
Hilda: A High-Level Language for Data-Driven Web Applications

Fan Yang Jayavel Shanmugasundaram Mirek Riedewald Johannes Gehrke
Alan Demers

Cornell University
Ithaca, NY 14850

{yangf,jai,mirek,johannes,ademers}@cs.cornell.edu

Abstract

We propose Hilda, a high-level language for developing
data-driven web applications. The primary benefits of Hilda
over existing development platforms are: (a) it uses a uni-
fied data model for all layers of the application, (b) it is
declarative, (c) it models both application queries and up-
dates, (d) it supports structured programming for web sites,
and (e) it enables conflict detection for concurrent updates.
We also describe the implementation of a simple proof-of-
concept Hilda compiler, which translates a Hilda applica-
tion program into Java Servlet code.

1. Introduction
An important class of applications are data-driven web

applications, i.e., web applications that run on top of a
back-end database system. Examples of such applications
include online shopping sites, online auctions, and business-
to-business portals. Data-driven web applications can con-
ceptually be divided into four layers: (1) Database, which
stores the persistent data, (2) Application logic, which con-
tains the application logic for performing user actions, (3)
Web site structure, which groups the application logic op-
erations into web pages and provides the navigational (hy-
perlinked) structure of web pages, and (4) Web site appear-
ance, which controls the appearance of web pages, such as
the background color, font size and page layout.

While developing data-driven web applications is a com-
plex and challenging task, the application development in-
terface provided by existing platforms is often too low-level
or does not provide a unified model across the different
application layers. Specifically, while technologies such as
J2EE, Java Servlets/JSPs, ASPs, PHP, WebML and Strudel
simplify application development to some extent, they suf-
fer from some of the following shortcomings (Section 5 dis-
cusses these approaches in more detail).
Impedance Mismatch: Most existing languages provide
a different data model for each application layer (e.g., re-
lational model for databases, Java objects for application
logic, hyperlinks for website structure, and form variables

for web pages). This “impedance mismatch” makes it hard
to develop, maintain, and optimize applications.
Not Declarative: In contrast to declarative high-level
database query languages such as SQL, web application de-
velopment languages such as Java are low-level and pro-
cedural. This increases application development time and
limits optimization opportunities.
No Unified Handling of Queries and Updates: While
some tools such as AutoWeb [18] and Strudel [16] can
declaratively specify the structure and content of web sites,
they focus mostly on read-only applications. Consequently,
they do not provide a uniform framework for handling ap-
plications that deal with both queries and updates.
No Structured Programming for Web Sites: Website
specification tools such as WebML [7] and Strudel [16] rep-
resent a data-driven web site as a graph, where the nodes in
the graph are web pages and the edges are links between
the pages. Consequently, the “control flow” of the applica-
tion can jump from one web page to another so long as there
is a connecting edge. This is similar to programming with
goto statements in the domain of web pages, and has similar
disadvantages as compared to structured programming [15].
No Support for Application Conflict Detection: Multi-
user, data-driven applications, by their very nature, have
a potential for conflicts due to concurrently issued appli-
cation updates. As we shall illustrate in Section 2.3, such
application-level conflicts cannot always be handled by
database transactions, and in complex applications, such
conflicts can be very hard to detect. Existing systems do
not provide support for conflict detection.
Mixing of Application Logic and Presentation: While
there is broad agreement that application logic should be
kept separate from presentation, many existing languages
do not enforce this separation; this results in code that is
hard to understand, modify, and extend.

To address the above issues, we propose Hilda, a high-
level language for developing data-driven web applications.
Hilda uses a single data model, is declarative, handles both
queries and updates, enforces structured programming, and



supports conflict detection. The expected benefits of Hilda
are reduced application development and maintenance cost,
and increased optimization opportunities.

The design of Hilda embodies several key con-
cepts. First, Hilda uses a single data model, the relational
model [11], to represent all application state. Second, it cap-
tures application logic as a sequence of state transitions
from one valid application state to another. The applica-
tion query and update operations are declaratively specified
using SQL. Third, Hilda provides an application build-
ing block called an AUnit (for Application Unit), analogous
to a UML class [5]. AUnits support encapsulation like a reg-
ular UML class, but the creation and manipulation of AU-
nits is specified declaratively and provides natural support
for conflict detection in the face of concurrent applica-
tion updates. AUnits are single-entry and single-exit, which
facilitates structured programming. Fourth, Hilda sepa-
rates the application logic, which is represented as AU-
nits, from the presentation, which is represented as PUnits
(for Presentation Units) with embedded HTML code. Fi-
nally, Hilda has a well-defined formal semantics that pro-
vides correctness guarantees for Hilda applications even in
the face of application conflicts.

Besides the design of the Hilda language, another chal-
lenging aspect is building a Hilda compiler, which takes in
a Hilda application program and generates executable code.
We describe a simple proof-of-concept compiler that trans-
lates a Hilda program into Java Servlet code that can be run
in a conventional application server. Both the compiler and
an application generated by the compiler are available at
http://www.cs.cornell.edu/database/hilda. While Hilda al-
lows for many optimization opportunities, these details are
beyond the scope of this paper and are part of future work.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe a course management application that
we use as a running example. In Section 3, we describe
the Hilda language and in Section 4, we describe our Hilda
compiler. In Section 5, we discuss related work and we con-
clude in Section 6.

2. Case Study: A Course Management System
To illustrate some of the shortcomings of existing appli-

cation development platforms, we use CMS [6] – a course
management system application – as a case study. We devel-
oped CMS at Cornell to simplify the management of large
courses. Figure 1 depicts the functions supported by CMS.
CMS is currently being used by over 2000 students in 40
courses in computer science, physics, economics and engi-
neering. CMS uses a standard three-tier architecture, with
a back-end database server, middle-tier application servers
and front-tier client browsers. The initial version of CMS
was developed using PHP, while the current version was de-
veloped using J2EE.

We use four features of CMS to highlight some of the

Figure 1. Course Management System

limitations of existing development platforms. Since the is-
sues are similar for both versions of CMS, we focus on the
J2EE version. As noted in Sections 1 and 5, other develop-
ment platforms suffer from similar shortcomings.

2.1. Assignment Creation
In CMS, the admin of a course can create an assignment

for the course by specifying the name of the assignment, the
release date, the due date and the set of problems etc.
Impedance mismatch: During assignment creation, the user
input is obtained and temporarily stored using HTML forms
in the web browser. When the user submits the assignment
for creation, this input data is copied into the correspond-
ing assignment Java Bean in the application server. While
tools such as Struts [12] simply the mapping between forms
and Java Beans to a certain extent, a lot of low-level code is
still required to map between the different data models.
Mixing Application Logic and Presentation: When a user
is in the process of creating an assignment, CMS performs
some application-level sanity checks such as determining
whether the due date of an assignment occurs after the re-
lease date. Normally, such checks are performed in the web
browser (using, say, JavaScript) so that the user obtains an
immediate response, without the overhead of contacting the
server. However, this causes application logic to be mixed
with presentation (in the web browser), which makes appli-
cations harder to understand and maintain. Note that design
patterns such as Model-View-Controller [2, 12, 19] do not
help here because they are server-side solutions.

