Principled Programming

Introduction to Coding in Any Imperative Language

Tim Teitelbaum

Emeritus Professor
Department of Computer Science
Cornell University

Stepwise Refinement

Copyright©2024 by Tim Teitelbaum; Most recent revision, 09/19/2025

We introduce Stepwise Refinement, a key approach to programming,
and illustrate its use in many examples.

* Divide and Conquer

* Sequential Refinement
e (Case Analysis

* |terative Refinement

* Recursive Refinement

uo3oNpoJuj

All Gaul is divided into three
parts.

~ Julius Caesar

AZ QUOTES

f

lanbuo) pue apIAIQ

Divide and Conquer:

All Gaul is divided into three parts. To conquer Gaul:
First, conquer the first part.
Then, conquer the second part.
Finally, conquer the third part.

A methodology.

lanbuo) pue apIAIQ

Divide and Conquer: Applied to programming

To write a program:
First, break it into subprograms.
Then, write each subprogram separately.

the methodology is called programming by Stepwise Refinement.

lanbuo) pue apIAIQ

Divide and Conquer: Applied to programming

To write a program:
First, break it into subprograms.
Then, write each subprogram separately.

the methodology is called programming by Stepwise Refinement.

= Program top-down, outside-in.

lanbuo) pue apIAIQ

Stepwise Refinement: Creates a hierarchy of subprograms, each with its own
specification.

==

Specification

\

Specification

Sub-Specification #1

Sub-Specification #2

Sub-Specification #3

/\

Sub-Sub-Specification #2.1

Sub-Sub-Specification #2.2

= Program top-down, outside-in.

Sub-Specification #1

Sub-Specification #2

Specification

Sub-Specification #1

Sub-Sub-Specification #2.1

Sub-Specification #2

Sub-Sub-Specification #2.2

Sub-Sub-Specification #2.1

Sub-Specification #3

Sub-Sub-Specification #2.2

Sub-Specification #3

lanbuo) pue apIAIQ

Stepwise Refinement: A “program” to follow as you code.

if Pis simple to write :
Write it

else:
Refine P into simpler subprograms
Write each subprogram

= Program top-down, outside-in.

lanbuo) pue apIAIQ

where Refine is:

Sequential steps
Do one thing after another.
Case analysis
Do one thing or another.
Iteration
Do one thing repeatedly.
Recursion
Do something based on self-similarity.
Selection from a library of patterns
Do some pattern of the previous kinds of refinement.

lanbuo) pue apIAIQ

Stepwise Refinement: Is recursive

if Pis simple to write :
Write it

else:
Refine P into simpler subprograms
Write each subprogram

because it uses itself for writing each subprogram.

lanbuo) pue apIAIQ

Stepwise Refinement: Terminates

if Pis simple to write :
Write it

else:
Refine P into simpler subprograms
Write each subprogram

provided the subprograms get simpler to write.

lanbuo) pue apIAIQ

Stepwise Refinement: Terminates when P is so simple that you just write it.

if Pis simple to write :
Write it

This is called the base case of the recursion.

lanbuo) pue apIAIQ

Stepwise Refinement: The subproblems of each refinement must fit together
like pieces of a jigsaw puzzle.

T

-

We now consider each of the five kinds of refinement.

lanbuo) pue apIAIQ

Sequential Refinement: Implement a specification P with a sequence of steps
P, through P, executed one after the other.

1 1
| |
I I
| |
| #.Specification P,. ;
| #.Specification P,. ;
| |

I

|

where if any “#.Specification P,” is simple enough, it can be just code.

jusawadulay [enuanbag

Example 1: A top-level specification

#.Drive from LA to NYC.

sa|dwex3

jusawadulay [enuanbag

Example 1: A top-level specification that calls for the state-space effect shown.

#.Drive from LA to NYC.

C v > ne D

sa|dwex3

jusawadulay [enuanbag

Example 1: A Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

C v > ne D

sa|dwex3

jusawadulay [enuanbag

Example 1: A Sequential Refinement

sa|dwex3

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

C LA > chicago >—C_ NYC

jusawadulay [enuanbag

Example 1: A Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

starting in LA get to Chicago

3
1 iR /

starting in Chicago getto NYC

sa|dwex3

jusawadulay [enuanbag

Example 2: A different Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

Different roads and scenery, but the same net effect (the external interface):
If | leave from LA, | will get to NYC.

sa|dwex3

jusawadulay [enuanbag

Example 3: An incorrect Sequential Refinement

Drive from LA to NYC.

B o m e e e e mm oo -
#.Drive from LA to Chicago.
#.Drive from to NYC.

The first step does not establish what the second step requires.

sa|dwex3

jusawadulay [enuanbag

Example 3: A corrected Sequential Refinement

Drive from

#.Drive from
#.Drive from
#.Drive from

LA to NYC.

LA to Chic
Chicago to

ago.

to NYC.

sa|dwex3

jusawadulay [enuanbag

Example 4: An infeasible Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

You can’t drive from LA to Tokyo.

Just because you can express a requirement doesn’t mean that it can be
accomplished.

sa|dwex3

jusawadulay [enuanbag

Example 1, continued:

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

sa|dwex3

jusawadulay [enuanbag

Example 1, continued:

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

== Refine specifications and placeholders in an order that makes sense for
development, without regard to execution order.

sa|dwex3

jusawadulay [enuanbag

Example 1, continued:

Drive from LA to NYC.
#.Drive from LA to Chicago.
Drive from Chicago to NYC.

#.Drive from Chicago to
#.Drive from to NYC.

== Refine specifications and placeholders in an order that makes sense for
development, without regard to execution order.

sa|dwex3

jusawadulay [enuanbag

Example 4, continued: Backtrack out of an infeasible Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

You can’t drive from LA to Tokyo.

sa|dwex3

jusawadulay [enuanbag

Example 4, continued: Backtrack out of an infeasible Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

You can’t drive from LA to Tokyo.

== Don’t be wedded to code. Revise and rewrite when you discover a better way.

sa|dwex3

jusawadulay [enuanbag

Example 4, continued: An infeasible Sequential Refinement undone.

#.Drive from LA to NYC.

== Don’t be wedded to code. Revise and rewrite when you discover a better way.

sa|dwex3

jusawadulay [enuanbag

Example 4, continued: An infeasible Sequential Refinement revised.

Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

You can drive from LA to Denver and from Denver to NYC.

== Don’t be wedded to code. Revise and rewrite when you discover a better way.

sa|dwex3

jusawadulay [enuanbag

Example 5: A new top-level specification

#.Drive from LA to NYC and buy a new car (in any order).

sa|dwex3

jusawadulay [enuanbag

Example 5: A new top-level specification

#.Drive from LA to NYC and buy a new car (in any order).

C (LAoldy > (NYCnew)

sa|dwex3

jusawadulay [enuanbag

Example 5: One possible order

Drive from LA to NYC and buy a new car (in any order).

