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Abstract

Data mining applications place special requirements on clus-
tering algorithms including: the ability to �nd clusters em-
bedded in subspaces of high dimensional data, scalability,
end-user comprehensibility of the results, non-presumption
of any canonical data distribution, and insensitivity to the
order of input records. We present CLIQUE, a clustering al-
gorithm that satis�es each of these requirements. CLIQUE
identi�es dense clusters in subspaces of maximum dimen-
sionality. It generates cluster descriptions in the form of
DNF expressions that are minimized for ease of comprehen-
sion. It produces identical results irrespective of the order in
which input records are presented and does not presume any
speci�c mathematical form for data distribution. Through
experiments, we show that CLIQUE e�ciently �nds accu-
rate clusters in large high dimensional datasets.

1 Introduction

Clustering is a descriptive task that seeks to identify homo-
geneous groups of objects based on the values of their at-
tributes (dimensions) [24] [25]. Clustering techniques have
been studied extensively in statistics [3], pattern recogni-
tion [11] [19], and machine learning [9] [31]. Recent work in
the database community includes CLARANS [33], Focused
CLARANS [14], BIRCH [45], and DBSCAN [13].

Current clustering techniques can be broadly classi�ed
into two categories [24] [25]: partitional and hierarchical.
Given a set of objects and a clustering criterion [39], parti-
tional clustering obtains a partition of the objects into clus-
ters such that the objects in a cluster are more similar to
each other than to objects in di�erent clusters. The popular
K-means and K-medoid methods determine K cluster rep-
resentatives and assign each object to the cluster with its
representative closest to the object such that the sum of the
distances squared between the objects and their represen-
tatives is minimized. CLARANS [33], Focused CLARANS
[14], and BIRCH [45] can be viewed as extensions of this
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approach to work against large databases. Mode-seeking
clustering methods identify clusters by searching for regions
in the data space in which the object density is large. DB-
SCAN [13] �nds dense regions that are separated by low
density regions and clusters together the objects in the same
dense region.

A hierarchical clustering is a nested sequence of parti-
tions. An agglomerative, hierarchical clustering starts by
placing each object in its own cluster and then merges these
atomic clusters into larger and larger clusters until all ob-
jects are in a single cluster. Divisive, hierarchical clustering
reverses the process by starting with all objects in cluster
and subdividing into smaller pieces [24].

1.1 Desiderata from the data mining perspective

Emerging data mining applications place the following spe-
cial requirements on clustering techniques, motivating the
need for developing new algorithms:

E�ective treatment of high dimensionality: An object (data
record) typically has dozens of attributes and the domain
for each attribute can be large. It is not meaningful to look
for clusters in such a high dimensional space as the aver-
age density of points anywhere in the data space is likely
to be quite low [6]. Compounding this problem, many di-
mensions or combinations of dimensions can have noise or
values that are uniformly distributed. Therefore, distance
functions that use all the dimensions of the data may be
ine�ective. Moreover, several clusters may exist in di�erent
subspaces comprised of di�erent combinations of attributes.

Interpretability of results: Data mining applications typi-
cally require cluster descriptions that can be easily assimi-
lated by an end-user as insight and explanations are of criti-
cal importance [15]. It is particularly important to have sim-
ple representations because most visualization techniques do
not work well in high dimensional spaces.

Scalability and usability: The clustering technique should
be fast and scale with the number of dimensions and the size
of input. It should be insensitive to the order in which the
data records are presented. Finally, it should not presume
some canonical form for data distribution.

Current clustering techniques do not address all these
points adequately, although considerable work has been done
in addressing each point separately.



The problem of high dimensionality is often tackled by
requiring the user to specify the subspace (a subset of the
dimensions) for cluster analysis (e.g. [23]) . However, user-
identi�cation of subspaces is quite error-prone. Another way
to address high dimensionality is to apply a dimensionality
reduction method to the dataset. Methods such as princi-
pal component analysis or Karhunen-Lo�eve transformation
[11] [19] optimally transform the original data space into a
lower dimensional space by forming dimensions that are lin-
ear combinations of given attributes. The new space has
the property that distances between points remain approx-
imately the same as before. While these techniques may
succeed in reducing the dimensionality, they have two short-
comings. First, the new dimensions can be di�cult to in-
terpret, making it hard to understand clusters in relation to
the original data space. Second, these techniques are not
e�ective in identifying clusters that may exist in di�erent
subspaces of the original data space. We further discuss
these point in the Appendix and Section 4.

Clustering algorithms developed in the database commu-
nity like BIRCH, CLARANS, and DBSCAN are designed to
be scalable, an emphasis not present in the earlier work in
the statistics and machine learning literature [33] [45]. How-
ever, these techniques were developed to discover clusters in
the full dimensional space. It is not surprising therefore
that they are not e�ective in identifying clusters that exist
in the subspaces of the original data space. In Section 4, we
provide experimental results with BIRCH and DBSCAN in
support of this observation.

1.2 Contributions and layout of the paper

We present an algorithm, henceforth referred to as CLIQUE1,
that satis�es the above desiderata. CLIQUE automatically
�nds subspaces with high-density clusters. It produces iden-
tical results irrespective of the order in which the input
records are presented and it does not presume any canonical
distribution for input data. It generates cluster descriptions
in the form of DNF expressions and strives to generate min-
imal descriptions for ease of comprehension. Empirical eval-
uation shows that CLIQUE scales linearly with the number
of input records, and has good scalability as the number of
dimensions (attributes) in the data or the highest dimension
in which clusters are embedded is increased.