2.2. Viewing Student Grades
CMS allows students and staff to view relevant grades.

Impedance Mismatch: The student, course, and grade data
are stored in database as separate tables and are exposed to
application developers as corresponding Java Beans. How-
ever, for performance reasons, application developers have
to directly work with relational tables to produce a list of
students and their grades. Specifically, since each course,
student, and grade is represented as a separate Java Bean
object, in order to compute the grade for each student in



the course, a join operation has to be performed in Java. It
is far more efficient to issue a single SQL query to compute
this information because the database can then optimize this
query. Consequently, application developers must manually
bridge the gap between the J2EE and relational data mod-
els and issue SQL queries.

2.3. Student Group Management
CMS allows students to form groups for a given assign-

ment in a course. A student can initiate group creation by
extending an invitation to another student. The other stu-
dent can either accept the invitation (in which case a new
group is formed) or decline the invitation. A student can
also withdraw an outstanding invitation and groups can be
disbanded at any time.
No support for conflict detection: When a student issues a
request to accept or decline an invitation, CMS needs to
guard against possible conflicting actions such as the invit-
ing student withdrawing the invitation. In addition, there
are a variety of other cases unrelated to group manage-
ment where the action should not be performed, including
if the student is dropped from the course (by the course
administrator), if the inviting student is dropped from the
course, if the assignment has been dropped, if the course it-
self has been dropped, and so on. Using current program-
ming paradigms and tools, it is very difficult for applica-
tion developers to correctly identify all conditions that need
to be checked before performing a specific task such as ac-
cepting or declining an invitation. Database constraints can-
not be used to solve this problem, because application-level
constraints often do not translate directly into database con-
straints. For instance, dropping an assignment in CMS does
not delete the assignment but only sets a “hidden” flag for
that assignment (so that it can be resurrected if necessary).
Thus, the database will not identify the invitation accepts
and declines for a dropped assignment as a violation of
database constraints.
Not declarative: Even if the application developer were to
correctly identify the correct precondition for performing an
action, he or she would have to make an a priori decision
about how to enforce the condition. For example, the ap-
plication developer could decide to hold transaction locks
for the entire duration of the user input and action, or al-
ternatively, check the precondition just before performing
the user action. However, since this precondition cannot be
specified declaratively, the system cannot dynamically opti-
mize for the preferred strategy given the current workload,
nor can it explore other possibly more efficient strategies
such as using triggers to invalidate actions.

2.4. Web Site Structure
No structured programming for websites: CMS supports a
rich navigational interface whereby various pages (such as
the course overview page) can be reached through multi-
ple paths. While this interface is intuitive for the user, it is

very difficult for the application developer to understand the
“control flow” between different pieces of application logic
spread over interconnected pages. Programming the struc-
ture of the web site is reminiscent of programming with
goto statements, which make programs difficult to under-
stand and maintain. What is missing is a more “structured
programming” paradigm for websites, which nevertheless
provides the same rich navigational interface for end-users.

3. The Hilda Language
Hilda is designed to address the above problems. We be-

gin by motivating some of our design decisions.
3.1. Design Decisions

First, Hilda is based on UML [5], a well-accepted mod-
eling framework. Hilda’s main construct are AUnits, which
correspond to UML classes. The local state of an AUnit cor-
responds to UML class attributes. As classes can have op-
erations, AUnits can have Activators. With data and as-
sociated operations, the Hilda programming model is state-
based in that a Hilda programmer specifies what operations
are allowable in a given state of the program. The main dif-
ference from the traditional use of UML is that the object
creation and operations are specified declaratively1, which
enables the Hilda compiler to automatically perform vari-
ous optimizations without burdening the user with perfor-
mance issues.

Second, Hilda uses a single data model - the relational
model - to represent the state of all parts of the application,
including the database, application logic and the client. This
eliminates the impedance mismatch problem and also en-
ables the application logic to be specified declaratively us-
ing SQL. The choice of the relational model also allows for
a practical and efficient implementation since most exist-
ing database systems are relational.

Third, Hilda logically separates server and client state to
enable highly concurrent execution. The server maintains
the current state of the application, and each client sees
a (possibly out-of-date) version of it locally. Whenever a
client wants to perform an update operation, it checks with
the server to see if this operation is still valid in the cur-
rent system state (to avoid application conflicts). Notice that
this separation between client and server state is only con-
ceptual. The real separation can be different and should be
done by the Hilda compiler or runtime environment based
on certain optimization criterion, e.g., sanity checks can be
pushed to client side to save bandwidth and round trip time.

Fourth, Hilda models the application logic and associ-
ated control flow as a hierarchy. This decision is based on
our experience in developing data-driven web applications:
since navigation can be very complex, and since the oper-

1 This is also the main reason we use different names for otherwise stan-
dard object-oriented concepts, so that declarative and non-declarative
constructs are easily distinguished.



ations that a user can perform at any time depend on com-
plex conditions that have to be satisfied by the current state
of the user’s session, we need a way to cleanly specify these
preconditions. Hilda specifies preconditions hierarchically;
this helps the programmer to think in high-level abstrac-
tions which are then further broken down into smaller steps
further down in the hierarchy. Hilda’s hierarchical structure
also enables encapsulation as the hierarchy naturally lim-
its the scope of the data access of an object. Hilda’s control
flow goes along the same hierarchy. It is like structured pro-
gramming, with a tree-like execution structure. It is pow-
erful enough to capture complex graph control flows, but
makes the specification of operations more structured and
confined to small parts of the code.

Fifth, Hilda uses inheritance to separate application logic
from web site structure. Specifically, application develop-
ers can derive a web site AUnit by inheriting from the cor-
responding application logic AUnit. The use of inheritance
for this purpose has two advantages: (1) the same structured
programming model can be used for both application logic
and web site structure, and (2) the same application logic
can be reused for multiple web site structures.

Finally, Hilda provides a HTML-based presentation con-
struct called a PUnit (Presentation Unit), which is associ-
ated with an AUnit and describes how the content of the
AUnit is to be presented. PUnits ensure a clear separation
of application logic from presentation because they deal
only with presentation issues like page layout, font size and
background color, while AUnits deal only with application
logic and web site structure.

In the remainder of this section we describe the Hilda
language in detail. We start by overviewing Hilda’s core
construct, the AUnit, in Section 3.2, and we describe AU-
nits in detail in Section 3.3. We then discuss inheritance in
Section 3.4. The semantics of Hilda are described in Sec-
tion 3.5, and PUnits are described in Section 3.6. We use
MiniCMS, a small application inspired by the CMS system
discussed above, as our running example.

