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We introduce Stepwise Refinement, a key approach to programming, 
and illustrate its use in many examples.

• Divide and Conquer
• Sequential Refinement
• Case Analysis
• Iterative Refinement
• Recursive Refinement





Divide and Conquer:

All Gaul is divided into three parts. To conquer Gaul:
First, conquer the first part.
Then, conquer the second part.
Finally, conquer the third part.

A methodology.



Divide and Conquer: Applied to programming

To write a program:
First, break it into subprograms.
Then, write each subprogram separately.

the methodology is called programming by Stepwise Refinement.



Divide and Conquer: Applied to programming

To write a program:
First, break it into subprograms.
Then, write each subprogram separately.

the methodology is called programming by Stepwise Refinement.

☞ Program top-down, outside-in.



Stepwise Refinement: Creates a hierarchy of subprograms, each with its own 
specification.

☞ Program top-down, outside-in.



Stepwise Refinement: A “program” to follow as you code.

if P is simple to write :
      Write it
else:
       Refine P into simpler subprograms
       Write each subprogram

☞ Program top-down, outside-in.



Sequential steps
Do one thing after another.

Case analysis 
Do one thing or another.

Iteration
Do one thing repeatedly.

Recursion
Do something based on self-similarity.

Selection from a library of patterns
Do some pattern of the previous kinds of refinement.

where Refine is:



Stepwise Refinement: Is recursive

if P is simple to write :
      Write it
else:
       Refine P into simpler subprograms
       Write each subprogram

because it uses itself for writing each subprogram.



Stepwise Refinement: Terminates

if P is simple to write :
      Write it
else:
       Refine P into simpler subprograms
       Write each subprogram

provided the subprograms get simpler to write.



Stepwise Refinement: Terminates when P is so simple that you just write it.

if P is simple to write : 
      Write it

This is called the base case of the recursion.



Stepwise Refinement: The subproblems of each refinement must fit together 
like pieces of a jigsaw puzzle.

We now consider each of the five kinds of refinement.



Sequential Refinement: Implement a specification P with a sequence of steps 
P1 through Pn executed one after the other.

# Specification P.
# ----------------
#.Specification P1.
#.Specification P2.
...
#.Specification Pn.

where if any “#.Specification Pi” is simple enough, it can be just code.



Example 1: A top-level specification

#.Drive from LA to NYC.



Example 1: A top-level specification that calls for the state-space effect shown.

#.Drive from LA to NYC.

LA NYC



Example 1: A Sequential Refinement

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

LA NYC



Example 1: A Sequential Refinement

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

LA Chicago NYC



Example 1: A Sequential Refinement

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.



Example 2: A different Sequential Refinement

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to St. Louis.
#.Drive from St. Louis to NYC.

Different roads and scenery, but the same net effect (the external interface):
If I leave from LA, I will get to NYC.



Example 3: An incorrect Sequential Refinement

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from St. Louis to NYC.

The first step does not establish what the second step requires.



Example 3: A corrected Sequential Refinement

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Chicago to St. Louis.
#.Drive from St. Louis to NYC.



Example 4: An infeasible Sequential Refinement

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Tokyo.
#.Drive from Tokyo to NYC.

You can’t drive from LA to Tokyo.

Just because you can express a requirement doesn’t mean that it can be 
accomplished.



Example 1, continued:

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.



Example 1, continued:

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

☞ Refine specifications and placeholders in an order that makes sense for 
development, without regard to execution order.



Example 1, continued:

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.

# Drive from Chicago to NYC.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#.Drive from Chicago to Pittsburgh.
#.Drive from Pittsburgh to NYC.

☞ Refine specifications and placeholders in an order that makes sense for 
development, without regard to execution order.



Example 4, continued: Backtrack out of an infeasible Sequential Refinement

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Tokyo.
#.Drive from Tokyo to NYC.

You can’t drive from LA to Tokyo.



# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Tokyo.
#.Drive from Tokyo to NYC.

You can’t drive from LA to Tokyo.

☞ Don’t be wedded to code. Revise and rewrite when you discover a better way.

Example 4, continued: Backtrack out of an infeasible Sequential Refinement



Example 4, continued: An infeasible Sequential Refinement undone.

#.Drive from LA to NYC.

☞ Don’t be wedded to code. Revise and rewrite when you discover a better way.



# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Denver.
#.Drive from Denver to NYC.

You can drive from LA to Denver and from Denver to NYC.

Example 4, continued: An infeasible Sequential Refinement revised.

☞ Don’t be wedded to code. Revise and rewrite when you discover a better way.



Example 5: A new top-level specification

#.Drive from LA to NYC and buy a new car (in any order).



Example 5: A new top-level specification

#.Drive from LA to NYC and buy a new car (in any order).

⟨LA,old⟩ ⟨NYC,new⟩



Example 5: One possible order

# Drive from LA to NYC and buy a new car (in any order).
# ------------------------------------------------------
#.Buy a new car.
#.Drive from LA to NYC.



Example 5: Another possible order

# Drive from LA to NYC and buy a new car (in any order).
# ------------------------------------------------------
#.Drive from LA to NYC.
#.Buy a new car.



Example 5: and its possible refinement.

Implicitly, unmentioned components of state may not be changed.

# Drive from LA to NYC and buy a new car (in any order).
# ------------------------------------------------------
# Drive from LA to NYC.
# ~~~~~~~~~~~~~~~~~~~~~
#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

#.Buy a new car (in NYC).



Example 5: and its possible refinement.

# Get from ⟨LA,old⟩ to ⟨NYC,new⟩.
# -----------------------------
# Get from ⟨LA,old⟩ to NYC,old⟩.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#.Get from ⟨LA,old⟩ to ⟨Chicago,old⟩.
#.Get from ⟨Chicago,old⟩ to NYC,old⟩.

#.Get from ⟨NYC,old⟩ to ⟨NYC,new⟩.

I.e., the convention that unmentioned state components may not be changed 
implies that the previous version would be as shown above.



Generalization:

# Get from PRE to POST.
# ---------------------
#.Get from PRE to MID.
#.Get from MID to POST.

PRE MID POST



Loosening the Coupling: Between the two sub-steps

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.



