WaveScheduling: Energy-Efficient Data Dissemination
for Sensor Networks

Niki Trigoni! Yong Yao!

Alan Demers!

Johannes Gehrke!

Rajmohan Rajaraman?

!Department of Computer Science, Cornell University
2College of Computer and Information Science, Northeastern University

Abstract

Sensor networks are being increasingly deployed
for diverse monitoring applications. Event data
are collected at various sensors and sent to se-
lected storage nodes for further in-network pro-
cessing. Since sensor nodes have strong con-
straints on their energy usage, this data trans-
fer needs to be energy-efficient to maximize net-
work lifetime. In this paper, we propose a novel
methodology for trading energy versus latency
in sensor database systems. We propose a new
protocol that carefully schedules message trans-
missions so as to avoid collisions at the MAC
layer. Since all nodes adhere to the schedule,
their radios can be off most of the time and
they only wake up during well-defined time in-
tervals. We show how routing protocols can
be optimized to interact symbiotically with the
scheduling decisions, resulting in significant en-
ergy savings at the cost of higher latency. We
demonstrate the effectiveness of our approach
by means of a thorough simulation study.

1 Introduction

Sensor networks consisting of small nodes with sensing,
computation and communication capabilities are becom-
ing ubiquitous. A powerful paradigm that has emerged
recently views a sensor network as a distributed Sensor-
DBMS and allows users to extract information by in-
jecting declarative queries in a variant of SQL. In de-
ploying a SensorDBMS one should consider important
limitations of sensor nodes on computation, communi-
cation and power consumption. Energy is the most
valuable resource for unattended battery-powered nodes.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and no-
tice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

Since radio communication consumes most of the avail-
able power, SensorDBMSs need energy-efficient data-
dissemination techniques in order to extend their life-
time. An important communication pattern within sen-
sor networks is the sending of sensor readings to a desig-
nated sensor node. Let us give two examples where this
pattern arises. First, consider a heterogeneous sensor
network with two types of sensor nodes: many small-
scale source nodes with low-power multi-hop communi-
cation capabilities, and a few powerful gateway nodes
connected to the Internet. In this setup, data flows from
the sources to the gateway nodes. Our second exam-
ple is motivated by resource savings through in-network
processing. In-network processing algorithms coordinate
data collection and processing in the network at desig-
nated nodes called view nodes [1, 2]. Data flows from
sources to relevant view nodes for further processing.
In order to achieve energy-efficient data flows between
sources and view nodes, we address several challenges
intrinsic to ad hoc network communication: minimizing
collisions at the MAC layer, managing radios in a power-
efficient manner, and selecting energy-efficient routes. In
this paper we consider data dissemination strategies that
avoid collisions (and message retransmissions) at the cost
of higher message latency. We carefully coordinate trans-
missions between nodes allowing them to turn off their
radios most of the time. Since current generation radios
consume nearly as much power when listening or receiv-
ing as when transmitting [3, 4, 5], the ability to turn
them off when not needed yields significant energy sav-
ings. (The idle:receive:transmit ratios observed in these
studies are 1:1.2:1.7 [3], 1:2:2.5 [4], and 1:1.05:1.4 [5].)
The remainder of this paper is organized as follows.
Section 2 enumerates several variants of scheduling prob-
lems and discusses their complexity. Section 3 presents
our scheduling algorithm and highlights its close inter-
action with the routing layer. A thorough experimental
evaluation of the proposed algorithm and competing ap-
proaches is presented in section 4. We discuss related
work in section 5 and draw our conclusions in section 6.

2 Problem space

With coordinated scheduling, a data dissemination pro-
tocol in a sensor network has two components: a schedul-

ing algorithm that activates network edges such that
their transmissions do not interfere with one another
and a routing algorithm for selecting routes for individ-
ual messages. Two important performance metrics are
energy consumption and latency. In this section, we
sketch complexity results for the following optimization
problems with respect to both energy consumption and
latency metrics: (i) finding an optimal pair of routing
and scheduling algorithms; (ii) finding an optimal rout-
ing algorithm for a given schedule; (iii) finding an opti-
mal schedule for a given collection of routes. The proofs
of the following complexity results can be found in [6].
Energy minimization. In the energy minimization
problem, we are given a communication workload among
the sensor nodes and view servers, and our goal is to
determine a data dissemination scheme that minimizes
the energy consumed in delivering all messages within a
bounded delay. In our model, we assume that the energy
consumed when a network edge is activated is (a+ 8m),
where « is a fized start-up cost for turning the radio on,
[is the per-message transmission and reception cost and
m is the number of messages sent during the activation.