#.Buy a new car.
#.Drive from LA to NYC.

sa|dwex3

jusawadulay [enuanbag

Example 5: Another possible order

Drive from LA to NYC and buy a new car (in any order).

#.Drive from LA to NYC.
#.Buy a new car.

sa|dwex3

jusawadulay [enuanbag

Example 5: and its possible refinement.

=+

Drive from LA to NYC and buy a new car (in any order).

Drive from LA to NYC.

NI N

.Drive from LA to Chicago.
.Drive from Chicago to NYC.

H H H HH

=+

.Buy a new car (in NYC).

Implicitly, unmentioned components of state may not be changed.

sa|dwex3

jusawadulay [enuanbag

Example 5: and its possible refinement.

Get from (LA,o0ld)to (NYC,new).

#.Get from (LA,o0ld) to (Chicago,old).
#.Get from (Chicago,o0ld) to NYC,old).

#.Get from (NYC,o0ld) to (NYC,new).

|.e., the convention that unmentioned state components may not be changed
implies that the previous version would be as shown above.

sa|dwex3

jusawadulay [enuanbag

Generalization:

uoijezijeiauar)

jusawadulay [enuanbag

Loosening the Coupling: Between the two sub-steps

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

uoijezijelauay

starting in LA get to Chicago

/

starting in Chicago getto NYC

jusawadulay [enuanbag

Loosening the Coupling: by weakening a precondition

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Illinois to NYC.

uoijezijelauay

starting in LA get to Chicago

/

starting in lllinois getto NYC

jusawadulay [enuanbag

Loosening the Coupling: by weakening a precondition

Drive from LA to NYC.

#.Drive from California to Chicago.
#.Drive from Chicago to NYC.

starting in California

get to Chicago

it ;
- //

starting in Chicago getto NYC

uoijezijelauay

jusawadulay [enuanbag

Loosening the Coupling: or by strengthening a postcondition

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to Manhattan.

starting in LA get to Chicago

starting in Chicago get to Manhattan

uoijezijelauay

jusawadulay [enuanbag

G
®d
®
Loosening the Coupling: or by doing both. 3
ﬁ.
Drive from LA to NYC. Q
B oo e
#.Drive from to Chicago. O
#.Drive from to -

Chicago>

jusawadulay [enuanbag

2-Step Sequential Refinement: In general

et from A, to B,.
et from A, to B,.

o o

establishing PRE automatically establishes A,
establishing B, automatically establishes A,, and
establishing B, automatically establishes POST.+

uoijezijelauay

jusawadulay [enuanbag

1

n-Step Sequential Refinement: In general

Specification P: Get from PRE to POST.

et from A, to B,.
et from A, to B,.

H

#.G
#.G
#.Get from A, to B,.

where
establishing PRE automatically establishes A,
establishing B, automatically establishes A, ,, for k from 1 through n-1, and
establishing B, automatically establishes POST.

uoijezijelauay

jusawadulay [enuanbag

Loosening in Practice: Consider an individual specification
#.Get from PRE to POST.

in the context of a program

Program

Specification.

9911081 Ul SUIUdS00T]

1

jusawadulay [enuanbag

Loosening in Practice: The specification
#.Get from PRE to POST.

can be implemented by any code that satisfies the specification

#.Get from PRE’ to POST’.

where PRE’ is any weakening of PRE, and POST' is any strengthening
of POST.

9911081 Ul SUIUdS00T]

jusawadulay [enuanbag

Example 1: Precondition is essential, but postcondition can be strengthened

Get from x20 to y is a number that when squared equals Xx.
y = math.sqgrt(x)

Any weakening of x>0 would make the specification infeasible for real y, but we
are free to choose y as either the positive or negative root of x.

9911081 Ul SUIUdS00T]

jusawadulay [enuanbag

Example 2: Precondition is convenient, but not essential

Get from x20 to y is |x].
y = X

The precondition x>0 simplifies the code that sets y to the absolute value
of x, because in that case the absolute value of x is just x itself.

9911081 Ul SUIUdS00T]

jusawadulay [enuanbag

Example 3: Precondition is irrelevant

Get from x20 to y is x squared.
y = X * X

because x squared is x*x regardless of whether x is positive or negative.

9911081 Ul SUIUdS00T]

jusawadulay [enuanbag

Example 4: Precondition is customarily ignored

#.Get from array A’s elements are unique to A’s elements are
numerically ordered.

because conventional techniques for establishing the postcondition are
more general, and do not rely on the given precondition.

9911081 Ul SUIUdS00T]

jusawadulay [enuanbag

Example 5: Chapter-1 example, revisited
Given n20, output the integer part of the square root of n.

#.Given n20, let r be the integer part of the square root of n20.
print(r)

Consider the domain and range of the general-purpose output statement
print(r)

<domain>—>< range >

The domain is any state where variable r exists and contains a value, regardless of
whether it is the integer square root of n. The range is any state with the additional
property that the output ends with the given value.

9911081 Ul SUIUdS00T]

jusawadulay [enuanbag

Conjunctive Normal Form: A condition of the form

C,and C,and ...and C,

where each C; is called a conjunct.

Example:
X is declared and x contains a value and X is greater than or equal to 0
state is NY and city is NYC

w104 jewioN aA3ounfuo)

jusawadulay [enuanbag

Conjunctive Normal Form: A condition in CNF can be weakened by
dropping a conjunct, e.g.,
Replace:
X is declared and x contains a value and X is greater than or equal to 0
with:
X is declared and x contains a value
and can be strengthened by appending an additional conjunct, e.g.,
Replace:
state is NY and city is NYC
with:
state is NY and city is NYC and borough is Manhattan

w104 jewioN aA3ounfuo)

jusawadulay [enuanbag

Implicit Preconditions: In practice, explicit preconditions are often omitted.
Get from LA to NYC.

#.Get to Chicago.
#.Get to
#.Get to NYC.

implicitly means
Get from LA to NYC.
#.(Given that we are in LA) Get to Chicago.

#.(Given that we are in Chicago) Get to
#.(Given that we are in) Get to NYC.

suoIjipuodaid yoljduwy
jusawadulay [enuanbag

Implicit Preconditions: The reader of
Get from LA to NYC.

#.Get to Chicago.
#.Get to
#.Get to NYC.

must infer the relevant precondition, and scan backwards to confirm
that it has been established and survives, i.e., has not subsequently
been invalidated.

suoIjipuodaid yoljduwy

jusawadulay [enuanbag

Implicit Preconditions: Minimize the distance between code that
establishes a precondition, and code that relies on it, if possible.

k = 0
10 pages of code to do whatever.
k += 1

If the 10 pages have nothing to do with variable k, the following is better

k = 0
whatever()
k += 1

== Many short procedures are better than large blocks of code.

suoIjipuodaid yoljduwy

jusawadulay [enuanbag

Implicit Preconditions: Minimize the distance between code that
establishes a precondition, and code that relies on it, if possible, especially
if the procedure can be placed outside of the scope of such a variable k.