We begin by formally de�ning the problem of automatic
subspace clustering in Section 2. Section 3 is the heart of the
paper where we present CLIQUE. In Section 4, we present
a performance evaluation and conclude with a summary in
Section 5.

2 Subspace Clustering

Before giving a formal description of the problem of sub-
space clustering, we �rst give an intuitive explanation of
our clustering model.

We are interested in automatically identifying (in general
several) subspaces of a high dimensional data space that al-
low better clustering of the data points than the original
space. Restricting our search to only subspaces of the orig-
inal space, instead of using new dimensions (for example
linear combinations of the original dimensions) is important
because this restriction allows much simpler, comprehensible
presentation of the results. Each of the original dimensions
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typically has a real meaning to the user, while even a sim-
ple linear combination of many dimensions may be hard to
interpret [15].

We use a density based approach to clustering: a cluster
is a region that has a higher density of points than its sur-
rounding region. The problem is to automatically identify
projections of the input data into a subset of the attributes
with the property that these projections include regions of
high density.

To approximate the density of the data points, we par-
tition the data space and �nd the number of points that lie
inside each cell (unit) of the partitioning. This is accom-
plished by partitioning each dimension into the same num-
ber of equal length intervals. This means that each unit has
the same volume, and therefore the number of points inside
it can be used to approximate the density of the unit.

Once the appropriate subspaces are found, the task is
to �nd clusters in the corresponding projections. The data
points are separated according to the valleys of the density
function. The clusters are unions of connected high density
units within a subspace. To simplify their descriptions, we
constrain the clusters to be axis-parallel hyper-rectangles.

Each unit in a k-dimensional subspace can be described
as a conjunction of inequalities because it is the intersection
of 2k axis-parallel halfspaces de�ned by the k 1-dimensional
intervals. Since each cluster is a union of such cells, it can
be described with a DNF expression. A compact description
is obtained by covering a cluster with a minimal number of
maximal, possibly overlapping rectangles and describing the
cluster as a union of these rectangles.

Subspace clustering is tolerant of missing values in input
data. A data point is considered to belong to a particular
subspace if the attribute values in this subspace are not miss-
ing, irrespective of the values of the rest of the attributes.
This allows records with missing values to be used for clus-
tering with more accurate results than replacing missing val-
ues with values taken from a distribution.

2.1 Problem Statement

Let A = fA1;A2; : : : ;Adg be a set of bounded, totally or-
dered domains and S = A1�A2� : : :�Ad a d-dimensional
numerical space. We will refer to A1; : : : ;Ad as the dimen-
sions (attributes) of S.

The input consists of a set of d-dimensional points V =
fv1; v2; : : : ; vmg where vi = hvi1; vi2; : : : ; vidi. The jth com-
ponent of vi is drawn from domain Aj.

We partition the data space S into non-overlapping rect-
angular units. The units are obtained by partitioning every
dimension into � intervals of equal length, which is an input
parameter.

Each unit u is the intersection of one interval from each
attribute. It has the form fu1; : : : ; udg where ui = [li; hi) is
a right-open interval in the partitioning of Ai.

We say that a point v = hv1; : : : ; vdi is contained in a unit
u = fu1; : : : ; udg if li � vi < hi for all ui. The selectivity
of a unit is de�ned to be the fraction of total data points
contained in the unit. We call a unit u dense if selectivity(u)
is greater than � , where the density threshold � is another
input parameter.

We similarly de�ne units in all subspaces of the original
d-dimensional space. Consider a projection of the data set
V into At1 � At2 � : : : � Atk , where k < d and ti < tj
if i < j. A unit in the subspace is the intersection of an
interval from each of the k attributes.
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We discuss algorithms for each of these steps in this sec-
tion.

3.1 Identi�cation of subspaces that contain clusters

The di�culty in identifying subspaces that contain clusters
lies in �nding dense units in di�erent subspaces.

3.1.1 A bottom-up algorithm to �nd dense units

The simplest way to identify dense units would be to create
a histogram in all subspaces and count the points contained
in each unit. This approach is infeasible for high dimen-
sional data. We use a bottom-up algorithm that exploits
the monotonicity of the clustering criterion with respect to
dimensionality to prune the search space. This algorithm is
similar to the Apriori algorithm for mining Association rules
[1]. A somewhat similar bottom-up scheme was also used in
[10] for determining modes in high dimensional histograms.

Lemma 1 (Monotonicity): If a collection of points S is
a cluster in a k-dimensional space, then S is also part of a
cluster in any (k�1)-dimensional projections of this space.
Proof A k-dimensional cluster C includes the points that
fall inside a union of k-dimensional dense units. Since the
units are dense, the selectivity of each one is at least � . All
the projections of any unit u in C have at least as large selec-
tivity, because they include all points inside u, and therefore
are also dense. Since the units of the cluster are connected,
their projections are also connected. It follows that the pro-
jections of the points in C lie in the same cluster in any
(k�1)-dimensional projection. 2

Algorithm: The algorithm proceeds level-by-level. It �rst
determines 1-dimensional dense units by making a pass over
the data. Having determined (k�1)-dimensional dense units,
the candidate k-dimensional units are determined using the
candidate generation procedure given below. A pass over the
data is made to �nd those candidate units that are dense.
The algorithm terminates when no more candidates are gen-
erated.