Loosening the Coupling: by weakening a precondition

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Illinois to NYC.



Loosening the Coupling: by weakening a precondition

# Drive from LA to NYC.
# ---------------------
#.Drive from California to Chicago.
#.Drive from Chicago to NYC.



Loosening the Coupling: or by strengthening a postcondition

# Drive from LA to NYC.
# ---------------------
#.Drive from LA to Chicago.
#.Drive from Chicago to Manhattan.



Loosening the Coupling: or by doing both.

# Drive from LA to NYC.
# ---------------------
#.Drive from California to Chicago.
#.Drive from Illinois to Manhattan.

LA

California

Chicago

Illinois

Manhattan

NYC



# Specification P: Get from PRE to POST.
# --------------------------------------
#.Get from A1 to B1.
#.Get from A2 to B2.

where
establishing PRE automatically establishes A1,
establishing B1 automatically establishes A2, and 
establishing B2 automatically establishes POST.+

2-Step Sequential Refinement: In general



# Specification P: Get from PRE to POST.
# --------------------------------------
#.Get from A1 to B1.
#.Get from A2 to B2.
...
#.Get from An to Bn.

where
establishing PRE automatically establishes A1,
establishing Bk automatically establishes Ak+1, for k from 1 through n-1, and
establishing Bn automatically establishes POST.

n-Step Sequential Refinement: In general



Loosening in Practice: Consider an individual specification

#.Get from PRE to POST.

Program

# Specification.

in the context of a program



Loosening in Practice: The specification

#.Get from PRE′ to POST′.

where PRE′ is any weakening of PRE, and POST′ is any strengthening 
of POST.

#.Get from PRE to POST.

can be implemented by any code that satisfies the specification



Example 1: Precondition is essential, but postcondition can be strengthened

# Get from x≥0 to y is a number that when squared equals x.
y = math.sqrt(x)

Any weakening of x≥0 would make the specification infeasible for real y, but we 
are free to choose y as either the positive or negative root of x.



Example 2: Precondition is convenient, but not essential

# Get from x≥0 to y is |x|.
y = x

The precondition x≥0 simplifies the code that sets y to the absolute value 
of x, because in that case the absolute value of x is just x itself.



Example 3: Precondition is irrelevant

# Get from x≥0 to y is x squared.
y = x * x

because x squared is x*x regardless of whether x is positive or negative.



Example 4: Precondition is customarily ignored 

#.Get from array A’s elements are unique to A’s elements are
#   numerically ordered.

because conventional techniques for establishing the postcondition are 
more general, and do not rely on the given precondition.



Example 5: Chapter-1 example, revisited

# Given n≥0, output the integer part of the square root of n.
# ----------------------------------------------------------- 
#.Given n≥0, let r be the integer part of the square root of n≥0.
print(r)

Consider the domain and range of the general-purpose output statement

print(r)

domain range

The domain is any state where variable r exists and contains a value, regardless of 
whether it is the integer square root of n. The range is any state with the additional 
property that the output ends with the given value. 



Conjunctive Normal Form: A condition of the form

C1 and C2 and … and Cn

where each Ci is called a conjunct.

Example:

x is declared and x contains a value and x is greater than or equal to 0

state is NY and city is NYC



Conjunctive Normal Form: A condition in CNF can be weakened by 
dropping a conjunct, e.g., 

Replace:

x is declared and x contains a value and x is greater than or equal to 0

with:

x is declared and x contains a value

and can be strengthened by appending an additional conjunct, e.g.,

Replace:

state is NY and city is NYC

with:

state is NY and city is NYC and borough is Manhattan



Implicit Preconditions: In practice, explicit preconditions are often omitted.

# Get from LA to NYC.
# -------------------
#.Get to Chicago.
#.Get to St. Louis.
#.Get to NYC.

implicitly means

# Get from LA to NYC.
# -------------------
#.(Given that we are in LA) Get to Chicago.
#.(Given that we are in Chicago) Get to St. Louis.
#.(Given that we are in St. Louis) Get to NYC.



Implicit Preconditions: The reader of 

# Get from LA to NYC.
# -------------------
#.Get to Chicago.
#.Get to St. Louis.
#.Get to NYC.

must infer the relevant precondition, and scan backwards to confirm 
that it has been established and survives, i.e., has not subsequently 
been invalidated.



Implicit Preconditions: Minimize the distance between code that 
establishes a precondition, and code that relies on it, if possible.

k = 0
# 10 pages of code to do whatever.
k += 1

If the 10 pages have nothing to do with variable k, the following is better

k = 0
whatever()
k += 1

☞ Many short procedures are better than large blocks of code.



Implicit Preconditions: Minimize the distance between code that 
establishes a precondition, and code that relies on it, if possible, especially 
if the procedure can be placed outside of the scope of such a variable k.

If the distance remains great, consider an explicit indication of where the 
precondition was established:

#.Given PRE (established at point p in the code), get to POST.

☞ Many short procedures are better than large blocks of code.



Problem Reduction: A special case of Sequential Refinement



Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7



How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value 
i.e., each A[k] for which that value 
doesn’t occur in A[0..k-1], for k 
from 0 through n-1.

Problem Reduction: An example



☞ Solve a different problem, and use that solution to solve the original problem.

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value 
i.e., each A[k] for which that value 
doesn’t occur in A[0..k-1], for k 
from 0 through n-1.

Problem Reduction: An example



How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value 
i.e., each A[k] for which that value 
doesn’t occur in A[0..k-1], for k 
from 0 through n-1.

A′ 7 7 14 14 34

Problem Reduction: An example

☞ Solve a different problem, and use that solution to solve the original problem.



How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7 A′ 7 7 14 14 34

Tally of each first instance of a value 
i.e., each A[k] for which that value 
doesn’t occur in A[0..k-1], for k 
from 0 through n-1.

1 + the number of adjacent pairs of 
unequal elements in A′, a version of A 
rearranged into numerical order. 

Problem Reduction: An example

☞ Solve a different problem, and use that solution to solve the original problem.



