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Abstract. Classification of large datasets is an important data mining problem. Many classification algorithms
have been proposed in the literature, but studies have shown that so far no algorithm uniformly outperforms
all other algorithms in terms of quality. In this paper, we present a unifying framework called RainForest for
classification tree construction that separates thescalabilityaspects of algorithms for constructing a tree from the
central features that determine thequality of the tree. The generic algorithm is easy to instantiate with specific
split selection methods from the literature (including C4.5, CART, CHAID, FACT, ID3 and extensions, SLIQ,
SPRINT and QUEST).

In addition to its generality, in that it yields scalable versions of a wide range of classification algorithms, our
approach also offers performance improvements of over a factor of three over the SPRINT algorithm, the fastest
scalable classification algorithm proposed previously. In contrast to SPRINT, however, our generic algorithm
requires a certain minimum amount of main memory, proportional to thesetof distinct values in a column of the
input relation. Given current main memory costs, this requirement is readily met in most if not all workloads.
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1. Introduction

Classification and regression are important data mining problems (Fayyad et al., 1996). The
input is a dataset oftraining records(also calledtraining database), where each record has
several attributes. Attributes whose domain is numerical are callednumerical attributes,
whereas attributes whose domain is not numerical are calledcategorical attributes.1 There
is one distinguished attribute called thedependent attribute. The remaining attributes are
calledpredictor attributes; they are either numerical or categorical in nature. If the depen-
dent attribute is categorical, the problem is referred to as aclassification problemand we call
the dependent attribute theclass label. (We will denote the elements of the domain of the
class label attribute asclass labels; the semantics of the term class label will be clear from
the context.) If the dependent attribute is numerical, the problem is referred to as aregression
problem. The goal of classification and regression is to build a concise model of the distri-
bution of the dependent attribute in terms of the predictor attributes. The resulting model
is used to assign values to a database oftesting recordswhere the values of the predictor
attributes are known but the value of the dependent attribute is unknown. Classification and
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regression have a wide range of applications, including scientific experiments, medical diag-
nosis, fraud detection, credit approval, and target marketing (Brachman et al., 1996; Inman,
1996; Fayyad et al., 1996). In this paper we concentrate mainly on classification problems.

Many classification models have been proposed in the literature: Neural networks (Sarle,
1994; Kohonen, 1995; Bishop, 1995; Ripley, 1996), genetic algorithms (Goldberg, 1989),
Bayesian methods (Cheeseman et al., 1988; Cheeseman and Stutz, 1996), log-linear models
and other statistical methods (James, 1985; Agresti, 1990; Chirstensen, 1997), decision
tables (Kohavi, 1995), and tree-structured models, so-calledclassification trees(Sonquist
et al., 1971; Gillo, 1972; Morgan and Messenger, 1973; Breiman et al., 1984). (There exist
excellent overviews of classification methods (Weiss and Kulikowski, 1991; Michie et al.,
1994a; Hand, 1997).)

Classification trees are especially attractive in a data mining environment for several
reasons. First, due to their intuitive representation, the resulting classification model is easy
to assimilate by humans (Breiman et al., 1984; Mehta et al., 1996). Second, classification
trees are non-parametric. Classification tree construction algorithms do not make any as-
sumptions about the underlying distribution and are thus especially suited for exploratory
knowledge discovery. Third, classification trees can be constructed relatively fast compared
to other methods (Mehta et al., 1996; Shafer et al., 1996; Lim et al., 1997). Last, the accuracy
of classification trees is comparable or superior to other classification models (Murthy, 1995;
Lim et al., 1997; Hand, 1997). In this paper, we restrict our attention to classification trees.2

There exists a large number of algorithms to construct classification trees. Most algorithms
in the machine learning and statistics community are main memory algorithms, even though
today’s databases are in general much larger than main memory (Agrawal, 1993). There
have been several approaches to dealing with large databases. One approach is to apply a
discretization functionf to each record in the training databaseD and run an in-memory
algorithm on the discretized databaseD f (Quinlan, 1986; Fayyad and Irani, 1993; Quinlan,
1993). Discretization can reduce the main memory requirements as follows: Assume that
the discretization functionf maps a set of recordsS= {t1, . . . , tn} to the same image record
t ′, i.e. f (ti ) = t ′ for all i ∈ {1, . . . ,n}. Then in the discretized training databaseD f , instead
of storing the setS, it is sufficient to store the pair [t ′,m], indicating that recordt ′ appears
m times inD f . This approach has two caveats: First, if the number of predictor attributes
is high, the number of records in the discretized databaseD f can still be much larger than
main memory. (In the worst case, it is the product of the domain sizes of the discretizations
of the individual predictor attributes.) Second, a discretization method should take the class
label into account (Catlett, 1991a; Fayyad and Irani, 1993) when deciding on the bucket
boundaries, but all such discretization methods assume that the input database fits into main
memory (Kerber, 1991; Catlett, 1991a; Quinlan, 1993; Fayyad and Irani, 1993; Maass, 1994;
Dougherty et al., 1995; Liu and Setiono, 1996; Zighed, 1997). Catlett (1991b) proposed
sampling at each node of the classification tree, but considers in his studies only datasets
that could fit in main memory. Methods for partitioning the dataset such that each subset
fits in main memory are considered by Chan and Stolfo (1993a, b); although this method
enables classification of large datasets their studies show that the quality of the resulting
classification tree is worse than that of a classifier that was constructed taking the complete
database into account at once.
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In this paper, we present a framework for scaling up existing classification tree construc-
tion algorithms. This general framework, which we call RainForest for rather whimsical
reasons,3 closes the gap between the limitations to main memory datasets of classification
tree construction algorithms in the machine learning and statistics literature and the scal-
ability requirements of a data mining environment. The main insight, based on a careful
analysis of the algorithms in the literature, is that most (to our knowledge, all) algorithms
(including C4.5 (Quinlan, 1993), CART (Breiman et al., 1984), CHAID (Magidson, 1989,
1993a, b), FACT (Loh and Vanichsetakul, 1988), ID3 and extensions (Quinlan, 1979, 1983,
1986; Cheng et al., 1988; Fayyad, 1991), SLIQ and SPRINT (Mehta et al., 1996, 1995;
Shafer et al., 1996) and QUEST (Loh and Shih, 1997)) access the data using a common
pattern.

We present data access algorithms that scale with the size of the database, adapt gracefully
to the amount of main memory available, and are not restricted to a specific tree construction
algorithm. (The quality of split selection methods is addressed extensively in statistics and
machine learning.) Our framework applied to split selection methods in the literature results
in a scalable version of the methodwithout modifying the result of the method. Thus, we
do not evaluate the quality of the resulting tree, which is not affected by our framework;
instead we concentrate on scalability issues. In addition to the generality of our framework,
we show that in many common situations our approach offers performance improvements
of over a factor of three over SPRINT (Shafer et al., 1996), the fastest scalable classification
tree construction algorithm proposed previously.

The rest of the paper is organized as follows. In Section 2, we formally introduce the
problems of classification tree construction and describe previous work in the database lit-
erature. In Section 3, we introduce our framework and discuss how it encompasses previous
work. In Section 4, we present scalable algorithms to construct classification trees, and
in Section 5 we present results from a detailed performance evaluation. We conclude in
Section 6.

2. Classification trees

In this section, we first introduce some terminology and notation that we will use throughout
the paper. Then we state the problem of classification tree construction formally.

2.1. Problem definition

Let X1, . . . , Xm,C be random variables whereXi has domain dom(Xi). Let P(X′, c) be a
probability distribution on dom(X1)× · · · × dom(Xm)× dom(C), X′ ⊂ dom(X1)× · · · ×
dom(Xm), c ∈ dom(C). In terms of the informal introduction in Section 1, the training
databaseD is a random sample fromP, the Xi correspond to the predictor attributes and
C is the dependent attribute, the class label. Aclassifieris a functiond : dom(X1)× · · · ×
dom(Xm) 7→ dom(C). Let t = 〈t · X1, . . . , t · Xm, t · C〉 be a record randomly drawn
from P. We define themisclassification rate RClassd (P) of predictord to be the probability
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of predicting the value of the dependent attribute of a new record incorrectly, formal-
ly RClass

d (P)
def= P(d(〈t · X1, . . . , t · Xm〉) 6= t · C).