Theorem 2.1 For any a > 0 and B > 0, finding an
optimal routing-scheduling pair to minimize energy 1s
NP-hard, even when there is only one view server.It is
also NP-hard to determine an energy-optimal activation
schedule given a fized set of routes. The problem of find-
ing a set of energy-optimal routes given an activation
schedule can be solved in polynomial time.

Latency minimization. Given a communication
workload, we seek a data dissemination protocol that
minimizes average message propagation latency.

Theorem 2.2 Finding a routing-scheduling pair that
minimizes latency is NP-hard. It is also NP-hard to de-
termine an optimal activation schedule given a fized set
of routes. A set of latency-optimal routes for a given
activation schedule can be obtained in polynomial time.

These results indicate that the general problem of de-
signing an optimal data dissemination protocol, given an
arbitrary sensor workload, is intractable. In this paper,
we focus on one element of the design space, namely that
of first developing an interference-free schedule for edge
activation, and then designing delay- or energy- optimal
routes given this schedule.

3 Wave scheduling and routing

In this section we present wave scheduling, a class of
periodic edge activation schedules, and study the close
interaction between scheduling and routing with respect
to the energy and delay metric. Our scheduling mecha-
nism is layered on top of a protocol like GAF [7], which
partitions nodes into cells and periodically elects a single
leader node for each nonempty cell. Nodes determine the
cell that they belong to by using distributed localization
techniques [8, 9]. The size of each cell is set so that a
node anywhere in a cell can communicate directly with
nodes in any of its four horizontal and vertical neighbor
cells. This constrains the side of a cell to have length

L at most R/+/5, where R is the maximal transmission
range of a node. The proposed wave schedules lever-
age the abstraction of partitioning irregularly positioned
nodes into cells organized in a rectilinear grid; they focus
on reducing energy consumption by coordinating inter-
cell communication. For simplicity, we assume a square
rectilinear grid of N x N nodes. Cell (0,0) is located
at the southwest corner of the network. Cells (i + 1, 5),
(4,7 +1), (i —1,7), and (¢,5 — 1) are the east, north,
west, and south neighbors, respectively, of cell (i, 7).

3.1 Wave Scheduling

Edge activation. In our wave schedules, every (di-
rected) edge of the rectilinear grid is activated peri-
odically at well-defined communication intervals, called
send-receive intervals. The interval between activations
is the same for all edges and is referred to as the period.
An edge activation A — B consists of a contention-based
and a collision-free period. During the contention-based
period, all nodes within cell A turn on their radios in or-
der to run the GAF protocol. If the old leader is energy-
drained, a re-election protocol selects a new leader and
state (routing table and message queue) is transferred
to the new leader. The remaining nodes then send all
readings generated since the previous GAF period to the
new leader. This adapted version of the GAF protocol
avoids interference caused by concurrent leader election
in nearby cells. In the collision-free period leaders of A
and B turn on their radios preparing for inter-cell com-
munication. If A has no data messages to send, it sends
a special NothingToSend (N'TS) message, which allows
both nodes to turn off their radios before the end of the
allotted interval. The node duty cycle is thus adjusted to
local traffic. In the collision-free period a data (or NTS)
message is not preceded by a pair of RTS-CTS messages,
but simply followed by an ACK.

SimpleWave. The intuition behind wave schedules is
to coordinate message propagation in north, east, south
and west phases. For instance, during the east phase,
only edges of the form (i,5) — (¢ + 1,j) are activated
sending messages along the east direction. Owing to in-
terference, however, we cannot schedule all of the edges
along the east direction. If A denotes the ratio of the
interference range to the transmission range, then a suf-
ficient condition for transmissions from two supernodes
(4,7) and (41,71) to avoid interference is the following:
Vi—a—12+(G-i—-1?%L>A-R

In particular, two cells (¢,7) and (¢1,7) can transmit
simultaneously if ¢ — 41 > [A - R/L] + 1, which we de-
note by g. In the SimpleWave schedule, we schedule
together edges that are g positions apart. Figure 1 illus-
trates the SimpleWave schedule on a 10 x 10 network,
with cell size L = 100m, yielding a g of 7. The north
phase starts at time 1 and lasts for 51 send-receive inter-
vals during which every north edge is activated exactly
once. The following east phase starts at time 52. In the
next interval (time 53) the pattern shifts east by one cell.
Only when the wave has propagated to the eighth col-
umn (time 59) it no longer interferes with node commu-
nication in the first two columns. Notice that at time 59
one can schedule four edges concurrently: (7,0) — (8,0),

(7,7) = (8,7), (0,1) = (1, 1) and (0,8) — (1,8).