3.2. AUnits Overview
An AUnit is a single-entry single-exit programming con-

struct that is associated with an (optional) input schema and
an (optional) output schema. The input and output schemas
are both relational schemas. Given an AUnit, one or more
instances of the AUnit can be created. Each instance of an
AUnit takes in an input conforming to the input schema of
the AUnit and returns an output conforming to its output
schema. The act of creating an instance of an AUnit is called
activation, and the act of destroying an instance of an AU-
nit is called deactivation.

There are three types of AUnits: Basic AUnits, User-
Defined AUnits and External AUnits. Basic AUnits are pre-
defined by the system and provide functionality to interact
with end users. For example, an instance of the ShowRow

AUnit shows the attribute values of the input(a single row)
to the user and returns no output. Similarly, an instance of
the GetRow Basic AUnit returns a row of values entered by
a user; it takes in no input and returns a single row as an out-
put. Other Basic AUnits for other common interaction tasks
are defined similarly.

A User-Defined AUnit corresponds to a functional com-
ponent in the system. Just as components can have subcom-
ponents, each instance of a User-Defined AUnit also con-
tains zero or more instances of child (User-Defined or Ba-
sic) AUnits, which are called child AUnit instances. AU-
nits (like sub-components) can be reused in more than one
place. The definition of a User-Defined AUnit contains the
application logic of activating and deactivating child AU-
nit instances, preparing input for child AUnit instances, up-
dating local state and processing output of child AUnit in-
stances and it’s own input and output schemas.

External AUnits are used to express small parts of the
application logic that do not lend themselves to declarative
specification. For example, if an application requires the use
of a max-flow min-cut algorithm, it will be awkward to pro-
gram this using SQL (even though it can theoretically be
done with order-based functions and recursion in SQL’99).
External AUnits support the same API as other AUnits, but
are specified in an imperative language such as Java. Since
most data manipulation can be specified declaratively, we
expect only a small part of the code to be written using Ex-
ternal AUnits; in fact, applications such as CMS do not need
External AUnits at all.

One AUnit in the hilda program is designated as the root
AUnit, which intuitively corresponds to the “main” function
in a program. A new instance of the root AUnit is activated
each time a new user connects to the Hilda application, and
this instance is deactivated when the user disconnects.

Our MiniCMS application consists of the User-Defined
AUnits pictorially depicted in Figure 2, which map directly
to the functional components of CMS (Figure 1). The root
AUnit is the CMSRoot AUnit.

3.3. User-Defined AUnits
Figure 3 shows the BNF grammar for a User-Defined

AUnit. As shown, each AUnit has a name (line 2) and
a number of other components which we discuss in the
next few sections. We will use the code for some of the
MiniCMS AUnits (Figures 4, 5, and 9) to illustrate these
components.

3.3.1. Schemas A User-Defined AUnit has optional input
and output schemas (Figure 3, lines 3-4). Here Schema is
a non-terminal that describes a relational schema (the pro-
duction rules for Schema are not shown). As a convenient
shorthand, a AUnit can have an inout schema (line 5) when
the same schema is used for both input and output. We use
the notation in.X and out.X to refer to the input and out-
put versions, respectively, of a table X in an inout schema.



Figure 2. AUnits in CMS

01) AUnit ->
02) AUnitName:STRING ’{’
03) [’input’ ’schema’ ’{’ Schema ’}’]
04) [’output’ ’schema’ ’{’ Schema ’}’]
05) [’inout’ ’schema’ ’{’ Schema ’}’]
06)
07) [’persist’ ’schema’ ’{’ Schema ’}’]
08) [’persist’ ’query’ ’{’ Assignment* ’}’]
09)
10) [’local’ ’schema’ ’{’ Schema ’}’]
11) [’local’ ’query’ ’{’ Assignment* ’}’]
12)
13) Activator*
14) ’}’
15) Activator ->
16) ’activator’ ActName:STRING : AUnitName:STRING ’{’
17) [’activation’ ’schema’ ’{’ Schema ’}’
18) ’activation’ ’query’ ’{’ Query ’}’]
19) [’input’ ’query’ ’{’ Assignment* ’}’]
20) Handler*
21) ’}’
22) Handler ->
23) [return] ’handler’ HandlerName:STRING ’{’
24) [’condition’ ’{’ Query ’}’ ]
25) ’action’ ’{’ Assignment* ’}’
26) ’}’
27) Assignment -> TableName:STRING ’:-’ Query

Figure 3. BNF grammar for a User-Defined AUnit. Constants

are denoted as strings in quotes (e.g., ’input’). Terminals are

denoted as name-type pairs, where the name is the symbolic

name for the terminal and the type is the type of the terminal

(e.g., ActName:STRING). Non-terminals are denoted as regular

strings (e.g., AUnit).

An AUnit can also have a persistent schema (line 7). The
data stored in a persistent schema has two important prop-
erties: (1) it is persistent across AUnit instance activations
and deactivations, and (2) it is shared between different in-
stances of the same AUnit. The data in the persistent schema
is initialized by evaluating the persistent query the very first
time the Hilda program is run (line 8). A persistent query
is a set of Assignments, each of which assigns the re-
sult of an SQL query to a table in the persistent schema
(line 7). Here Query is a non-terminal that describes a SQL
query (the production rules for Query are not shown). In
addition to a persistent schema, an AUnit can have a local

schema (line 10). The data stored in the local schema is ini-
tialized when a new instance of an AUnit is activated, by
evaluating a local query (line 11). The data stored in the lo-
cal schema is private to a specific instance and is not shared
between instances. When an AUnit instance is deactivated,
the data in its local schema is destroyed. Another way to
view them is that local schema captures session states that
are private to each instance in a single user session and per-
sistent schema represents the shared states that can be ac-
cessed and updated by multiple instances in difference ses-
sions.

MiniCMS Example: Consider the CMSRoot AUnit in Fig-
ure 4. CMSRoot has an input schema (line 2) that specifies
the name of a user logged in to the system. CMSRoot does
not have an output schema since it is the root AUnit. CMS-
Root also has a persistent schema (lines 5-14) that describes
the data that the course management system works with –
courses, students, assignments, etc. The data stored in the
persistent schema is shared among all CMSRoot instances,
hence different users can access that data. Since CMSRoot
does not have a persistent query, all the tables in the persis-
tent schema are initially empty. CMSRoot does not have a
local schema.