If the distance remains great, consider an explicit indication of where the
precondition was established:

#.Given PRE (established at point p in the code), get to POST.

== Many short procedures are better than large blocks of code.

suoIjipuodaid yoljduwy

jusawadulay [enuanbag

Problem Reduction: A special case of Sequential Refinement

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

Al14] 7 |14 34| 7

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occurin A[@. .k-11], for k
from 0 through n-1.

uoIoNpay waj|qoid
jusawadulay [enuanbag

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occurin A[@. .k-11], for k
from 0 through n-1.

== Solve a different problem, and use that solution to solve the original problem.

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occurin A[@. .k-11], for k
from 0 through n-1.

Al

14

14

34

== Solve a different problem, and use that solution to solve the original problem.

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7 Al 7|7 |14]14]34

Tally of each first instance of a value 1 + the number of adjacent pairs of
i.e., each A[k] for which that value unequal elements in A’, a version of A
doesn’t occurin A[0. .k-1], for k rearranged into numerical order.

from 0 through n-1.

== Solve a different problem, and use that solution to solve the original problem.

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occurin A[@. .k-11], for k

from 0 through n-1.

In worst case, running time is

proportional to n2.

Al

1 + the number of adjacent pairs of
unequal elementsin A’, a version of A
rearranged into numerical order.

7

7

14

14

34

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlA9)|(D)] 14 |@9)] 7 Al 717 1141434

Tally of each first instance of a value 1 + the number of adjacent pairs of
i.e., each A[k] for which that value unequal elements in A’, a version of A
doesn’t occurin A[0. .k-1], for k rearranged into numerical order.

from 0 through n-1.

In worst case, running time is In worst case, running time is proportional to

proportional to n2. n log n, i.e., time to sort an array of length n +
time to count the number of unequal
adjacent element pairs.

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlA9)|(D)] 14 |@9)] 7 Al 717 1141434

Tally of each first instance of a value 1 + the number of adjacent pairs of
i.e., each A[k] for which that value unequal elements in A’, a version of A
doesn’t occurin A[0. .k-1], for k rearranged into numerical order.

from 0 through n-1.

In worst case, running time is In worst case, running time is proportional to

proportional to n2. n log n, i.e., time to sort an array of length n +
time to count the number of unequal
adjacent element pairs.

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: In general

et from PRE to A.
et from B to POST.

|
|
|
I
' #.G
'#.G
:
|

B o - RS RS RSN RSN RSN RSN RN SN MEE MmN MmN MEE RSN BN M e MEE MEE MEE RSN RSN G M e MEE GEm MEE G M G S e e e e e e e

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: In general

et from PRE to A.
et from B to POST.

.G
G

B o - RS RS RSN RSN RSN RSN RN SN MEE MmN MmN MEE RSN BN M e MEE MEE MEE RSN RSN G M e MEE GEm MEE G M G S e e e e e e e

== Solve a different problem, and use that solution to solve the original problem.

uoIoNpay wajqo.d

jusawadulay [enuanbag

Problem Reduction: In general

H

Specification P:. Get from PRE to POST.
Get from PRE to A.

#.Define problem P’ based on PRE.
#.Solve problem P’.

#.Establish A from the solution to P’.

#.Get from B to POST.

1 where establishing A automatically establishes B.

uoIoNpay waj|qoid
jusawadulay [enuanbag

== Solve a different problem, and use that solution to solve the original problem.

Case Analysis: Implement a specification P as a choice of one step to execute
from among P, ..., P

|[euy ased

n.

sish

A
1
1

Specification P.

'if condition,:
#.Specification P,.
elif condition,:
#.Specification P,.

elif condition,_;:
#.Specification P, ;.

Case Analysis: Implement a specification P as a choice of one step to execute
from among P, and P,.

|[euy ased

sish

A
1
1

Specification P.
'if condition,:
#.Specification P,.

Case Analysis: Implement a specification P as a choice of one step to execute
or not.

|[euy ased

sish

A
1

Specification P.
if condition;:
#.Specification P,.

Case Analysis: Implement a specification P as a choice of one step to execute

fromamongP,, ..., P,.

Specification P.
if condition;,:
#.Specification P,.
elif condition,:
#.Specification P,.

elif condition,_;:
#.Specification P,_,.
else:
#.Specification P,.

Appropriate when distinct program behaviors are required for different situations.

|[euy ased

sish

Case Analysis: Implement a specification P as a choice of one step to execute
from among P, ..., P

|[euy ased

nl

sish

* Inthe real world: Animal, vegetable, or mineral?

* |In a maze: Facing a wall or not?

e After a search: Found or not found?

* |In mathematics: Positive or negative? Even or odd? Real or imaginary roots?

Appropriate when distinct program behaviors are required for different situations.

Case Analysis: An example

#.Let y be |x]|.

Appropriate when distinct program behaviors are required for different situations.

sa|dwex3
|[euy ase)

sish

Case Analysis: An example

Let y be |x]|.
if x >= 0:

y X
else:

y

-X

Appropriate when distinct program behaviors are required for different situations.

sa|dwex3
|[euy ase)

sish

Case Analysis: An example

Let y be |x]|.
if x >= 0:

y = X
else:

y = -X

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
|[euy ase)

sish

Case Analysis: An example

Let y be |x]|.
y = abs(y)

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
|[euy ase)

sish

Case Analysis: A second example

#.Advance k to the next hour.

10 2
_9 o 3-
k. . .4

7 @ 5

sa|dwex3
|[euy ase)

sish

11 ;(? 1
10 2
_ -9 o 3-
Case Analysis: A second example A .
7 5

Advance k to the next hour.
if k == 11:

k = ©
else:

k =k +1

sa|dwex3
|[euy ase)

sish

11 ;(? 1
10 2
_ -9 o 3-
Case Analysis: A second example A .
7 5

Advance k to the next hour.

if k == 11:

k = ©
else:

k =k +1

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

0
m o
X O
2>
3 5
T D
m_
" @

(7))

11 ;(? 1
10 2
_ -9 o 3-
Case Analysis: A second example A .
7 5

Advance k to the next hour.
k = (k + 1) % 12

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
|[euy ase)

sish

Case Analysis: A third example

#.Advance k to the previous hour.

10 2
_9 o 3-
k. . .4

7 @ 5

sa|dwex3
|[euy ase)

sish

11 ;(I? 1
10 2
_ -9 o 3-
Case Analysis: A third example A .
7 ¢ 5

Advance k to the previous hour.
if k == 0:

k = 11
else:

k = k - 1

sa|dwex3
|[euy ase)

sish

11 ;(I? 1
10 2
_ -9 o 3-
Case Analysis: A third example A .
7 ¢ 5

Advance k to the previous hour.
if k == O:

k = 11
else:

k = k -1

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
|[euy ase)

sish

11 ;(I? 1
10 2
_ -9 o 3-
Case Analysis: A third example A .
7 ¢ 5

Advance k to the previous hour.
k = (k + 11) % 12

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
|[euy ase)

sish

11 ;(I? 1
10 2
_ -9 o 3-
Case Analysis: A third example A .
7 ¢ 5

Advance k to the previous hour.
k = (k + 11) % 12

Why not (k-1)%12 ?

