Principled Programming

Introduction to Coding in Any Imperative Language

Tim Teitelbaum

Emeritus Professor
Department of Computer Science
Cornell University

Stepwise Refinement

Copyright©2024 by Tim Teitelbaum; Most recent revision, 09/19/2025



We introduce Stepwise Refinement, a key approach to programming,
and illustrate its use in many examples.

* Divide and Conquer

* Sequential Refinement
e (Case Analysis

* |terative Refinement

* Recursive Refinement
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All Gaul is divided into three
parts.

~ Julius Caesar
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Divide and Conquer:

All Gaul is divided into three parts. To conquer Gaul:
First, conquer the first part.
Then, conquer the second part.
Finally, conquer the third part.

A methodology.
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Divide and Conquer: Applied to programming

To write a program:
First, break it into subprograms.
Then, write each subprogram separately.

the methodology is called programming by Stepwise Refinement.
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Divide and Conquer: Applied to programming

To write a program:
First, break it into subprograms.
Then, write each subprogram separately.

the methodology is called programming by Stepwise Refinement.

= Program top-down, outside-in.

lanbuo) pue apIAIQ



Stepwise Refinement: Creates a hierarchy of subprograms, each with its own
specification.

==

Specification

\

Specification

Sub-Specification #1

Sub-Specification #2

Sub-Specification #3

/\

Sub-Sub-Specification #2.1

Sub-Sub-Specification #2.2

= Program top-down, outside-in.

Sub-Specification #1

Sub-Specification #2

Specification

Sub-Specification #1

Sub-Sub-Specification #2.1

Sub-Specification #2

Sub-Sub-Specification #2.2

Sub-Sub-Specification #2.1

Sub-Specification #3

Sub-Sub-Specification #2.2

Sub-Specification #3
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Stepwise Refinement: A “program” to follow as you code.

if Pis simple to write :
Write it

else:
Refine P into simpler subprograms
Write each subprogram

= Program top-down, outside-in.
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where Refine is:

Sequential steps
Do one thing after another.
Case analysis
Do one thing or another.
Iteration
Do one thing repeatedly.
Recursion
Do something based on self-similarity.
Selection from a library of patterns
Do some pattern of the previous kinds of refinement.
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Stepwise Refinement: Is recursive

if Pis simple to write :
Write it

else:
Refine P into simpler subprograms
Write each subprogram

because it uses itself for writing each subprogram.
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Stepwise Refinement: Terminates

if Pis simple to write :
Write it

else:
Refine P into simpler subprograms
Write each subprogram

provided the subprograms get simpler to write.
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Stepwise Refinement: Terminates when P is so simple that you just write it.

if Pis simple to write :
Write it

This is called the base case of the recursion.
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Stepwise Refinement: The subproblems of each refinement must fit together
like pieces of a jigsaw puzzle.

T

-

We now consider each of the five kinds of refinement.
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Sequential Refinement: Implement a specification P with a sequence of steps
P, through P, executed one after the other.

1 1
| |
I I
| |
| #.Specification P,. ;
| #.Specification P,. ;
| |

I

|

where if any “#.Specification P,” is simple enough, it can be just code.
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Example 1: A top-level specification

#.Drive from LA to NYC.

sa|dwex3
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Example 1: A top-level specification that calls for the state-space effect shown.

#.Drive from LA to NYC.

C v > ne D

sa|dwex3
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Example 1: A Sequential Refinement

# Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

C v > ne D

sa|dwex3
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Example 1: A Sequential Refinement

sa|dwex3

# Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

C LA > chicago >—C_ NYC
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Example 1: A Sequential Refinement

# Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

starting in LA get to Chicago

3
1 iR /

starting in Chicago getto NYC

sa|dwex3
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Example 2: A different Sequential Refinement

# Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

Different roads and scenery, but the same net effect (the external interface):
If | leave from LA, | will get to NYC.

sa|dwex3
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Example 3: An incorrect Sequential Refinement

# Drive from LA to NYC.

B o m e e e e mm oo -
#.Drive from LA to Chicago.
#.Drive from to NYC.

The first step does not establish what the second step requires.

sa|dwex3
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Example 3: A corrected Sequential Refinement

# Drive from

#.Drive from
#.Drive from
#.Drive from

LA to NYC.

LA to Chic
Chicago to

ago.

to NYC.

sa|dwex3
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Example 4: An infeasible Sequential Refinement

# Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

You can’t drive from LA to Tokyo.

Just because you can express a requirement doesn’t mean that it can be
accomplished.

sa|dwex3
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Example 1, continued:

# Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

sa|dwex3
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Example 1, continued:

# Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

== Refine specifications and placeholders in an order that makes sense for
development, without regard to execution order.

sa|dwex3
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Example 1, continued:

# Drive from LA to NYC.
#.Drive from LA to Chicago.
# Drive from Chicago to NYC.

#.Drive from Chicago to
#.Drive from to NYC.

== Refine specifications and placeholders in an order that makes sense for
development, without regard to execution order.

sa|dwex3
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Example 4, continued: Backtrack out of an infeasible Sequential Refinement

# Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

You can’t drive from LA to Tokyo.

sa|dwex3

jusawadulay [enuanbag



Example 4, continued: Backtrack out of an infeasible Sequential Refinement

# Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

You can’t drive from LA to Tokyo.

== Don’t be wedded to code. Revise and rewrite when you discover a better way.

sa|dwex3
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Example 4, continued: An infeasible Sequential Refinement undone.

#.Drive from LA to NYC.

== Don’t be wedded to code. Revise and rewrite when you discover a better way.

sa|dwex3
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Example 4, continued: An infeasible Sequential Refinement revised.

# Drive from LA to NYC.

#.Drive from LA to .
#.Drive from to NYC.

You can drive from LA to Denver and from Denver to NYC.

== Don’t be wedded to code. Revise and rewrite when you discover a better way.

sa|dwex3
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Example 5: A new top-level specification

#.Drive from LA to NYC and buy a new car (in any order).

sa|dwex3
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Example 5: A new top-level specification

#.Drive from LA to NYC and buy a new car (in any order).

C (LAoldy > (NYCnew)

sa|dwex3
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Example 5: One possible order

# Drive from LA to NYC and buy a new car (in any order).

#.Buy a new car.
#.Drive from LA to NYC.

sa|dwex3
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Example 5: Another possible order

# Drive from LA to NYC and buy a new car (in any order).

#.Drive from LA to NYC.
#.Buy a new car.

sa|dwex3
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Example 5: and its possible refinement.

=+

Drive from LA to NYC and buy a new car (in any order).

Drive from LA to NYC.