The candidate generation procedure takes as an argu-
ment Dk�1, the set of all (k�1)-dimensional dense units.
It returns a superset of the set of all k-dimensional dense
units. Assume that the relation < represents lexicographic
ordering on attributes. First, we self-join Dk�1, the join con-
dition being that units share the �rst k�2 dimensions. In the
pseudo-code given below for this join operation, u:ai repre-
sents the ith dimension of unit u and u:[li; hi) represents its
interval in the ith dimension.

insert into Ck

select u1:[l1; h1), u1:[l2; h2), : : :,
u1:[lk�1; hk�1), u2:[lk�1; hk�1)

from Dk�1 u1, Dk�1 u2
where u1:a1 = u2:a1, u1:l1 = u2:l1, u1:h1 = u2:h1,

u1:a2 = u2:a2, u1:l2 = u2:l2, u1:h2 = u2:h2,: : :,
u1:ak�2 = u2:ak�2, u1:lk�2 = u2:lk�2, u1 :hk�2 = u2:hk�2,
u1:ak�1 < u2:ak�1

We then discard those dense units from Ck which have a
projection in (k�1)-dimensions that is not included in Ck�1.
The correctness of this procedure follows from the property
that for any k-dimensional dense unit, its projections in any
of k�1 dimensions must also be dense (Lemma 1).

Scalability: The only phase of CLIQUE in which database
records are accessed is the dense unit generation. During
the generation of Ck, we need storage for dense units Dk�1

and the candidate units Ck. While making a pass over the
data, we need storage for Ck and at least one page to bu�er
the database records. Thus, the algorithm can work with
databases of any size. However, memory needs to be man-
aged carefully as the candidates may swamp the available
bu�er. This situation is handled by employing a scheme
used in [1]. As many candidates of Ck are generated as will
�t in the bu�er and database is scanned to determine the
selectivity of these candidates. Dense units resulting from
these candidates are written to disk, while non-dense candi-
dates are deleted. This procedure is repeated until all of Ck

has been examined.

Time complexity: If a dense unit exists in k dimensions,
then all of its projections in a subset of the k dimensions
that is, O(2k) di�erent combinations, are also dense. The
running time of our algorithm is therefore exponential in the
highest dimensionality of any dense unit. As in [1] [20], it
can be shown that the candidate generation procedure pro-
duces the minimal number of candidates that can guarantee
that all dense units will be found.

Let k be the highest dimensionality of any dense unit and
m the number of the input points. The algorithm makes k
passes over the database. It follows that the running time
of our algorithm is O(ck +mk) for a constant c.

The number of database passes can be reduced by adapt-
ing ideas from [41] [8].

3.1.2 Making the bottom-up algorithm faster

While the procedure just described dramatically reduces the
number of units that are tested for being dense, we still
may have a computationally infeasible task at hand for high
dimensional data. As the dimensionality of the subspaces
considered increases, there is an explosion in the number of
dense units, and so we need to prune the pool of candidates.
The pruned set of dense units is then used to form the can-
didate units in the next level of the dense unit generation
algorithm. The objective is to use only the dense units that
lie in \interesting" subspaces.

MDL-based pruning: To decide which subspaces (and the
corresponding dense units) are interesting, we apply the
MDL (Minimal Description Length) principle. The basic
idea underlying the MDL principle is to encode the input
data under a given model and select the encoding that min-
imizes the code length [35].

Assume we have the subspaces S1; S2; : : : ; Sn. Our prun-
ing technique �rst groups together the dense units that lie
in the same subspace. Then, for each subspace, it computes
the fraction of the database that is covered by the dense
units in it: xSj =

P
ui2Sj

count(ui) where count(ui) is the

number of points that fall inside ui. The number xSj will
be referred to as the coverage of subspace Sj .

Subspaces with large coverage are selected and the rest
are pruned. The rationale is that if a cluster exists in k
dimensions, then for every subspace of these k dimensions
there exist dense units in this subspace (the projections of
the dense units that cover the cluster in the original k di-
mensions) that cover at least the points in the cluster.

We sort the subspaces in the descending order of their
coverage. We want to divide the sorted list of subspaces
into two sets: the selected set I and the pruned set P . The



following model is used to arrive at the cut point (Figure 3).
For each set, we compute the mean of the cover fractions,
and for each subspace in that set we compute the di�er-
ence from the mean. The code length is the sum of the bit
lengths of the numbers we have to store. If we decide to
prune subspaces Si+1; : : : Sn, the two averages are �I(i) =
d(
P

1�j�i xSj )=ie and �P (i) = d(
P

i+1�j�n xSj )=(n � i)e.

Since both �I(i) and �P (i) are integers, the number of bits
required to store them is log2(�I(i)) and log2(�P (i)) respec-
tively. For each subspace we have to store its di�erence from
�I(i) or �P (i), which is another integer. The total length of
the encoding is:

CL(i) = log2(�I(i)) +
X

1�j�i

log2(jxSj � �I(i)j) +

log2(�P (i)) +
X

i+1�j�n

log2(jxSj � �P (i)j)

This code length is minimized to determine the optimal cut
point i.

selected

average(selected subspaces)

coverage

average(pruned subspaces)

pruned 
subspaces

subspace

subspaces

Figure 3: Partitioning of the subspaces into selected and
prune sets.

Time complexity: The optimal cut will be one of the n� 1
positions along the sorted sequence, so there are only n� 1
sets of pruned subspaces to consider. After sorting, the
optimal cut can be computed in two passes of the sorted
sequence: In the �rst pass, we compute �I(i); �P (i) for
1 < i < n. These averages are used in the second pass
to compute CL(i) for 1 < i < n.