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
|[euy ase)

sish

r1' L 2
Case Analysis: A third example I ‘

Advance k to the previous hour.
= (k + 11) % 12

Why not (k-1)%12 ?
This would be fine in Python, but in other languages (e.g., Java), (k-1)%12 is
negative for negative k-1. The issue is avoided if we write (k+11)%12

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

0
m o
X O
2>
3 5
T D
m_
" @

(7))

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

sish

Case Analysis: The condition in a Case Analysis is often the locus of error.

== Be alert to high-risk coding steps associated with binary choices: “==" or “1=", “<”
or “<=", “x” or “x-1", condition or not (condition), positive or negative, 0-origin
or 1-origin, “even integers are divisible by 2, but array segments of odd length

have middle elements”.

|[euy ased

sish

Case Analysis: The condition in a Case Analysis is often the locus of error.

== Be alert to high-risk coding steps associated with binary choices.

|[euy ased

sish

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: parity

sish

#.0utput whether n is odd or even.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: parity

sish

Output whether n is odd or even.
if (n % 2) == 1:

print("odd")
else:

print("even")

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: parity

sish

Output whether n is odd or even.
if (n % 2) == 1:

print("odd")
else:

print("even")

== Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

. <
Example: parity 25
)
Output whether n is odd or even.
if (n % 2) == 1:
print("odd")
else:

print("even")

== Be alert to high-risk coding steps associated with binary choices.

The code is correct in Python, but because in some languages (e.g., Java) n%2 is
negative for negative n, the code is fragile.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: parity, more robust E.
»n
Output whether n is odd or even.
if (n % 2) ==
print("even")
else:

print("odd")

== Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

#.Let im be True iff the roots of quadratic Ax’+Bx+C=0 are imaginary.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:
im = False

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:

im False

== Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:

im False

== Be alert to high-risk coding steps associated with binary choices.

Is the case of ((B*B) - (4*A*C))==0 correct?

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:
im

False

== Be alert to high-risk coding steps associated with binary choices.

Is the case of ((B*B) - (4*A*C))==0 correct? Yes.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:

im False

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

#.Let im be True iff the roots of quadratic Ax’+Bx+C=0 are imaginary.

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool = ((B * B) - (4 * A * C)) < © # Roots are imaginary.

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

#.0utput whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if (m1 == m2) and (bl != b2):

print("parallel")
else:

print("intersect")

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if (m1 == m2) and (bl != b2):

print("parallel™)
else:

print("intersect")

== Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if (m1 == m2) and (bl != b2):

print("parallel™)
else:

print("intersect")

== Be alert to high-risk coding steps associated with binary choices.

What if m1 is 0.0e0 and m2 is smallest floating-point number?

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if (m1 == m2) and (bl != b2):

print("parallel™)
else:

print("intersect")

== Be alert to high-risk coding steps associated with binary choices.

What if m1==m2, but b1 is 0.0e0 and b2 is smallest floating-point number?

Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if compare-slopes-and-intercepts-wrt-tolerances:

print("parallel™)
else:

print("intersect")

== Never test two floating-point numbers for equality or inequality.

Iterative Refinement: Implement a specification P by repeatedly executing

4

step P".

=+

1 1
| |
I H o o o e e e e e e e e e e e - = I
| |
| #.Setup for P’. ;
'while condition: !
| #.Specification P”’. |

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: Implement a specification P by repeatedly executing

4

step P..

| |
| |
| |
| |
' #.Setup for P’. ;
| |
| |
| |

=+

while condition:
#.Specification P’.

Invariant: The thing that stays the same, and allows P’ to remain applicable.

Variant: The thing that changes, and eventually causes the loop to stop.

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: Implement a specification P by repeatedly executing

4

step P..

=+

1 1
| |
I H o o o e e e e e e e e e e e - = I
| |
| #.Setup for P’. ;
'while condition: !
| #.Specification P’. |

Invariant: The thing that stays the same, and allows P’ to remain applicable.
Variant: The thing that changes, and eventually causes the loop to stop.

Infinite loops have their utility, but termination is the norm.

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: Implement a specification P by repeatedly executing

4

step P..

=+

1
|
________________ I
|

#.Setup for P’. ;
while condition: !
#.Specification P”’. |

Invariant: The thing that stays the same, and allows P’ to remain applicable.
Variant: The thing that changes, and eventually causes the loop to stop.

Infinite loops have their utility, but termination is the norm. For termination, think of
the variant as a necessarily nonnegative integer that necessarily decreases by 1 on
each iteration. You can only do that a finite number of times.

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: Implement a specification P by repeatedly executing

4

step P..

=+

1 1
| |
I H o o o e e e e e e e e e e e - = I
| |
| #.Setup for P’. ;
'while condition: !
| #.Specification P’. |

A fruitful real-world analogy: Hammering a nail into a block of wood.

JUSWIAUL3Y SAIJeId)|

Iterative Refinement
Iteration in the Real World

#.Drive a nail vertically into a block of wood.

Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height2>0. In doing so,
establish the invariant (nail vertical, and height20) and the
initial variant (height of nail).

PIIO/\\ [B9Y 93 Ul Uoije.lay|

JUSWIAUL3Y SAIJeId)|

Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height20. In
establish the invariant (nail vertical, and height20)
initial variant (height of nail).

doing so,
and the

while the-head-of-the-nail-sticks-out :

#.Hit the nail with the hammer squarely. In doing so,
hitting the nail vertically, but not so hard that

such that a finite number of hits suffices).

maintain the invariant (by
its height becomes negative),

and reduce the variant (by hitting the nail hard enough to reduce the height

PIIO/\\ [B9Y 93 Ul Uoije.lay|

JUSWIAUL3Y SAIJeId)|

Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height20. In
establish the invariant (nail vertical, and height20)
initial variant (height of nail).

doing so,
and the

while the-head-of-the-nail-sticks-out :

A #.Hit the nail with the hammer squarely. In doing so,
“3i%% # hitting the nail vertically, but not so hard that

such that a finite number of hits suffices).

maintain the invariant (by
its height becomes negative),

and reduce the variant (by hitting the nail hard enough to reduce the height

variant is reduced to zero (height==0).

#.The invariant still holds (nail vertical, and height20), and the _—

PIIO/\\ [B9Y 93 Ul Uoije.lay|

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: What can go wrong?

Setup doesn’t establish the nail’s verticality (the invariant). The very
first hammer blow flattens the nail, or begins the process of bending
it, even if the loop body is perfectly correct.

PIIO/\\ [B9Y 93 Ul Uoije.lay|

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: What can go wrong?

Loop body doesn’t maintain the nail’s verticality (the invariant) because
it hits the nail at a crooked angle. Eventually, the nail is flattened.

PIIO/\\ [B9Y 93 Ul Uoije.lay|

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: What can go wrong?