NINININININININININININININININININININI N

.Drive from LA to Chicago.
.Drive from Chicago to NYC.

H H H HH

=+

.Buy a new car (in NYC).

Implicitly, unmentioned components of state may not be changed.

sa|dwex3
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Example 5: and its possible refinement.

# Get from (LA,o0ld)to (NYC,new).

#.Get from (LA,o0ld) to (Chicago,old).
#.Get from (Chicago,o0ld) to NYC,old).

#.Get from (NYC,o0ld) to (NYC,new).

|.e., the convention that unmentioned state components may not be changed
implies that the previous version would be as shown above.

sa|dwex3
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Generalization:

uoijezijeiauar)
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Loosening the Coupling: Between the two sub-steps

# Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

uoijezijelauay

starting in LA get to Chicago

/

starting in Chicago getto NYC
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Loosening the Coupling: by weakening a precondition

# Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Illinois to NYC.

uoijezijelauay

starting in LA get to Chicago

/

starting in lllinois getto NYC
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Loosening the Coupling: by weakening a precondition

# Drive from LA to NYC.

#.Drive from California to Chicago.
#.Drive from Chicago to NYC.

starting in California

get to Chicago

it ;
- //

starting in Chicago getto NYC

uoijezijelauay
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Loosening the Coupling: or by strengthening a postcondition

# Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to Manhattan.

starting in LA get to Chicago

starting in Chicago get to Manhattan

uoijezijelauay
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G
®d
®
Loosening the Coupling: or by doing both. 3
ﬁ.
# Drive from LA to NYC. Q
B oo e
#.Drive from to Chicago. O
#.Drive from to -

Chicago>
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2-Step Sequential Refinement: In general

et from A, to B,.
et from A, to B,.

o o

establishing PRE automatically establishes A,
establishing B, automatically establishes A,, and
establishing B, automatically establishes POST.+

uoijezijelauay
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1

n-Step Sequential Refinement: In general

# Specification P: Get from PRE to POST.

et from A, to B,.
et from A, to B,.

H

#.G
#.G
#.Get from A, to B,.

where
establishing PRE automatically establishes A,
establishing B, automatically establishes A, ,, for k from 1 through n-1, and
establishing B, automatically establishes POST.

uoijezijelauay
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Loosening in Practice: Consider an individual specification
#.Get from PRE to POST.

in the context of a program

Program

# Specification.

9911081 Ul SUIUdS00T]
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Loosening in Practice: The specification
#.Get from PRE to POST.

can be implemented by any code that satisfies the specification

#.Get from PRE’ to POST’.

where PRE’ is any weakening of PRE, and POST' is any strengthening
of POST.

9911081 Ul SUIUdS00T]
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Example 1: Precondition is essential, but postcondition can be strengthened

# Get from x20 to y is a number that when squared equals Xx.
y = math.sqgrt(x)

Any weakening of x>0 would make the specification infeasible for real y, but we
are free to choose y as either the positive or negative root of x.

9911081 Ul SUIUdS00T]
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Example 2: Precondition is convenient, but not essential

# Get from x20 to y is |x].
y = X

The precondition x>0 simplifies the code that sets y to the absolute value
of x, because in that case the absolute value of x is just x itself.

9911081 Ul SUIUdS00T]
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Example 3: Precondition is irrelevant

# Get from x20 to y is x squared.
y = X * X

because x squared is x*x regardless of whether x is positive or negative.

9911081 Ul SUIUdS00T]
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Example 4: Precondition is customarily ignored

#.Get from array A’s elements are unique to A’s elements are
# numerically ordered.

because conventional techniques for establishing the postcondition are
more general, and do not rely on the given precondition.

9911081 Ul SUIUdS00T]
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Example 5: Chapter-1 example, revisited
# Given n20, output the integer part of the square root of n.

#.Given n20, let r be the integer part of the square root of n20.
print(r)

Consider the domain and range of the general-purpose output statement
print(r)

<domain>—>< range >

The domain is any state where variable r exists and contains a value, regardless of
whether it is the integer square root of n. The range is any state with the additional
property that the output ends with the given value.

9911081 Ul SUIUdS00T]
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Conjunctive Normal Form: A condition of the form

C,and C,and ...and C,

where each C; is called a conjunct.

Example:
X is declared and x contains a value and X is greater than or equal to 0
state is NY and city is NYC

w104 jewioN aA3ounfuo)
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Conjunctive Normal Form: A condition in CNF can be weakened by
dropping a conjunct, e.g.,
Replace:
X is declared and x contains a value and X is greater than or equal to 0
with:
X is declared and x contains a value
and can be strengthened by appending an additional conjunct, e.g.,
Replace:
state is NY and city is NYC
with:
state is NY and city is NYC and borough is Manhattan

w104 jewioN aA3ounfuo)
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Implicit Preconditions: In practice, explicit preconditions are often omitted.
# Get from LA to NYC.

#.Get to Chicago.
#.Get to
#.Get to NYC.

implicitly means
# Get from LA to NYC.
#.(Given that we are in LA) Get to Chicago.

#.(Given that we are in Chicago) Get to
#.(Given that we are in ) Get to NYC.

suoIjipuodaid yoljduwy
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Implicit Preconditions: The reader of
# Get from LA to NYC.

#.Get to Chicago.
#.Get to
#.Get to NYC.

must infer the relevant precondition, and scan backwards to confirm
that it has been established and survives, i.e., has not subsequently
been invalidated.

suoIjipuodaid yoljduwy
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Implicit Preconditions: Minimize the distance between code that
establishes a precondition, and code that relies on it, if possible.

k = 0
# 10 pages of code to do whatever.
k += 1

If the 10 pages have nothing to do with variable k, the following is better

k = 0
whatever()
k += 1

== Many short procedures are better than large blocks of code.

suoIjipuodaid yoljduwy
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Implicit Preconditions: Minimize the distance between code that
establishes a precondition, and code that relies on it, if possible, especially
if the procedure can be placed outside of the scope of such a variable k.

If the distance remains great, consider an explicit indication of where the
precondition was established:

#.Given PRE (established at point p in the code), get to POST.

== Many short procedures are better than large blocks of code.

suoIjipuodaid yoljduwy
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Problem Reduction: A special case of Sequential Refinement

uoIoNpay wajqo.d
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Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

Al14] 7 |14 34| 7

uoIoNpay wajqo.d
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Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7

Tally of each first instance of a value
i.e., each A[ k] for which that value
doesn’t occurin A[@. .k-11], for k
from 0 through n-1.

uoIoNpay waj|qoid
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Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7

Tally of each first instance of a value
i.e., each A[ k] for which that value
doesn’t occurin A[@. .k-11], for k
from 0 through n-1.