In a Simple Wave, each phase takes (N —1)+ (g—1)g
send-receive intervals and the entire wave period lasts
for 4((N — 1) + (g9 — 1)g) intervals. This prevents the
distributed deployment of the algorithm in a dynamic
network: when a new cell joins (or leaves) the network,
it affects the wave period and therefore the activation
times of all the other supernodes. Furthermore, every
node needs to know the size of the network. Another
important downside of the Simple Wave algorithm is that
it underutilizes the capacity of the network.

PipelinedWave. This algorithm is motivated by the
need for distributed and scalable schedules that make
good use of network capacity. Conceptually, a network
can be divided in a number of small fixed-size (g X g)
squares, where all squares have exactly the same sched-
ule. In such a network, the schedule of an edge is de-
termined by its relative location in the square. Since
all edges within the same square interfere with one an-
other, we can schedule at most one edge at a time. The
period of the resulting schedule is 4g> send-receive inter-
vals. Two edges are scheduled concurrently if they have
the same direction and the sender nodes have exactly
the same local coordinates within a g x g square. The
Pipelined Wave schedules a maximum number of non-
interfering edges at each send-receive interval.

The Pipelined Wave algorithm has two important
properties: i) it is easily deployable in a distributed man-
ner, since local coordination suffices for scheduling a new
cell and ii) it is scalable, because node schedules are not
affected by the size of the network. When a cell gets
newly occupied, the associated node waits for at most
one period in order to interact with its neighbors and de-
termine its local coordinates. By overhearing the sched-
ules of its immediate neighbors it easily determines its
own schedule. When a node enters or leaves the network,
the schedules of the remaining cells do not change.

A modified version of the Pipelined Wave algorithm
does not define identical schedules for each square, but
shifts schedules by g positions with respect to the sched-
ules of the four neighbor squares. More specifically, the
east wave of a square is shifted g send-receive intervals
earlier than the east wave of the west neighbor square,
the north wave is shifted g positions earlier than the
north wave of the south neighbor square etc. A snapshot
of the modified Pipelined Wave algorithm during the east
phase is shown in figure 2. The new algorithm (which
is the one tested in section 4) decreases the latency of
message delivery at the square boundaries. Another
tunable parameter in Pipelined Wave is the number of
send-receive intervals for each direction (phase) before
the wave switches to another direction. Our experiments
show that this parameter has no noticeable impact on the
performance of the wave schedule [6].
Synchronization. We briefly discuss two synchroniza-
tion requirements imposed by wave schedules: i) neigh-
bor nodes must have the same notion of time regarding
their communication slot and ii) nodes in the close neigh-
borhood must be well synchronized so that only edges at
least g positions away are scheduled simultaneously. Ac-
knowledging that perfect time synchronization is hard to
achieve, we relax the initial requirements and propose a

fault-tolerant version of wave schedules. If the drift be-
tween two neighbor clocks does not exceed ¢, nodes that
are g positions away from each other are synchronized
within ge. In every edge activation, we schedule the re-
ceiver to turn on the radio € time units earlier than the
scheduled time according to its local clock. Recently
proposed synchronization protocols for sensor networks
(e.g., RBS [10] and TPSN [11]) provide tight synchro-
nization bounds (e.g., 0.02ms for neighbor nodes [11])
and exhibit a nice multi-hop behavior. Their perfor-
mance is bound to decay for very large networks, in
which case we assume that a few GPS-equipped nodes
will undertake the synchronization task for the local re-
gion.

3.2 Routing

The proposed wave schedules are TDMA-based MAC
protocols that assign periodic transmission slots to inter-
cell. Wave schedules are general-purpose energy-efficient
MAC protocols that can potentially be combined with
arbitrary routing protocols. In this section we consider
two important metrics for evaluating the efficiency of a
routing algorithm, namely node energy consumption and
message propagation latency. An interesting outcome of
our study is that energy-optimal routes do not depend on
the underlying wave schedule, whereas latency-optimal
routes are intrinsically coupled with it.