Remark: The pruning of dense units in the subspaces with
low coverage makes our algorithm faster, but there is a
tradeo� because we may now miss some clusters. If a cluster
exists in k dimensions, then all of its projections in a subset
of the k dimensions are also clusters. In our bottom-up ap-
proach, all of them have to considered if we want to �nd the
cluster in k dimensions, but some of them may be in one of
the pruned subspaces.

3.2 Finding clusters

The input to the next step of CLIQUE is a set of dense units
D, all in the same k-dimensional space S. The output will
be a partition of D into D1; : : : ;Dq, such that all units in Di

are connected and no two units ui 2 Di, uj 2 Dj with i 6= j
are connected. Each such partition is a cluster according to
our de�nition.

The problem is equivalent to �nding connected compo-
nents in a graph de�ned as follows: Graph vertices corre-
spond to dense units, and there is an edge between two
vertices if and only if the corresponding dense units have a
common face.

Units corresponding to vertices in the same connected
component of the graph are connected because there is a
path of units that have a common face between them, there-
fore they are in the same cluster. On the other hand, units
corresponding to vertices in di�erent components cannot be
connected, and therefore cannot be in the same cluster.

We use a depth-�rst search algorithm [2] to �nd the con-
nected components of the graph. We start with some unit
u in D, assign it the �rst cluster number, and �nd all the
units it is connected to. Then, if there still are units in D
that have not yet been visited, we �nd one and repeat the
procedure. The algorithm is given below:

input: starting unit u = f[l1; h1); : : : ; [lk; hk)g
clusternumber n

dfs(u;n)
u:num = n
for ( j = 1; j < k; j++) do begin

// examine the left neighbor of u in dimension aj
ul = f[l1; h1); : : : ; [(l

l
j); (h

l
j)); : : : ; [lk; hk)g

if (ul is dense) and (ul:num is undefined)
dfs(ul; n)

// examine the right neighbor of u in dimension aj
ur = f[l1; h1); : : : ; [(lrj); (h

r
j)); : : : ; [lk; hk)g

if (ur is dense) and (ur:num is undefined)
dfs(ur; n)

end

Time complexity: The number of dense units for a given
subspace cannot be very large, because each dense unit must
have selectivity at least � . We assume therefore that the
dense units in this and subsequent steps of CLIQUE can be
stored in memory.

We give asymptotic running times in terms of dense unit
accesses; the dense units are stored in a main memory data
structure (hash tree [1]) that allows e�cient querying.

For each dense unit visited, the algorithm checks its 2k
neighbors to �nd connected units. If the total number of
dense units in the subspace is n, the total number of data
structure accesses is 2kn.

3.3 Generating minimal cluster descriptions

The input to this step consists of disjoint sets of connected
k-dimensional units in the same subspace. Each such set is a
cluster and the goal is to generate a concise description for it.
To generate a minimal description of each cluster, we would
want to cover all the units comprising the cluster with the
minimum number of regions such that all regions contain
only connected units. For a cluster C in a k-dimensional
subspace S, a set R of regions in the same subspace S is a
cover of C if every region R 2 R is contained in C, and each
unit in C is contained in at least one of the regions in R.

Computing the optimal cover is known to be NP-hard,
even in the 2-dimensional case [29] [34]. The optimal cover
is the cover with the minimal number of rectangles. The
best approximate algorithm known for the special case of
�nding a cover of a 2-dimensional rectilinear polygon with
no holes produces a cover of size bounded by a factor of 2
times the optimal [17]. Since this algorithm only works for



the 2-dimensional case, it cannot be used in our setting. For
the general set cover problem, the best known algorithm for
approximating the smallest set cover gives an approxima-
tion factor of ln n where n is the size of the universe being
covered [16] [28].

This problem is similar to the problem of constructive
solid geometry formulae in solid-modeling [44]. It is also
related to the problem of covering marked boxes in a grid
with rectangles in logic minimization (e.g. [22]). Some clus-
tering algorithms in image analysis (e.g. [7] [36] [42]) also
�nd rectangular dense regions. In these domains, datasets
are in low dimensional spaces and the techniques used are
computationally too expensive for large datasets of high di-
mensionality.

Our solution to the problem consists of two steps. We
�rst greedily cover the cluster by a number of maximal rect-
angles (regions), and then discard the redundant rectangles
to generate a minimal cover. We only have to consider max-
imal regions for the cover of a cluster; for any cover R with
c regions, we can �nd another cover R0 with c maximal re-
gions, simply by extending each of the non-maximal regions
in C.

3.3.1 Covering with maximal regions

The input to this step is a set C of connected dense units in
the same k-dimensional space S. The output will be a set R
of maximal regions such that R is a cover of C. We present
a greedy growth algorithm for this task.

Greedy growth: We begin with an arbitrary dense unit
u1 2 C and greedily grow (as described below) a maximal
region R1 that covers u1. We add R1 to R. Then we �nd
another unit u2 2 C that is not yet covered by any of the
maximal regions in R. We greedily grow a maximal region
R2 that covers u2. We repeat this procedure until all units
in C are covered by some maximal region in R.

To obtain a maximal region covering a dense unit u, we
start with u and grow it along dimension a1, both to the left
and to the right of the unit. We grow u as much as possible
in both directions, using connected dense units contained in
C. The result is a rectangular region. We now grow this
region along dimension a2, both to the left and to the right
of the region. We again use only connected dense units from
C, obtaining a possibly bigger rectangular region. This pro-
cedure is repeated for all the dimensions, yielding a maximal
region covering u. The order in which dimensions are con-
sidered for growing a dense unit is randomly determined.