A classification treeis a special type of classifier. It is a directed, acyclic graphT in the
form of a tree. The root of the tree does not have any incoming edges. Every other node has
exactly one incoming edge and maybe have two or more outgoing edges. If a node has no
outgoing edges it is called aleaf node, otherwise it is called aninternal node. Each internal
noden is labeled with one predictor attributeXn called thesplitting attribute, each leaf
noden is labeled with one class labelcn ∈ dom(C). Each edge(n, n′) from an internal node
n to one of its childrenn′ has a predicateq(n,n′) associated with it whereq(n,n′) involves
only the splitting attributeXn of noden. The set of predicatesQn on the outgoing edges
of an internal noden must benon-overlappingandexhaustive. A set of predicatesQ is
non-overlappingif the conjunction of any two predicates inQ evaluates tofalse. A set of
predicatesQ is exhaustiveif the disjunction of all predicates inP evaluates totrue. We
will call the set of predicatesQn on the outgoing edges of an internal noden thesplitting
predicates of n; the combined information of splitting attribute and splitting predicates is
called thesplitting criteriaof n and is denoted bycrit(n).

We associate with each noden ∈ T a predicatefn : dom(X1) × · · · × dom(Xm) 7→
{true, false}, called itsnode predicate. Informally, fn is the conjunction of all splitting
predicates on the edges of the path from the root node ton. Formally, for the root noden,
fn

def= true. For a non-root noden with parentp whereq(p,n) is the predicate on the edge
from p to n, we definefn

def= f p ∧ q(n,p). Since each leaf noden ∈ T is labeled with one
class labelcn ∈ dom(C), the leaf noden encodes a classification rulefn → cn. Thus the
treeT encodes a functionT : dom(X1) × · · · × dom(Xm) 7→ dom(C) and is therefore a
classifier, called aclassification tree. (We will denote both the tree as well as the induced
predictor byT ; the semantics will be clear from the context.) Let us define the notion of
the family of recordsof a node in a treeT with respect to a training databaseD. (We will
drop the dependency onD from the notation since it is clear from the context.) For a node
n ∈ T with parentp, Fn is the set of records inD that follows the path from the root ton
when being processed by the tree, formallyFn

def= {t ∈ D : fn(t) = true}.
We can now formally state the problem of classification tree construction:

Classification tree construction problem:Given a datasetD = {t1, . . . , tn} where theti
are independent random samples from a probability distributionP, find a classification tree
T such that the misclassification rateRClass

T (P) is minimal.
In practice, we use tree construction algorithms that attempt to minimize the misclassi-

fication rate through heuristics as discussed in the next section.
A classification tree is usually constructed in two phases. In phase one, thegrowth phase,

an overly large classification tree is constructed from the training database. In phase two,
thepruning phase, the final size of the treeT is determined with the goal being to minimize
RClass

T (P).
In general, construction of an optimal tree is very difficult for several different problem

definitions, and the problem has been addressed by several authors. Hyafil and Rivest show
that construction of the ‘smallest’ classification tree, namely the tree that requires the least
expected number of tests to classify a record, is NP-complete (Hyafil and Rivest, 1976).
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Murphy and McCraw prove that for most problem formulations, construction of trees with
the least number of nodes is NP-complete (Murphy and McCraw, 1991). Naumov also
considered the same problem and showed that it is NP-complete under several optimality
measures (Naumov, 1991).

Due to the hardness of obtaining an optimal solution, nearly all classification tree con-
struction algorithms grow the tree top-down in the following greedy way: At the root node,
the database is examined and a splitting criterion is selected. Recursively, at a non-root
noden, the family ofn is examined and from it a splitting criterion is selected. (This is
the well-known schema for greedy top-down classification tree induction; for example, a
specific instance of this schema for binary splits is shown in Mehta et al. (1996).) This
schema is depicted in figure 3. All classification tree construction algorithms that we are
aware of proceed according to this schema.

Two different algorithmic issues need to be addressed during the tree growth phase. The
first issue is to devise an algorithm such that the resulting treeT models the underlying
probability distributionP and (after a possible pruning step) minimizesRClass

T (P); we
will call this part of the overall classification tree construction algorithm thesplit selection
method. The second issue is to devise an algorithm for data management in the case that the
training database does not fit in-memory; we will call this part of the overall classification
tree construction algorithm thedata access method. Note that traditionally it was assumed
that the complete training data set would fit in-memory; thus, no special data access method
was necessary.

During the pruning phase a third issue arises, namely how to find an estimatorR̂Class
T (P)

of RClass
T (P) and how to efficiently calculatêRClass

T (P).
In this paper, we concentrate on the tree growth phase, since it is a very time-consuming

part of classification tree construction due to its data-intensive nature (Mehta et al., 1996;
Shafer et al., 1996). MDL-based pruning methods are more popular for large datasets (Mehta
et al., 1996; Rastogi and Shim, 1998) because they scale well with increasing dataset size.
Cross-validation (Breiman et al., 1984) is a popular pruning technique for small training
datasets, but it requires construction of several trees from large subsets of the data. Our
techniques can also be used to speed up cross-validation for large training datasets in a
straightforward manner, but we will not discuss this point further in this paper. How to
prune the tree is an orthogonal issue; the techniques that we will present in Section 3 can
be combined with any pruning method.

Figure 1 shows an example training database. There are three predictor attributes: Car
type, age and number of children. Age and number of children are numerical attributes,
whereas car type is a categorical attribute with three categories: sedan, sports utility vehicle
and truck. The class label has two categories indicating whether the household subscribes
to a certain magazine. An example classification tree is depicted in figure 2.

2.2. Previous work in the database literature

Agrawal et al. introduced an interval classifier that could use database indices to efficiently
retrieve portions of the classified dataset using SQL queries (Agrawal et al., 1992). However,
the method does not scale to large training sets (Shafer et al., 1996). Fukuda et al. construct
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Figure 1. Example input database.

Figure 2. Magazine subscription example classification tree.

classification trees with splitting criteria involving two predictor attributes (Fukuda et al.,
1996). Although their algorithm can produce rules with very high classification accuracy,
scalability was not one of the design goals. In addition, the classification tree no longer has
the intuitive representation of a tree with one-dimensional splits at each node.

The classification tree classifier SLIQ by Mehta et al. is a scalable version of the CART
split selection method (Breiman et al., 1984). SLIQ was designed for large training databases
but uses an in-memory data structure that grows linearly with the number of records in the
training database (Mehta et al., 1996). This limiting data structure was eliminated by Shafer
et al. (1996) who introduced SPRINT, a scalable classifier.
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SPRINT works for very large datasets and removes all relationships between main mem-
ory and size of the training database. SPRINT builds classification trees with binary splits
using thegini index (Breiman et al., 1984) to decide the splitting criterion; it controls the
final quality of the classification tree through an application of the MDL principle (Rissanen,
1989; Mehta et al., 1995). To decide on the splitting attribute at a noden, the algorithm
requires access toFn for each numerical attribute in sorted order. So conceptually, for
each noden of the classification tree, a sort ofFn for each numerical attribute is required.
SPRINT avoids sorting at each node through the creation ofattribute lists. The attribute list
L X for attributeX is a vertical partition of the training databaseD: For each recordt ∈ D
the entry oft into L X consists of the projection oft onto X, the class label andt ’s record
identifier. The attribute lists are created at the beginning of the algorithm and sorted once
as a preprocessing step.

During the tree growth phase, whenever an internal noden splits,Fn is distributed among
n’s children according tocrit(n). Since every record is vertically partitioned over all
attribute lists, each attribute list needs to be distributed across the children separately. The
distribution of an attribute list is performed through a hash-join with the attribute list of
the splitting attribute. The record identifier, which is duplicated into each attribute list,
establishes the connection between the vertical parts of the record. Since during the hash-
join each attribute list is read and distributed sequentially, the initial sort order of the attribute
list is preserved.

Since the growth phase of SPRINT is essentially a scalable version of the growth phase
of the CART algorithm, the techniques in SPRINT could also be used to design a scalable
algorithm for regression tree construction. Thegini index would be replaced with an
appropriate criterion for least-squares regression (Breiman et al., 1984).

Morimoto et al. developed algorithms for classification tree construction for categorical
predictor attributes with large domains (Morimoto et al., 1998). The goal of their work is
to improve the quality of the resulting tree. Rastogi and Shim developed PUBLIC, a MDL-
based pruning algorithm for binary trees that is interleaved with the tree growth phase
(Rastogi and Shim, 1998). Instead of growing the tree until the leaf nodes contain only
records of one class, the authors give conditions when the growth can be stopped while
ensuring that the final (pruned) tree is still a subtree of the tree obtained during the growth
phase. Since the tree pruning method is orthogonal to tree growth, their techniques can be
composed with scalable instantiations of binary split selection methods allowing for a wide
applicability of their method, including our work.