How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value 
i.e., each A[k] for which that value 
doesn’t occur in A[0..k-1], for k 
from 0 through n-1.

1 + the number of adjacent pairs of 
unequal elements in A′, a version of A 
rearranged into numerical order. 

In worst case, running time is 
proportional to n2.

A′ 7 7 14 14 34

Problem Reduction: An example



How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value 
i.e., each A[k] for which that value 
doesn’t occur in A[0..k-1], for k 
from 0 through n-1.

1 + the number of adjacent pairs of 
unequal elements in A′, a version of A 
rearranged into numerical order. 

In worst case, running time is 
proportional to n2.

In worst case, running time is proportional to 
n log n, i.e., time to sort an array of length n + 
time to count the number of unequal 
adjacent element pairs. 

A′ 7 7 14 14 34

Problem Reduction: An example



How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value 
i.e., each A[k] for which that value 
doesn’t occur in A[0..k-1], for k 
from 0 through n-1.

1 + the number of adjacent pairs of 
unequal elements in A′, a version of A 
rearranged into numerical order. 

In worst case, running time is 
proportional to n2.

In worst case, running time is proportional to 
n log n, i.e., time to sort an array of length n + 
time to count the number of unequal 
adjacent element pairs. 

A′ 7 7 14 14 34

Problem Reduction: An example



# Specification P: Get from PRE to POST.
# --------------------------------------
#.Get from PRE to A.
#.Get from B to POST.

where establishing A automatically establishes B.

Problem Reduction: In general



# Specification P: Get from PRE to POST.
# --------------------------------------
#.Get from PRE to A.
#.Get from B to POST.

where establishing A automatically establishes B.

Problem Reduction: In general

☞ Solve a different problem, and use that solution to solve the original problem.



# Specification P: Get from PRE to POST.
# --------------------------------------
# Get from PRE to A.
# ~~~~~~~~~~~~~~~~~~
#.Define problem P′ based on PRE.
#.Solve problem P′.
#.Establish A from the solution to P′.

#.Get from B to POST.

where establishing A automatically establishes B.

Problem Reduction: In general

☞ Solve a different problem, and use that solution to solve the original problem.



Case Analysis: Implement a specification P as a choice of one step to execute 
from among P1, ... , Pn.

# Specification P.
if condition1: 
    #.Specification P1.
elif condition2: 
    #.Specification P2.
...
elif conditionn-1: 
    #.Specification Pn-1.
else:
    #.Specification Pn.



Case Analysis: Implement a specification P as a choice of one step to execute 
from among P1 and P2.

# Specification P.
if condition1: 
    #.Specification P1.
    

else:
    #.Specification P2.



Case Analysis: Implement a specification P as a choice of one step to execute 
or not.

# Specification P.
if condition1: 
    #.Specification P1.
    



Case Analysis: Implement a specification P as a choice of one step to execute 
from among P1, ... , Pn.

# Specification P.
    if condition1: 
        #.Specification P1.
    elif condition2: 
        #.Specification P2.
    ...
    elif conditionn-1: 
        #.Specification Pn-1.
    else:
        #.Specification Pn.

Appropriate when distinct program behaviors are required for different situations.



Case Analysis: Implement a specification P as a choice of one step to execute 
from among P1, ... , Pn.

• In the real world: Animal, vegetable, or mineral?
• In a maze: Facing a wall or not?
• After a search: Found or not found?
• In mathematics: Positive or negative? Even or odd? Real or imaginary roots?

Appropriate when distinct program behaviors are required for different situations.



Case Analysis: An example

#.Let y be |x|.

Appropriate when distinct program behaviors are required for different situations.



Case Analysis: An example

# Let y be |x|.
if x >= 0:
    y = x
else:
    y = -x

Appropriate when distinct program behaviors are required for different situations.



Case Analysis: An example

# Let y be |x|.
if x >= 0:
    y = x
else:
    y = -x

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code 
bloat.



Case Analysis: An example

# Let y be |x|.
y = abs(y)

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code 
bloat.



Case Analysis: A second example

#.Advance k to the next hour.



Case Analysis: A second example

# Advance k to the next hour.
if k == 11:
    k = 0
else:
    k = k + 1



Case Analysis: A second example

# Advance k to the next hour.
if k == 11:
    k = 0
else:
    k = k + 1

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code 
bloat.



Case Analysis: A second example

# Advance k to the next hour.
k = (k + 1) % 12

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code 
bloat.



Case Analysis: A third example

#.Advance k to the previous hour.



Case Analysis: A third example

# Advance k to the previous hour.
if k == 0:
    k = 11
else:
    k = k – 1



Case Analysis: A third example

# Advance k to the previous hour.
if k == 0:
    k = 11
else:
    k = k – 1

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code 
bloat.



Case Analysis: A third example

# Advance k to the previous hour.
k = (k + 11) % 12

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code 
bloat.



Case Analysis: A third example

# Advance k to the previous hour.
k = (k + 11) % 12

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code 
bloat.

Why not (k-1)%12 ?



Case Analysis: A third example

# Advance k to the previous hour.
k = (k + 11) % 12

Why not (k-1)%12 ?
This would be fine in Python, but in other languages (e.g., Java), (k-1)%12 is 
negative for negative k-1. The issue is avoided if we write (k+11)%12 

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code 
bloat.



Case Analysis: The condition in a Case Analysis is often the locus of error.



Case Analysis: The condition in a Case Analysis is often the locus of error.

☞ Be alert to high-risk coding steps associated with binary choices: “==” or “!=”, “<” 
or “<=”, “x” or “x-1”, condition or not(condition), positive or negative, 0-origin 
or 1-origin, “even integers are divisible by 2, but array segments of odd length 
have middle elements”.



Case Analysis: The condition in a Case Analysis is often the locus of error.

☞ Be alert to high-risk coding steps associated with binary choices.



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: parity

#.Output whether n is odd or even.



Case Analysis: The condition in a Case Analysis is often the locus of error.

# Output whether n is odd or even.
if (n % 2) == 1:
    print("odd")
else:
    print("even")

Example: parity



Case Analysis: The condition in a Case Analysis is often the locus of error.