Figure 4 illustrates how the algorithm works. Here the
dense units appear shaded. Starting from the dense unit u,
�rst we grow along the horizontal dimension, �nding rect-
angle A consisting of four dense units. Then A is extended
in the vertical dimension. When it cannot be extended fur-
ther, a maximal rectangle is obtained, in this case B. The
next step is to �nd another maximal region starting from a
dense unit not covered by B, for example w.

Time complexity: First we show that for each maximal
region R, the greedy growth algorithm must perform O(jRj)
dense unit accesses, where jRj is the number of dense units
contained in R.

Let S be the subspace that R lies in, k the number of
dimensions of S, and n the number of dense units in S. The
greedy growth algorithm must access each unit that a region
R covers to ascertain that R is indeed part of a cluster. In
addition, it must access every neighbor unit of R to ascertain
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Figure 4: Illustration of the greedy growth algorithm.

that R is also maximal. The number of neighbor units is
bounded by 2kjRj, where jRj is the number of dense units
contained in R.

Since every new maximal region covers at least one thus
far uncovered dense unit, the greedy growth algorithm will
�nd at most O(n) new regions. Every new region requires
O(jRj) = O(n) dense unit accesses, so the greedy growth
algorithm performs a total of O(n2) dense unit accesses.

This bound is almost tight. Let S contain only one clus-
ter (with n dense units), which is bounded by two parallel
hyperplanes and a cylinder which is parallel to only one di-
mension. Since the hyperplanes are not parallel to any of the
k dimensions, the boundary of the cluster that touches the
hyperplanes consists of O(n(k�1)=k) convex vertices, each of
which must be covered by a maximal region. The size of each
region is also O(n(k�1)=k) since each region has to reach the
other hyperplane. In this case the greedy growth algorithm
must perform O(n2(k�1)=k) dense unit accesses. Figure 5
shows the 2-dimensional analog for this case.

Similarly we show that there can be up to O(n2(k�1)=k)
maximal regions: we can pair every corner on one hyper-
plane with every corner on the other, and produce a new
maximal region for each pair. The greedy growth algorithm
will �nd O(n) of these.

Figure 5: The worst case for the greedy growth algorithm
(2-dimensional case): Assume n dense units and n1=2 upper
corners. A minimal cover must include at least one rectan-
gle per upper corner. Since each rectangle is maximal, it
must reach the lower staircase as well. This means that the
circumference of the rectangle is 2n1=2+2, and therefore its
area is at least n1=2. The sum of the sizes of the rectangles
is then O(n2(2�1)=2).



3.3.2 Minimal Cover

The last step of CLIQUE takes as input a cover for each clus-
ter and �nds a minimal cover. Minimality is de�ned in terms
of the number of maximal regions (rectangles) required to
cover the cluster.

We propose the following greedy heuristic:

Removal heuristic: Remove from the cover the smallest (in
number of units) maximal region which is redundant (i.e.,
every unit is also contained in some other maximal region).
Break ties arbitrarily. Repeat the procedure until no maxi-
mal region can be removed2.

Time complexity: The removal heuristic is easy to imple-
ment and e�cient in execution. It needs a simple scan of
the sorted list of regions. The cost of sorting the regions is
O(n log n) because the number of dense units n is an up-
per bound on the number of regions. The scan requires jRij
dense unit accesses for each region Ri. The total number of
accesses for all regions is then

P
jRij = O(n2).

Stochastic analysis: We now present a stochastic analysis
suggesting that the removal heuristic will do well when each
unit is independently dense with probability p. This model
is quite general: if the number of data points in each unit is
a random variable drawn independently from the same (but
otherwise arbitrary) distribution as all other units, and we
specify any threshold � from the domain of these random
variables, then each unit is independently dense with some
probability p depending on the underlying distribution and
� .

In our application, since a dense unit has high selectivity,
p is likely to be small. We show now that provided p is small
enough, we obtain a good approximation ratio.

Theorem 1: Let p = 1=2d � �, for any �xed � > 0. If each
unit is independently dense with probability at most p, then
the expected size of the cover we obtain is within a constant
factor of the optimal cover.

Proof sketch Let c be the number of units in a cluster; our
algorithm will use at most c maximal rectangles to cover it.
The proof of the following Lemma is omitted here; essen-
tially we must argue that the correlations between cluster-
sizes work in our favor.

Lemma 3: There is a constant a > 1 (depending only on �)
such that the probability that a cluster has size i is at most
a�i.

To complete the proof, we bound the expected number of
maximal rectangles used to cover a given cluster by

P
i
ia�i,

2We also considered the following Addition heuristic: View the
cluster as empty space. Add to the cover the maximal region that
will cover the maximum number of yet uncovered units in the cluster.
Break ties arbitrarily. Repeat the procedure until the whole cluster
is covered.
For general set cover, the addition heuristic is known to give a cover

within a factor ln n of the optimum where n is the number of units
to be covered [27]. Thus it would appear that the addition heuris-
tic, since its quality of approximation matches the negative results
of [16] [28], would be the obvious choice. However, its implemen-
tation in our high dimensional geometric setting is too ine�cient.
The implementation requires the rather complex computation of the
number of uncovered units a candidate maximal region will cover.
The residual uncovered regions that arise as the cover is formed can
be complicated, and no e�cient structures are known for e�ciently
maintaining the uncovered units.

and the total number of maximal rectangles used to

X

clusters

X

i

ia�i

Let n be the number of clusters found. Since there exists a
constant �, depending only on a, such that

P
i
ia�i � �, we

have that X

clusters

X

i

ia�i � � n

It follows that the expected size of the cluster covers we �nd
is within a constant factor of the total number of clusters,
and thus the size of the optimal cover. 2

4 Performance Experiments

We now empirically evaluate CLIQUE using synthetic as
well as real datasets. The goals of the experiments are to
assess the e�ciency and accuracy of CLIQUE:

� E�ciency: Determine how the running time scales
with:

{ Dimensionality of the data space.