2.3. Discussion

Our main contribution is a generic scalable algorithm than can be specialized to obtain
scalable versions of most classification and regression tree construction algorithms in the
literature. We also improve upon the performance of the only previously known scalable
algorithm, SPRINT.

One can think of SPRINT as aprix fixeall-you-can-eat meal in a world-class restaurant.
SPRINT runs with a minimal amount of main memory and scales to large training databases.
But it also comes with some drawbacks. First, it materializes the attribute lists at each node,
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possibly tripling the size of the training database (it is possible to create only one attribute
list for all categorical attributes together as an optimization). Second, there is a large cost to
keep the attribute lists sorted at each noden in the tree: Since the connection between the
vertically separated parts of a record can only be made through the record identifier, a costly
hash-join needs to be performed. The size of the hash table is proportional to the number of
records inFn and thus can be very large; otherwise several scans are necessary for the join.
Overall, SPRINT pays a significant price for its scalability. As we will show in Section 3,
some observations about the nature of classification tree construction algorithms enable us
to speed up SPRINT significantly in most cases. To return to our restaurant analogy, the
techniques in Section 3 allow you to sample some RainForest Crunch (TM) ice-cream in
the restaurant, paying for just what you ordered.

The emphasis of the research in the machine learning and statistics community has been
on improving the accuracy of classification trees in terms of reducing the misclassification
error. Many studies have been performed to determine which algorithm has the highest
prediction accuracy (Shavlik et al., 1991; Brodley and Utgoff, 1992; Corruble et al., 1993;
Curram and Mingers, 1994; Michie et al., 1994b). These studies show that no algorithm
is uniformly most accurate over all the datasets studied. (Mehta et al. also show that the
accuracy of the classification tree built by SPRINT is not uniformly superior to other
methods (Mehta et al., 1995, 1996).) We have therefore concentrated on developing a
unifying framework that can be applied to most classification tree algorithms, and results
in a scalable version of the algorithm without modifying the result. That is,the scalable
versions of the algorithms produce exactly the same classification tree as if sufficient main
memory were available to run the original algorithm on the complete database in main
memory. To carry our restaurant analogy one (last!) step further, the techniques in Section 4
allow you to pick a different restaurant every day, eat there as little or much as you want,
and pay only for what you order.

3. The RainForest framework

We begin in Section 3.1 by introducing the well-known greedy top-down classification tree
induction schema. Then we show how this schema can be refined to the generic RainForest
Tree Induction Schema and detail how the separation of scalability issues from quality con-
cerns is achieved. After overviewing the resulting design space for the algorithms presented
in Section 4, we show a sample instantiation of the framework with the CART algorithm
(Breiman et al., 1984) in Section 3.2. We show in Section 3.3 how algorithms for missing
values can be easily incorporated into our framework and discuss extensions to regression
trees in Section 3.4.

3.1. Classification tree construction

Classification tree algorithms build the tree top-down in the following way: At the root node
r , the database is examined and the best splitting criterioncrit(r ) is computed. Recursively,
at a non-root noden, Fn is examined andcrit(n) is computed. (This is the well-known
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Figure 3. Classification tree induction schema and RainForest refinement.

schema for top-down classification tree induction. For example, a specific instance of this
schema for binary trees is shown by Mehta et al. (1996)). This schema is depicted in
figure 3.

A thorough examination of the split selection methods in the literature reveals that the
greedy schema can be refined to the genericRainForest Tree Induction Schemashown in
figure 3. Most split selection methods (including C4.5, CART, CHAID, FACT, ID3 and
extensions, SLIQ, SPRINT and QUEST) proceed according to this generic schema and we
do not know of any algorithm in the literature that does not adhere to it.4 Consider a noden
of the classification tree. The split selection method has to make two classifications while
examining the family ofn: (i) It has to select the splitting attributeX, and (ii) It has to
select the splitting predicates onX. Once decided on the splitting criterion, the algorithm
is recursively applied to each of the children ofn. In the remainder of the paper, we denote
by CL a representative split selection method.

Note that at a noden, the utility of a predictor attributeX as a possible splitting attribute
is examined independent of the other predictor attributes: Thesufficient statisticsis the class
label distribution for each distinct attribute value ofX. We define theAVC-setof a predictor
attributeX at noden to be the projection ofFn onto X and the class label where counts of
the individual class labels are aggregated. We will denote the AVC-set of predictor attribute
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X at noden by AVCn(X). (The acronym AVC stands forAttribute-Value,Classlabel.) To
give a formal definition, assume without loss of gererality that the domain of the class label
is the set{1, . . . , J}, formally dom(C) = {1, . . . , J}. Let an,X,x,i be the number of records
t in Fn with attribute valuet · X = x and class labelt · C = i . Formally,

an,X,x,i
def= |{t ∈ Fn : t · X = x ∧ t · C = i }|

Let S
def= dom(X)× NJ whereN denotes the set of natural numbers. Then

AVCn(X)
def= {(x,a1, . . . ,aJ) ∈ S : ∃t ∈ Fn

: (t · X = x ∧ ∀i ∈ {1, . . . , J} : ai = an,X,x,i )}

We define theAVC-groupof a noden to be the set of the AVC-sets of all predictor attributes
at noden. Note that the size of the AVC-set of a predictor attributeX at noden depends
only on the number of distinct attribute values ofX and the number of class labels in
Fn.

If the training database is stored inside a database system, the AVC-set of a noden for
predictor attributeX can be retrieved through a simple SQL-query:SELECT D.X, D.C,
COUNT(*)
FROM D
WHERE fn

GROUP BY D.X, D.C In order to construct the AVC-sets of all predictor attributes at a
noden, a UNION-query would be necessary. (In this case, theSELECTclause needs to
retrieve also the attribute name in order to distinguish individual AVC-sets.) Graefe et al.
observe that most database systems evaluate theUNION-query through several scans and
introduce a new operator that allows gathering of sufficient statistics in one database scan
(Graefe et al., 1998).

The main difference between the greedy top-down schema and the subtly refined Rain-
Forest Schema is that the latter isolates an important component, the AVC-set. The AVC-set
allows the separation of scalability issues of the classification tree construction from the
algorithms to decide on the splitting criterion: Consider the main memory requirements at
each step of the RainForest Schema shown in figure 3. In lines (1a)–(1c), the AVC-sets of
each predictor attribute are needed in main memory, one at a time, to be given as argument to
procedureCL.find_best_partitioning. Thus, the total main memory required in lines
(1a)–(1c) is the maximum size of any single AVC-set. In addition, AlgorithmCL stores for
each predictor attribute the result of procedureCL.find_best_partitioning as input
to the procedureCL.decide_splitting_criterion; the size of these statistics is neg-
ligible. In line (2a), all the statistics collected in lines (1a)–(1c) are evaluated together in
procedureCL.decide_splitting_criterion; the main memory requirements for this
step are minimal. Lines (3)–(9) distribute records from one partition to several others; one
page per open file is needed.

Following the preceding analysis based on insights from the RainForest Schema, we can
make the (now rather trivial) observation that as long as we can find an efficient way to
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Figure 4. AVC-group of the root node for the example input database.

construct the AVC-group of noden, we can scale up any split selection methodCL that
adheres to the generic RainForest Schema.

It is worth considering how big the AVC-group at a noden can be; we describe a com-
parison with the size of an attribute list used in SPRINT in Section 5.3. Consider the size
SX of the AVC-set of predictor attributeX at a noden. Note thatSX is proportional to the
number of distinct attribute values of attributeX in Fn, and not to the size of the family
Fn of n. Thus, for most real-life datasets, we expect that the whole AVC-group of the root
node will fit entirely in main memory, given current memory sizes; if not, it is highly likely
that at least the AVC-set of each individual predictor attribute fits in main memory. The
assumption that the AVC-group of the root noden fits in-memory does not imply that the
input database fits in-memory! The AVC-group ofn is not a compressed representation
of Fn; Fn can not be reconstructed from the AVC-group ofn. Rather the AVC-group of
n contains aggregated information that is sufficient for classification tree construction. In
Section 5, we calculate example numbers for the AVC-group of the root node generated by a
synthetic data generator introduced by Agrawal et al. (1993) (which was designed to model
real-life data). The maximum memory size for the AVC-group of the generated datasets is
about 25 megabytes. With current (December 1998) memory sizes of 128 megabytes for
home computers, we believe that in a corporate data mining environment the AVC-group of
the root node will almost always fit in main memory; otherwise at least each single AVC-set
of the root node will fit in-memory. Figure 4 shows the AVC-sets of the root node from the
example input database in figure 1. The AVC-set for predictor attribute car type has three
entries, the AVC-set for predictor attribute age has six entries and the AVC-set for predictor
attribute number of children has three entries. The AVC-group of the root node consists of
all three AVC-sets together.