As another example, consider the CourseStudent AUnit
in Figure 5. CourseStudent captures the application logic
for a student in a course, who can view grades and manage
his or her groups. CourseStudent takes in the student id, the
set of course assignments (lines 2-5), and course group in-
formation (lines 6-10) as input, and returns the new course
group information (lines 6-10) as output.
3.3.2. Activators: Overview Continuing our discussion
of the grammar in Figure 3, AUnits can have zero or more
activators (line 13). Activators are used to control (1) how
child AUnit instances are activated, (2) how a return of a
child AUnit instance is processed, and (3) how child AU-
nits are reactivated after a child AUnit return has been
processed. These three tasks correspond to the activation
phase, the return phase, and the reactivation phase, re-
spectively. The activation and reactivation of child AU-
nit instances is specified declaratively using an “activation
query” (to be described soon), which enables Hilda to au-
tomatically detect application level conflicts. The return of
child AUnit instances are also processed declaratively using
SQL-based “handlers”. We now describe the three phases.
3.3.3. Activators: Activation Phase As shown in Fig-
ure 3, each activator contained in an AUnit has a name,
ActName, which is unique within the scope of the con-
taining AUnit. Each activator also specifies the name of
the child AUnit, AUnitName, whose instances it activates
(line 16). Each Activator also has an activation schema (line
17) and an activation query (line 18). An activation schema
is a relational schema that contains exactly one table (the
table can contain any number of columns). The activation



1: AUnit CMSRoot

// Obtain the name of the user as input
02 input schema { user(name:string) }

03// Store information about admins, courses, students, etc.
04// Initially, all tables are empty.
05 persist schema {
06 course(cid:int, cname:string)
07 staff(sid:int, cid:int, sname:string, role:string)
08 student(sid:int, cid:int, sname:string)
09 assign(aid:int, cid:int, name:string, rel:date, due:date)
10 problem(pid:int, aid:int,name:string,weight:float)
11 group(gid:int, aid:int)
12 groupmember(gmid:int, gid:int, sid:int, grade:float)
13 invitation(iid:int, gid:int, invitersid:int, inviteesid:int)
14 }

15 // Activator to activate a student AUnit for each course.
16 // Each student can place, withdraw, accept invitations
17 // from other students to form a group
18 activator ActCourseStudent : CourseStudent {
19 activation schema { acourse(cid:integer) }
20 activation query {
21 SELECT C.cid
22 FROM course C, student S, user U
23 WHERE C.cid = S.cid AND S.sname = U.name
24 }
25 // Prepare the assignments corresponding to the course
26 input query {
27 Student.invitation :-
28 SELECT G.*
29 FROM assign A, group G, invitation I,
30 Student S, user U
31 WHERE A.cid = activationTuple.cid
32 AND A.aid=G.aid
33 AND G.gid=I.gid
34 AND S.sname=U.name
35 AND (I.invitersid=S.sid OR I.inviteesid=S.sid)
36 ...
37 }
38 handler UpdateInv {
39 action{
40 //update assignment
41 invitation :-
42 SELECT *
43 FROM invitation I
44 WHERE I.iid not in
45 (SELECT * FROM Student.in.invitation)
46 UNION
47 SELECT *
48 FROM Student.out.invitation
49 }
50 }
51 }

52 ... (similarly for course staff, system admin, etc.)

Figure 4. The CMSRoot AUnit

query produces a set of tuples that conform to the activa-
tion schema; the activation query can refer to the tables in
the containing AUnit’s input schema, local schema and per-
sistent schema. Whenever an instance of an AUnit is acti-
vated, each activator contained in the AUnit is processed as
follows: for each tuple produced by the activation query, a
child AUnit instance is activated. This enables an activator
to activate multiple child AUnit instances.

Each activator also has an (optional) input query (line
19), which is used to compute the input for each activated

1: AUnit CourseStudent

02 input schema {
03 curstudent(sid:int)
04 assign(aid:int, name:string, release:date, due:date)
05 }
06 inout schema {
07 group(gid:int, aid:int)
08 groupmember(gmid:int,gid:int,sid:int,grade:float)
09 invitation(iid:int,gid:int,invitersid:int,inviteesid:int)
10 }
11 // Show the student’s grades for each assignment
12 activator ActShowGrades : ShowRow(string,float) {
13 activation schema {
14 agrade(aid:int,assignname:string,grade:int) }
15 activation query {
16 SELECT A.aid, A.name, GM.grade
17 FROM groupmember GM, student S,
18 assign A LEFT OUTER JOIN
19 Group G ON A.aid = G.aid
20 WHERE G.gid = GM.gid and GM.sid = S.sid
21 }
22 input query{
23 ShowTable.input :-
24 SELECT activationTuple.assignname,
25 activationTuple.grade
26 }
27 }
28 // Withdraw an invitation
29 activator ActWithdrawInv : SelectRow(int,int) {
30 activation schema {
31 aassign(iid:int,inviteesid:int) }
32 activation query {
33 SELECT I.iid, I.inviteesid
34 FROM invitation I, curstudent S
35 WHERE I.invitersid = S.sid
36 }
37 input query {
38 SelectRow.input :-
39 SELECT activationTuple.iid,
40 activationTuple.inviteesid
41 }
42 return handler {
43 //delete the invitation we withdrew
44 invitation :-
45 SELECT *
46 FROM invitation I, SelectRow.output O
47 WHERE I.iid <> O.iid
48 }
49 }
50 // Accept an invitation
51 activator ActAcceptInv : SelectRow(int,int) {
52 activation schema {
53 aassign(iid:int,invitersid:int) }
54 activation query {
55 SELECT I.iid, I.invitersid
56 FROM invitation I, curstudent S
57 WHERE I.inviteesid = S.sid
58 }
59 input query {
60 SelectRow.input :-
61 SELECT activationTuple.iid,
62 activationTuple.invitersid
63 }
64 return handler {
65 //delete the invitation accepted
66 ...
67 //update group, groupmember tables ...
68 ...
69 }
70 }

71 ... (place, decline invitations, etc.)

Figure 5. Student AUnit.



child AUnit instance. The input query can refer to the ta-
bles in its containing AUnit’s input schema, local schema,
and persistent schema. In addition, the input query can re-
fer to a special table called activationTuple. The ac-
tivationTuple table has the same schema as the activation
schema. Consider a child AUnit instance X that is activated
since there exists a tuple x in the activation schema. The ac-
tivationTuple table for that child AUnit contains exactly x.
Thus, the contents of the activationTuple table are different
for each child AUnit, so activationTuple can be used to tai-
lor the input for a given child AUnit instance based on its
associated tuple in the activation query.

Note that the above process, whereby an AUnit instance
recursively activates child AUnit instances, creates a tree of
active AUnit instances, with the root of the tree being an in-
stance of the root AUnit. We refer to this tree as an activa-
tion tree and use the term parent AUnit instance to denote
the parent of an AUnit instance in the activation tree. We re-
fer to the set of activation trees corresponding to all active
root AUnit instances as the activation forest.