{ Dimensionality of clusters.

{ Size of database.

� Accuracy: Test if CLIQUE recovers known clusters
in some subspaces of a high dimensional data space.

The experiments were run on a 133-MHz IBM RS/6000
Model 43P workstation. The data resided in the AIX �le
system and was stored on a 2GB SCSI drive with sequential
throughput of about 2 MB/second.

4.1 Synthetic data generation

We use the synthetic data generator from [43] to produce
datasets with clusters of high density in speci�c subspaces.
The data generator allows control over the structure and the
size of datasets through parameters such as the number of
records, the number of attributes, and the range of values
for each attribute. The range of values was set to [0; 100]
for all attributes.

The clusters are hyper-rectangles in a subset of dimen-
sions such that the average density of data points inside the
hyper-rectangle is much larger than the average density in
the subspace. The faces of such a cluster are parallel to the
axis, therefore another way to describe the cluster is as the
intersection of a set of attribute ranges.

The cluster descriptions are provided by the user. A
description speci�es the subspace of each hyper-rectangle
and the range for each attribute in the subspace. The at-
tribute values for a data point assigned to a cluster are
generated as follows. For those attributes that de�ne the
subspace in which the cluster is embedded, the value is
drawn independently at random from the uniform distri-
bution within the range of the hyper-rectangle. For the
remaining attributes, the value is drawn independently at
random from the uniform distribution over the entire range
of the attribute. After distributing the speci�ed number of
points equally among the speci�ed clusters, an additional
10% points are added as random noise. Values for all the
attributes of these points are drawn independently at ran-
dom from the uniform distribution over the entire range of
the attribute.



4.2 Synthetic data results

We �rst present scalability and accuracy results observed
using synthetic data. The experiments were run with � = 10.
All times are in seconds.
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Figure 6: Scalability with the number of data records.

Database size: Figure 6 shows the scalability as the size of
the database is increased from 100,000 to 500,000 records.
The data space had 50 dimensions and there were 5 clusters,
each in a di�erent 5-dimensional subspace, and � was set to
0.5%. As expected, the running time scales linearly with the
size of the database because the number of passes through
the database does not change.
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Figure 7: Scalability with the dimensionality of the data
space.

Dimensionality of the data space: Figure 7 shows the scal-
ability as the dimensionality of the data space is increased
from 10 to 100. The database had 100,000 records and there
where 5 clusters, each in a di�erent 5-dimensional subspace,
and � was set to 0.5%. The curve exhibits quadratic be-
havior. We note that the problem of searching for inter-
esting subspaces inherently does not scale well as the di-
mensionality of the data space increases. In this case, we
are searching for clusters in 5 dimensions. The number of
5-dimensional subspaces of a d-dimensional space is O(d5).
The algorithm performs better than the worst case because
many of these dimensions are pruned during the dense unit
generation phase.
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Figure 8: Number of subspaces pruned.

Figure 8 shows the percentage of subspaces pruned by
MDL during an algorithm run. The input was a synthetic
dataset with 50 dimensions, with 5 hidden 5-dimensional
clusters, and � was set to 0.5%. In this case, 86% of the
2-dimensional subspaces and 38% of the 3-dimensional sub-
spaces were pruned. The result of the pruning is a much
faster algorithm, though there is now a risk of missing some
clusters.
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Figure 9: Scalability with the dimensionality of the hidden
cluster.

Dimensionality of hidden clusters: Figure 9 shows the scal-
ability as the highest dimensionality of the hidden clusters
is increased from 3 to 10 in a 50-dimensional space. In each
case, one cluster was embedded in the relevant subspace of
highest dimensionality. The database had 100,000 records
and � was set at 1% for 3-dimensional clusters, 0.5% for
4-dimensional to 7-dimensional clusters and and 0.1% for 8-
dimensional to 10-dimensional clusters. We selected a lower
� for the highest dimensional clusters because, as the volume
of the clusters increases, the cluster density decreases. For
lower dimensions however we can increase � , and since this
does not increase the number of dense units the algorithm
runs at least as fast. The increase in running time reects
the time complexity of our algorithm, which is O(mk + ck)
where m is the number of records, c a constant, and k the
maximum dimensionality of the hidden clusters.



Accuracy: In all the above experiments, the original clus-
ters were recovered by the algorithm. In some cases, a
few extra clusters were reported, typically comprising a sin-
gle dense unit with very low selectivity. This artifact is
a byproduct of the data generation algorithm and the fact
that � was set low. As a result, some units had enough noise
points to become dense.

4.3 Comparisons with BIRCH, DBSCAN and SVD

We ran CLIQUE, BIRCH, and DBSCAN with the same syn-
thetic datasets3. The purpose of these experiments was to
assess if algorithms such as BIRCH or DBSCAN designed
for clustering in full dimensional space can also be used for
subspace clustering. For the task of �nding clusters in the
full dimensional space, which was the design goal of these
algorithms, CLIQUE has no advantage.

We used clusters embedded in 5-dimensional subspaces
while varying the dimensionality of the space from 5 to 50.
For reference, CLIQUE was able to recover all clusters in
every case.