Depending on the amount of main memory available, three cases can be distinguished:

1. The AVC-group of the root node fits in main memory. We describe algorithms for this
case in Sections 4.1, 4.2, and 4.3.

2. Each individual AVC-set of the root node fits in main memory, but the AVC-group of
the root node does not fit in main memory. We describe algorithms for this case in
Section 4.4.

3. None of the individual AVC-sets of the root fit in main memory. We discuss this case
in Section 4.5, and (taking the performance results of Section 5 into account) it is clear
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that performance improvements over SPRINT can be expected. However, the algorithm
is no longer more general than SPRINT with respect to other classification algorithms.

In understanding the RainForest family of algorithms, it is useful to keep in mind that
the following steps are carried out for each tree noden, according to the generic schema in
figure 3:

1. AVC-group construction: If an AVC-group does not already exist when the noden is
considered, we must readFn in order to construct the AVC-group. This involves a scan of
the input databaseD or a materialized partition ofD that is a superset ofFn. Sometimes,
we need to construct the AVC-group one AVC-set at a time.

2. Choose splitting attribute and predicate: This step uses the split selection methodCL
that is being scaled using the RainForest framework; to our knowledge all split selection
methods make these choices by examining the AVC-sets of the node one by one.

3. Partition D across the children nodes: We must read the entire dataset and write out all
records, partitioning them into child “buckets” according to the splitting criterion chosen
in the previous step. If there is sufficient memory, we can build the AVC-groups for one
or more children at this time, as an optimization.

The algorithms that we present in Section 4 differ primarily in how they utilize additional
memory in the third step, and how they deal with insufficient memory to hold an AVC-group
in the first step.

3.2. A sample instantiation

In this section we discuss a sample instantiation of our framework with CART, a well-known
classification tree construction algorithm (Breiman et al., 1984). (The SPRINT algorithm,
the fastest scalable classification algorithm proposed previously, implements the CART
split selection method (Shafer et al., 1996).) We concentrate on the CART split selection
method and do not discuss cost-complexity pruning, the pruning method of CART, which is
orthogonal to its split selection method. (For example, SPRINT uses MDL-pruning instead
of cross-validation (Mehta et al., 1995).) CART constructs classification trees with binary
splits. Consider an internal noden in the tree with splitting attributeXn. If Xn is numerical,
then the splitting predicates on the outgoing edges ofn are of the formXn ≤ xn and
Xn > xn, wherexn ∈ dom(Xn). If Xn is categorical, then the splitting predicates on the
outgoing edges ofn are of the formXn ∈ Yn andXn 6∈ Yn, whereYn ⊂ dom(Xn). Since the
goal is to separate the class labels through the structure imposed by the classification tree,
CART evaluates each potential splitting criterion by calculating the value of an impurity
function, thegini-index. Assume that a candidate splitting criterion partitionsD into D1

andD2. Thegini-index allows to compare quantitatively how “pure”D1 andD2 are relative
to D.

Consider the example input database in figure 1 which has two class labels. LetpY be
the relative frequency of class label “Yes” andpN be the relative frequency of class label
“No” in the datasetD. Then the thegini-index of the split of a datasetD into D1 andD2
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is defined as

gini(D1, D2)
def= |D1|
|D| gini(D1)+ |D2|

|D| gini(D2), where

gini(D)
def= 1− p2

Y − p2
N .

For example, the splitting predicate Age≤ 25 induces a partitioning ofD into D1 andD2,
whereD1 contains the records with record identifiers 1, 4, 7, 11 and 13,D2 contains the
remaining records. Simple calculations show thatgini(D1, D2) = 0.49. While a complete
discussion of CART is outside the scope of this paper, the important point is that the
arguments to thegini-function are the relative frequenciespY and pN of each class label
in the partitionsD1 and D2. These relative frequencies can be easily obtained from the
AVC-set of predictor attributeX.

Based on the observations above, we can instantiate our framework with CART as fol-
lows. Procedure CART.find_best_partitioning, called with an AVC-set of predictor
attributeX, computes the (locally) best splitting criterion using predictor attributeX and
stores the splitting criterion and the corresponding value of thegini-function in-memory.
The statistics that are computed by procedure CART.find_best_partitioning are ex-
amined by CART.decide_splitting_criterion which selects the splitting criterion
with the global minimum value of thegini-function.

3.3. Missing values

It is often the case that real-life training databases have missing values, i.e., in some records
one or several predictor attributes haveNULL-values. Consider a recordt with a missing
value for predictor attributeX, e.g.,t · X = NULL, and letn be the root node of the tree.
Note that the attribute valuest · X′ for predictor attributesX′ 6= X can be utilized for the
computation of the splitting criterioncrit(n). This utilization is possible since for con-
struction of the AVC-set of predictor attributeX′, the projection〈t · X′, t ·C〉 of a recordt
suffices. Whethert has missing values for predictor attributeX does not influencet ’s utility
for the AVC-sets of predictor attributesX′ 6= X. But aftercrit(n) has been computed,Fn

has to be partitioned amongn’s children. Assume thatX is the splitting attribute at node
n. Since for recordt , the value of predictor attributeX is missing, it is not clear to which
child of n the recordt should be sent to. Naively,t can not continue to participate in further
construction of the subtree rooted atn. Algorithms for missing values address this problem.

Friedman suggested that all records with missing attribute values should be ignored during
tree construction (Friedman, 1977) whereas other authors argue that it is beneficial to make
maximum use of all records (Breiman et al., 1984; Loh and Vanichsetakul, 1988). In this
section we describe two methods, estimation (Loh and Vanichsetakul, 1988; Loh and Shih,
1997) and surrogate splits (Breiman et al., 1984), and show how they can be incorporated
into our framework. The goal of methods is to maximize the use of the training database as
well as being able to classify future records with missing values.

In estimation, missing values are estimated from the data whenever necessary (Loh and
Vanichsetakul, 1988; Loh and Shih, 1997). Assume that at noden we want to estimate the
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attribute value of predictor attributeX in recordt with class labeli , i.e.,t · X = NULL and
t · C = i . (Note that the value of the class label is known for all records in the training
dataset.) One simple estimator oft · X is the node class mean, ifX is numerical, or the node
class mode, ifX is categorical. Formally, let̂t · X be the estimated value oft · X. Thent̂ · X
is defined as follows:

t̂ · X def=
∑

t∈Fn∧t ·X 6=NULL t · X
|{t ∈ Fn : t · X 6= NULL}| , if X is numerical;

t̂ · X def= argmaxi∈dom(C)|{t ∈ Fn ∧ t · C = i }|, if X is categorical.

It can be easily seen that the AVC-set of predictor attributeX contains sufficient statistics
to calculatêt · X.

Another method for missing values calledsurrogate splitswas introduced by Breiman
et al. in CART (Breiman et al., 1984). LetX be the splitting attribute at noden and denote
by sX the splitting criterion at noden. The algorithm selects a splitting criterionsX′ for
each predictor attributeX′ 6= X such thatsX′ is most similar tosX in terms of sending
records to the same child node. Assume that the best splitsX is on predictor attributeX; sX

partitionsFn into Fn1, Fn2, . . . , Fnk . Consider a splitsX′ on another predictor attributeX′;
sX′ partitionsFn into Fn′1, Fn′2, . . . , Fn′k .

5 Then the probabilityp(sX, sX′) thatsX′ results in
the same prediction assX is estimated by the proportion of records inFn thatsX′ andsX

send to the same child. Formally,

p(sX, sX′) =
|Fn1 ∩ Fn′1|
|Fn| + |Fn2 ∩ Fn′2|

|Fn| + · · · + |Fnk ∩ Fn′k |
|Fn| .