MiniCMS Example: When a user first connects to
MiniCMS, a new user session is created by activat-
ing a new instance of CMSRoot, the root AUnit. Fig-
ure 6 Session 1, shows the activation tree of a new instance
of CMSRoot. When a new instance of CMSRoot is acti-
vated, CMSRoot uses its activators – ActCourseStudent
(lines 18-51) and other activators (not shown) – to acti-
vate child AUnit instances. The ActCourseStudent activator
is used to activate instances of the CourseStudent AU-
nit (line 18) for each course for which the current user
is a student. This activation is controlled by the activa-
tion schema (line 19), which contains the ids of the relevant
courses, and the activation query (lines 20-24), which pro-
duces the ids of all courses for which the current user
is an administrator. The input query (lines 26-37) pro-
duces the input (i.e., information about the student groups)
for each activated CourseStudent instance.

Each activated CourseStudent AUnit (Figure 5) instance
recursively activates child AUnit instances using its activa-
tors: ActShowGrades (lines 12-27), which shows the stu-
dent grades, ActWithdrawInv (lines 29-49), which allows
the student to withdraw outstanding invitations, and ActAc-
ceptInv (lines 51-70), which allows the student to accept in-
vitations. Again, the activation query associated with these
handlers declaratively specifies the condition under which
the child AUnit instances are to be activated.

Figure 6 shows the activation forest that results when
two students connect to CMS in separate sessions. In Ses-
sion 1, the set of course ids for which the current
user is a student is {10, 11} (this information is com-
puted from the data in the persistent tables, part of which
are shown in the figure). For each of these course ids,
a new instance of the CourseStudent AUnit is acti-

Figure 6. Activation Phase

Figure 7. Reactivation Phase

vated. Each CourseStudent AUnit instance recursively
activates child AUnit instances for displaying grades, ac-
cepting invitations and withdrawing invitations, as shown
in the figure. The activation phase for Session 2 is simi-
lar. Note that the different instances of CMSRoot share the
same persistent schema (by definition of the scope of per-
sistent schemas).
3.3.4. Activators: Return Phase The return phase is ini-
tiated when a Basic AUnit instance returns. Since Basic AU-
nits deal with Input/Output functions, the return phase is
typically initiated by a user action such as selecting a row.
When a Basic AUnit instance returns, its output is processed
by an activator handler. The handler can perform certain ac-
tions and can (optionally) cause the parent AUnit instance



(of the returning AUnit instance) to return, recursively. Af-
ter all returns have been processed, the return phase ends
and the system transitions to the re-activation phase (dis-
cussed in the next section).

Returning to Figure 3, the return of a child AUnit in-
stance is processed by zero or more Handlers in the acti-
vator that activated the child AUnit instance (Figure 3, line
20). Each handler has a name, HandlerName (line 24),
which is unique within the scope of the containing activa-
tor. Each handler also has an (optional) condition (line 25)
and an action (line 26). Whenever a child AUnit instance
returns, the conditions of all the handlers contained in the
activator are checked. One of the handlers whose condi-
tion evaluates to true is non-deterministically chosen and
its action is performed. Then, if the handler has the key-
word return (line 24), the enclosing AUnit also returns
and its return is recursively processed. If the handler does
not have the keyword return, then the system enters the
re-activation phase. The action of a handler is specified as
an Assignment. The queries in the Assignment can re-
fer to the same tables as the query in the condition. The ac-
tion of a return handler can modify only the tables in the
persistent schema and output schema of the containing AU-
nit. The action of a non-return handler can modify only the
tables in the local schema and persistent schema of the con-
taining AUnit.

MiniCMS Example: Consider the activation forest in Fig-
ure 6 and assume that the user in Session 1 wishes to with-
draw an invitation and causes the Basic AUnit instance with
ID 20 to return. This return will be processed by the appro-
priate handlers (Figure 5, lines 42-48, Figure 4, lines 38-50),
which will cause the invitation to be removed from the per-
sistent schema.

3.3.5. Activators: Reactivation Phase As described
above, during the return phase, the activator handlers along
the branch of the activation tree that returns can change
the contents of the local and persistent schemas. Conse-
quently, the activation forest has to be “reactivated” so that
it is consistent with the new schema contents. The reacti-
vation phase is similar to the activation phase, with special
semantics to deal with local schema values and with con-
current user actions. Specifically, suppose AUnit instance
a did not return and its activation tuple (in the parent AU-
nit instance) remains present during reactivation, then
instance a is said to be preserved across the reactiva-
tion and its local schema remains unchanged. The intuitive
reason is that an AUnit instance should not lose its tem-
porary state as long as its activation is not affected by the
return of a different AUnit instance.

For concurrent user actions, Hilda guarantees a correct-
ness notion analogous to database serializability: the result-
ing activation forest and user output are as though the ac-
tions were performed in some serial order. A subtle issue

arises here: although two (or more) user actions may be
valid in a given activation forest, only one of them may be
valid in any serial processing of these actions. For exam-
ple, consider a student A who has invited a student B to join
his group. Two actions are possible in this activation forest:
A can withdraw the invitation to B, or B can accept A’s invi-
tation. However, if both these actions are submitted concur-
rently, only one of them can complete successfully (since
either of them invalidates the other). A similar situation oc-
curs if A withdraws the invitation to B, but B has still not
refreshed her page and tries to accept the invitation.

One of the advantages of Hilda is that it can automati-
cally detect such application-level conflicts. The key to de-
tecting such conflicts lies in using the activator conditions
of AUnit instances. If an AUnit instance is deactivated (due
to an update that causes its activator condition to be false),
then pending actions on the AUnit instance cannot be per-
formed since the AUnit is not preserved during reactivation.
For instance, after Student 1 withdraws the invitation to Stu-
dent 2 in Figure 6, the activation forest is updated appropri-
ately (Figure 7) so that Student 2 can no longer accept the
invitation from Student 1.

We note that the above semantics of Hilda relaxes the tra-
ditional notion of serializability. Two Basic AUnit instance
returns (transactions) are said to conflict iff one Basic AU-
nit instance return violates the activator condition of the
other Basic AUnit instance (or any of its ancestors). Hilda’s
notion of correctness thus specifies conflicts in terms of
application-level conditions (which are automatically in-
ferred from activator conditions) and can be viewed as a
specific extended transaction model [10, 20, 23, 25] that is
tailored to data-driven web applications. Note that the pro-
cessing of the activation-return-reactivation phases of user
actions are still fully serializable since the actions are (log-
ically) performed one after the other; the application-level
conditions are used only to check whether a user action is
still valid after updates to the activation forest.