BIRCH: We provided the correct number of clusters (5) as
input to the postprocessing clustering algorithm built on top
of BIRCH. The output consists of cluster centers in the full
dimensional space. The input datasets had 100,000 points.
The input clusters were hyper-rectangles in 5-dimensional
subspaces, with the values of the remaining attributes uni-
formly distributed. This is equivalent to a hyper-rectangle
in the full data space where remaining attributes include the
whole range. Therefore BIRCH successfully recovers a clus-
ter if it reports a center approximately at the center of the
equivalent hyper-rectangle in the full data space, and the
number of points in the reported cluster is approximately
correct.

Table 1: BIRCH experimental results.

Dim. of Dim. of No. of Clusters True clusters
data clusters clusters found identi�ed
5 5 5 5 5
10 5 5 5 5
20 5 5 3,4,5 0
30 5 5 3,4 0
40 5 5 3,4 0
50 5 5 3 0

The results summarized in Table 1 show that BIRCH can
discover 5-dimensional clusters embedded in a 10-dimensional
data space, but fails to do so when the dimensionality of the
data space increases. This is expected because BIRCH uses
a distance function that takes all dimensions into account.
When the number of dimensions with uniform distribution
increases, the distance function fails to distinguish the clus-
ters.

As dimensionality of the data space increases, BIRCH
does not always return 5 clusters even though 5 is given
as an input parameter. For di�erent randomly generated
datasets, it returns 3, 4 or 5 clusters. The �nal column

3We could not run experiments with CLARANS because the code
required modi�cation to work with points in high dimensions. We
expect CLARANS to show similar behavior as BIRCH in identifying
clusters embedded in subspaces.

gives the number of correct embedded clusters that BIRCH
identi�ed.

DBSCAN: DBSCAN discovers the number of clusters on
its own, so we did not have to give the number of clus-
ters as input. DBSCAN could not be run with data having
more than 10 dimensions. The input datasets had 10,000
points. As in the BIRCH experiments, the clusters were in
5-dimensional subspaces. We ran DBSCAN with di�erent
input values of �; we report the best results in Table 2.

DBSCAN could not discover 5-dimensional clusters in
a 10-dimensional data space; it could do so when the di-
mensionality of the space was reduced to 7. Even in a 8-
dimensional data space, it could recover only one of the 5-
dimensional embedded clusters. DBSCAN uses a density
based cluster de�nition, and even a small number of dimen-
sions with uniform distribution can lower the density in the
space enough so that no clusters are found.

Table 2: DBSCAN experimental results.

Dim. of Dim. of No. of Clusters True clusters
data clusters clusters found identi�ed
5 5 5 5 5
7 5 5 5 5
8 5 5 3 1
10 5 5 1 0

SVD: We also did Singular Value Decomposition (SVD)
[11] [19] on the synthetic datasets to �nd if the dimension-
ality of the space can be reduced or if the subspaces that
contain dense units can be deduced from the projections
into the new space.

Table 3: SVD decomposition experimental results.

Dim. of Dim. of No. of rd=2 r(d�5) r(d�1)
data (d) clusters clusters
10 5 5 0.647 0.647 0.937
20 5 5 0.606 0.827 0.969
30 5 5 0.563 0.858 0.972
40 5 5 0.557 0.897 0.981
50 5 5 0.552 0.919 0.984

In Table 3, rk gives the ratio of the sum of the k largest
eigenvalues to the sum of all eigenvalues. Let �1; : : : ; �d be
the eigenvalues found, sorted in decreasing order. Then rk
=
Pk

i=1 �i=
Pd

i=1 �i. The quantity rk indicates how much
variance is retained in the new space that is de�ned by the k
eigenvectors corresponding to the k largest eigenvalues. In
our experiments the variation of the original space is such
that the smallest eigenvalue is almost as large as the largest,
and so we cannot achieve any dimensionality reduction. In
addition, the new projections are linear combinations of all
the original vectors and cannot be used to identify the sub-
spaces that contain clusters.

4.4 Real data results

We ran CLIQUE against two datasets obtained from the
insurance industry (Insur1, Insur2), another from a depart-



ment store (Store), and the last from a bank (Bank). Table 4
summarizes the results of this experiment. Each run used a
selectivity threshold of 1%, and every dimension was divided
into 10 intervals of equal length. We show in the table the
dimensionality of the original data space, the highest dimen-
sionality of the subspace in which clusters were found, and
the number of such clusters for each of the datasets. In all
cases, we discovered meaningful clusters embedded in lower
dimensional subspaces.

Table 4: Real data experimental results.

Dataset Dim. of Dim. of No. of
data clusters clusters

Insur1 9 7 2
Insur2 7 4 5
Store 24 10 4
Bank 52 9 1

5 Conclusions

We introduced the problem of automatic subspace cluster-
ing, motivated by the needs of emerging data mining ap-
plications. The solution we propose, CLIQUE, has been de-
signed to �nd clusters embedded in subspaces of high dimen-
sional data without requiring the user to guess subspaces
that might have interesting clusters. CLIQUE generates
cluster descriptions in the form of DNF expressions that
are minimized for ease of comprehension. It is insensitive
to the order of input records and does not presume some
canonical data distribution. In designing CLIQUE, we com-
bined developments from several �elds including data min-
ing, stochastic complexity, pattern recognition, and compu-
tational geometry.

Empirical evaluation shows that CLIQUE scales linearly
with the size of input and has good scalability as the number
of dimensions in the data or the highest dimension in which
clusters are embedded is increased. CLIQUE was able to
accurately discover clusters embedded in lower dimensional
subspaces, although there were no clusters in the original
data space. Having demonstrated the computational feasi-
bility of automatic subspace clustering, we believe it should
be considered a basic data mining operation along with other
operations such as associations and sequential-patterns dis-
covery, time-series clustering, and classi�cation [23].