Energy-based routing. As noted in Section 2, mini-
mum energy routing is achieved by routing along short-
est hop paths. We adopt a simple flooding approach that
evaluates minimum-hop paths from all nodes in the net-
work to a given view node. Each node in the network
maintains a small in-memory routing table of size pro-
portional to the number of view servers. For each view
server, it includes a 2-bit entry giving the direction of
the next hop towards the view. This simple approach
works even in the presence of "holes” (empty cells), as
is shown in [12]. Dynamic node failures (which manifest
themselves as the appearance of new holes) can be dealt
with by a local flooding phase to repair affected routes,
as in AODV, or by introduction of a greedy face-routing
mode as in GPSR [13, 14]. Alternatively, a node that
fails to deliver a message may store it in memory until
the next flooding phase that reconstructs the tree.

Delay-based routing. We propose a delay-based rout-
ing algorithm that, given a certain wave schedule, mini-
mizes message latency between a pair of source and view
nodes. Each node C maintains a routing table, that
contains for each view V and each neighbor N a triple
(V, N,d), where d is the latency of the minimum-latency
path from C to V among all paths with the next-hop be-
ing N that C is presently aware of. On updating a rout-
ing entry, node C' also sends the information (V, N, d) to
its neighbors. On the receipt of such a message, neighbor
N of C does the following: i) it evaluates the time dt
that a message sent over N* — C remains at C before
being forwarded with the next wave via C — N towards
view V; ii) if an entry (V,C,d’') with d' < d + dt ex-
ists in the routing table of N*, then the routing message
is dropped - otherwise, the routing entry is replaced by
(V, C,d+dt). When the above distributed algorithm con-

verges, every node has determined the minimum-latency
paths to each view. Routing messages can be piggy-
backed on regular or NothingToSend messages as in the
case of energy-based routes.

4 Experimental Evaluation

We implemented a prototype of wave scheduling in the
NS-2 Network Simulator [15] and compared its perfor-
mance with two other approaches: (i) an existing tree-
based scheduling and routing scheme [12] and (ii) using
IEEE 802.11 with different duty cycles.

Wave scheduling. We simulate a network of 20
by 20 grid cells of size 100m?> each. The ratio of in-
terference to communication range is 550/250 and the
ratios between radio idle, receive and transmit power
are 1:1.2:1.6. Every edge activation between two con-
secutive cells lasts for 200ms. A node can send about
10 packets during an edge activation given a link band-
width of 20kbps. The receiver wakes up 30ms before the
sender in order to allow for clock drift. The size of a
square in a pipelined wave is set to 8 by 8 grid cells. Ex-
periments run for 1000 seconds and the traffic workload
varies from 0 to 2500 messages. The time that a mes-
sage is generated is selected at random, uniformly over
the simulation period. The source location of a message
is randomly selected to be any of the non-empty cells,
and the destination to be any of the views. Cells con-
taining views and empty cells are randomly distributed
in the network.

We first compare the behavior of the PipelinedWave
schedule under two wave routing metrics: the minimum
hop-count and the minimum-delay path. Figure 3
shows the average path delay, under light load, for the
two metrics, i.e. the time between a generation of a
message at a source and its delivery at the destination.
The minimum-energy routing metric defines paths with
higher delay than the minimum-delay metric and the gap
increases as we increase the number of holes from 0 to
100 (25% of all cells). The energy overhead of the
minimum-delay metric was observed to be negligible.

Our second experiment shows the scalability of our
scheme with respect to the number of view nodes. Fig-
ure 4 shows the average observed message delay, which
captures queueing delay due to traffic. We set the num-
ber of empty cells to be 0. With more view nodes, the
load is better balanced across the network, the average
message propagation delay is smaller and the overall ca-
pacity of the network increases. Figure 5 shows that
the energy usage of the wave does not increase with the
number of views, for a given number of messages.

We also examine the impact of empty cells, on the
performance of wave schedules. The number of views
is 10 and a randomly selected set of 0 to 80 cells are set
to be holes. Figure 6 shows that the message latency in-
creases with the number of holes: messages wait longer
in order to make a turn to bypass a hole. The capacity of
the network is only 500 messages for 20% (80) holes (the
message delay increases considerably after that point),
whereas it rises to more than 1500 for networks without
holes. Interestingly, the average energy consumption per
non-empty cell (per node) increases with the number of

empty cells, as shown in Figure 7. Although fewer mes-
sages are delivered per time unit, these messages follow
longer paths and every node ends up routing a higher
number of messages, therefore spending more energy.