The best surrogate split for predictor attributeX′ with respect to splitting criterionsX is
the splitsX′ that maximizesp(sX, sX′). (Only surrogate splits that are better than the naive
predictor are used. The naive predictor sends a record to the child with the largest family.)
Using p(sX, sX′), the predictor attributesX′ 6= X can be ranked according to the quality
of their surrogate splits as quantified byp(sX, sX′). For a recordt with t · X = NULL,
the prediction of the highest ranked surrogate splitsX′ such thatt · X′ 6= NULL is used to
determine the child partition oft .

The best surrogate split for a predictor attributeX′ is found through an exhaustive search
over all possible candidate splits. To calculate the quality of a candidate surrogate split
sX′ , we need the count of records on which the prediction ofsX andsX′ agrees. For any
candidate splitsX′ , p(sX, sX′) can be calculated from the following data structure: For each
attribute valuex ∈ X′, we store the count of records that splitsX sends to thei th child of
n for i ∈ {1, . . . , k}. These sufficient statistics, which we call thesurrogate-count-set, are
as compact as the AVC-set of predictor attributeX′: The size of the surrogate-count-set
depends only on the number of different attribute values of predictor attributeX′ and the
number of partitions induced bysX. The surrogate-count-set can be created in one scan
over the family ofn as follows: For each recordt ∈ Fn with t · X 6= NULL, we applysX. If
recordt is sent to child numberi , the counter for attribute-valuet · X′ and child numberi in
the surrogate-count-set of predictor attributeX′ is increased. Thus surrogate splits can be
easily incorporated into our framework. In case the training database is stored in a database
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system, the sufficient statistics for each predictor attributeX′ 6= X can be retrieved through
a simple SQL-query.

3.4. Extensions to regression trees

In this section, we show that our framework can be modified to devise a scalable algo-
rithm to construct regression trees according to the CART regression tree construction
algorithm (Breiman et al., 1984). Recall that in a regression problem the dependent vari-
ableY is numerical. Aprediction ruleis defined analogous to a classifier: it is a function
d : dom(X1) × · · · × dom(Xm) 7→ dom(Y). CART regression trees fit a constant regres-
sion model at each leaf node of the tree. We define themean squared error RRegd (P) of
prediction ruled to be the expected square error usingd(〈t · X1, . . . , t · Xm〉) as predictor

of t · Y, formally RReg
d (P)

def= E(t · Y − d(〈t · X1, . . . , t · Xm〉))2. A regression treeis
defined analogous to a classification tree. (The predicted value at each leaf noden is a
constantcn ∈ dom(Y).) The regression tree construction problemcan be formally stated
as follows: Given a datasetD = {t1, . . . , tn} where theti are independent random samples
from a probability distributionP, find a regression treeT such that the mean squared error
RReg

T (P) is minimal (Breiman et al., 1984).
Let Ȳn be the mean of the dependent variable in noden andRn be the sum of squares of

Y within noden if Ȳn is used as predictor ofY. Formally,

Ȳn
def=
∑

t∈Fn
t · Y

|Fn| , Rn
def=
∑
t∈Fn

(t · Y − Ȳn)
2.

At noden, lets be a splitting criterion that partitionsFn into Fn1, . . . , Fnk . Then the quality
q(s)of splitting criterions is measured in CART by the weighted decrease in variability. (The
functionq(s) plays the role of the impurity function discussed in Section 3.2.) Formally:

q(s)
def= Rn −

k∑
i=1

|Fni |
|Fn| Rni .

Note thatRn can be rewritten as

Rn =
∑
t∈Fn

(t · Y)2− |Fn| · Ȳ2
n . (1)

Since the splitting criterioncrit(n) involves exactly one predictor attribute, the sufficient
statistics to calculate the quality of a candidate splits on predictor attributeX contain the
following information: For each attribute valuex ∈ dom(X) we store the number of tuples
t in Fn with t · X = x, the sum of the values of the dependent attribute and the sum of
squares of the dependent attribute. Formally, letFn(X = x)

def= {t ∈ Fn : t · X = x}. Then
for all x ∈ dom(X) such thatFn(X = x) 6= ∅, we store the following information:

Exn
def=
(

x, |Fn(X = x)|,
∑

t∈Fn(X=x)

t · Y,
∑

t∈Fn(X=x)

(t · Y)2
)
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We define theAVS-setof a predictor attributeX at noden as the collection of the values
Exn. (The acronym AVS stands forAttribute-Value,Squares.) It is easy to see from Eq. (1)

that for any candidate splitting criterions involving predictor attributeX, its qualityq(s)
can be calculated from the statistics in the AVS-set. Thus by replacing the AVC-set with the
AVS-set, our framework results in a scalable algorithm of the CART regression tree split
selection method. In case the training database is stored in a database system, the AVS-set
for each predictor attributeX can be retrieved through a simple SQL-query analogous to
the query described in Section 3.1.

4. Algorithms

In this section, we present algorithms for two of the three possible relationships between
main memory and AVC-set sizes as listed in Section 3. The first three algorithms, RF-Write,
RF-Read, and RF-Hybrid, require that the AVC-group of the root noden (and thus the AVC-
group of each individual node in the tree) fits into main memory; we assume that this is the
most common case, as discussed in Section 3. The remaining algorithm, RF-Vertical, works
in the case that each single AVC-set ofn fits in-memory, but the complete AVC-group of
n does not fit. Since scalability and selection of the splitting criterion are orthogonal in the
RainForest Schema, we do not dwell on any issues dealing with the quality of the resulting
classification tree. Recall that we denote byCL a representative split selection methods.

In order to describe the following algorithms precisely, we introduce the notion of the
stateof a node; possible states areSend, Fill, FillWrite, Write, Undecided, andDead.
The stateS of a noden determines how a record is processed atn. A list of the states and
their preconditions and processing behaviors are shown in figure 5. Whenever a node is
created, its state is set toUndecided (unless mentioned otherwise), and we will call such
a node anewnode. A node whose state isDead will be called adeadnode.

Figure 5. States and processing behavior.
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4.1. Algorithm RF-Write

In Algorithm RF-Write we assume that the complete AVC-group of the root node fits into
main memory. Letn be the root node of the tree. We make one scan over the database and
construct the AVC-group ofn. Split selection methodCL is applied andk children nodes of
n are created. An additional scan over the database is made, where each recordt is written
into one of thek partitions. The algorithm then recurses in turn on each partition. In the
remainder of this paragraph, we describe Algorithm RF-Write in more detail.

At the beginning, the state of the root noden is set toFill and one scan over the
databaseD is made. Sincen is in stateFill, its AVC-group is constructed during the scan.
Split selection methodCL is called with the AVC-group ofn as argument andcrit(n)
is computed. Assume thatcrit(n) splits on predictor attributeX and partitionsFn into k
partitions. Algorithm RF-Write allocatesk children nodes ofn, sets the state ofn to Send,
the state of each child toWrite, and makes one additional pass over the training database
D. Each recordt that is read fromD is processed by the tree as follows. Sincen is in state
Send, crit(n) is applied tot andt is sent to a child noden′. Since noden′ is in stateWrite,
t is appended ton′’s partition. After the scan, the partition of each child noden′ consists of
Fn′ . The algorithm is then applied on each partition recursively.

For each level of the tree, Algorithm RF-Write reads the entire database twice and writes
the entire database once.6 Note that the construction of the tree does not necessarily have
to proceed in a breadth-first or depth-first manner. The only restriction is that we cannot
compute the splitting criterion of a node unless the splitting criterion of its parent node has
been computed.

4.2. Algorithm RF-Read

The basic idea behind Algorithm RF-Read is to always read the original training database
instead of writing partitions for the children nodes. Since at some point all AVC-groups of
the new nodes will not fit together into main memory, we will read the original database
several times, each time constructing AVC-groups for an unexamined subset of the new
nodes in the tree.