3.4. AUnits: Inheritance
Like conventional object-oriented languages, Hilda sup-

ports a notion of inheritance for extending the functionality
of AUnits. Hilda inheritance can be used to add new appli-
cation logic and also (as we shall see) to specify the struc-
ture of an application web site. We use the term extended
AUnit to refer to an AUnit that uses inheritance, and we use
the term base AUnit to refer to the AUnit from which an ex-
tended AUnit inherits. An extended AUnit inherits all the
schemas from its base AUnit. An extended AUnit also in-
herits all the activators from the base AUnit. In addition, an
extended AUnit can add new activators and extend existing
activators in the base AUnit. An activator in a base AUnit
can be extended in two ways: (1) by adding new handlers,
and (2) by filtering the set of activation tuples so that only a
subset of the child AUnit instances are activated. The filter-



01) ExtendedAUnit ->
02) ’AUnit’ AUnitName:STRING
03) ’extends’ BaseAUnitName:STRING ’{’
04)
05) [’input’ ’schema’ ’{’ Schema ’}’]
06) [’output’ ’schema’ ’{’ Schema ’}’]
07) [’inout’ ’schema’ ’{’ Schema ’}’]
08)
09) [’persist’ ’schema’ ’{’ Schema ’}’]
10) [’persist’ ’query’ ’{’ Assignment* ’}’]
11)
12) [’local’ ’schema’ ’{’ Schema ’}’]
13) [’local’ ’query’ ’{’ Assignment* ’}’]
14)
15) (Activator | ExtendedActivator)* ’}’
16)
17) ExtendedActivator ->
18) ’extend’ ’activator’ BaseActName:STRING ’{’
19) [’filter’ ’activation’ ’{’ Query ’}’]
20) Handler* ’}’

Figure 8. Grammar for AUnit Inheritance.

ing of the set of activation tuples is specified as a query that
returns a non-empty set iff the current activation tuples cor-
responds to a child AUnit instance that should be activated.
Such filtering is usually used to structure the web site by se-
lecting the child AUnit instance that should be presented to
a user at a given time.

MiniCMS Example: Consider the NavCMS AUnit in
Figure 9. NavCMS inherits from CMSRoot and structures
it as a web site that only shows the currently active course
selected by the user (recall that CMSRoot activates all rel-
evant courses). NavCMS adds this new functionality by
defining its own local schema to store information about the
currently active course (line 2). It also defines a new activa-
tion handler to get user input on the current active course
(lines 4-11). In addition, it extends the ActCourseStudent
activator (Figure 4, line 18) in CMSRoot so that the Cours-
eStudent child AUnit is only activated for the currently ac-
tive course; this condition is specified in the activation filter
query (Figure 9, lines 13-17), which returns a non-empty re-
sult only for the current active course.

3.5. The Hilda Semantics
We have developed a formal semantics [28] for the Hilda

language and we present the main aspects here. An impor-
tant requirement for the semantics is to deal formally with
issues of application consistency and concurrency control,
thus providing correctness criteria for some of the optimiza-
tions discussed below. The semantics is based on execution
histories [4], where the set of acceptable histories yields a
correctness criterion analogous to serializability.

The semantics is based on a formalization of the notions
of AUnit instances, activation trees, activation and reacti-
vation. Let a denote an instance of some AUnit A, as de-
scribed informally in Section 3.2. A Hilda application state
S is just a forest of AUnit instances. We write a ∈ S when
a is an instance contained in S. Recall from the descrip-
tion of reactivation (Section 3.3.5) that AUnit instance a

1: Aunit NavCMS extends CMSRoot

// Keeps track of the currently active course
02 local schema { currcourse(cid:integer) }

03 //Allows user to select from list of courses
04 activator ActSelectCourse : SelectRow(integer,string){
05 input query {
06 SelectRow.input :- SELECT * FROM course
07 }
08 handler {
09 currcourse :- SELECT O.1 FROM SelectRow.output
10 }
11 }

12 activator extending ActCourseStudent {
13 filter activation {
14 SELECT *
15 FROM currcourse CC
16 WHERE activationTuple.cid = CC.cid
17 }
18 }

19 ... (similarly for showing admin courses, etc.)

Figure 9. NavCMS inherits from CMS

punit ShowNavCMS for NavCMS {
<body bgcolor="yellow">

<hr>
<punit activator=’’ActSelectRow’’

name=’’ShowSelectRow’’>
<hr>
<punit activator=’’ActCourseAdmin’’

name=’’ShowCourseAdmin’’>
<hr>
...

</body>
}

Figure 10. PUnit example

may be preserved across multiple reactivation phases. Thus,
in a state sequence S1, S2, . . . , Sn we may have a ∈ Si,
a ∈ Si+1, . . . , a ∈ Sj .

We define an operation to be a pair op = (a, S), where
a is an instance of some basic AUnit A and a ∈ S. In-
tuitively, the operation (a, S) represents an attempted re-
turn from a in state S. We next define a state transition
function apply : State × Op → State, representing the ef-
fect of a particular operation performed on the applica-
tion state; apply captures the effect of an instance return
on all local, output, input and persistent tables. The rela-
tion allowable : State × Op holds on (S, (a, S ′)) when-
ever (a, S ′) is an operation that could be performed (re-
turned) in state S. Intuitively, allowable(S, (a, S ′)) reflects
a decision to perform a return of AUnit instance a in state S
even though the user requesting this operation believed the
state to be S ′. Clearly, we must require that a ∈ S ′ is a ba-
sic AUnit instance and that a ∈ S.

With this mechanism, we can define an execution history



to be a pair H = (SE,�), where
• SE = [(Si, SOi) | 1 ≤ i ≤ n] is a sequence of (state,

operation set) pairs.
• � is a partial order on operations consistent with SE,

satisfying
∀i, j, op1, op2(((i < j) ∧ (op1 ∈ S1) ∧ (op2 ∈ S2))

⇒ ¬(op2 � op1))

Intuitively, � does not violate the ordering of states.
An execution history is said to be correct if there is a se-

quential ordering of requested operations that is consistent
with the history. Formally, there must exist op1, . . . , opn

such that
• ∀j : 1 ≤ j ≤ n : opj ∈ ((∪j−1

i=0 (SOi) −
∪j−1

i=1 ({opi})) ∩ allowable(Si))
• ∀j : 1 ≤ j ≤ n : ∀op ∈ ((∪j−1

i=0 (SOi) −
∪j−1

i=1 ({opi})) ∩ allowable(Si)) ¬(op � opj)
• ∀j : 1 ≤ j ≤ n : Sj+1 = apply(Sj, opj)
The above definition yields a property analogous to seri-

alizability for concurrent execution of Hilda programs. This
definition will enable us to prove the correctness of the
cross-layer caching optimizations discussed in Section 4.
3.6. PUnits

AUnits use a unified model to describe the application
logic and the structure of the application website. However,
AUnits do not specify presentation details, such as back-
ground colors and the page layout in the web browser. In
Hilda, such details are specified using PUnits (for presenta-
tion units). This enforces the separation of application logic
from presentation.