Tree Scheduling We compare wave scheduling
with an existing tree-based scheduling and routing
scheme [12]. Trees are generated as a result of a flooding
mechanism initiated at each view node. Every node
selects as its parent the neighbor on the shortest path to
the root (view). It is therefore expected that the paths
used in tree schedules are shorter than paths used in
waves. Routing in a tree is trivial: each non-view node
forwards every message it receives to its parent. In a
tree-based schedule, we activate edges in reverse order
of their distance from the root. Every tree edge is acti-
vated for 200ms seconds, as in the case of the wave.

To generalize tree scheduling to handle multiple
views, we construct a collection of spanning trees, one
tree rooted at each view server. An edge activation
schedule can then be derived in several ways. At one
extreme is a conservative schedule, which is simply a
concatenation of schedules for the individual trees. We
define a period p of repeating the activation of every
tree. If we have m views, the first tree is activated at
times {0,p, ...}, the second at {p/m,p + p/m,...}, and
so on. We assume that the interval p/m is long enough
to activate all edges of a single tree, so that consecutive
activations do not overlap. In Figures 8 and 9, these
schedules are referred to as Tag_-Consec_Every_p, where
p is the period between two activations of the same tree.
At the other extreme, we consider aggressive schedules
that activate all trees in parallel. In our experiments, we
use the name Tag_Parall_Every_p to refer to aggressive
schedules in which all trees are activated concurrently
every p seconds. For instance, we activate all m trees
together at times {0, p,2p,...}. Figures 10 and 11 show
a graceful tradeoff between energy and delay as we in-
crease the length of period p. We note that the most
energy-efficient consecutive schedule that achieves a ca-
pacity of 1000 messages has period 60 seconds. Likewise,
the most energy-efficient parallel schedule that achieves
a capacity of 1000 messages is activated approximately
every 12 seconds. Beyond 1000 messages (per 1000 sec-
onds), the delay for these two schedules starts increasing
and it would increase without bounds had we contin-
ued to generate messages with the same rate for longer
periods.

IEEE 802.11 with different duty cycles. We
also study power-conserving variants of the IEEE 802.11
protocol. We vary the duty cycle of the protocol, by
turning off the radio regularly and allowing communi-
cation only during 1% to 10% of the time. The perfor-
mance of the resulting schemes, named Duty_Cycle_z, is
shown in Figures 12 and 13. Routing is performed as in
tree-scheduling, i.e. messages follow the shortest paths
to the views. Notice that for a load of 1000 messages
we can only select duty cycles greater than 8%, other-
wise the traffic exceeds network capacity and the queues
increase without bound. The reader can see trends in
energy and delay similar to those observed in the tree-
scheduling schemes.

Comparison of waves with other schemes. In

order to compare different protocols we first select a
given traffic load and we only consider protocols that can
serve this load without exceeding capacity, which is the
point at which average delay starts increasing. In fact,
we compare the most energy-efficient versions of different
protocols (with 10 views and 10% empty cells): for 1000
messages, we select the variants T'ag-Consec_Every_60,
Tag-Parall_Every 12, Duty_Cycle-8 and the pipelined
wave with step 1. Figure 14 shows that the wave proto-
col has the longest delay, followed by the consecutive tree
schedule, the parallel tree schedule and the 802.11 (with
duty cycle 8%). The reverse pattern is observed with
respect to node energy consumption in Figure 15. The
wave protocol is at one extreme offering the higher en-
ergy savings (better by an order of magnitude than any
other scheme) at the cost of higher delay. The 802.11
protocol with duty cycle 8% is at the other extreme of-
fering very small message delays at the cost of higher en-
ergy. The energy-delay tradeoff of the two tree schedul-
ing algorithms is also worth observing: activating trees
consecutively (as opposed to concurrently) saves energy
because it avoids interference among different trees, but
it incurs higher message latencies.

5 Related Work

The advent of sensor network technology has recently
attracted a lot of attention to MAC and routing proto-
cols that are specifically tailored for energy-constrained
adhoc wireless systems.

MAC protocols: IEEE 802.11 [16] is the most
widely used contention-based protocol; although nodes
can periodically switch to a power saving mode, in the
active periods they suffer from interference and overhear-
ing. The PAMAS MAC-level protocol turns radios off
when nodes are not communicating [17], but it requires
a second channel for RTS-CTS messages. PicoNet also
allows nodes to turn off their radios [18]; a node wishing
to communicate must stay awake listening for a broad-
cast message announcing its neighbor’s reactivation. In
S-MAC [19, 20], nodes are locally synchronized to fol-
low a periodic listen and sleep scheme. S-MAC does not
explicitly avoid contention for the medium, but reduces
the period of overhearing by sending long DATA pack-
ets annotated with their lengths. NAMA and TRAMA
avoid all collisions at the MAC layer by announcing the
schedules of nodes in the 2-hop neighborhood and elect-
ing nodes to transmit in a given time slot. Our waves
avoid schedule propagation overhead, at the expense of
having fixed slots for every edge activation.