More precisely, in the first step of Algorithm RF-Read, the state of the root noden is
set toFill, one scan over the databaseD is made, andcrit(n) is computed. The children
nodes{n1, n2, . . . ,nk} of n are created. Suppose that at this point there is enough main
memory to hold the AVC-groups of all children nodes{n1, n2, . . . ,nk} of n in-memory.
(We will address the problem of size estimation of the AVC-groups in Section 4.6.) In this
case, there is no need to write out partitions for theni ’s as in Algorithm RF-Write. Instead,
we can in another scan overD construct the AVC-groups of all children simultaneously:
We set the state ofn to Send, change the state of each newly allocated childni from
Undecided to Fill, and build in a second scan overD the AVC-groups of the nodes
n1, . . . ,nk simultaneously in main memory. After the scan ofD, Algorithm CL is applied
to the in-memory AVC-group of each child nodeni to decidecrit(ni ) for i ∈ {1, . . . , k}.
If ni splits, children nodes ofni are allocated andni ’s state is set toSend; otherwiseni ’s
state is set toDead. Note that so far we have made only two scans over the training database
to construct the first two levels of the tree.
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We can proceed in the same way for each level of the tree, as long as there is sufficient
main memory available to hold the AVC-groups of all new nodes at the level. LetW be the
set of new nodes at levell . Suppose that at a levell there is not sufficient memory to hold
all AVC-groups of the new nodes in-memory. In this case, we can divide the set of new
nodesW into groupsG1, . . . ,Ggl , ∪Gi = N, Gi ∩ G j = ∅ for i 6= j , i, j ∈ {1, . . . , gl },
such that all AVC-groups of the nodes in a given groupGi fit in-memory. Each group is
then processed individually: the states of the nodes inGi are changed fromUndecided to
Fill and one scan over the training database is made to construct their AVC-groups. After
the scan, their splitting criteria are computed. Once allgl groups for levell have been
processed, we proceed to the next level of the tree. Note that for levell , gl scans over the
training databaseD were necessary.

With increasingl , usually the number of nodes at the levell of the tree and thus usually the
overall main memory requirements of the collective AVC-groups of the nodes at that level
grow. Thus, Algorithm RF-Read makes an increasing number of scans over the database per
level of the tree. Therefore it is not efficient for splitting algorithms that apply bottom-up
pruning (except for the case that the families at the pure leaf nodes are very large—and
this is usually not known in advance). But for splitting algorithms that prune the tree top-
down (Fayyad, 1991; Rastogi and Shim, 1998), this approach might be a viable solution.
In addition, as soon as the family of tuples of a noden fits in-memory, an in-memory
classification tree construction algorithm can be run to finish construction of the subtree
rooted atn.

We included Algorithm RF-Read for completeness. It marks one end of the design spec-
trum in the RainForest framework and it is one of the two parents of the Algorithm RF-Hybrid
described in the next section. We do not think that it is important in practice.

4.3. Algorithm RF-Hybrid

Combining Algorithm RF-Write and Algorithm RF-Read gives rise to Algorithm RF-
Hybrid. We first describe a simple form of RF-Hybrid; in the next paragraph we will
refine this version further. RF-Hybrid proceeds exactly like RF-Read until the tree level
l is reached where all AVC-groups of the set of new nodesW do not fit any more into
main memory collectively. At this point, RF-Hybrid switches to RF-Write: Algorithm RF-
Hybrid creates|W| partitions and makes a scan over the databaseD to distributeD over the
|W| partitions. The algorithm then recurses on each noden ∈ W to complete the subtree
rooted atn. This first version of RF-Hybrid uses the available memory more efficiently than
RF-Write and, unlike RF-Read, does not require an increasing number of scans over the
database for lower levels of the tree.

We can improve upon this simple version of Algorithm RF-Hybrid using the following
observation: Assume that we arrive at tree levell where all AVC-groups of the new nodes
W together do not fit any more into main memory. Algorithm RF-Hybrid switches from
RF-Read to RF-Write, but during this partitioning pass, we do not make use of the available
main memory. (Each record is read, processed by the tree and written to a partition—no new
information concerning the structure of the tree is gained during this pass.) We exploit this
observation as follows. We select a set of nodesM ⊂W for which we construct AVC-groups
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in main memory while writing the partitions for the nodes inW. After the partitioning pass,
split selection methodCL is applied to the in-memory AVC-groups of the nodes inM and
their splitting criteria are computed.

The concurrent construction of AVC-groups for the nodes inM has the following ad-
vantage. Letn ∈ M be a node whose AVC-group has been constructed, and consider the
recursion of Algorithm RF-Hybrid onn. Sincecrit(n) is already known, we saved the
first scan overn’s partition. We can immediately proceed to the second scan during which
we construct AVC-groups for the children ofn. Thus, due to the concurrent construction
of the AVC-groups of the nodes inM , we save for each noden ∈ M one scan overn’s
partition.

How do we chooseM ⊆ W? Since we save for each noden ∈ M one scan overFn,
we would like to maximize the sum of the sizes of the families of the nodes inM . The
restricting factor is the size of main memory: For each noden ∈ M we have to maintain its
AVC-group in main memory. We can formulate the problem as follows: Each noden ∈ M
has an associatedbenefit(the size ofFn) and an associatedcost(the size of its AVC-group
which has to be maintained in main memory).

Assume for now that we have estimates of the sizes of the AVC-groups of all nodes
in W. (We will address the problem of size estimation of AVC-groups in Section 4.6.)
According to the formulation in the preceding paragraph, the choice ofM is an instance
of theknapsack problem(Garey and Johnson, 1979). An instance of the knapsack problem
consists of a knapsack capacity and a set of items where each item has an associated cost and
benefit. The goal is to find a subset of the items such that the total cost of the subset does not
exceed the capacity of the knapsack while maximizing the sum of the benefits of the items
in the knapsack. The knapsack problem is known to be NP-complete (Garey and Johnson,
1979). There are both polynomial time approximation schemas and fully polynomial time
approximation schemas for knapsack (Ibarra and Kim, 1975; Sahni, 1975). We decided
to use a modified greedy approximation which finds a packing that has at least half the
benefit of the optimal packing and works well in practice. (We call the greedy algorithm
modified, because it considers the item with the largest benefit separately; this special case
is necessary to get the stated bound with respect to the optimal solution.) The output of
the Greedy Algorithm is the subsetM of the new nodesW such that: (i) We can afford to
construct the AVC-groups of the nodes inM in-memory, and (ii) the benefit (the number
of saved I/O’s) is maximized.

4.4. Algorithm RF-Vertical

Algorithm RF-Vertical is designed for the case that the AVC-group of the root noden
does not fit in main memory, but each individual AVC-set ofn fits in-memory. For the
presentation of RF-Vertical, we assume without loss of generality that there are predictor
attributesPlarge = {X1, . . . , Xv}with very large AVC-sets such that each individual AVC-set
fits in main memory, but no two AVC-sets of attributes inPlarge fit in-memory collectively.
We denote the remaining predictor attributes byPsmall = {Xv+1, . . . , Xm}. We limited the
presentation to this special scenario for the ease of explanation; our discussion can easily
be extended to the general case.
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Figure 6. States with modified processing behavior in RF-Vertical.

Let n be a node in the tree and lett be a record from the databaseD. In Algorithm RF-
Vertical, the processing oft at a noden has slightly changed for some states ofn. Assume
thatn is in stateFill. Since we can not afford to constructn’s complete AVC-group in main
memory, we only construct the attribute lists for predictor attributesPsmall in-memory. For
predictor attributes inPlarge, we write a temporary fileZn, into which we insertt ’s projection
onto Plarge andC. Thus,Zn has the schema〈X1, X2, . . . , Xv,C〉. After the scan overD is
completed, procedureCL.find_best_partitioning is applied to the in-memory AVC-
sets of the attribute inPsmall. The split selection methodCL can not yet compute the final
splitting criterion, since the AVC-sets of the attributesX ∈ Plarge have not yet been exam-
ined. Therefore, for each predictor attributeX ∈ Plarge, we make one scan overZn, construct
the AVC-set forX and call procedureCL.find_best_partitioning on the AVC-set.
After all v attributes have been examined, we call procedureCL.decide_splitting_
criterion to compute the final splitting criterion for noden. This slightly modified pro-
cessing behavior of a node for statesFill andFillWrite has been summarized in figure 6.

In the description above, we concentrated on one possibility to construct the AVC-set
of the predictor attributesPlarge. In general, there are other possibilities for preparing the
construction of the AVC-sets of the predictor attributesPlarge at a noden. The full set of
options is listed below:

1. Materialize-none: Each time an AVC-set for a predictor attributeX ∈ Plarge needs to be
constructed, the datasetD is read. This results inv · |M | additional scans ofD, where
M is the set of nodes for which AVC-groups are constructed.

2. Materialize-some

(a) One-file: This is the algorithm that has been described in the preceding paragraph. At
each noden, a fileZn with schema〈X1, X2, . . . , Xv,C〉 is materialized. This materi-
alization takes place during the scan over the datasetD at the root of the current sub-
tree. When a recordt arrives at noden, the projection oft onto〈X1, X2, . . . , Xv,C〉
is appended toZn. To construct the AVC-set of a predictor attribute inPlarge, Zn is
scanned, resulting inv overall scans ofZn.