== Solve a different problem, and use that solution to solve the original problem.
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Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7

Tally of each first instance of a value
i.e., each A[ k] for which that value
doesn’t occurin A[@. .k-11], for k
from 0 through n-1.

Al

14

14

34

== Solve a different problem, and use that solution to solve the original problem.
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Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7 Al 7|7 |14]14]34

Tally of each first instance of a value 1 + the number of adjacent pairs of
i.e., each A[ k] for which that value unequal elements in A’, a version of A
doesn’t occurin A[0. .k-1], for k rearranged into numerical order.

from 0 through n-1.

== Solve a different problem, and use that solution to solve the original problem.

uoIoNpay wajqo.d
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Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlGD|(D)| 14 |G| 7

Tally of each first instance of a value
i.e., each A[ k] for which that value
doesn’t occurin A[@. .k-11], for k

from 0 through n-1.

In worst case, running time is

proportional to n2.

Al

1 + the number of adjacent pairs of
unequal elementsin A’, a version of A
rearranged into numerical order.

7

7

14

14

34
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Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlA9)|(D)] 14 |@9)] 7 Al 717 1141434

Tally of each first instance of a value 1 + the number of adjacent pairs of
i.e., each A[ k] for which that value unequal elements in A’, a version of A
doesn’t occurin A[0. .k-1], for k rearranged into numerical order.

from 0 through n-1.

In worst case, running time is In worst case, running time is proportional to

proportional to n2. n log n, i.e., time to sort an array of length n +
time to count the number of unequal
adjacent element pairs.

uoIoNpay wajqo.d
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Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]7?

AlA9)|(D)] 14 |@9)] 7 Al 717 1141434

Tally of each first instance of a value 1 + the number of adjacent pairs of
i.e., each A[ k] for which that value unequal elements in A’, a version of A
doesn’t occurin A[0. .k-1], for k rearranged into numerical order.

from 0 through n-1.

In worst case, running time is In worst case, running time is proportional to

proportional to n2. n log n, i.e., time to sort an array of length n +
time to count the number of unequal
adjacent element pairs.
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Problem Reduction: In general

et from PRE to A.
et from B to POST.

|
|
|
I
' #.G
'#.G
:
|

B o - RS RS RSN RSN RSN RSN RN SN MEE MmN MmN MEE RSN BN M e MEE MEE MEE RSN RSN G M e MEE GEm MEE G M G S e e e e e e e
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Problem Reduction: In general

et from PRE to A.
et from B to POST.

.G
G

B o - RS RS RSN RSN RSN RSN RN SN MEE MmN MmN MEE RSN BN M e MEE MEE MEE RSN RSN G M e MEE GEm MEE G M G S e e e e e e e

== Solve a different problem, and use that solution to solve the original problem.
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Problem Reduction: In general

H

Specification P:. Get from PRE to POST.
# Get from PRE to A.

#.Define problem P’ based on PRE.
#.Solve problem P’.

#.Establish A from the solution to P’.

#.Get from B to POST.

1 where establishing A automatically establishes B.

uoIoNpay waj|qoid
jusawadulay [enuanbag

== Solve a different problem, and use that solution to solve the original problem.




Case Analysis: Implement a specification P as a choice of one step to execute
from among P, ..., P

|[euy ased

n.

sish

A
1
1

# Specification P.

'if condition,:
#.Specification P,.
elif condition,:
#.Specification P,.

elif condition,_;:
#.Specification P, ;.



Case Analysis: Implement a specification P as a choice of one step to execute
from among P, and P,.

|[euy ased

sish

A
1
1

# Specification P.
'if condition,:
#.Specification P,.



Case Analysis: Implement a specification P as a choice of one step to execute
or not.

|[euy ased

sish

A
1

# Specification P.
if condition;:
#.Specification P,.



Case Analysis: Implement a specification P as a choice of one step to execute

fromamongP,, ..., P,.

# Specification P.
if condition;,:
#.Specification P,.
elif condition,:
#.Specification P,.

elif condition,_;:
#.Specification P,_,.
else:
#.Specification P,.

Appropriate when distinct program behaviors are required for different situations.

|[euy ased
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Case Analysis: Implement a specification P as a choice of one step to execute
from among P, ..., P

|[euy ased

nl

sish

* Inthe real world: Animal, vegetable, or mineral?

* |In a maze: Facing a wall or not?

e After a search: Found or not found?

* |In mathematics: Positive or negative? Even or odd? Real or imaginary roots?

Appropriate when distinct program behaviors are required for different situations.



Case Analysis: An example

#.Let y be |x]|.

Appropriate when distinct program behaviors are required for different situations.

sa|dwex3
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Case Analysis: An example

# Let y be |x]|.
if x >= 0:

y X
else:

y

-X

Appropriate when distinct program behaviors are required for different situations.

sa|dwex3
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Case Analysis: An example

# Let y be |x]|.
if x >= 0:

y = X
else:

y = -X

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
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Case Analysis: An example

# Let y be |x]|.
y = abs(y)

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
|[euy ase)
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Case Analysis: A second example

#.Advance k to the next hour.

10 2
_9 o 3-
k. . .4

7 @ 5
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11 ;(? 1
10 2
_ -9 o 3-
Case Analysis: A second example A .
7 5

# Advance k to the next hour.
if k == 11:

k = ©
else:

k =k +1

sa|dwex3
|[euy ase)
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10 2
_ -9 o 3-
Case Analysis: A second example A .
7 5

# Advance k to the next hour.

if k == 11:

k = ©
else:

k =k +1

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

0
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X O
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3 5
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11 ;(? 1
10 2
_ -9 o 3-
Case Analysis: A second example A .
7 5

# Advance k to the next hour.
k = (k + 1) % 12

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
|[euy ase)

sish



Case Analysis: A third example

#.Advance k to the previous hour.

10 2
_9 o 3-
k. . .4

7 @ 5

sa|dwex3
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Case Analysis: A third example A .
7 ¢ 5

# Advance k to the previous hour.
if k == 0:

k = 11
else:

k = k - 1

sa|dwex3
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Case Analysis: A third example A .
7 ¢ 5

# Advance k to the previous hour.
if k == O:

k = 11
else:

k = k -1

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
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Case Analysis: A third example A .
7 ¢ 5

# Advance k to the previous hour.
k = (k + 11) % 12

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
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10 2
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Case Analysis: A third example A .
7 ¢ 5

# Advance k to the previous hour.
k = (k + 11) % 12

Why not (k-1)%12 ?