Routing algorithms: Several routing protocols
for ad-hoc networks have been proposed in the litera-
ture [21, 22, 23, 24, 25]. There has also been a plethora
of work on energy-aware routing [26, 17, 32] but with-
out considering the interplay of routing and schedul-
ing. The TinyDB Project at Berkeley investigates tree-
based routing and scheduling techniques for sensor net-
works [12, 29]. An energy-efficient aggregation tree
using data-centric reinforcement strategies is proposed
in [30]. A two-tier approach for data dissemination to
multiple mobile sinks is discussed in [31].

6 Conclusions and Future Work

In this paper, we have shown a class of algorithms that
allows us to trade energy versus delay for data dissemina-
tion in sensor networks. Our approach is based on care-
fully scheduling the sensor nodes such that each node
can stay idle most of the time, and only turns on its
radio at scheduled intervals during its turn to either re-
ceive or send a message. Our experiments show that the
proposed wave scheduling algorithm results in significant
energy savings at modest increases in latency.

References

[1] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.
Shenker, “Ght: A geographic hash table for data-centric storage,” in
WSNA, 2002.

[2] A. Ghose, J. Grossklags, and J. Chuang, “Resilient data-centric storage
in wireless ad-hoc sensor networks,” in MDM, 2003, pp. 45-62.

[38] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: A
energy-efficient coordination algorithm for topology maintenance in ad
hoc wireless networks,” ACM Wireless Networks, vol. 8, no. 5, Sept 2002.

[4] O. Kasten, “Energy consumption,” Tech. Rep., ETH-Zurich, 2001.

[5] M. Stemm and R. Katz, “Measuring and reducing energy consump-
tion of network interfaces in hand-held devices,” IEICE Transactions on
Communications, vol. E80-B, pp. 1125-1131, 1997.

[6] N. Trigoni, Y. Yao, A. Demers, J. Gehrke and R. Rajaraman,
“WaveScheduling: Energy-Efficient Data Dissemination for Sensor
Networks,” www.cs.cornell.edu/~niki/WaveScheduling.pdf, 2004.

[7] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy
conservation for ad hoc routing,” in MOBICOM, 2001, pp. 70—84.

[8] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based
user location and tracking system,” in INFOCOM, 2000, pp. 775-784.

[9] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low cost outdoor
localization for very small devices,” 2000.

10] J. Elson, L. Girod and D. Estrin, “Fine-Grained Network Time Syn-

[10])) y
chronization using Reference Broadcasts,” in OSDI, 2002.

[11] S. Ganeriwal, R. Kumar and M. Srivastava, “Timing-sync protocol for
sensor networks,” in Sensys, pp.138-149, 2003.

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag:
A tiny aggregation service for ad-hoc sensor networks,” in OSDI, 2002.

[13] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with guar-
anteed delivery in ad hoc wireless networks,” Wireless Networks, vol. 7,
no. 6, pp. 609-616, 2001.

14] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routin,

8 8 8
for wireless networks,” in MOBICOM, pp. 243-254, 2000.

[15] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P
Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in
network simulation,” IEEE Computer, vol. 33, no. 5, pp. 59-67, 2000.

[16] IEEE Computer Society, “Wireless LAN medium access control (mac)
and physical layer specification,” IEEE Std 802.11, 1999.

[17] S. Singh, M. Woo, and C. S. Raghavendra, “Power-aware routing in
mobile ad hoc networks,” in MOBICOM, pp. 181-190, 1998.

[18] F. Bennett, D. Clarke, J. Evans, A. Hopper, A. Jones, and D. Leask,
“Piconet: Embedded Mobile Networking,” IEEE Personal Communica-
tions, vol. 4, no. 5, pp. 8-15, Oct. 1997.

19] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC pro-

’ ’ > gy P
tocol for wireless sensor networks,” in INFOCOM,pp. 1567-1576, 2002.

[20] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with
coordinated, adaptive sleeping for wireless sensor networks,” Tech.
Rep. ISI-TR-567, USC/Information Sciences Institute, January 2003.