* Loop body doesn’t maintain the nail’s nonnegative height (the
invariant), splits the wood, and the nail goes into the table top.

PIIO/\\ [B9Y 93 Ul Uoije.lay|

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: What can go wrong?

* Loop body makes insufficient progress (the variant). The loop runs
forever and the nail never gets flush with the surface.

This can be because the height is an infinite decreasing sequence that
doesn’t converge to zero, or because you hit a knot, and stop advancing
altogether.

PIIO/\\ [B9Y 93 Ul Uoije.lay|

JUSWIAUL3Y SAIJeId)|

No advancement: Use a feather instead of a hammer, or at a knot.

€

stuck state

uoIjeulW.IdaUoN

JUSWIAUL3Y SAIJeId)|

Cyclic advancement: Movement, but destined to return to a prior state.

ANV

#.Make triangle point down.

orbit of states

uoIjeulW.IdaUoN

JUSWIAUL3Y SAIJeId)|

Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

ANV

Make triangle point down.

#.Compute angle 6.
while not-pointing-down:
#.Turn angle 6.

uoIjeulW.IdaUoN

JUSWIAUL3Y SAIJeId)|

Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

ANV

Make triangle point down.

#.Compute angle 6.
while not-pointing-down:
#.Turn angle 6.

Runs forever if § is 120°

uoIjeulW.IdaUoN

JUSWIAUL3Y SAIJeId)|

Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

ANV

Make triangle point down.

#.Compute angle 6.
while not-pointing-down:
#.Turn angle 6.

Runs forever if § is 120°

(Doesn’t happen in hammering a nail.)

uoIjeulW.IdaUoN

JUSWIAUL3Y SAIJeId)|

Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

sequence of states

h: int = 10
while h > 0:
h=h// 2

Terminates

uoIjeulW.IdaUoN

JUSWIAUL3Y SAIJeId)|

Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

h: float = 10.0
wh11e h > 0:
=h/ 2

Terminates

sequence of states

uoIjeulW.IdaUoN

JUSWIAUL3Y SAIJeId)|

Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

sequence of states

zero: Rational = Rational(0,1)
two: Rational = Rational(2,1)
h3: Rational = Rational(10, 1)
while h3 != zero:

h3 = rational divide(h3, two)

Runs forever (Code explained in Chapter 18.)

uoIjeulW.IdaUoN

JUSWIAUL3Y SAIJeId)|

Iterative Refinement: In general

=+

#.Setup: Get from PRE to INVARIANT.
while condition:
#.Get from condition and INVARIANT to INVARIANT.

sjueliAu] doo Sulpuid

JUSWIAUL3Y SAIJeId)|

Iterative Refinement
Finding Loop Invriants

Iteration: To get to POST iteratively

POST

Iteration: To get to POST iteratively, choose a weakened POST as INVARIANT

sjueliAu] doo Sulpuid

POST INVARIANT

JUSWIAUL3Y SAIJeId)|

Iteration: Then, iteratively change the INVARIANT’s parameters.

sjueliAu] doo Sulpuid

POST Improving approximations

JUSWIAUL3Y SAIJeId)|

Example: Hammering a nail, the goal

[nail vertical and height=0

sjueliAu] doo Sulpuid

POST

JUSWIAUL3Y SAIJeId)|

Example: Hammering a nail, set up the INVARIANT

[nail vertical and height=0

nail vertical and height=0]

sjueliAu] doo Sulpuid

POST

INVARIANT

JUSWIAUL3Y SAIJeId)|

Example: Hammering a nail, the process

[nail vertical and height=0

POST

nail vertical and height=0 |

nail vertical and height=0 |

Improving approximations

sjueliAu] doo Sulpuid

JUSWIAUL3Y SAIJeId)|

Example: Hammering a nail, the process

[nail vertical and height=0

POST

nail vertical and height=0 |

nail vertical and height=0 |

nail vertical and height=0]

sjueliAu] doo Sulpuid

Improving approximations

JUSWIAUL3Y SAIJeId)|

PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
=
=
D
Example: Integer division. The goal. (¢7)
“
#.Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. g.
>,
e,
=
q
s A \ r
| | | | | | | L~
y y y y y y y y
\ J

X <

JUSWIAUL3Y SAIJeId)|

PRE:
POST:
INVARIANT:

0=x, O<y

X=q*y+r, Os[fg

. and 0<q

Example: Integer division. The process: Choose the INVARIANT ...

#.Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y.

< — rrQ

X <

1g 19893u]|
JUBWIBUIY dAIRIDY

UOISIAI

PRE: 0=x, O<y
POST: x=q*y+r, 0<r<y|

. and 0<q

INVARIANT: x=q*y+r, O<r

, and 0=q

Example: Integer division. ... INVARIANT as a weakened POST.

#.Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y.

< — rrQ

X <

1g 19893u]|
JUBWIBUIY dAIRIDY

UOISIAI

Example: Integer division. The process ...

PRE:
POST:

0=x, O<y
x=q*y+r, 0=<r<y, and 0<q

INVARIANT: x=q*y+r, Osr , and 0=q

Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y.

r: int =
g: int =
while condition:

< — rrQ

X <

1g 19893u]|
JUBWIBUIY dAIRIDY

UOISIAI

PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
INVARIANT: x=q*y+r, Osr , and 0<q 5
=
0
Example: Integer division. The process of maintaining the INVARIANT ... (¢7)
“
Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = s.
g: int = (7))
while condition: 6'
r=r-y -
q+=1
q
s A \ r
| | | | ")
y y y y

X <

JUSWIAUL3Y SAIJeId)|

PRE:
POST:

0=x, O<y
x=q*y+r, 0=<r<y, and 0<q

INVARIANT: x=q*y+r, Osr , and 0=q

VARIANT:

X-q*y

Example: Integer division. ... while reducing the VARIANT to O ...

Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y.

r: int =

g: int =

while r >= y:
r=r -y
q+=1

e

X <

1g 19893u]|
JUBWIBUIY dAIRIDY

UOISIAI

PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
INVARIANT: x=q*y+r, Osr , and 0<q m—
VARIANT: x-q*y =
00
Example: Integer division. ... after first having established the INVARIANT. ()
“
Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = x s.
g: int = 0 (7))
while r >= y: 6'
r=r -y =
q+=1
r
A
\
y

X <

JUSWIAUL3Y SAIJeId)|

PRE: 0=x, O<y
POST: x=q*y+r, 0=r<y, and 0=q

INVARIANT: x=q*y+r, Osr , and 0<q m—
VARIANT: x-q*y =
5
Example: Played in execution order, with nail and wood analogy: The setup. (o)
“
Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = x s.
g: int = © (7))
while r >= y: 6'
r=r -y =
q += 1
r
A
4 \
y
\ J

JUSWIAUL3Y SAIJeId)|

PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
INVARIANT: x=q*y+r, Osr , and 0<q —
VARIANT: x-q*y =
7
Example: Played in execution order, with nail and wood analogy: The process. ®
“
Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = x s.
g: int = 0 W
while r >= y: 6'
r=r -y =
q+=1
q
4 A r
| | | a)
y y y