# Output whether n is odd or even.
if (n % 2) == 1:
    print("odd")
else:
    print("even")

Example: parity

☞ Be alert to high-risk coding steps associated with binary choices.



Case Analysis: The condition in a Case Analysis is often the locus of error.

# Output whether n is odd or even.
if (n % 2) == 1: 
    print("odd")
else:
    print("even")

The code is correct in Python, but because in some languages (e.g., Java) n%2 is 
negative for negative n, the code is fragile.

Example: parity

☞ Be alert to high-risk coding steps associated with binary choices.



Case Analysis: The condition in a Case Analysis is often the locus of error.

# Output whether n is odd or even.
if (n % 2) == 0:
    print("even")
else:
    print("odd")

Example: parity, more robust

☞ Be alert to high-risk coding steps associated with binary choices.



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

#.Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

# Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool  # Roots are imaginary. 
if ((B * B) – (4 * A * C)) < 0:
    im = True
else:
    im = False



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

# Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool  # Roots are imaginary. 
if ((B * B) – (4 * A * C)) < 0:
    im = True
else:
    im = False

☞ Be alert to high-risk coding steps associated with binary choices.



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

Is the case of ((B*B)-(4*A*C))==0 correct?

☞ Be alert to high-risk coding steps associated with binary choices.

# Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool  # Roots are imaginary. 
if ((B * B) – (4 * A * C)) < 0:
    im = True
else:
    im = False



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

Is the case of ((B*B)-(4*A*C))==0 correct? Yes.

☞ Be alert to high-risk coding steps associated with binary choices.

# Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool  # Roots are imaginary. 
if ((B * B) – (4 * A * C)) < 0:
    im = True
else:
    im = False



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

# Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool  # Roots are imaginary. 
if ((B * B) – (4 * A * C)) < 0:
    im = True
else:
    im = False



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

#.Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

# Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool = ((B * B) – (4 * A * C)) < 0   # Roots are imaginary. 

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

#.Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

# Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if (m1 == m2) and (b1 != b2):
    print("parallel")
else:
    print("intersect")



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

☞ Be alert to high-risk coding steps associated with binary choices.

# Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if (m1 == m2) and (b1 != b2):
    print("parallel")
else:
    print("intersect")



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

What if m1 is 0.0e0 and m2 is smallest floating-point number?

☞ Be alert to high-risk coding steps associated with binary choices.

# Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if (m1 == m2) and (b1 != b2):
    print("parallel")
else:
    print("intersect")



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

What if m1==m2, but b1 is 0.0e0 and b2 is smallest floating-point number?

☞ Be alert to high-risk coding steps associated with binary choices.

# Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if (m1 == m2) and (b1 != b2):
    print("parallel")
else:
    print("intersect")



Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

# Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if compare-slopes-and-intercepts-wrt-tolerances:
    print("parallel")
else:
    print("intersect")

☞ Never test two floating-point numbers for equality or inequality.



Iterative Refinement: Implement a specification P by repeatedly executing 
step P′.

# Specification P.
# ----------------
#.Setup for P′.
while condition:
    #.Specification P′.



Iterative Refinement: Implement a specification P by repeatedly executing 
step P′.

Invariant: The thing that stays the same, and allows P′ to remain applicable.

Variant: The thing that changes, and eventually causes the loop to stop.

# Specification P.
# ----------------
#.Setup for P′.
while condition:
    #.Specification P′.



Iterative Refinement: Implement a specification P by repeatedly executing 
step P′.

Invariant: The thing that stays the same, and allows P′ to remain applicable.

Variant: The thing that changes, and eventually causes the loop to stop.

Infinite loops have their utility, but termination is the norm.

# Specification P.
# ----------------
#.Setup for P′.
while condition:
    #.Specification P′.



Iterative Refinement: Implement a specification P by repeatedly executing 
step P′.

Invariant: The thing that stays the same, and allows P′ to remain applicable.

Variant: The thing that changes, and eventually causes the loop to stop.

Infinite loops have their utility, but termination is the norm. For termination, think of 
the variant as a necessarily nonnegative integer that necessarily decreases by 1 on 
each iteration. You can only do that a finite number of times.

# Specification P.
# ----------------
#.Setup for P′.
while condition:
    #.Specification P′.



Iterative Refinement: Implement a specification P by repeatedly executing 
step P′.

A fruitful real-world analogy: Hammering a nail into a block of wood.

# Specification P.
# ----------------
#.Setup for P′.
while condition:
    #.Specification P′.



#.Drive a nail vertically into a block of wood.



# Drive a nail vertically into a block of wood.

# ---------------------------------------------

#.Setup: Stabilize the nail vertically, with height≥0. In doing so, 

#   establish the invariant (nail vertical, and height≥0) and the 

#   initial variant (height of nail).



# Drive a nail vertically into a block of wood.

# ---------------------------------------------

#.Setup: Stabilize the nail vertically, with height≥0. In doing so, 

#   establish the invariant (nail vertical, and height≥0) and the 

#   initial variant (height of nail).

while the-head-of-the-nail-sticks-out :

    #.Hit the nail with the hammer squarely. In doing so, maintain the invariant (by

    #   hitting the nail vertically, but not so hard that its height becomes negative),

    #   and reduce the variant (by hitting the nail hard enough to reduce the height 

    #   such that a finite number of hits suffices).



# Drive a nail vertically into a block of wood.

# ---------------------------------------------

#.Setup: Stabilize the nail vertically, with height≥0. In doing so, 

#   establish the invariant (nail vertical, and height≥0) and the 

#   initial variant (height of nail).

while the-head-of-the-nail-sticks-out :

    #.Hit the nail with the hammer squarely. In doing so, maintain the invariant (by

    #   hitting the nail vertically, but not so hard that its height becomes negative),

    #   and reduce the variant (by hitting the nail hard enough to reduce the height 

    #   such that a finite number of hits suffices).

#.The invariant still holds (nail vertical, and height≥0), and the 

#   variant is reduced to zero (height==0).



Iterative Refinement: What can go wrong?