[21] C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers,” in SIGCOMM,
pp. 234-244, 1994.

[22] D. B Johnson and D. A Maltz, “Dynamic source routing in ad hoc wire-
less networks,” in Mobile Computing, vol. 353 of The Kluwer International
Serics in Engineering and Computer Sci 1996.

[23] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in MOBICOM, pp. 85-97, 1998.

[24] C. Perkins, “Ad hoc on demand distance vector (aodv) routing,”
http://citeseer.ist.psu.edu/article/perkins99ad.html, 1999.

[25] V. Park and S. Corson, “Temporally-ordered routing algorithm (tora)
version 1 functional specication.,” 1999
http://www.ietf.org/internet-drafts/draft-ietf-manet-tora-spec-02.txt.

[26] J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless
ad-hoc networks,” in INFOCOM, pp. 22-31, 2000.

[27] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive pro-
tocols for information dissemination in wireless sensor networks,” in
SIGMOBILE, pp. 174-185, 1999.

[28] S. Madden and M. J. Franklin, “Fjording the stream: An architecture
for queries over streaming sensor data,” in ICDE, 2002.

[29] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond av-
erage: Towards sophisticated sensing with queries,” in IPSN, 2003.

[30] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
in SIGMOBILE, pp. 56—67, 2000.

[31] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissem-
ination model for large-scale wireless sensor networks,” in MOBICOM,
2002.

[82] Y. Yu, R. Govindan, and D. Estrin, “Geographical and energy aware
routing: A recursive data dissemination protocol for wireless sensor
networks,” Tech. Rep. UCLA/CSD-TR-01-0023, May 2001.

lOOOOOOOOOO ?OOOOOOOOOO"'7OOOOOOOOOO 8OOOOOOOOOO
0000000000 0000000000 OO000O000000 0000000000
0000000000 0000000000 0000000000 @000000e00
0000000000 0000000000 @000000@00 00000 000
0000000000 0000000000 0000000000 0000000000 0000000000000 OOOOOOOO
0000000000 0000000000 0000000000 0000000000 0000000000000 0D000000
0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 00000000 0000000000 88388%838888888%88388
0555555058 8335853833 8355555833 5955335545 ©99999009000008000000
16 50 51 0000000®0000000000000
0000000000 0000000003 0000000000~ 0000000000 900000000000000009000
©000000@00 0000000000 0000000000 0000008000 GO000000000000000C00000
0000000000 0000000000 000000000 000000000 0000000000000 000000Q0
000000000 000000000 00000000 000 0000 0000000000000V 0000Q0
0060055000 5050500000 6006050005 8650905000 B a20a68005008850000
0000000000 0000000000 0000000000 0000000000 88888%828888888%88888
000000000 O®00000@00 0000000000 000000000 ©00000000000000030600
O®00000080 0000000000 0000000000 0000000000 o IoloIeIolole[eolelelolelole Slelololelole
0000000000 O00000000O0 OOOOOOOO0O0 0000000000 000000000030000000000
5%OOOOOOOOO 5é)OOOOOOOOO"S%OOOOOOOOO 0288888888 0000000000000 O0O0000000
0000000000 0000000000 @000000000 00000 000000
@000000000 O®00000000 0000000800 0000000080 883880000038382000000
8888338382 8890838352 8333399330 S9sssBsss 280800088300009838833
0000000000 0000000000 0000000000 0000000000 £00000000000000000000
0000000000 000000000 00000000 0000000
0000000000 0000000000 0000000000 0000000000
0000000000 0000000000 @000000000 O@00000000 . . - .
€000000000 O®00000000 0000000800 0000000080 Flgure 2: PlpehnedWa,ve
Figure 1: SimpleWave
Average Message Delay Average Energy Consumption
300 12
PipelinedWaveDelay_stepl_viewsl —+— PipelinedWaveDelay_stepl_viewsl —+—
PipelinedWaveDelay_stepl_views5 —*— PipelinedWaveDelay_stepl_views5 —x—
250 PipelinedWaveDelay_stepl_views10 —%— 10 PipelinedWaveDelay_stepl_views10 —%—
PipelinedWaveDelay_stepl_views20 — PipelinedWaveDelay_stepl_views20 —&—
7 200 8 st
4] S
Q o
< 150 2 6t
s)
2 100 8 4l
o
50] 2t
2
0 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Messages Messages
Figure 4: Effect of views on delay Figure 5: Effect of views on energy
Average Energy Consumption Average Message Delay
16 350
PipelinedWaveDelay_stepl_holes0 —+— Tag_Consec_Every 30 —+—
14 PipelinedWaveDelay_stepl_holes20 —%— 300 Tag_Consec_Every_40 —>—
PipelinedWaveDelay_stepl_holes40 —x— Tag_Consec_Every 50 —*—
. 12 PipelinedWaveDelay_stepl_holes80 —&— 250 Tag_Consec_Every 60 —8—
2 @ Tag_Consec_Every_70 —&—
s 10 4] Tag_Consec_Every_80 —&—
3 g 200
3 8 > !
s & 150 L
g s
o 4 100
2 50 L
0 0
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Messages Messages