(b) Many-files: At each noden, l ≤ m files Z1
n, . . . , Zl

n are materialized. The schema
of file Zi

n is 〈Xi1, Xi2, . . . , Ximi
,C〉. If l = 1, a single file is materialized and option

many-filesconverges to optionone-file. To construct the AVC-sets of the predictor
attributes inPlarge, file Zi

n is readmi times.
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3. Partition: When a recordt arrives at a noden, instead of writing files that contain
information about the predictor attributes inPlarge and the class label, we could as well
write the whole recordt . In this case, at each noden, one partitionZn = Fn is materialized
which contains the family of records ofn. To construct the AVC-sets of the predictor
attributes inPlarge at n, Z is scannedv times. In this case, RF-Vertical writes partitions
for each level of the tree and results in a modified version of RF-Write.

4.5. Extensions to AVC-sets larger than main memory

In this section, we discuss the extension of the RainForest framework to AVC-sets larger
than main memory. We do so by investigating the relationship between the RainForest
family of algorithms and SPRINT (Shafer et al., 1996), resulting in a set of conditions
under which RainForest can be applied to input databases with attributes whose AVC-set is
larger than main memory.

In the RainForest framework, we make the assumption that the AVC-group of the root
node (or at least each single AVC-set of the root node) fits into main memory. This assump-
tion is motivated by the observation that most (to our knowledge, all) classification tree
construction algorithms in the literature adhere to the RainForest Tree Induction Schema as
outlined in figure 3. Thus, the design goal of the RainForest framework was not to outper-
form SPRINT, but—based on the assumptions about the relationship between size of main
memory and size of an AVC-set—certain optimizations upon SPRINT are possible.

SPRINT achieves its scalability through the creation of attribute lists, which allowse-
quential accessto the attribute values of an ordered attribute insorted order—without
re-sorting all attribute lists at each node of the tree. Assume that noden splits on split-
ting attributeX; assume thatk children nodes{n1, . . . ,nk} are created and lett ∈ Fn. In
SPRINT,t is vertically partitioned over several attribute lists. The connection between the
individual parts is the record identifier, which is duplicated into each attribute list. During
distribution of the family of records ofn among its children{n1, . . . ,nk}, the individual
parts oft need to be re-joined since the entries in the attribute list for an attributeX′ 6= X
carry no information about the splitting criterion (which involves only attributeX). This join
is expensive, but during distribution of an attribute list to the children nodes{n1, . . . ,nk},
the sort order of the attribute list is maintained, thus re-sorting at each node is avoided.

Since Algorithm RF-Hybrid assumes that the AVC-group of the root node fits in-memory,
the vertical partitioning of a record is avoided: Each AVC-set is sorted repeatedly in-memory,
which is overall much faster than the maintenance of an initial sort of each attribute through
the creation of attribute lists. In addition, the partitioning of the familyFn of noden among
its children{n1, . . . ,nk} is a much cheaper operation than in SPRINT:Fn is read once and
each record is written to its corresponding child-partition. A similar argument holds for RF-
Vertical: RF-Vertical writes vertical partitions for attributes with very large AVC-sets, but
uses the partitions only for in-memory construction of the corresponding AVC-set, which
is sorted in-memory. ThusFn is always distributed in whole records amongn’s children,
not in vertical parts.

Note that the assumption that each single AVC-set fits in-memory has implications beyond
just performance. Since the AVC-set for attributeX contains all information to compute a
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possible splitting criterion onX, the algorithm to compute the splitting criterion can have
any access pattern with respect to the AVC-set; SPRINT only provides sequential access in
sorted order. Thus for split selection methods that do not exhibit this access pattern (e.g.,
GID3 and extensions (Fayyad, 1991)), the data management of SPRINT is not applicable.
The access pattern generality allows the RainForest framework to scale up a much broader
set of algorithms than SPRINT does.

If for a specific classification tree construction algorithm the access pattern that SPRINT
provides suffices, it is possible to build a hybrid version between the RainForest algorithms
and SPRINT. This hybrid algorithm only creates attribute lists for attributesX whose AVC-
set for the root of the tree does not fit in-memory; it maintains the attribute list forX until at
a noden the size ofX’a AVC-set fits in-memory (which is very likely to happen at a node
further down the tree). The idea of maintaining the attribute list sorted through a hash-join
carries over from SPRINT. For the remaining attributes, the RainForest optimizations are
applied, yielding an efficient algorithm that works for any AVC-set size, but does not exhibit
any longer the generality of the RainForest framework.

4.6. AVC-group size estimation

To estimate the size of the AVC-group of new noden, note that we can not assume that
n’s AVC-group is much smaller than the AVC-group of its parent nodep even thoughFp

might be considerably larger thanFn. Thus, we estimate the size of the AVC-group of a
new noden in a very conservative way. We estimate it to be the same size as its parent
p—except for the AVC-set of the splitting attributeX. (If parent p of noden splits onX
we know the size ofX’s AVC-set at noden exactly.) This approach usually overestimates
the sizes of AVC-sets slightly, but it works very well in practice. There are algorithms for
the estimation of the number of distinct values of an attribute (Astrahan et al., 1987; Haas
et al., 1995), but we decided not to use these algorithms for the following reason. If we
would underestimate the size of an AVC-set, it would have severe consequences, since not
sufficient main memory would be available to hold the AVC-set.

5. Experimental results

In the machine learning and statistics literature, the two main performance measures for
classification tree algorithms are: (i) The quality of the rules of the resulting tree, and (ii)
the classification tree construction time (Lim et al., 1997). The generic schema described
in Section 3 allows the instantiation of most (to our knowledge, all) classification tree
algorithms from the literaturewithout modifying the result of the algorithm. Thus, quality
is an orthogonal issue in our framework, and we can concentrate solely on classification
tree construction time. In the remainder of this section we study the performance of the
techniques that enable classification algorithms to be made scalable.

5.1. Datasets and methodology

The gap between the scalability requirements of real-life data mining applications and the
sizes of datasets considered in the literature is especially visible when looking for possible
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Figure 7. The sizes of the AVC-sets of the data generator.

benchmark datasets to evaluate scalability results. The largest dataset in the often used
Statlog collection of training databases (Michie et al., 1994b) contains only 57000 records,
and the largest training dataset considered by Lim, Loh and Shih has 4435 records (Lim
et al., 1997). We therefore use the synthetic data generator introduced by Agrawal et al.
(1993). The synthetic data has nine predictor attributes as shown in figure 7. Included in
the data generator are classification functions that assign labels to the records produced.
We show the results of three of the functions (Function 1, Function 6, and Function 7)
for our performance study. Functions 1 and 6 generate relatively small classification tree
whereas the trees generated by Function 7 are large (Agrawal et al., 1993). (Note that this
adheres to the methodology used in the SPRINT and PUBLIC performance studies (Shafer
et al., 1996; Rastogi and Shim, 1998).) We ran experiments using other functions in the
data generator; the results are qualitatively similar.

Since the feasibility of our framework relies on the size of the initial AVC-group, we
examined the size of the AVC-groups of the training data sets generated by the data generator.
The overall maximum number of entries in the AVC-group of the root node is about 2.1
million, requiring a maximum memory size of about 25MB. If we partition the predictor
attributehouse valuevertically, the main memory requirements to hold the AVC-groups
of the root node in main memory are reduced to about 15MB (1.35 million entries). The
maximal AVC-set sizes of each predictor attribute are displayed in figure 7. The function
U (x, y) denotes the integer uniform distribution with valuesv : x ≤ v ≤ y. Since we
will change the memory available to the RainForest algorithms during our experiments,
let us call the number of AVC-set entries that fit in-memory thebuffer size. So in order
to run RF-Write and RF-Hybrid on the datasets generated by the data generator, we need
a buffer size of at least 2.1 million entries, whereas RF-Vertical can be run with a buffer
size of 1.35 million entries. All our experiments were performed on a Pentium Pro with
a 200 Mhz processor running Solaris X86 version 2.6 with 128MB of main memory. All
algorithms are written in C++ and were compiled usinggcc versionpgcc−2.90.29 with
the-O3 compilation option.

We are interested in the behavior of the RainForest algorithms for datasets that are larger
than main memory, therefore we uniformly stopped tree construction for leaf nodes whose
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family was smaller than 1.5 million records; any clever implementation would switch to a
main memory algorithm at a noden wheneverFn fits into main memory.

