processed using the LATEX macro package with LLNCS style