JUSWIAUL3Y SAIJeId)|

PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
INVARIANT: x=q*y+r, Osr , and 0<q m—
VARIANT: x-q*y =
5
Example: Played in execution order, with nail and wood analogy: Termination.
“
Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = x s.
g: int = © (7
while r >= y: o
r=r -y =
qg+=1
, ! oo
| | | | | e
y y y y y y
| J
Y
X

JUSWIAUL3Y SAIJeId)|

Example: Euclid’s Algorithm, the goal

def gcd(x:int, y:int) -> int:
"""Given x>0 and y»>0, return the greatest common divisor of x and y.""“

return

Let X and Y be positive integers, GCD be the mathematical greatest-common-divisor
function, and GCD(X, Y) = d. When invoked on argument expressions with values X and Y,
the Python function gcd is required to return d.

wyio8|y s,pljong

JUSWIAUL3Y SAIJeId)|

Example: Euclid’s Algorithm, the INVARIANT

def gcd(x:int, y:int) -> int:
"""Given x>0 and y»>0, return the greatest common divisor of x and y.
while condition:

return

wyio8|y s,pljong

We plan to update x or y on each iteration while maintaining the INVARIANT
x>0 and y>0 and GCD(x,y)=d

which holds initially because invocation of gcd with argument values X and Y
initializes parameters X and y to X and Y, respectively.

JUSWIAUL3Y SAIJeId)|

Example: Euclid’s Algorithm, the VARIANT

def gcd(x:int, y:int) -> int:
"""Given x>0 and y»>0, return the greatest common divisor of x and y.
while x != y:

return x

To assure termination, we will reduce the non-negative VARIANT expression X+y by
at least 1 on each iteration. You can only do that a finite number of times (while
guaranteeing that x+y remains positive) before x+y stops changing. When it does, we
must show that x=y. (It remains until after knowing how x and y are updated to show
that x+Yy is reduced by 1 on each iteration.)

The return statement implements the observation that the gcd of any number and
itself is that number.

wyio8|y s,pljong

JUSWIAUL3Y SAIJeId)|

m
c
O
Example: Euclid’s Algorithm, Case Analysis Q.
»n
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (Q
while x != y: Q
if =
=
-
else: 3
return x

There are only two cases: either X >y or X <y (the third possibility of X = y having been
ruled out by the loop termination condition).

JUSWIAUL3Y SAIJeId)|

m
-
D
Example: Euclid’s Algorithm, Case Analysis, x >y Q.
»
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (@
while x != y: Q
if x > y: .
-
-
else: 3
return Xx

First case: x > y. Observe by diagrammatic reasoning (next slide), that x can be replaced
by X - y while maintaining the INVARIANT, i.e., designating the new value of x by X, then

x’>0 and y>0 and GCD(x’,y)=d

That x” > 0 follows from x > .

JUSWIAUL3Y SAIJeId)|

wyio8|y s,pljong
Jusawaul}ay aAIjeld)|

Example: Euclid’s Algorithm, Case Analysis, x >y
X if xand y have a
A AN common divisor d
d d d d d d d d
>\/
d d d d d then y and x-y
g) “ 3| have a common
y d d d divisor of d.

m
-
D
Example: Euclid’s Algorithm, Case Analysis, x >y Q.
»
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (@
while x != y: Q
if x > y: .
LT =2
else: 3

return Xx

First case: x > y. Observe by diagrammatic reasoning (next slide), that x can be replaced
by X - y while maintaining the INVARIANT, i.e., designating the new value of x by X, then

x’>0 and y>0 and GCD(x’,y)=d

That x” > 0 follows from x > y. This has been done, above.

JUSWIAUL3Y SAIJeId)|

m
o
2
Example: Euclid’s Algorithm, Case Analysis, x <y, by symmetry Q.
»
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (@
while x != y: Q
if x > y: .
<x ey =
else: 3

y =Yy -X

return x

Second case: x < y. Follows by the symmetric argument.

JUSWIAUL3Y SAIJeId)|

m
c
O
Example: Euclid’s Algorithm, correctness Q.
»n
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (Q
while x != y: Q
if x > y: .
ey =
else: 3

y =Yy - X

return x

If the loop stops, the INVARIANT and negation of the condition imply that the value
returned is correct, i.e.,

x>0 and y>0 and GCD(X,y)=d and x=y implies x=d.

This is called partial correctness.

JUSWIAUL3Y SAIJeId)|

m
c
O
Example: Euclid’s Algorithm, termination Q.
»n
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (Q
while x != y: Q
if x > y: .
ey =
else: 3

y =Yy - X

return x

Why does x+y stop changing, with x=y, and therefore the iteration stops?

Because one of X or y is reduced by at least 1 on each iteration, and if X is not equal to y,
then in the next iteration x+y can be further reduced.

Partial correctness plus guaranteed termination is called total correctness.

JUSWIAUL3Y SAIJeId)|

Termination: Can be nontrivial, i.e., hard, unknown, or even unknowable

ainjoafuo) zjejj0H

JUSWIAUL3Y SAIJeId)|

O
=
. : . o
Termination: Are the following two code segments equivalent? ﬁ"
Given in « » <:>
put n>@, output “done”. o
n = int(input()) E
print("done"))
0O
Given input n>@, output “done™. (o
n = int(input()) EE
while n I= 1: (o)

if (n % 2) == @:

n=n)// 2
else:

n=(3*n)+1
print("done")

Answer turns on whether the loop terminates for every input.

JUSWIAUL3Y SAIJeId)|

O
=
N : . o
Termination: Are the following two code segments equivalent? ﬁ"
Given in « » <:>
put n>@, output “done”. o
n = int(input()) E
print("done"))
. . Q
Given input n>@, output “done™. (o
n = int(input()) EE
while n I= 1: (o)

if (n % 2) == @:

n=n)// 2
else:

n=(3*n)+1
print("done")

Sample input 3:
321025216 =>8=24->2->1

JUSWIAUL3Y SAIJeId)|

Termination: Are the following two code segments equivalent?

Given input n>@, output “done™.

n = int(input())
print("done")

Given input n>@, output “done™.

n = int(input())

while n != 1:
if (n % 2) == @:
n=n}// 2
else:

n=(3*n)+1
print("done")

"

]

L%
oy

Collatz Conjecture

That every such sequence reaches 1 is an open problem in mathematics.

ainjoafuo) zjejj0H

JUSWIAUL3Y SAIJeId)|

Recursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblem:s.

|

I

|

; #.P,.

' else:

! #.Identify smaller instance(s) of P within P itself, apply this
: # approach to each such instance, and combine the results.

JUBWIAULRY SAISINIDY

Recursive Refinement

0]112(3]4]|5

ilar structure at every scale

Im

Same or s

Ab

Self-similarity

LNV V-V NV VYV YV Y.

Recursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblems.

' # Specification P.
'if base-case :

#.Identify smaller instance(s) of P within P itself, apply this
approach to each such instance, and combine the results.

To use the refinement within both the specification and in the refinement itself,
define it separately as a procedure, and invoke it by name.

JUBWIAULRY SAISINIDY

Recursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblems.

i il il i
1

Specification P.
P(arguments)

' and elsewhere define:

' def P(parameters) -> type:
; if base-case :

: #.P,.

: else:

: #.Identify smaller instance(s) of P within P itself, invoke

: # P(arguments) on each such instance, and combine the results.

To use the refinement within both the specification and in the refinement itself,
define it separately as a procedure, and invoke it by name.

JUBWIAULRY SAISINIDY

Example: 54 3 2 1 BLASTOFF

Count down from 5, and say “BLASTOFF” at @.
countdown(5)

and elsewhere define:

def countdown(n: int) -> None:
"""Count down from n, and say "BLASTOFF" at zero.
if n == 0O:
print("BLASTOFF")
else:
print(n)
countdown(n - 1)

JUBWIAULRY SAISINIDY

A second example: (...(((0+1)+2)+3)+...+100)

Output the sum of 1 through 100.
print(sum(100))

and elsewhere define:

def sum(n: int) -> int:
"""Return the sum of © through n.
if n == 0O:
return 0
else:
return sum(n - 1) + n

JUBWIAULRY SAISINIDY

A third example: (1+(2+(3+...+(100+0)...)))

Output the sum of 1 through 100.
print(sum(100))

and elsewhere define:
def sum(n:int) -> int:

"""Return the sum of @ through n.
return sumAux(n,9)

def sumAux(n: int, acc: int) -> int:
"""Return the sum of @ through n, and acc.
if n ==
return acc
else:
return sumAux(n - 1, n + acc)

JUBWIAULRY SAISINIDY

Library of Patterns: Implement specification P by using a previously used and
analyzed parameterized composition of constructs.

Build your personal library over your lifetime.

su.iajled jo Areuaqi

Extended Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells
separated (or not) from adjacent cells by walls. One can move between
adjacent cells if and only if no wall divides them. A solid wall surrounds
the entire grid of cells, so there is no escape from the maze.

Problem Statement. Write a program that inputs a maze, and outputs a
direct path from the upper-left cell to the lower-right cell if such a path
exists, or outputs “Unreachable” otherwise. A path is direct if it never
visits any cell more than once.

aze|\ e suluuny

Extended Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells
separated (or not) from adjacent cells by walls. One can move between
adjacent cells if and only if no wall divides them. A solid wall surrounds
the entire grid of cells, so there is no escape from the maze.

Problem Statement. Write a program that inputs a maze, and outputs a
direct path from the upper-left cell to the lower-right cell if such a path
exists, or outputs “Unreachable” otherwise. A path is direct if it never
visits any cell more than once.

aze|\ e suluuny

= Use Stepwise Refinement. Write simple code immediately, otherwise refine
the problem statement using: (a) Sequential Refinement, (b) Case Analysis,
(c) Iterative Refinement, (d) a known pattern.

Specify the goal

#.Find path in maze from upper-left to lower-right, if one exists.

9ze|\ e suluuny

Refine with an architecture

Find path in maze from upper-left to lower-right, if one exists.

#.Input.
#.Compute.
#.0utput.

= Master stylized code patterns, and use them.

aze|\ e suluuny

Refine with an architecture and elaborate

Find path in maze from upper-left to lower-right, if one exists.

aze|\ e suluuny

i
#.Input a maze of arbitrary size, or output “malformed input” and
stop if the input is improper. Input format: TBD.

#.Compute a direct path through the maze, if one exists.

#.0utput the direct path found, or “unreachable” if there is none.
Output format: TBD.

= Master stylized code patterns, and use them.

Ignore Input and Output, and focus on essence

Find path in maze from upper-left to lower-right, if one exists.

__
#.Input a maze of arbitrary size, or output “malformed input” and
stop if the input is improper. Input format: TBD.

#.Compute a direct path through the maze, if one exists.

#.0utput the direct path found, or “unreachable” if there is none.
Output format: TBD.

aze|\ e suluuny

Ignore Input and Output, and focus on essence

#.Compute a direct path through the maze, if one exists.

aze|\ e suluuny

Investigate:

aze|\ e suluuny

g

g

g

§

Analyze first.

Confirm your understanding of a programming problem with concrete examples.
Elaborate the expected input/output mapping explicitly.

There is no shame in reasoning with concrete examples.

Simple examples may be as good (or better) than complicated ones for guiding
you toward a solution.

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is
in your “wetware”. Be introspective. Ask yourself: What am | doing?

Investigate:

Example 1

Begin with a (near) empty maze

aze|\ e suluuny

Investigate:

Example 1

Traverse clockwise along the perimeter

aze|\ e suluuny

Investigate:

Example 1 Example 2

Interpose a protruding wall. Continue excursion along it, pirouette to
its other size, and continue.

aze|\ e suluuny

Investigate:

Example 1 Example 2 Example 3

Interpose a second protruding wall. Continue excursion along it
(effectively backing out of a cul-de-sac), and continue.

aze|\ e suluuny

Investigate:

Example 1 Example 2 Example 3 Example 4

Interpose a third protruding wall. Continue excursion along it
(effectively backing out of a room-sized cul-de-sac), and continue.

aze|\ e suluuny

Investigate:

Example 1 Example 2 Example 3 Example 4

Block access to lower-right cell. Continue excursion along bottom and
left perimeter, and then stop in upper-left cell.

Example 5

aze|\ e suluuny

Return to code

#.Compute a direct path through the maze, if one exists.

aze|\ e suluuny

Return to code, and simplify

#.Compute a direet path through the maze, if one exists.

== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

aze|\ e suluuny

Iterative Refinement:

Compute a direet path through the maze, if one exists.

while

= |If you “smell a loop”, write it down.

aze|\ e suluuny

Iterative Refinement:

Compute a direet path through the maze, if one exists.
3
while 2
1

4

= Code iterations in the following order: (1) body, (2) termination, (3) initialization,
(4) finalization, (5) boundary conditions.

aze|\ e suluuny

The loop body

Compute a direet path through the maze, if one exists.
3
while 2

4

== Body. Do 1st.

aze|\ e suluuny

Pick an example, and imagine running the program for a while

Example 1

== Body. Do 1st. Play “musical chairs”

aze|\ e suluuny

Pick an example, and imagine running the program for a while

Example 1

== Body. Do 1st. Play “musical chairs”

aze|\ e suluuny

Pick an example, and imagine running the program for a while

Example 1

== Body. Do 1st. Play “musical chairs”

aze|\ e suluuny

Stop at an arbitrary moment

Example 1

== Body. Do 1st. Play “musical chairs” and “stop the music”.

aze|\ e suluuny

Characterize the state

1 Facing a wall

[l

Example 1

== Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again.

aze|\ e suluuny

Characterize the state, and the state transition

T INVARIANT: Hand on wall

aze|\ e suluuny

[l

Example 1

== Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?