5.2. Scalability results

First, we examined the performance of Algorithms RF-Write, RF-Hybrid and RF-Vertical
as the size of the input database increases. For Algorithms RF-Write and RF-Hybrid, we
fixed the size of the AVC-group buffer to 2.5 million entries; for Algorithm RF-Vertical we
fixed the size of the AVC-group buffer to 1.8 million entries. Figures 8–10 show the overall
running time of the algorithms as the number of records in the input database increases from 2
to 10 million. (Function 7 constructs larger trees that branch more often and thus tree growth
takes longer than for Functions 1 and 6.) The running time of all algorithms grows nearly
linearly with the number of records, as we expected. Algorithm RF-Hybrid outperforms
both Algorithms RF-Write and RF-Vertical in terms of running time; the difference is much
more pronounced for Function 7. Figures 11–13 show the number of page accesses during
tree construction (assuming a pagesize of 128KB).

In the next four experiments, we investigated how internal properties of the AVC-groups
of the training database influence performance. (We expected that only the size of the input
database and the buffer size matter which is confirmed by the experiments.) We fixed the
size of the input database to 6 million records and the sample distribution to Function 1.
Figure 14 shows the effect of an increase in the absolute size of the AVC-group in the
input database while holding the available buffer sizes constant at 2.5 million entries for
RF-Write and RF-Hybrid and at 1.8 million entries for RF-Vertical. We varied the size of

Figure 8. Scalability—F1: Overall time.
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Figure 9. Scalability—F6: Overall time.

Figure 10. Scalability—F7: Overall time.
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Figure 11. Scalability—F1: Page accesses.

Figure 12. Scalability—F6: Page accesses.

the AVC-group through manipulation of the data generator from 200000 entries (20% of
the original size) to 2000000 entries (original size). For small AVC-group sizes (40% and
below), the times for RF-Vertical and RF-Hybrid are identical. The larger buffer size only
shows its effect for larger AVC-group-sizes: RF-Hybrid writes partitions less frequently
than RF-Vertical. The running time of RF-Write is not affected through a change in AVC-
group size, since RF-Write writes partitions regardless of the amount of memory available.
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Figure 13. Scalability—F7: Page accesses.

Figure 14. Changing AVC-group size—constant buffer size.

Figure 15 shows the effect of an increase in the absolute size of the AVC-group in the
input database while varying the buffer sizes. The buffer size for RF-Write and RF-Hybrid
is set such that exactly the AVC-group of the root node fits in-memory; the buffer size of
RF-Vertical is set such that exactly the largest AVC-set of the root node fits in-memory.
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Figure 15. Changing AVC-group size—varying buffer size.

Figure 16. Changing AVC-group skew.

Since both AVC-group size and buffer size are increased simultaneously (keeping their ratio
constant), the running times stay constant.

Figure 16 shows how the effect of skew between two attributes within an AVC-group
affects performance. The number of records remained constant at 6 million; we set the
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Figure 17. Changing number of attributes.

buffer sizes for RF-Write and RF-Hybrid to 250000, and the buffer size for RF-Vertical to
1800000. We duplicated theloan attribute (thus increasing the number of attributes to ten),
but skewed the distribution of distinct attributes values between the two loan attributes.
We reduced the number of attribute values of the remaining attributes to make the loan
attributes the dominant contributors to the overall AVC-group size. While changing the
skew, we held the overall number of distinct attribute values for the two loan attributes at a
combined size of 1200000 entries. For example, a skew value of 0.1 indicates that the first
loan attribute had 10% (120000) distinct attribute values and the second loan attribute had
90% (1080000) distinct values. As we expected, the overall running time is not influenced
by the skew, since the overall AVC-group size remained constant.

In our last experiment shown in figure 17, we added extra attributes with random values
to the records in the input database, while holding the overall number of entries constant
at 4200000 for RF-Hybrid and RF-Write and at 2100000 entries for RF-Vertical. Adding
attributes increases tree construction time since the additional attributes need to be pro-
cessed, but does not change the final classification tree. (The split selection method will
never choose such a ‘noisy’ attribute in its splitting criterion.) As can be seen in figure 17,
the RainForest family of algorithms exhibits a roughly linear scaleup with the number of
attributes.

5.3. Performance comparison with SPRINT

In this section, we present a performance comparison with SPRINT (Shafer et al., 1996).
We tried to make our implementation of SPRINT as efficient as possible, resulting in the
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Figure 18. Comparison with SPRINT—F1.

following two implementation improvements over the algorithm described by Shafer et al.
(1996). First, we create only one attribute list for all categorical attributes together. Second,
when a noden splits into children nodesn1 and n2, we create the histograms for the
categorical attributes ofn1 andn2 during the distribution of the categorical attribute list,
thus saving an additional scan. We made the in-memory hash-table large enough to perform
each hash-join in one pass over an attribute list.

Figures 18–20 show the comparison of SPRINT and the RainForest algorithms for Func-
tions 1, 6, and 7. For algorithms RF-Hybrid and RF-Write, we set the AVC buffer size
to 2500000 entries (the AVC-group of the root fits in-memory); for RF-Vertical we set the
buffer size such that the largest AVC-set of a single attribute of the root node fits in-memory.
The figures show that the RainForest algorithms outperform SPRINT by about a factor of
three.

Where does this speed-up come from? First, we compared the cost of the repeated in-
memory sorting of AVC-groups in the RainForest algorithms with the cost of creation of
attribute lists in SPRINT through which repeated sorts can be avoided. The numbers in
figure 21 show that repeated in-memory sorting of the AVC-groups is about ten times faster
than the initial attribute list creation time. Second, we compared the cost to arrive at a
splitting criterion for a noden plus distribution ofFn amongn’s children. In SPRINT, the
splitting criterion is computed through a scan over all attribute lists; the distribution ofFn

is performed through a hash-join of all attribute lists with the attribute list of the splitting
attribute. In the RainForest family of algorithms,Fn is read twice and written once; RF-
Vertical needs to write vertical partitions if necessary. (We forced the algorithms to write
partitions to compare the performance to SPRINT.) We set the buffer size of RF-Write
such that the AVC-group of the root fits in-memory and the buffer size of RF-Vertical
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Figure 19. Comparison with SPRINT—F6.

Figure 20. Comparison with SPRINT—F7.

such that the largest AVC-set fits in-memory. Figure 22 shows that the cost of determining
the splitting criterion plus partitioning in the original database is about a factor of three
faster than scanning and hash-joining the attribute lists. This cost is the overall dominant
cost during tree construction and thus explains why the RainForest family of algorithms
outperforms SPRINT by a factor of three.
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Figure 21. Sorting cost comparison.

Figure 22. Partitioning cost comparison.

6. Conclusions

In this paper, we have developed a comprehensive approach to scaling classification tree
algorithms that is applicable to all classification tree algorithms that we are aware of. The
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key insight is the observation that classification trees in the literature base their splitting
criteria at a tree node on the AVC-group for that node, which is relatively compact.

The best splitting criteria developed in statistics and machine learning can now be ex-
ploited for classification in a scalable manner. In addition, depending upon the available
memory, our algorithms offer significant performance improvements over the SPRINT clas-
sification algorithm, which is the fastest scalable classifier in the literature. If there is enough
memory to hold individual AVC-sets, as is very likely, we obtain very good speed-up over
SPRINT; if there is enough memory to hold all AVC-sets for a node, the speed-up is even
better.
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Notes

1. A categoricalattribute takes values from a set of categories. Some authors distinguish between categorical
attributes that take values in an unordered set (nominalattributes) and categorical attributes having ordered
scales (ordinal attributes).

2. Classification trees are often also calleddecision trees. In this paper, we refer to tree-structured models for both
regression and classification problems asdecision trees, since each node in the tree encodes a decision.

3. There are lots of trees to choose from, and they all grow fast in RainForest! We also happen to like rainforests.
4. Note that we consider classification trees whose splitting criteria involve a single predictor attribute. Our schema

does not encompass split selection methods that result in splitting criteria involving several predictor attributes,
such as the work by Fukuda et al. (1996).

5. Breiman et al. only consider binary trees, although the technique generalizes tok-ary trees.
6. This simple analysis assumes that the tree is balanced. More precisely, at a levell , only those records that

belong to families of nodes at levell are read twice and written once. Since there might be dead nodes in the
tree, the set of records processed at levell does not necessarily constitute the whole training database.
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