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

sa|dwex3
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Case Analysis: A third example I ‘

# Advance k to the previous hour.
= (k + 11) % 12

Why not (k-1)%12 ?
This would be fine in Python, but in other languages (e.g., Java), (k-1)%12 is
negative for negative k-1. The issue is avoided if we write (k+11)%12

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

0
m o
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Case Analysis: The condition in a Case Analysis is often the locus of error.
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Case Analysis: The condition in a Case Analysis is often the locus of error.

== Be alert to high-risk coding steps associated with binary choices: “==" or “1=", “<”
or “<=", “x” or “x-1", condition or not (condition), positive or negative, 0-origin
or 1-origin, “even integers are divisible by 2, but array segments of odd length

have middle elements”.

|[euy ased

sish



Case Analysis: The condition in a Case Analysis is often the locus of error.

== Be alert to high-risk coding steps associated with binary choices.
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Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: parity

sish

#.0utput whether n is odd or even.



Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: parity

sish

# Output whether n is odd or even.
if (n % 2) == 1:

print("odd")
else:

print("even")



Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: parity

sish

# Output whether n is odd or even.
if (n % 2) == 1:

print("odd")
else:

print("even")

== Be alert to high-risk coding steps associated with binary choices.




Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

. <
Example: parity 25
)
# Output whether n is odd or even.
if (n % 2) == 1:
print("odd")
else:

print("even")

== Be alert to high-risk coding steps associated with binary choices.

The code is correct in Python, but because in some languages (e.g., Java) n%2 is
negative for negative n, the code is fragile.



Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: parity, more robust E.
»n
# Output whether n is odd or even.
if (n % 2) ==
print("even")
else:

print("odd")

== Be alert to high-risk coding steps associated with binary choices.




Case Analysis: The condition in a Case Analysis is often the locus of error.
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#.Let im be True iff the roots of quadratic Ax’+Bx+C=0 are imaginary.



Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: roots, real or imaginary

sish

# Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:
im = False



Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: roots, real or imaginary

sish

# Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:

im False

== Be alert to high-risk coding steps associated with binary choices.




Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: roots, real or imaginary

sish

# Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:

im False

== Be alert to high-risk coding steps associated with binary choices.

Is the case of ((B*B) - (4*A*C) )==0 correct?



Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: roots, real or imaginary

sish

# Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:
im

False

== Be alert to high-risk coding steps associated with binary choices.

Is the case of ((B*B) - (4*A*C) )==0 correct? Yes.



Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: roots, real or imaginary

sish

# Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B *B) - (4 * A *(C)) < 0:
im = True
else:

im False

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.




Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: roots, real or imaginary

sish

#.Let im be True iff the roots of quadratic Ax’+Bx+C=0 are imaginary.

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.




Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: roots, real or imaginary

sish

# Let im be True iff the roots of quadratic Ax?+Bx+C=0 are imaginary.
im: bool = ((B * B) - (4 * A * C)) < © # Roots are imaginary.

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.




Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

#.0utput whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.



Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: Parallel or intersecting lines

sish

# Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if (m1 == m2) and (bl != b2):

print("parallel")
else:

print("intersect")



Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: Parallel or intersecting lines

sish

# Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if (m1 == m2) and (bl != b2):

print("parallel™)
else:

print("intersect")

== Be alert to high-risk coding steps associated with binary choices.




Case Analysis: The condition in a Case Analysis is often the locus of error.
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Example: Parallel or intersecting lines

sish

# Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if (m1 == m2) and (bl != b2):

print("parallel™)
else:

print("intersect")

== Be alert to high-risk coding steps associated with binary choices.

What if m1 is 0.0e0 and m2 is smallest floating-point number?



Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

# Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if (m1 == m2) and (bl != b2):

print("parallel™)
else:

print("intersect")

== Be alert to high-risk coding steps associated with binary choices.

What if m1==m2, but b1 is 0.0e0 and b2 is smallest floating-point number?



Case Analysis: The condition in a Case Analysis is often the locus of error.

|[euy ased

Example: Parallel or intersecting lines

sish

# Output whether lines y=ml-x+bl and y=m2-x+b2 are parallel or intersect.
if compare-slopes-and-intercepts-wrt-tolerances:

print("parallel™)
else:

print("intersect")

== Never test two floating-point numbers for equality or inequality.




Iterative Refinement: Implement a specification P by repeatedly executing

4

step P".

=+

1 1
| |
I H o o o e e e e e e e e e e e - = I
| |
| #.Setup for P’. ;
'while condition: !
| #.Specification P”’. |
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Iterative Refinement: Implement a specification P by repeatedly executing

4

step P..

| |
| |
| |
| |
' #.Setup for P’. ;
| |
| |
| |

=+

while condition:
#.Specification P’.

Invariant: The thing that stays the same, and allows P’ to remain applicable.

Variant: The thing that changes, and eventually causes the loop to stop.
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Iterative Refinement: Implement a specification P by repeatedly executing

4

step P..

=+

1 1
| |
I H o o o e e e e e e e e e e e - = I
| |
| #.Setup for P’. ;
'while condition: !
| #.Specification P’. |

Invariant: The thing that stays the same, and allows P’ to remain applicable.
Variant: The thing that changes, and eventually causes the loop to stop.

Infinite loops have their utility, but termination is the norm.
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Iterative Refinement: Implement a specification P by repeatedly executing

4

step P..

=+

1
|
________________ I
|

#.Setup for P’. ;
while condition: !
#.Specification P”’. |

Invariant: The thing that stays the same, and allows P’ to remain applicable.
Variant: The thing that changes, and eventually causes the loop to stop.

Infinite loops have their utility, but termination is the norm. For termination, think of
the variant as a necessarily nonnegative integer that necessarily decreases by 1 on
each iteration. You can only do that a finite number of times.
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Iterative Refinement: Implement a specification P by repeatedly executing

4

step P..

=+

1 1
| |
I H o o o e e e e e e e e e e e - = I
| |
| #.Setup for P’. ;
'while condition: !
| #.Specification P’. |

A fruitful real-world analogy: Hammering a nail into a block of wood.
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Iterative Refinement
Iteration in the Real World

#.Drive a nail vertically into a block of wood.




# Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height2>0. In doing so,
# establish the invariant (nail vertical, and height20) and the
# initial variant (height of nail).