• Setup doesn’t establish the nail’s verticality (the invariant). The very 
first hammer blow flattens the nail, or begins the process of bending 
it, even if the loop body is perfectly correct.



Iterative Refinement: What can go wrong?

• Loop body doesn’t maintain the nail’s verticality (the invariant) because 
it hits the nail at a crooked angle. Eventually, the nail is flattened.



Iterative Refinement: What can go wrong?

• Loop body doesn’t maintain the nail’s nonnegative height (the 
invariant), splits the wood, and the nail goes into the table top.



Iterative Refinement: What can go wrong?

• Loop body makes insufficient progress (the variant). The loop runs 
forever and the nail never gets flush with the surface. 

This can be because the height is an infinite decreasing sequence that 
doesn’t converge to zero, or because you hit a knot, and stop advancing 
altogether.



No advancement: Use a feather instead of a hammer, or at a knot.

stuck state



Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

#.Make triangle point down.



Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

# Make triangle point down.
# -------------------------
#.Compute angle δ.
while not-pointing-down:
    #.Turn angle δ.



Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

# Make triangle point down.
# -------------------------
#.Compute angle δ.
while not-pointing-down:
    #.Turn angle δ.

Runs forever if δ is 120°



Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

# Make triangle point down.
# -------------------------
#.Compute angle δ.
while not-pointing-down:
    #.Turn angle δ.

Runs forever if δ is 120°

(Doesn’t happen in hammering a nail.)



Non-convergent advancement: Variant must be a nonnegative integer 
that is reduced by at least 1 on each iteration.

sequence of states

h: int = 10
while h > 0:
    h = h // 2

Terminates



Non-convergent advancement: Variant must be a nonnegative integer 
that is reduced by at least 1 on each iteration.

sequence of states

h: float = 10.0
while h > 0:
    h = h / 2

Terminates



Non-convergent advancement: Variant must be a nonnegative integer 
that is reduced by at least 1 on each iteration.

sequence of states

zero: Rational = Rational(0,1)
two:  Rational = Rational(2,1)
h3:   Rational = Rational(10, 1)
while h3 != zero:

h3 = rational_divide(h3, two)

Runs forever (Code explained in Chapter 18.)



Iterative Refinement: In general

# Specification P: Get from PRE to POST.
# --------------------------------------
#.Setup: Get from PRE to INVARIANT.
while condition:
    #.Get from condition and INVARIANT to INVARIANT.

where not(condition) and INVARIANT entails POST.



POST

Iteration: To get to POST iteratively



Iteration: To get to POST iteratively, choose a weakened POST as INVARIANT

POST INVARIANT



Iteration: Then, iteratively change the INVARIANT’s parameters.

POST improving approximations



Example: Hammering a nail, the goal

POST

nail vertical and height=0



Example: Hammering a nail, set up the INVARIANT

POST INVARIANT

nail vertical and height=0
nail vertical and height≥0



Example: Hammering a nail, the process

POST

nail vertical and height=0

improving approximations

nail vertical and height≥0

nail vertical and height≥0



Example: Hammering a nail, the process

POST

nail vertical and height=0

improving approximations

nail vertical and height=0

nail vertical and height≥0

nail vertical and height≥0



Example: Integer division. The goal.

#.Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.

y y y y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 



Example: Integer division. The process: Choose the INVARIANT …

#.Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.

y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: 



#.Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.

y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: x=q*y+r, 0≤r    , and 0≤q

Example: Integer division. … INVARIANT as a weakened POST.



Example: Integer division. The process …

# Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = ___
q: int = ___
while condition:

_____________ 

y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: x=q*y+r, 0≤r    , and 0≤q



Example: Integer division. The process of maintaining the INVARIANT …

# Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = ___
q: int = ___
while condition:

r = r - y 
q += 1

y y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: x=q*y+r, 0≤r    , and 0≤q



Example: Integer division. … while reducing the VARIANT to 0 …

# Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = ___
q: int = ___
while r >= y:

r = r - y 
q += 1

y y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: x=q*y+r, 0≤r    , and 0≤q

VARIANT: x-q*y



Example: Integer division. … after first having established the INVARIANT.

y

x

r
q

# Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = x
q: int = 0
while r >= y:

r = r - y 
q += 1

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: x=q*y+r, 0≤r    , and 0≤q

VARIANT: x-q*y



y

x

r
q

Example: Played in execution order, with nail and wood analogy: The setup.

# Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = x
q: int = 0
while r >= y:

r = r - y 
q += 1

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: x=q*y+r, 0≤r    , and 0≤q

VARIANT: x-q*y



x

Example: Played in execution order, with nail and wood analogy: The process.

y y y y y

x

q
r

# Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = x
q: int = 0
while r >= y:

r = r - y 
q += 1

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: x=q*y+r, 0≤r    , and 0≤q

VARIANT: x-q*y



Example: Played in execution order, with nail and wood analogy: Termination.

y y y y y y y y

x

q
r

# Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = x
q: int = 0
while r >= y:

r = r - y 
q += 1

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q 

INVARIANT: x=q*y+r, 0≤r    , and 0≤q

VARIANT: x-q*y



Example: Euclid’s Algorithm, the goal

def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y.""“
    _________
    return ____

Let X and Y be positive integers, GCD be the mathematical greatest-common-divisor 
function, and GCD(X, Y) = d. When invoked on argument expressions with values X and Y, 
the Python function gcd is required to return d.



Example: Euclid’s Algorithm, the INVARIANT

def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y."""
    while condition:
        _________
    return ____

We plan to update x or y on each iteration while maintaining the INVARIANT

x > 0  and y > 0  and GCD(x, y) = d

which holds initially because invocation of gcd with argument values X and Y 
initializes parameters x and y to X and Y, respectively. 



def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y."""
    while x != y:
        _________
    return x

To assure termination, we will reduce the non-negative VARIANT expression x+y by 
at least 1 on each iteration. You can only do that a finite number of times (while 
guaranteeing that x+y remains positive) before x+y stops changing. When it does, we 
must show that x=y. (It remains until after knowing how x and y are updated to show 
that x+y is reduced by 1 on each iteration.) 