Characterize the state, and the state transition

T INVARIANT: Hand on wall

aze|\ e suluuny

D VARIANT: Distance to goal

Example 1

== Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?

Characterize the state, and the state transition

T INVARIANT: Hand on wall

D VARIANT: Distance to goal

Example 1

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

aze|\ e suluuny

Characterize the state, and the state transition

T INVARIANT: Hand on wall

D VARIANT: Distance to goal

Example 1

Transition rule

Wil = [T

aze|\ e suluuny

Resume playing musical chairs, applying the transition rule

T INVARIANT: Hand on wall

D VARIANT: Distance to goal

Example 1

Transition rule

Wil = [T

aze|\ e suluuny

Introduce a new transition rule when needed

— INVARIANT: Hand on wall

D VARIANT: Distance to goal

Example 1

Transition rules

w [T] = [T
2] =

aze|\ e suluuny

and resume playing musical chairs

[l

Example 1

Transition rules

w11 = [T
@ 1] =

aze|\ e suluuny

and resume playing musical chairs

[l

Example 1

Transition rules

w11 = [T
@ 1] =

aze|\ e suluuny

and resume playing musical chairs

e

Example 1

Transition rules

w11 = [T
@ 1] =

aze|\ e suluuny

and resume playing musical chairs

D s

Example 1

Transition rules

w11 = [T
@ 1] =

aze|\ e suluuny

Try another example

Example 1 Example 2

Transition rules

W [T] = [T
@Il =

9ze|\ e suluuny

Try another example, and introduce a new transition rule when needed

Example 1 Example 2

Transition rules

L] = 3) i
@ 1] =

aze|\ e suluuny

Then resume playing musical chairs

Example 1 Example 2

Transition rules

w11 = [T
@ 1] =

(3)

aze|\ e suluuny

Then resume playing musical chairs

Example 1 Example 2

Transition rules

w [T] = [T
2] =

(3)

aze|\ e suluuny

Then resume playing musical chairs

N

Example 1 Example 2

Transition rules

w11 = [T
@ 1] =

(3)

aze|\ e suluuny

Then resume playing musical chairs

—

Example 1 Example 2

Transition rules

w11 = [T
@ 1] =

(3)

aze|\ e suluuny

Try another example, and see that the three transition rules suffice

Example 1 Example 2

Transition rules

w11 = [T
2] =

—

Example 3

L] o [

aze|\ e suluuny

Try another example, and see that the three transition rules get you far

Example 1 Example 2 Example 3 Example 4
Numbering reflects the direct path

Transition rules

Ll -
o1] = 3) S NE

2 7] =

aze|\ e suluuny

until a fourth rule is needed

Example 1 Example 2 Example 3 Example 4

Transition rules

W1] = 3) T
@0l = (4 <|L =

aze|\ e suluuny

Example 1 Example 2 Example 3 Example 4

Transition rules

W1] = 3) T
@1 = (4)% o

aze|\ e suluuny

Example 1 Example 2 Example 3 Example 4

Transition rules

o1] = 3) T
@ 1] = (4)% o

aze|\ e suluuny

Example 1 Example 2

Transition rules

w[T] = [T
@ 1] =

(4)

Example 3

Example 4

9ze|\ e suluuny

Resume, and go all the way

Example 1 Example 2 Example 3 Example 4

Transition rules

m 1] = [Tt)]
211 = =5l (4)<IL::>

aze|\ e suluuny

And yet another example

Example 1 Example 2 Example 3 Example 4 Example 5

Numbering reflects the direct path

Transition rules

o1] = 3) T
@l = (4 <|L =

aze|\ e suluuny

The loop body: One case for each transition rule

Compute a direet path through the maze, if one exists.

while
if

elif

elif

else:

aze|\ e suluuny

The loop body: One case for each transition rule, but they are too complex.

Compute a direet path through the maze, if one exists.

while
if

elif

elif

else:

aze|\ e suluuny

The loop body: One case for each transition rule, but they are too complex.

For example: (1) =

Compute a direet path through the maze, if one exists.

while :
if two-colinear-walls-not-separated-by-a-perpendicular-wall:
#.sidestep.

elif

elif

else:

aze|\ e suluuny

Idea: Implement coarse-grain transition steps with micro-operations

o 0] = B =(C5 = 1)
2 [1] = =l

B2 2T e e (2) (e e

s s b uibdis u s nlidin bl ut

aze|\ e suluuny

Idea: Implement coarse-grain transition steps with micro-operations

Turn 90°clockwise

W 1]] =
11 = =l

(2)

(3)

(4)

B AN

jJ-=>

Step forward and turn 90°counterclockwise

S = (5 = 1)

aze|\ e suluuny

(1)

(2)

(3)

(4)

Idea: Implement coarse-grain transition steps with micro-operations

Turn 90°clockwise

Step forward and turn 90°counterclockwise

1] = B = (= = [11)

1l = El

e 2 O (T 2 P (- 2

Suidl w s i mladn m i

new INVARIANT:
new VARIANT:

Hand on wall or door
Number of wall segments or doors to goal

aze|\ e suluuny

The loop body: Now only two simpler cases to consider.

Compute a direet path through the maze, if one exists.

aze|\ e suluuny

while :
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

new INVARIANT: Hand on wall or door
new VARIANT: Number of wall segments or doors to goal

Iteration: (2) termination

Compute a direet path through the maze, if one exists.

while not(in-Llower-right) and not(in-upper-Lleft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

aze|\ e suluuny

Iteration: (3) initialization

Compute a direet path through the maze, if one exists.

#.Start in upper-left cell, facing up.
while not(in-Llower-right) and not(in-upper-LlLeft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

aze|\ e suluuny

Iteration: Correctness relies on subtle problem constraints

Compute a direet path through the maze, if one exists.

#.Start in upper-left cell, facing up.
while not(in-Llower-right) and not(in-upper-LlLeft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

aze|\ e suluuny

Iteration: Correctness relies on subtle problem constraints

5|i3
1187 612
2] 718
3(4|5

If started facing down, not up If outer wall not solid If cheese could be in interior cell

aze|\ e suluuny

Iteration: (4) finalization (nothing to do)

Compute a direet path through the maze, if one exists.

#.Start in upper-left cell, facing up.
while not(in-Llower-right) and not(in-upper-LlLeft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

aze|\ e suluuny

The core algorithm is in hand

Compute a direet path through the maze, if one exists.

#.Start in upper-left cell, facing up.
while not(in-Llower-right) and not(in-upper-LlLeft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

aze|\ e suluuny

	Title
	Slide 1

	Introduction
	Slide 2

	DivideAndConquer
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	Sequential Refinement
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

	Case Analysis
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

	Iterative Refinement
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163

	Recursive Refinement
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170

	Library of Patterns
	Slide 171

	ExtendedExample
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232