PIIO/\\ [B9Y 93 Ul Uoije.lay|
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# Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height20. In
# establish the invariant (nail vertical, and height20)
# initial variant (height of nail).

doing so,
and the

while the-head-of-the-nail-sticks-out :

#.Hit the nail with the hammer squarely. In doing so,
# hitting the nail vertically, but not so hard that

# such that a finite number of hits suffices).

maintain the invariant (by
its height becomes negative),

# and reduce the variant (by hitting the nail hard enough to reduce the height

PIIO/\\ [B9Y 93 Ul Uoije.lay|
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# Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height20. In
# establish the invariant (nail vertical, and height20)
# initial variant (height of nail).

doing so,
and the

while the-head-of-the-nail-sticks-out :

A #.Hit the nail with the hammer squarely. In doing so,
“3i%% # hitting the nail vertically, but not so hard that

# such that a finite number of hits suffices).

maintain the invariant (by
its height becomes negative),

# and reduce the variant (by hitting the nail hard enough to reduce the height

# variant is reduced to zero (height==0).

#.The invariant still holds (nail vertical, and height20), and the _—

PIIO/\\ [B9Y 93 Ul Uoije.lay|
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Iterative Refinement: What can go wrong?

Setup doesn’t establish the nail’s verticality (the invariant). The very
first hammer blow flattens the nail, or begins the process of bending
it, even if the loop body is perfectly correct.

PIIO/\\ [B9Y 93 Ul Uoije.lay|
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Iterative Refinement: What can go wrong?

Loop body doesn’t maintain the nail’s verticality (the invariant) because
it hits the nail at a crooked angle. Eventually, the nail is flattened.

PIIO/\\ [B9Y 93 Ul Uoije.lay|
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Iterative Refinement: What can go wrong?

* Loop body doesn’t maintain the nail’s nonnegative height (the
invariant), splits the wood, and the nail goes into the table top.

PIIO/\\ [B9Y 93 Ul Uoije.lay|
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Iterative Refinement: What can go wrong?

* Loop body makes insufficient progress (the variant). The loop runs
forever and the nail never gets flush with the surface.

This can be because the height is an infinite decreasing sequence that
doesn’t converge to zero, or because you hit a knot, and stop advancing
altogether.

PIIO/\\ [B9Y 93 Ul Uoije.lay|
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No advancement: Use a feather instead of a hammer, or at a knot.

€

stuck state

uoIjeulW.IdaUoN
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Cyclic advancement: Movement, but destined to return to a prior state.

ANV

#.Make triangle point down.

orbit of states

uoIjeulW.IdaUoN
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Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

ANV

# Make triangle point down.

#.Compute angle 6.
while not-pointing-down:
#.Turn angle 6.

uoIjeulW.IdaUoN
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Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

ANV

# Make triangle point down.

#.Compute angle 6.
while not-pointing-down:
#.Turn angle 6.

Runs forever if § is 120°

uoIjeulW.IdaUoN
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Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

ANV

# Make triangle point down.

#.Compute angle 6.
while not-pointing-down:
#.Turn angle 6.

Runs forever if § is 120°

(Doesn’t happen in hammering a nail.)

uoIjeulW.IdaUoN
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Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

sequence of states

h: int = 10
while h > 0:
h=h// 2

Terminates

uoIjeulW.IdaUoN
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Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

h: float = 10.0
wh11e h > 0:
=h/ 2

Terminates

sequence of states

uoIjeulW.IdaUoN
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Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

sequence of states

zero: Rational = Rational(0,1)
two: Rational = Rational(2,1)
h3: Rational = Rational(10, 1)
while h3 != zero:

h3 = rational divide(h3, two)

Runs forever (Code explained in Chapter 18.)

uoIjeulW.IdaUoN
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Iterative Refinement: In general

=+

#.Setup: Get from PRE to INVARIANT.
while condition:
#.Get from condition and INVARIANT to INVARIANT.

sjueliAu] doo Sulpuid
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Iterative Refinement
Finding Loop Invriants

Iteration: To get to POST iteratively

POST



Iteration: To get to POST iteratively, choose a weakened POST as INVARIANT

sjueliAu] doo Sulpuid

POST INVARIANT
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Iteration: Then, iteratively change the INVARIANT’s parameters.

sjueliAu] doo Sulpuid

POST Improving approximations

JUSWIAUL3Y SAIJeId)|



Example: Hammering a nail, the goal

[ nail vertical and height=0

sjueliAu] doo Sulpuid

POST
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Example: Hammering a nail, set up the INVARIANT

[ nail vertical and height=0

nail vertical and height=0 ]

sjueliAu] doo Sulpuid

POST

INVARIANT
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Example: Hammering a nail, the process

[ nail vertical and height=0

POST

nail vertical and height=0 |

nail vertical and height=0 |

Improving approximations

sjueliAu] doo Sulpuid
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Example: Hammering a nail, the process

[ nail vertical and height=0

POST

nail vertical and height=0 |

nail vertical and height=0 |

nail vertical and height=0 ]

sjueliAu] doo Sulpuid

Improving approximations
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PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
=
=
D
Example: Integer division. The goal. (¢7)
“
#.Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. g.
>,
e,
=
q
s A \ r
| | | | | | | L~
y y y y y y y y
\ J

X <
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PRE:
POST:
INVARIANT:

0=x, O<y

X=q*y+r, Os[fg

. and 0<q

Example: Integer division. The process: Choose the INVARIANT ...

#.Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y.

< — rrQ

X <
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PRE: 0=x, O<y
POST: x=q*y+r, 0<r<y|

. and 0<q

INVARIANT: x=q*y+r, O<r

, and 0=q

Example: Integer division. ... INVARIANT as a weakened POST.

#.Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y.

< — rrQ

X <

1g 19893u]|
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Example: Integer division. The process ...

PRE:
POST:

0=x, O<y
x=q*y+r, 0=<r<y, and 0<q

INVARIANT: x=q*y+r, Osr , and 0=q

# Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y.

r: int =
g: int =
while condition:

< — rrQ

X <
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PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
INVARIANT: x=q*y+r, Osr , and 0<q 5
=
0
Example: Integer division. The process of maintaining the INVARIANT ... (¢7)
“
# Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = s.
g: int = (7))
while condition: 6'
r=r-y -
q+=1
q
s A \ r
| | | | " )
y y y y

X <
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PRE:
POST:

0=x, O<y
x=q*y+r, 0=<r<y, and 0<q

INVARIANT: x=q*y+r, Osr , and 0=q

VARIANT:

X-q*y

Example: Integer division. ... while reducing the VARIANT to O ...

# Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y.

r: int =

g: int =

while r >= y:
r=r -y
q+=1

e

X <

1g 19893u]|
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PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
INVARIANT: x=q*y+r, Osr , and 0<q m—
VARIANT:  x-q*y =
00
Example: Integer division. ... after first having established the INVARIANT. ()
“
# Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = x s.
g: int = 0 (7))
while r >= y: 6'
r=r -y =
q+=1
r
A
\
y

X <
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PRE: 0=x, O<y
POST: x=q*y+r, 0=r<y, and 0=q

INVARIANT: x=q*y+r, Osr , and 0<q m—
VARIANT:  x-q*y =
5
Example: Played in execution order, with nail and wood analogy: The setup. (o)
“
# Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = x s.
g: int = © (7))
while r >= y: 6'
r=r -y =
q += 1
r
A
4 \
y
\ J
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PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
INVARIANT: x=q*y+r, Osr , and 0<q —
VARIANT:  x-q*y =
7
Example: Played in execution order, with nail and wood analogy: The process. ®
“
# Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = x s.
g: int = 0 W
while r >= y: 6'
r=r -y =
q+=1
q
4 A r
| | | a )
y y y
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PRE: 0=x, O<y

POST: x=q*y+r, 0<r<y, and 0<q
INVARIANT: x=q*y+r, Osr , and 0<q m—
VARIANT:  x-q*y =
5
Example: Played in execution order, with nail and wood analogy: Termination.
“
# Given int x and int y, 0<x and O<y, set int g to x//y, and int r to x%y. 9.
r: int = x s.
g: int = © (7
while r >= y: o
r=r -y =
qg+=1
, ! oo
| | | | | e
y y y y y y
| J
Y
X
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Example: Euclid’s Algorithm, the goal

def gcd(x:int, y:int) -> int:
"""Given x>0 and y»>0, return the greatest common divisor of x and y.""“

return

Let X and Y be positive integers, GCD be the mathematical greatest-common-divisor
function, and GCD(X, Y) = d. When invoked on argument expressions with values X and Y,
the Python function gcd is required to return d.

wyio8|y s,pljong
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Example: Euclid’s Algorithm, the INVARIANT

def gcd(x:int, y:int) -> int:
"""Given x>0 and y»>0, return the greatest common divisor of x and y.
while condition:

return

wyio8|y s,pljong

We plan to update x or y on each iteration while maintaining the INVARIANT
x>0 and y>0 and GCD(x,y)=d

which holds initially because invocation of gcd with argument values X and Y
initializes parameters X and y to X and Y, respectively.
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Example: Euclid’s Algorithm, the VARIANT

def gcd(x:int, y:int) -> int:
"""Given x>0 and y»>0, return the greatest common divisor of x and y.
while x != y:

return x

To assure termination, we will reduce the non-negative VARIANT expression X+y by
at least 1 on each iteration. You can only do that a finite number of times (while
guaranteeing that x+y remains positive) before x+y stops changing. When it does, we
must show that x=y. (It remains until after knowing how x and y are updated to show
that x+Yy is reduced by 1 on each iteration.)

The return statement implements the observation that the gcd of any number and
itself is that number.

wyio8|y s,pljong
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Example: Euclid’s Algorithm, Case Analysis Q.
»n
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (Q
while x != y: Q
if =
=
-
else: 3
return x

There are only two cases: either X >y or X <y (the third possibility of X = y having been
ruled out by the loop termination condition).
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Example: Euclid’s Algorithm, Case Analysis, x >y Q.
»
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (@
while x != y: Q
if x > y: .
-
-
else: 3
return Xx

First case: x > y. Observe by diagrammatic reasoning (next slide), that x can be replaced
by X - y while maintaining the INVARIANT, i.e., designating the new value of x by X, then

x’>0 and y>0 and GCD(x’,y)=d

That x” > 0 follows from x > .
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Example: Euclid’s Algorithm, Case Analysis, x >y
X if xand y have a
A AN common divisor d
d d d d d d d d
>\/
d d d d d then y and x-y
g ) “ 3| have a common
y d d d divisor of d.
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Example: Euclid’s Algorithm, Case Analysis, x >y Q.
»
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (@
while x != y: Q
if x > y: .
LT =2
else: 3

return Xx

First case: x > y. Observe by diagrammatic reasoning (next slide), that x can be replaced
by X - y while maintaining the INVARIANT, i.e., designating the new value of x by X, then

x’>0 and y>0 and GCD(x’,y)=d

That x” > 0 follows from x > y. This has been done, above.
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Example: Euclid’s Algorithm, Case Analysis, x <y, by symmetry Q.
»
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (@
while x != y: Q
if x > y: .
<x ey =
else: 3

y =Yy -X

return x

Second case: x < y. Follows by the symmetric argument.
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Example: Euclid’s Algorithm, correctness Q.
»n
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (Q
while x != y: Q
if x > y: .
ey =
else: 3

y =Yy - X

return x

If the loop stops, the INVARIANT and negation of the condition imply that the value
returned is correct, i.e.,

x>0 and y>0 and GCD(X,y)=d and x=y implies x=d.

This is called partial correctness.
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m
c
O
Example: Euclid’s Algorithm, termination Q.
»n
def gcd(x:int, y:int) -> int: 2
"""Given x>0 and y>0, return the greatest common divisor of x and y.""" (Q
while x != y: Q
if x > y: .
ey =
else: 3

y =Yy - X

return x

Why does x+y stop changing, with x=y, and therefore the iteration stops?

Because one of X or y is reduced by at least 1 on each iteration, and if X is not equal to y,
then in the next iteration x+y can be further reduced.

Partial correctness plus guaranteed termination is called total correctness.
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Termination: Can be nontrivial, i.e., hard, unknown, or even unknowable

ainjoafuo) zjejj0H
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O
=
. : . o
Termination: Are the following two code segments equivalent? ﬁ"
# Given in « » <:>
put n>@, output “done”. o
n = int(input()) E
print("done") )
0O
# Given input n>@, output “done™. (o
n = int(input()) EE
while n I= 1: (o)

if (n % 2) == @:

n=n)// 2
else:

n=(3*n)+1
print("done")

Answer turns on whether the loop terminates for every input.
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O
=
N : . o
Termination: Are the following two code segments equivalent? ﬁ"
# Given in « » <:>
put n>@, output “done”. o
n = int(input()) E
print("done") )
. . Q
# Given input n>@, output “done™. (o
n = int(input()) EE
while n I= 1: (o)

if (n % 2) == @:

n=n)// 2
else:

n=(3*n)+1
print("done")

Sample input 3:
321025216 =>8=24->2->1
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Termination: Are the following two code segments equivalent?

# Given input n>@, output “done™.

n = int(input())
print("done")

# Given input n>@, output “done™.

n = int(input())

while n != 1:
if (n % 2) == @:
n=n}// 2
else:

n=(3*n)+1
print("done")

"

]

L%
oy

Collatz Conjecture

That every such sequence reaches 1 is an open problem in mathematics.

ainjoafuo) zjejj0H
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Recursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblem:s.

|

I

|

; #.P,.

' else:

! #.Identify smaller instance(s) of P within P itself, apply this
: # approach to each such instance, and combine the results.