The return statement implements the observation that the gcd of any number and 
itself is that number.

Example: Euclid’s Algorithm, the VARIANT



def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y."""
    while x != y: 
        if _____:
            _________
        else:
            _________
    return x

There are only two cases: either x > y or x < y (the third possibility of x = y having been 
ruled out by the loop termination condition). 

Example: Euclid’s Algorithm, Case Analysis



Example: Euclid’s Algorithm, Case Analysis, x > y

def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y."""
    while x != y: 
        if x > y:
            _________
        else:
            _________
    return x

First case: x > y. Observe by diagrammatic reasoning (next slide), that x can be replaced 
by x - y while maintaining the INVARIANT, i.e., designating the new value of x by x′, then 

x′> 0  and y > 0  and  GCD(x′, y) = d

That x’ > 0 follows from x > y. 



d d d d d d d d

x

d d d d d

y d d d

x - y

then y and x-y 
have a common 
divisor of d.

if x and y have a 
common divisor d

Example: Euclid’s Algorithm, Case Analysis, x > y



def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y."""
    while x != y: 
        if x > y:
            x = x - y
        else:
            _________
    return x

Example: Euclid’s Algorithm, Case Analysis, x > y

First case: x > y. Observe by diagrammatic reasoning (next slide), that x can be replaced 
by x - y while maintaining the INVARIANT, i.e., designating the new value of x by x′, then 

x′> 0  and y > 0  and GCD(x′, y) = d

That x’ > 0 follows from x > y. This has been done, above.



def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y."""       
    while x != y: 
        if x > y:
            x = x - y
        else:
            y = y - x
    return x

Second case: x < y. Follows by the symmetric argument.

Example: Euclid’s Algorithm, Case Analysis, x < y, by symmetry



def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y."""       
    while x != y: 
        if x > y:
            x = x - y
        else:
            y = y - x
    return x

If the loop stops, the INVARIANT and negation of the condition imply that the value 
returned is correct, i.e., 

x > 0  and y > 0  and GCD(x, y) = d  and x = y   implies   x = d. 

This is called partial correctness.

Example: Euclid’s Algorithm, correctness



def gcd(x:int, y:int) -> int:
    """Given x>0 and y>0, return the greatest common divisor of x and y."""       
    while x != y: 
        if x > y:
            x = x - y
        else:
            y = y - x
    return x

Why does x+y stop changing, with x=y, and therefore the iteration stops?

Because one of x or y is reduced by at least 1 on each iteration, and if x is not equal to y, 
then in the next iteration x+y can be further reduced.

Partial correctness plus guaranteed termination is called total correctness.

Example: Euclid’s Algorithm, termination 



Termination: Can be nontrivial, i.e., hard, unknown, or even unknowable



Termination: Are the following two code segments equivalent?

# Given input n>0, output “done”.
n = int(input())
print("done")

# Given input n>0, output “done”. 
n = int(input())
while n != 1:
    if (n % 2) == 0:
        n = n // 2
    else:
        n = (3 * n) + 1
print("done")

Answer turns on whether the loop terminates for every input.



Termination: Are the following two code segments equivalent?

# Given input n>0, output “done”.
n = int(input())
print("done")

# Given input n>0, output “done”. 
n = int(input())
while n != 1:
    if (n % 2) == 0:
        n = n // 2
    else:
        n = (3 * n) + 1
print("done")

Sample input 3: 
3 ➔ 10 ➔ 5 ➔ 16 ➔ 8 ➔ 4 ➔ 2 ➔ 1



Termination: Are the following two code segments equivalent?

# Given input n>0, output “done”.
n = int(input())
print("done")

# Given input n>0, output “done”. 
n = int(input())
while n != 1:
    if (n % 2) == 0:
        n = n // 2
    else:
        n = (3 * n) + 1
print("done")

That every such sequence reaches 1 is an open problem in mathematics.

Collatz Conjecture

n

4, 2, 1



Another approach toHippocratic Coding: AnalysisRecursive Refinement: Implement specification P by using the very 
refinement being defined to solve self-similar subproblems.

# Specification P.
if base-case :
    #.P0.
else:
    #.Identify smaller instance(s) of P within P itself, apply this
    #   approach to each such instance, and combine the results.



Another approach toHippocratic Coding: AnalysisSelf-similarity: Same or similar structure at every scale

543210



Another approach toHippocratic Coding: AnalysisRecursive Refinement: Implement specification P by using the very 
refinement being defined to solve self-similar subproblems.

# Specification P.
if base-case :
    #.P0.
else:
    #.Identify smaller instance(s) of P within P itself, apply this
    #   approach to each such instance, and combine the results.

To use the refinement within both the specification and in the refinement itself, 
define it separately as a procedure, and invoke it by name.



Another approach toHippocratic Coding: AnalysisRecursive Refinement: Implement specification P by using the very 
refinement being defined to solve self-similar subproblems.

# Specification P.
P(arguments)

and elsewhere define:
def P(parameters) -> type:
    if base-case : 
        #.P0.
    else:
        #.Identify smaller instance(s) of P within P itself, invoke
        #   P(arguments) on each such instance, and combine the results.

To use the refinement within both the specification and in the refinement itself, 
define it separately as a procedure, and invoke it by name.



Another approach toHippocratic Coding: AnalysisExample: 5 4 3 2 1 BLASTOFF

# Count down from 5, and say “BLASTOFF” at 0.
countdown(5)

and elsewhere define:

def countdown(n: int) -> None:
    """Count down from n, and say "BLASTOFF" at zero."""
    if n == 0:
        print("BLASTOFF")
    else:
        print(n)
        countdown(n - 1)



Another approach toHippocratic Coding: AnalysisA second example: (…(((0+1)+2)+3)+…+100)

# Output the sum of 1 through 100.
print(sum(100))

and elsewhere define:

def sum(n: int) -> int:
    """Return the sum of 0 through n."""
    if n == 0:
        return 0
    else:
        return sum(n - 1) + n



Another approach toHippocratic Coding: AnalysisA third example: (1+(2+(3+…+(100+0)…)))

# Output the sum of 1 through 100.
print(sum(100))

and elsewhere define:

def sum(n:int) -> int:
    """Return the sum of 0 through n."""
    return sumAux(n,0)

def sumAux(n: int, acc: int) -> int:
    """Return the sum of 0 through n, and acc."""
    if n == 0:
        return acc
    else:
        return sumAux(n - 1, n + acc)



Library of Patterns: Implement specification P by using a previously used and 
analyzed parameterized composition of constructs.