Hilda associates one or more Basic PUnits with each Ba-
sic AUnit. Each Basic PUnit describes how a Basic AUnit
is to be displayed. For example, the SelectRow Basic AU-
nit can have one or more Basic PUnits that specify how Se-
lectRow is to be presented to the user (e.g., as form entries
or pull-down menus).

Hilda allows users to develop User-Defined PUnits. Each
User-Defined PUnit is associated with a User-Defined AU-
nit and has embedded HTML code that generates part of the
HTML page corresponding to that AUnit. Since each web
page is composed of a hierarchical tree structure of nested
AUnit instances, the User-Defined PUnits associated with
User-Defined AUnits can render their part of the page, and
recursively invoke the PUnits associated with the child AU-
nits to build the remaining part of the HTML page. This
idea of recursively building up presentation units is simi-
lar to the technique proposed in [22].

MiniCMS Example: An example User-Defined PUnit
specification for MiniCMS is given in Figure 10. The
ShowNavCMS PUnit is associated with the NavCMS AU-
nit. The PUnit has embedded HTML code to set the
page background and draw horizontal lines (<hr>) on
the page. In addition, it uses the <punit> tag to in-
voke other PUnits – ShowSelectRow, ShowCourseStudent

– to build up the HTML page. In this example, ShowS-
electRow is the PUnit associated with the SelectRow
AUnit, which is invoked by the ActSelectRow activa-
tor of NavCMS. ShowCourseStudent is similarly associ-
ated with the CourseStudent AUnit, which is invoked by
the ActCourseStudent activator.

4. Hilda Compiler
We have developed a simple proof-of-concept Hilda

compiler (without optimizations), which translates a Hilda
program into executable code. The compiler takes in a Hilda
program and generates two outputs: the first output is a set
of scripts to create tables in a relational database, and the
second output is Java Servlet code that can be run in an ap-
plication server. The generated application runs in a stan-
dard three-tier architecture with a client browser, an appli-
cation server, and a relational database. Using this compiler,
we have developed a simple CMS application available at
http://www.cs.cornell.edu/database/hilda.

Although our Hilda compiler uses the standard three-
tier architecture to implement an application program, the
Hilda program itself uses a unified model for all layers of
the application. This opens up an opportunity for the com-
piler to perform cross layer optimizations, i.e., automati-
cally choose the layer at which certain pieces of applica-
tion logic should reside and optimize the interactions be-
tween layers. We now list some of the specific cross-layer
optimizations we are currently building into our compiler.

Client-Server Code Partitioning. For many applications,
it may be more efficient to do certain tasks at the client
(browser) instead of at the server. For example, for assign-
ment creation in CMS, a Hilda compiler can decide to cache
user input and perform data validation (such as the due date
occurring after the release date) at the client, thereby min-
imizing network traffic. This strategy is possible because
the data associated with a newly created assignment does
not conflict with any other data. Since the Hilda program
is declaratively specified, the Hilda compiler can automat-
ically detect this absence of data conflicts and partition the
program accordingly, without burdening the application de-
veloper with such details.

Data Caching. There are various opportunities for precom-
puting data. In CMS, read-mostly data such as student
grades can be cached and incrementally maintained at the
client side to avoid frequent round-trips and reduce the load
on the back-end database server. As another example, en-
tire HTML pages or fragments of pages that contain read-
mostly data, such as course overview pages, can be cached
to avoid the overhead of building the HTML pages for every
access [27]. Since Hilda uses a unified model for all layers
of the application, a Hilda compiler can transparently de-
cide to cache data so as to improve performance.

Application Concurrency Control. To avoid inconsistent ap-



plication states, certain conditions need to be checked at the
application server before an update operation is performed
on the database. For instance, in our CMS group exam-
ple (Section 2), various conditions such as dropped assign-
ments, withdrawn invitations, etc. need to be checked be-
fore a student can accept or decline an invitation. Since such
conditions are specified declaratively in Hilda using activa-
tion queries, the application server logic can optimize how
this condition is to be checked based on query and update
workloads, e.g., using locks, optimistic concurrency con-
trol, or triggers.

5. Related Approaches
Many tools have been developed to simplify the develop-

ment of the four conceptual layers (see Section 1) of data-
driven web applications.
Commercial tools. Sun’s Java 2 Platform, Enterprise Edi-
tion (J2EE) with Enterprise JavaBeans (EJBs), JSP and Java
Servlets, Microsoft’s .NET including ASP.NET, and script-
ing languages like PHP are representative examples of pow-
erful commercial tools for building Web applications. Other
tools for designing web sites and HTML pages are sur-
veyed by Fraternali [17]. Such tools typically use a rela-
tional database for the database layer, use objects (such as
J2EE) and dispatchers to object methods (such as the Model
View Controller [2, 12, 19]) for the application logic layer,
use a scripting language (such as JavaScript) and HTML
links for specifying the web site structure, and use style
sheets such as CSS for specifying web site appearance. The
main drawback of these approaches is that they do not pro-
vide a unified model for all layers of applications, are not
declarative, do not use structured programming for web
sites and do not provide systematic methods to deal with
application-level conflicts.
Declarative approaches. A variety of research prototype
systems has been proposed with the common goal of sup-
porting web application development at a higher level of ab-
straction. Strudel [16] defines the content of web pages in
StruQL, a declarative language which can access and in-
tegrate semi-structured data sources and generate web site
graphs. However, Strudel only supports read-only opera-
tions, but no database updates.

WebML [7, 9] is a powerful and declarative web appli-
cation development language which shares many common
goals with Hilda. WebML provides sophisticated tools for
specifying the organization of persistent data, navigational
structure, and query/update operations. At its core, WebML
extends UML with the concept of “links”, which mirror
the structure of a web site. The web site is then declar-
atively specified in this model using a GUI. Hilda differs
from WebML in three aspects, which we believe are impor-
tant especially for large application programs.

First, WebML does not fully separate web site struc-
ture from application logic; application logic is embedded

as special boxes in the web site graph [7]. Consequently,
the control flow of an application is similar to program-
ming with goto statements (links), which makes it difficult
to create and maintain large programs. Further, since the
application logic is tightly coupled with the web site struc-
ture, it is difficult to develop multiple web site structures
for the same application logic. In contrast, Hilda supports a
more structured programming model, whereby each AUnit
instance only communicates with its parent and child AU-
nit instances. Further, Hilda uses AUnit inheritance to sepa-
rate application logic from web site structure.

Second, WebML only provides a limited form of code
reuse and code abstraction. Specifically, WebML does not
provide a declarative way to create complex “functions”,
which capture complex parts of the application logic and
can possibly be reused in multiple places. Instead, all com-
plex application logic is directly embedded in the web site
graph as a sequence of simple operation units, and this se-
quence has to be replicated if it is used in multiple places
(unless the sequence is specified non-declaratively as a sim-
ple operation unit, in which case the declarative benefits are
lost). Hilda, on the other hand, supports encapsulation and
code reuse using AUnits. Specifically, each AUnit is declar-
ative, fully encapsulates its functionality, and can be reused
in multiple places.