JUBWIAULRY SAISINIDY



Recursive Refinement

0]112(3]4]|5

ilar structure at every scale

Im

Same or s
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Self-similarity
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Recursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblems.

' # Specification P.
'if base-case :

#.Identify smaller instance(s) of P within P itself, apply this
# approach to each such instance, and combine the results.

To use the refinement within both the specification and in the refinement itself,
define it separately as a procedure, and invoke it by name.
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Recursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblems.

i il il i
1

# Specification P.
P(arguments)

' and elsewhere define:

' def P(parameters) -> type:
; if base-case :

: #.P,.

: else:

: #.Identify smaller instance(s) of P within P itself, invoke

: # P(arguments) on each such instance, and combine the results.

To use the refinement within both the specification and in the refinement itself,
define it separately as a procedure, and invoke it by name.

JUBWIAULRY SAISINIDY



Example: 54 3 2 1 BLASTOFF

# Count down from 5, and say “BLASTOFF” at @.
countdown(5)

and elsewhere define:

def countdown(n: int) -> None:
"""Count down from n, and say "BLASTOFF" at zero.
if n == 0O:
print("BLASTOFF")
else:
print(n)
countdown(n - 1)

JUBWIAULRY SAISINIDY



A second example: (...(((0+1)+2)+3)+...+100)

# Output the sum of 1 through 100.
print(sum(100))

and elsewhere define:

def sum(n: int) -> int:
"""Return the sum of © through n.
if n == 0O:
return 0
else:
return sum(n - 1) + n

JUBWIAULRY SAISINIDY



A third example: (1+(2+(3+...+(100+0)...)))

# Output the sum of 1 through 100.
print(sum(100))

and elsewhere define:
def sum(n:int) -> int:

"""Return the sum of @ through n.
return sumAux(n,9)

def sumAux(n: int, acc: int) -> int:
"""Return the sum of @ through n, and acc.
if n ==
return acc
else:
return sumAux(n - 1, n + acc)

JUBWIAULRY SAISINIDY



Library of Patterns: Implement specification P by using a previously used and
analyzed parameterized composition of constructs.

Build your personal library over your lifetime.

su.iajled jo Areuaqi



Extended Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells
separated (or not) from adjacent cells by walls. One can move between
adjacent cells if and only if no wall divides them. A solid wall surrounds
the entire grid of cells, so there is no escape from the maze.

Problem Statement. Write a program that inputs a maze, and outputs a
direct path from the upper-left cell to the lower-right cell if such a path
exists, or outputs “Unreachable” otherwise. A path is direct if it never
visits any cell more than once.

aze|\ e suluuny



Extended Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells
separated (or not) from adjacent cells by walls. One can move between
adjacent cells if and only if no wall divides them. A solid wall surrounds
the entire grid of cells, so there is no escape from the maze.

Problem Statement. Write a program that inputs a maze, and outputs a
direct path from the upper-left cell to the lower-right cell if such a path
exists, or outputs “Unreachable” otherwise. A path is direct if it never
visits any cell more than once.

aze|\ e suluuny

= Use Stepwise Refinement. Write simple code immediately, otherwise refine
the problem statement using: (a) Sequential Refinement, (b) Case Analysis,
(c) Iterative Refinement, (d) a known pattern.




Specify the goal

#.Find path in maze from upper-left to lower-right, if one exists.

9ze|\ e suluuny



Refine with an architecture

# Find path in maze from upper-left to lower-right, if one exists.

#.Input.
#.Compute.
#.0utput.

= Master stylized code patterns, and use them.
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Refine with an architecture and elaborate

# Find path in maze from upper-left to lower-right, if one exists.

aze|\ e suluuny

i
#.Input a maze of arbitrary size, or output “malformed input” and
# stop if the input is improper. Input format: TBD.

#.Compute a direct path through the maze, if one exists.

#.0utput the direct path found, or “unreachable” if there is none.
#  Output format: TBD.

= Master stylized code patterns, and use them.




Ignore Input and Output, and focus on essence

# Find path in maze from upper-left to lower-right, if one exists.

# ________________________________________________________________
#.Input a maze of arbitrary size, or output “malformed input” and
# stop if the input is improper. Input format: TBD.

#.Compute a direct path through the maze, if one exists.

#.0utput the direct path found, or “unreachable” if there is none.
#  Output format: TBD.
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Ignore Input and Output, and focus on essence

#.Compute a direct path through the maze, if one exists.

aze|\ e suluuny



Investigate:

aze|\ e suluuny

g

g

g

§

Analyze first.

Confirm your understanding of a programming problem with concrete examples.
Elaborate the expected input/output mapping explicitly.

There is no shame in reasoning with concrete examples.

Simple examples may be as good (or better) than complicated ones for guiding
you toward a solution.

Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is
in your “wetware”. Be introspective. Ask yourself: What am | doing?




Investigate:

Example 1

Begin with a (near) empty maze
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Investigate:

Example 1

Traverse clockwise along the perimeter

aze|\ e suluuny



Investigate:

Example 1 Example 2

Interpose a protruding wall. Continue excursion along it, pirouette to
its other size, and continue.

aze|\ e suluuny



Investigate:

Example 1 Example 2 Example 3

Interpose a second protruding wall. Continue excursion along it
(effectively backing out of a cul-de-sac), and continue.
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Investigate:

Example 1 Example 2 Example 3 Example 4

Interpose a third protruding wall. Continue excursion along it
(effectively backing out of a room-sized cul-de-sac), and continue.
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Investigate:

Example 1 Example 2 Example 3 Example 4

Block access to lower-right cell. Continue excursion along bottom and
left perimeter, and then stop in upper-left cell.

Example 5

aze|\ e suluuny



Return to code

#.Compute a direct path through the maze, if one exists.

aze|\ e suluuny



Return to code, and simplify

#.Compute a direet path through the maze, if one exists.

== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
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Iterative Refinement:

# Compute a direet path through the maze, if one exists.

while

= |If you “smell a loop”, write it down.
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Iterative Refinement:

# Compute a direet path through the maze, if one exists.
3
while 2
1

4

= Code iterations in the following order: (1) body, (2) termination, (3) initialization,
(4) finalization, (5) boundary conditions.
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The loop body

# Compute a direet path through the maze, if one exists.
3
while 2

4

== Body. Do 1st.

aze|\ e suluuny



Pick an example, and imagine running the program for a while

Example 1

== Body. Do 1st. Play “musical chairs”
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Pick an example, and imagine running the program for a while

Example 1

== Body. Do 1st. Play “musical chairs”
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Pick an example, and imagine running the program for a while

Example 1

== Body. Do 1st. Play “musical chairs”
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Stop at an arbitrary moment

Example 1

== Body. Do 1st. Play “musical chairs” and “stop the music”.

aze|\ e suluuny



Characterize the state

1 Facing a wall

[l

Example 1

== Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again.

aze|\ e suluuny



Characterize the state, and the state transition

T INVARIANT: Hand on wall

aze|\ e suluuny

[l

Example 1

== Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?