Automatic subspace clustering can be useful in other ap-
plications besides data mining. To index OLAP data, for
instance, the data space is �rst partitioned into dense and
sparse regions [12]. Data in dense regions is stored in an ar-
ray whereas a tree structure is used to store sparse regions.
Currently, users are required to specify dense and sparse di-
mensions [4]. Similarly, the precomputation techniques for
range queries over OLAP data cubes [21] require identi�ca-
tion of dense regions in sparse data cubes. CLIQUE can be
used for this purpose.

In future work, we plan to address the problem of eval-
uating the quality of clusterings in di�erent subspaces. One
approach is to choose clusters that maximize the ratio of
cluster density over expected density for clusterings with
the same dimensionality. We also plan to investigate what
system support can be provided to the user for selecting the
model parameters, � and �. Another area for future work
is to try an alternative approach for �nding dense units. If

the user is only interested in clusters in the subspaces of
highest dimensionality, we can use techniques based on re-
cently proposed algorithms for discovering maximal itemsets
[5] [26]. These techniques will allow CLIQUE to �nd dense
units of high dimensionality without having to �nd all of
their projections.

Acknowledgment The code for CLIQUE builds on several
components that Ramakrishnan Srikant wrote for quantita-
tive association rules. Srikant generously explained his code
and modi�ed it in places to meet CLIQUE's requirements.
Roberto Bayardo provided helpful feedback to improve the
presentation of the paper. Christoph Lingenfelder, Stefanos
Manganaris, Hammou Messatfa, and Julio Ortega provided
the datasets used in this study. We are also thankful to Prof.
H.-P. Kriegel, Raymond Ng, and Raghu Ramakrishnan for
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6 Appendix: Dimensionality reduction

The principal component analysis or Karhunen-Lo�eve (KL)
transformation is the optimal way to project n-dimensional
points to k-dimensional points such that the error of the
projections (the sum of the squared distances) is minimal
[11] [19]. This transformation gives a new set of orthogonal
axes, each a linear combination of the original ones, sorted
by the degree by which they preserve the distances of the
points in the original space.

For a given set of m points in d dimensions, �nding the
set of axes in the KL transformation is equivalent to solving
the Singular Value Decomposition problem in an m�d ma-
trix N , each row of which represents a data point. The SVD
of the matrix N is the decomposition into N = U ��� V t,
where U is an m� r matrix, � a diagonal r � r matrix and
V a column orthonormal d� r matrix. The matrix V rep-
resents the axes of the KL-decomposition (they are also the
eigenvectors of the matrix N�N t), ordered by the respective
values in the matrix �. Note that r � d, so the new space
has potentially lower dimensionality. In addition, for each
small entry in the matrix �, the corresponding vectors may
be eliminated and a lower dimensionality space obtained.

In our problem, we assume there may not be clearly de-
�ned clusters in the original space and try to �nd those
dimensions that can be used for clustering. Clearly, two
points may be far apart in a 3-dimensional space but could
be quite close when a speci�c projection into 2 dimensions is
used. The e�ects of such projections are what we are trying
to capture. In addition, in the interest of comprehension, we
do not want to use dimensions that are linear combinations
of the original ones.
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Figure 10: Examples where KL transformation is helpful.
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Figure 11: Examples where KL transformation is not help-
ful.

The following examples illustrate these points. In Fig-
ure 10, two data distributions are shown. The original axes
are labeled f1, f2, f3. In both cases, the data points are
uniformly distributed inside the shaded area. In the left case
there is one cluster, in the right two. Assuming the number
of points to be the same in both cases, the density of the
shaded regions is di�erent for the two sets. The eigenvec-
tors are labeled e1, e2, e3, such that e1 corresponds to the
eigenvalue with the largest magnitude and e3 to the eigen-
value with the smallest magnitude. The �rst eigenvalue is
much larger than the other two, indicating that there is large
variation along axis e1. The eigenvectors are essentially the
same in both cases. Thus, it can be said that the KL trans-
formation is quite successful in these instances. Although
the transformation cannot be used by itself to �nd the ac-
tual clusters because it cannot distinguish between the two
cases, one can argue that the clusters will be discovered after
projecting the points on e1 and examining the distribution
of the projections.

In Figure 11, the 2-dimensional data is uniformly dis-
tributed in dimension f1, but contains three clusters along
dimension f2. Despite the clustering on f2, there is large
variation along both axes. The results of the KL transfor-
mation are the eigenvectors e1 and e2 as shown. Because of
the variation, the eigenvalue corresponding to eigenvector e2
(the second largest eigenvalue) is quite large. We have thus
come up with a space of the same dimensionality. Further-
more, no projection on the new axes can be used to identify
the clusters.

The right �gure illustrates that clusters may exist in dif-
ferent subspaces. The data points are uniformly distributed
inside the three 3-dimensional rectangles. The rectangles are
long, skinny and not very dense. In addition they do not in-
tersect. For reasonable selectivities, the only clusters are the
projections of the rectangles on their small faces; that is, one
cluster in each of the f1�f2, f1�f3 and f2�f3 subspaces.
The KL decomposition does not help here because of large
variation along each of the original axes. The resulting axes
are e1, e2, e3 and the three eigenvalues are approximately
equal. This means there is no 2-dimensional space which
approximates the original space. A 3-dimensional space has
to be used after the KL transformation for the clustering.
But the density of the points in the 3-dimensional space is
too low to obtain good clustering.
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