Build your personal library over your lifetime.



Extended Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells 
separated (or not) from adjacent cells by walls. One can move between 
adjacent cells if and only if no wall divides them. A solid wall surrounds 
the entire grid of cells, so there is no escape from the maze.
Problem Statement. Write a program that inputs a maze, and outputs a 
direct path from the upper-left cell to the lower-right cell if such a path 
exists, or outputs “Unreachable” otherwise. A path is direct if it never 
visits any cell more than once.

1 2 3

5 4

6 7

8

9 10 11



Extended Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells 
separated (or not) from adjacent cells by walls. One can move between 
adjacent cells if and only if no wall divides them. A solid wall surrounds 
the entire grid of cells, so there is no escape from the maze.
Problem Statement. Write a program that inputs a maze, and outputs a 
direct path from the upper-left cell to the lower-right cell if such a path 
exists, or outputs “Unreachable” otherwise. A path is direct if it never 
visits any cell more than once.

1 2 3

5 4

6 7

8

9 10 11

☞ Use Stepwise Refinement. Write simple code immediately, otherwise refine 
the problem statement using: (a) Sequential Refinement, (b) Case Analysis, 
(c) Iterative Refinement, (d) a known pattern.



#.Find path in maze from upper-left to lower-right, if one exists.

Specify the goal



# Find path in maze from upper-left to lower-right, if one exists.
# ----------------------------------------------------------------
#.Input.
#.Compute.
#.Output.

Refine with an architecture

☞ Master stylized code patterns, and use them.



# Find path in maze from upper-left to lower-right, if one exists.
# ----------------------------------------------------------------
#.Input a maze of arbitrary size, or output “malformed input” and
#   stop if the input is improper. Input format: TBD.
#.Compute a direct path through the maze, if one exists.
#.Output the direct path found, or “unreachable” if there is none.
#   Output format: TBD.

Refine with an architecture and elaborate

☞ Master stylized code patterns, and use them.



# Find path in maze from upper-left to lower-right, if one exists.
# ----------------------------------------------------------------
#.Input a maze of arbitrary size, or output “malformed input” and
#   stop if the input is improper. Input format: TBD.
#.Compute a direct path through the maze, if one exists.
#.Output the direct path found, or “unreachable” if there is none.
#   Output format: TBD.

Ignore Input and Output, and focus on essence



#.Compute a direct path through the maze, if one exists. 

Ignore Input and Output, and focus on essence



Investigate:

☞ Analyze first.
☞ Confirm your understanding of a programming problem with concrete examples. 

Elaborate the expected input/output mapping explicitly.
☞ There is no shame in reasoning with concrete examples.
☞ Simple examples may be as good (or better) than complicated ones for guiding 

you toward a solution.
☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is 

in your “wetware”. Be introspective. Ask yourself: What am I doing?



Example 1

Begin with a (near) empty maze

Investigate:



1 2 3 4 5

6

7

8

9

Example 1

Traverse clockwise along the perimeter

Investigate:



1 2 3 4 5

6

7

8

9

Example 1

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

Interpose a protruding wall. Continue excursion along it, pirouette to 
its other size, and continue.

Investigate:



1 2 3 4 5
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7

8
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Example 1

1 2 3 4 5
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Example 2
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Example 3

Interpose a second protruding wall. Continue excursion along it 
(effectively backing out of a cul-de-sac), and continue.

Investigate:
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Example 1
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Example 2
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Example 3
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Example 4

Interpose a third protruding wall. Continue excursion along it 
(effectively backing out of a room-sized cul-de-sac), and continue.

Investigate:
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Example 1
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Example 2

1 2 3 4 5
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Example 3

1

2

3

4

5 6 7 8 9

Example 4 Example 5

Block access to lower-right cell. Continue excursion along bottom and 
left perimeter, and then stop in upper-left cell.

Investigate:



#.Compute a direct path through the maze, if one exists.

Return to code



#.Compute a direct path through the maze, if one exists.

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

Return to code, and simplify



# Compute a direct path through the maze, if one exists.
_________
while _________ :
    _________
_________

☞ If you “smell a loop”, write it down.

Iterative Refinement:



# Compute a direct path through the maze, if one exists.
____3____
while ____2____ :
    ____1____
____4____

Iterative Refinement:

☞ Code iterations in the following order: (1) body, (2) termination, (3) initialization, 
(4) finalization, (5) boundary conditions.



# Compute a direct path through the maze, if one exists.
____3____
while ____2____ :
    ____1____
____4____

The loop body

☞ Body. Do 1st. 



Example 1

Pick an example, and imagine running the program for a while

☞ Body. Do 1st. Play “musical chairs”



Example 1

☞ Body. Do 1st. Play “musical chairs”

Pick an example, and imagine running the program for a while



Example 1

☞ Body. Do 1st. Play “musical chairs”

Pick an example, and imagine running the program for a while



Example 1

Stop at an arbitrary moment

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. 



↑

Example 1

Characterize the state

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state” 
when the music stops, i.e., at the instant the loop-body is about to execute yet again.

Facing a wall



↑

Example 1

Characterize the state, and the state transition

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state” 
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If 
you had stopped one iteration later, what would have looked the same (the “loop 
invariant”), and what would have changed (the “loop variant”)?

INVARIANT: Hand on wall



↑

Example 1

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state” 
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If 
you had stopped one iteration later, what would have looked the same (the “loop 
invariant”), and what would have changed (the “loop variant”)?

INVARIANT: Hand on wall

VARIANT: Distance to goal

Characterize the state, and the state transition



↑

Example 1

☞ A Case Analysis in the loop body is often needed for characterizing different 
ways in which to decrease the loop variant while maintaining the loop invariant.