Finally, WebML does not provide support for declara-
tively specifying and detecting application-level conflicts.
In contrast, Hilda uses the activation tree to capture the al-
lowable operations in the current state, and uses this set of
allowable operations to detect application-level conflicts.

Abstract State Machines and relational transducers are
powerful approaches for describing and validating comput-
ing systems [1, 21] and there has been related work on
formally specifying workflows and verifying their proper-
ties [13, 26]. Recently proposed new standards for describ-
ing various aspects related to Semantic Web Services, in-
cluding a Web Services Modeling Language (WSML) [3],
fit into this context as well. This work is related to Hilda in
that it models application execution as a sequence of states,
and declaratively specifies actions that are possible in each
state. Hilda takes this work a step further by providing a
complete programming language (Hilda programs are com-
piled into executable web applications), which is tailored to
building data intensive web applications by providing fea-
tures such as persistence, AUnits with sophisticated support
for application conflict detection and PUnits.
Industrial standards. There is growing interest in the in-
dustry to separate business and application logic from
the underlying platform technology. A major emerg-
ing standard is Model Driven Architecture (MDA) [24].
MDA defines different levels of abstraction and well-
defined transformations between them. A number of
major database vendors like IBM and Oracle support



MDA and data-driven application development ([8, 14],
http://www.oracle.com/technology/products/designer).
MDA is a programming methodology rather than an ac-
tual programming language. Hilda, on the other hand, is
a programming language that can use the MDA program-
ming methodology.

6. Conclusion and Future Work
We have presented Hilda, a high-level declarative lan-

guage for developing data-driven web applications. Hilda
offers many benefits for application developers, including
providing a unified model for all layers of the application,
providing a structured programming paradigm for devel-
oping websites, and providing support for application con-
flict detection. We have also developed a proof-of-concept
Hilda compiler, which can translate Hilda programs into ex-
ecutable code, and have used it to generate code for a sim-
ple course management application.

We note that Hilda is not a general-purpose program-
ming language for developing arbitrary applications; rather,
it is specifically designed for developing data-driven web
applications. Hilda achieves this goal by tightly integrat-
ing with the data model and declarative query language of
the underlying database system. While we have used the re-
lational model and SQL in this paper, Hilda could be ex-
tended to use other data models and associated query lan-
guages e.g. XML and XQuery.

As with all new programming languages, we expect that
programmers learning to program in Hilda will have a learn-
ing curve. However, the fact that Hilda has only a few sim-
ple constructs and offers many potential benefits might help
ease this transition. We are also working on a GUI devel-
opment interface based on the Hilda constructs to enable
rapid program development as in WebML [7, 9]. It is an
open question at this point as to whether the potential ben-
efits of Hilda offset the overhead of switching to a new lan-
guage.

Our current focus is on developing an optimizing Hilda
compiler, which can exploit the declarative nature of Hilda
language specifications to generate high-performance appli-
cation code. We are extending the language to provide bet-
ter ways of specifying work flow and are also using Hilda to
develop more applications to illustrate its usability and ex-
pressiveness.
References
[1] S. Abiteboul et al. Relational transducers for electronic com-

merce. In Proc. PODS, pages 179–187, 1998.
[2] D Alur et al. Core J2EE Patterns: Best Practices and Design

Strategies. Prentice Hall, 2001.
[3] S. Arroyo et al. Web Service Modeling Ontology Primer,

June 2005. W3C submission.
[4] P. Bernstein and others. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, 1987.
[5] G. Booch et al. The Unified Modeling Language User

Guide,The Addison-Wesley Object Technology Series. Ad-
dison Wesley, 1998.

[6] C. Botev et al. Supporting workflow in a course management
system. In Proc. SIGCSE, 2005.

[7] M. Brambilla and others. Declarative specification of web
applications exploiting web services and workflows. In Proc.
SIGMOD, pages 909–910, 2004.

[8] A. W. Brown. An introduction to model driven architecture.
The Rational Edge, February 2004. e-zine for the Rational
community.

[9] S. Ceri et al. Architectural issues and solutions in the devel-
opment of data-intensive web applications. In Proc. CIDR,
2003.

[10] Panos K. Chrysanthis and Krithi Ramamritham. Synthe-
sis of extended transaction models using acta. ACM TODS,
19(3):450–491, 1994.

[11] E. F. Codd. A relational model of data for large shared data
banks. CACM, 13(6):377–387, 1970.

[12] M. Davis. Struts, an open-source mvc im-
plementation. February 2001, http://www-
106.ibm.com/developerworks/library/j-struts/?n-j- 2151.

[13] H. Davulcu et al. Logic based modeling and analysis of
workflows. In Proc. PODS, pages 25–33, 1998.

[14] P. M. Deshpande et al. Model driven development of con-
tent management applications. In Proc. COMAD, pages 112–
121, 2005.

[15] E. W. Dijkstra. Letters to the editor: go to statement consid-
ered harmful. CACM, 11(3):147–148, 1968.

[16] M. F. Fernandez et al. Declarative specification of web sites
with strudel. The VLDB Journal, 9(1):38–55, 2000.

[17] P. Fraternali. Tools and approaches for developing data-
intensive web applications: A survey. ACM Computing Sur-
veys, 31(3):227–263, 1999.

[18] P. Fraternali and P. Paolini. Model-driven development
of web applications: The AutoWeb system. ACM TOIS,
18(4):323–382, 2000.

[19] E. Gamma et al. Design Patterns - Elements of Reusable Ob-
ject Oriented Software. Addison Wesley, 1995.

[20] H. Garcia-Molina and K. Salem. Sagas. In Proc. SIGMOD,
1997.

[21] Y. Gurevich. Abstract state machines: An overview of the
project. In Proc. FoIKS, pages 6–13, 2004.

[22] D. R. Karger et al. Haystack: A general-purpose information
management tool for end users based on semistructured data.
In Proc. CIDR, pages 13–26, 2005.

[23] J. Moss. Log-based recovery for nested transactions. In Proc.
VLDB, 1987.

[24] Object Management Group. MDA Guide Version 1.0.1, 2003.
Available at http://www.omg.org/docs/omg/03-06-01.pdf.

[25] H. Wachter and A. Reuter. The contract model. Database
Transaction Models for Advanced Applications, 1992.

[26] D. Wodtke and G. Weikum. A formal foundation for dis-
tributed workflow execution based on state charts. In Proc.
ICDT, pages 230–246, 1997.

[27] K. Yagoub et al. Caching strategies for data-intensive web
sites. In Proc. VLDB, pages 188–199, 2000.

[28] F. Yang et al. Hilda: A high-level language for data-driven
web applications. Technical report, Cornell University, 2005.
http://www.cs.cornell.edu/database/hilda/.