Characterize the state, and the state transition

T INVARIANT: Hand on wall

aze|\ e suluuny

D VARIANT: Distance to goal

Example 1

== Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?




Characterize the state, and the state transition

T INVARIANT: Hand on wall

D VARIANT: Distance to goal

Example 1

== A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.
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Characterize the state, and the state transition

T INVARIANT: Hand on wall

D VARIANT: Distance to goal

Example 1

Transition rule

Wil = [T

aze|\ e suluuny



Resume playing musical chairs, applying the transition rule

T INVARIANT: Hand on wall

D VARIANT: Distance to goal

Example 1

Transition rule

Wil = [T

aze|\ e suluuny



Introduce a new transition rule when needed

— INVARIANT: Hand on wall

D VARIANT: Distance to goal

Example 1

Transition rules

w [T ] = [T
2] =
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and resume playing musical chairs

[l

Example 1

Transition rules

w11 = [T
@ 1] =
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and resume playing musical chairs

[l

Example 1

Transition rules

w11 = [T
@ 1] =
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and resume playing musical chairs

e

Example 1

Transition rules

w11 = [T
@ 1] =
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and resume playing musical chairs

D s

Example 1

Transition rules

w11 = [T
@ 1] =
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Try another example

Example 1 Example 2

Transition rules

W [T ] = [T
@Il =
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Try another example, and introduce a new transition rule when needed

Example 1 Example 2

Transition rules

L] = 3) i
@ 1] =
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Then resume playing musical chairs

Example 1 Example 2

Transition rules

w11 = [T
@ 1] =

(3)

aze|\ e suluuny



Then resume playing musical chairs

Example 1 Example 2

Transition rules

w [T ] = [T
2] =

(3)

aze|\ e suluuny



Then resume playing musical chairs

N

Example 1 Example 2

Transition rules

w11 = [T
@ 1] =

(3)
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Then resume playing musical chairs

—

Example 1 Example 2

Transition rules

w11 = [T
@ 1] =

(3)
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Try another example, and see that the three transition rules suffice

Example 1 Example 2

Transition rules

w11 = [T
2] =

—

Example 3

L] o [
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Try another example, and see that the three transition rules get you far

Example 1 Example 2 Example 3 Example 4
Numbering reflects the direct path

Transition rules

Ll -
o1 ] = 3) S NE

2 7] =
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until a fourth rule is needed

Example 1 Example 2 Example 3 Example 4

Transition rules

W1 ] = 3) T
@0l = (4 <|L =
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Example 1 Example 2 Example 3 Example 4

Transition rules

W1 ] = 3) T
@1 = (4)% o
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Example 1 Example 2 Example 3 Example 4

Transition rules

o1 ] = 3) T
@ 1] = (4)% o
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Example 1 Example 2

Transition rules

w[T] = [T
@ 1] =

(4)

Example 3

Example 4

9ze|\ e suluuny



Resume, and go all the way

Example 1 Example 2 Example 3 Example 4

Transition rules

m 1] = [Tt ) ]
211 = =5l (4)<IL::>
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And yet another example

Example 1 Example 2 Example 3 Example 4 Example 5

Numbering reflects the direct path

Transition rules

o1 ] = 3) T
@l = (4 <|L =
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The loop body: One case for each transition rule

# Compute a direet path through the maze, if one exists.

while
if

elif

elif

else:
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The loop body: One case for each transition rule, but they are too complex.

# Compute a direet path through the maze, if one exists.

while
if

elif

elif

else:

aze|\ e suluuny



The loop body: One case for each transition rule, but they are too complex.

For example: (1) =

# Compute a direet path through the maze, if one exists.

while :
if two-colinear-walls-not-separated-by-a-perpendicular-wall:
#.sidestep.

elif

elif

else:

aze|\ e suluuny



Idea: Implement coarse-grain transition steps with micro-operations

o 0] = B =(C5 = 1)
2 [1] = =l

B2 2T e e (2 ) (e e

s s b uibdis u s nlidin bl ut
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Idea: Implement coarse-grain transition steps with micro-operations

Turn 90°clockwise

W 1] ] =
11 = =l

(2)

(3)

(4)

B AN

jJ-=>

Step forward and turn 90°counterclockwise

S = (5 = 1)

aze|\ e suluuny



(1)

(2)

(3)

(4)

Idea: Implement coarse-grain transition steps with micro-operations

Turn 90°clockwise

Step forward and turn 90°counterclockwise

1] = B = (= = [11)

1l = El

e 2 O (T 2 P (- 2

Suidl w s i mladn m i

new INVARIANT:
new VARIANT:

Hand on wall or door
Number of wall segments or doors to goal
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The loop body: Now only two simpler cases to consider.

# Compute a direet path through the maze, if one exists.

aze|\ e suluuny

while :
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

new INVARIANT: Hand on wall or door
new VARIANT: Number of wall segments or doors to goal



Iteration: (2) termination

# Compute a direet path through the maze, if one exists.

while not(in-Llower-right) and not(in-upper-Lleft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.
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Iteration: (3) initialization

# Compute a direet path through the maze, if one exists.

#.Start in upper-left cell, facing up.
while not(in-Llower-right) and not(in-upper-LlLeft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.
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Iteration: Correctness relies on subtle problem constraints

# Compute a direet path through the maze, if one exists.

#.Start in upper-left cell, facing up.
while not(in-Llower-right) and not(in-upper-LlLeft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

aze|\ e suluuny



Iteration: Correctness relies on subtle problem constraints

5|i3
1187 612
2] 718
3(4|5

If started facing down, not up If outer wall not solid If cheese could be in interior cell
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Iteration: (4) finalization (nothing to do)

# Compute a direet path through the maze, if one exists.

#.Start in upper-left cell, facing up.
while not(in-Llower-right) and not(in-upper-LlLeft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

aze|\ e suluuny



The core algorithm is in hand

# Compute a direet path through the maze, if one exists.

#.Start in upper-left cell, facing up.
while not(in-Llower-right) and not(in-upper-LlLeft-about-to-cycle):
if facing-wall:
#.Turn 90° clockwise.
else:
#.Step forward.
#.Turn 90° counterclockwise.

aze|\ e suluuny
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