INVARIANT: Hand on wall

VARIANT: Distance to goal

Characterize the state, and the state transition



↑

Example 1

Transition rule

↑ ↑(1)

INVARIANT: Hand on wall

VARIANT: Distance to goal

Characterize the state, and the state transition
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Example 1

Transition rule

Resume playing musical chairs, applying the transition rule

↑ ↑(1)

INVARIANT: Hand on wall

VARIANT: Distance to goal



→

Example 1

Transition rules

Introduce a new transition rule when needed

↑ →

↑ ↑(1)

(2)

INVARIANT: Hand on wall

VARIANT: Distance to goal
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Example 1

Transition rules

and resume playing musical chairs

↑ →

↑ ↑(1)

(2)
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Transition rules

↑ →

↑ ↑(1)

(2)

and resume playing musical chairs
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Example 1

Transition rules

↑ →

↑ ↑(1)

(2)

and resume playing musical chairs
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Example 1

Transition rules

↑ →

↑ ↑(1)

(2)

and resume playing musical chairs



↓

Example 2

Try another example

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

Transition rules
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1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Try another example, and introduce a new transition rule when needed
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Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Then resume playing musical chairs
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↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Then resume playing musical chairs
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Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Then resume playing musical chairs
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Example 2

1 2 3 4 5

6
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9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Then resume playing musical chairs
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Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

→

Example 3

Transition rules

Try another example, and see that the three transition rules suffice



1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

←

Example 4

Transition rules

Try another example, and see that the three transition rules get you far

Numbering reflects the direct path
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Example 2
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Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

↓

Example 4

↓

→

(4)

Transition rules

until a fourth rule is needed
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Resume
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Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)
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Example 3

←

Example 4

↓

→

(4)

Transition rules
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Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)
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Example 3

←

Example 4

↓

→

(4)

Transition rules

Resume
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Example 2
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Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5
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13

Example 3

→

Example 4

↓

→

(4)

Transition rules

Resume
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Example 2
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Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9
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13

Example 3

↑

Example 4

↓

→

(4)

Transition rules

Resume, and go all the way
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Example 2

And yet another example
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Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6
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13

Example 3

1
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3

4

5 6 7 8 9

Example 4

↓

→

(4)

Transition rules

←

Example 5
Numbering reflects the direct path



# Compute a direct path through the maze, if one exists.
_________
while _________ :
    if _________ :
        _________
    elif _________ :
        _________
    elif _________ :
        _________
    else:
        _________
_________

The loop body: One case for each transition rule



The loop body: One case for each transition rule, but they are too complex. 

# Compute a direct path through the maze, if one exists.
_________  
while _________ :
    if _________ :
        _________
    elif _________ :
        _________
    elif _________ :
        _________
    else:
        _________
_________



The loop body: One case for each transition rule, but they are too complex. 
For example: ↑ ↑(1)

# Compute a direct path through the maze, if one exists.
_________
while _________ :
    if two-colinear-walls-not-separated-by-a-perpendicular-wall:
         #.sidestep.
    elif _________ :
        _________
    elif _________ :
        _________
    else:
        _________
_________



Idea: Implement coarse-grain transition steps with micro-operations

↑ →

↑ → →

↓ ← ← ↓

↓ ← ← ↓

↓

↑

↓ →

→ → ↑

( )

( ) ( ) ( )

( )

( )(1)

(2)

(3)

(4)



Idea: Implement coarse-grain transition steps with micro-operations

↑ →

↑ → →

↓ ← ← ↓

↓ ← ← ↓

↓

↑

↓ →

→ → ↑

( )

( ) ( ) ( )

( )

( )(1)

(2)

(3)

(4)

Turn 90°clockwise     Step forward and turn 90°counterclockwise 



Idea: Implement coarse-grain transition steps with micro-operations

↑ →

↑ → →

↓ ← ← ↓

↓ ← ← ↓

↓

↑

↓ →

→ → ↑

( )

( ) ( ) ( )

( )

( )(1)

(2)

(3)

(4)

new INVARIANT: Hand on wall or door
new VARIANT:     Number of wall segments or doors to goal

Turn 90°clockwise     Step forward and turn 90°counterclockwise 



# Compute a direct path through the maze, if one exists.
_________
while _________ :
    if facing-wall:
        #.Turn 90° clockwise.
    else:
        #.Step forward.
        #.Turn 90° counterclockwise.
_________

The loop body: Now only two simpler cases to consider.

new INVARIANT: Hand on wall or door
new VARIANT:     Number of wall segments or doors to goal



Iteration: (2) termination

# Compute a direct path through the maze, if one exists.
_________
while not(in-lower-right) and not(in-upper-left-about-to-cycle): 
    if facing-wall:
        #.Turn 90° clockwise.
    else:
        #.Step forward.
        #.Turn 90° counterclockwise.
_________



Iteration: (3) initialization

# Compute a direct path through the maze, if one exists.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
#.Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle): 
    if facing-wall:
        #.Turn 90° clockwise.
    else:
        #.Step forward.
        #.Turn 90° counterclockwise.
_________



Iteration: Correctness relies on subtle problem constraints

# Compute a direct path through the maze, if one exists.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#.Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle): 
    if facing-wall:
        #.Turn 90° clockwise.
    else:
        #.Step forward.
        #.Turn 90° counterclockwise.
_________



Iteration: Correctness relies on subtle problem constraints

1 8 7

2 6

3 4 5

5 4 3

6 1 2

7 8

1 2 3 4 5

16 6

15 7

14 8

13 12 11 10 9

If started facing down, not up If outer wall not solid If cheese could be in interior cell



Iteration: (4) finalization (nothing to do)

# Compute a direct path through the maze, if one exists.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#.Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle): 
    if facing-wall:
        #.Turn 90° clockwise.
    else:
        #.Step forward.
        #.Turn 90° counterclockwise.



The core algorithm is in hand

# Compute a direct path through the maze, if one exists.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#.Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle): 
    if facing-wall:
        #.Turn 90° clockwise.
    else:
        #.Step forward.
        #.Turn 90° counterclockwise.
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