Figure 7: Effect of holes on energy

Average Message Delay
200 T T

"I'agj’arall‘ —_—
Tag_Parall_Every_6 —»—
Tag_Parall_Every_8 —%—
150 Tag_Parall_Every_12 —8—
P Tag_Parall_Every_20 —=—
8 Tag_Parall_Every_30 —6—
8 Tag_Parall_Every_40 —e—
< 100
>
k)
©
S
50
o =}
0 500 1000 1500 2000 2500
Messages

Figure 10: Delay: parallel trees

Average Energy Consumption

200
DutyCycle_1 —+—
DutyCycle_2 —»*—
DutyCycle_3 —*—
. 150 DutyCycle_ 5 —8—
2 DutyCycle_8 —&—
g DutyCycle_1
= 100
>
> Mﬁ—*""
3]
G oy —B—8—B—8—8—8—
50
kKX
o ot —t
0 500 1000 1500 2000 2500
Messages

Figure 13: Energy: 802.11

Figure 8: Delay: consecutive trees

Average Energy Consumption
500 T T

"I’agiParaII‘ —
450 Tag_Parall_Every 6 —x—
400 Tag_Parall_Every_8 —%—
—_ Tag_Parall_Every_12 —8—
g ss0r . Tag_Rarall, Every 20, —m—
3 300 ' Tag_Parall Every_30 —o—
S Tag_Parall_Every_40 —e—
= 250
3
5 200
T 150
100 L
& <
50 o o o
0
0 500 1000 1500 2000 2500
Messages

Figure 11: Energy: parallel trees

Average Message Delay

90
Tag_Consec_Every 60 —+——
80 - Tag_Parall_Every 12 —»—
70+ DutyCycle_8 —*—
PipelinedWaveDelay_stepl —&—
F&\ | BM
8 sor
Z 40t
o
° 30 F
20 -
10 b ——
0 L=
0 200 400 600 800 1000 1200 1400
Messages

Figure 14: Comparing schemes

Average Message Delay Evaluated From Routing Tables

140
PipelinedWaveDelay_stepl_views10 —+—
120 PipelinedWaveEnergy_stepl_views10
100
mn
3 80
2
T 60
9]
°
40
20
0
0 20 40 60 80 100
EmptyCells

Figure 3: Delay vs energy routing

delay (secs)

Average Message Delay

PipelinedWaveDelay_stepl_holes0 —+—
PipelinedWaveDelay_stepl_holes20 —<—
200 PipelinedWaveDelay_stepl_holes40 —x—
PipelinedWaveDelay_stepl_holes80 —&—
150
100
50
0
0 500 1000 1500 2000 2500
Messages

Figure 6: Effect of holes on delay

energy (Joules)

Fi

delay (secs)

energy (Joules)

Average Energy Consumption

80 Tag_Consec_Every_30 —+—
70 Tag_Consec_Every_40 —<—
Tag_Consec_Every_50 —*—
60 Tag_Consec_Every_60 —5—
Tag_Consec_Every_70 —&—
50 Tag_Consec_Every_80 —o—
40

0 500 1000 1500

Messages

2000 2500
gure 9: Energy: consecutive trees

Average Message Delay
350 T T

Ddlycycleil‘ —
300 DutyCycle_2 —%—

DutyCycle_ 5 —&—

250 DutyCycle_8 —a—
200 DutyCycle_10
150
100
50
0
0 500 1000 1500 2000 2500
Messages

Figure 12: Delay: 802.11

Average Energy Consumption

120 Tag_Consec_Every 60 —+—
Tag_Parall_Every 12 —<—
DutyCycle_8 —*—
100 PipelinedWaveDelay_stepl —&—
80
60 [XX
40
; —+
20
o g——8——&8—+& —F

0 200 400 600 800

Messages

1000 1200 1400

Figure 15: Comparing schemes

