
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Stepwise Refinement

Copyright©2024 by Tim Teitelbaum; Most recent revision, 09/19/2025

We introduce Stepwise Refinement, a key approach to programming,
and illustrate its use in many examples.

• Divide and Conquer
• Sequential Refinement
• Case Analysis
• Iterative Refinement
• Recursive Refinement

Divide and Conquer:

All Gaul is divided into three parts. To conquer Gaul:
First, conquer the first part.
Then, conquer the second part.
Finally, conquer the third part.

A methodology.

Divide and Conquer: Applied to programming

To write a program:
First, break it into subprograms.
Then, write each subprogram separately.

the methodology is called programming by Stepwise Refinement.

Divide and Conquer: Applied to programming

To write a program:
First, break it into subprograms.
Then, write each subprogram separately.

the methodology is called programming by Stepwise Refinement.

☞ Program top-down, outside-in.

Stepwise Refinement: Creates a hierarchy of subprograms, each with its own
specification.

☞ Program top-down, outside-in.

Stepwise Refinement: A “program” to follow as you code.

if P is simple to write :
 Write it
else:
 Refine P into simpler subprograms
 Write each subprogram

☞ Program top-down, outside-in.

Sequential steps
Do one thing after another.

Case analysis
Do one thing or another.

Iteration
Do one thing repeatedly.

Recursion
Do something based on self-similarity.

Selection from a library of patterns
Do some pattern of the previous kinds of refinement.

where Refine is:

Stepwise Refinement: Is recursive

if P is simple to write :
 Write it
else:
 Refine P into simpler subprograms
 Write each subprogram

because it uses itself for writing each subprogram.

Stepwise Refinement: Terminates

if P is simple to write :
 Write it
else:
 Refine P into simpler subprograms
 Write each subprogram

provided the subprograms get simpler to write.

Stepwise Refinement: Terminates when P is so simple that you just write it.

if P is simple to write :
 Write it

This is called the base case of the recursion.

Stepwise Refinement: The subproblems of each refinement must fit together
like pieces of a jigsaw puzzle.

We now consider each of the five kinds of refinement.

Sequential Refinement: Implement a specification P with a sequence of steps
P1 through Pn executed one after the other.

Specification P.

#.Specification P1.
#.Specification P2.
...
#.Specification Pn.

where if any “#.Specification Pi” is simple enough, it can be just code.

Example 1: A top-level specification

#.Drive from LA to NYC.

Example 1: A top-level specification that calls for the state-space effect shown.

#.Drive from LA to NYC.

LA NYC

Example 1: A Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

LA NYC

Example 1: A Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

LA Chicago NYC

Example 1: A Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

Example 2: A different Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to St. Louis.
#.Drive from St. Louis to NYC.

Different roads and scenery, but the same net effect (the external interface):
If I leave from LA, I will get to NYC.

Example 3: An incorrect Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from St. Louis to NYC.

The first step does not establish what the second step requires.

Example 3: A corrected Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to St. Louis.
#.Drive from St. Louis to NYC.

Example 4: An infeasible Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Tokyo.
#.Drive from Tokyo to NYC.

You can’t drive from LA to Tokyo.

Just because you can express a requirement doesn’t mean that it can be
accomplished.

Example 1, continued:

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

Example 1, continued:

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

☞ Refine specifications and placeholders in an order that makes sense for
development, without regard to execution order.

Example 1, continued:

Drive from LA to NYC.

#.Drive from LA to Chicago.

Drive from Chicago to NYC.
~~~~~~~~~~~~~~~~~~~~~~~~~~
#.Drive from Chicago to Pittsburgh.
#.Drive from Pittsburgh to NYC.

☞ Refine specifications and placeholders in an order that makes sense for
development, without regard to execution order.

Example 4, continued: Backtrack out of an infeasible Sequential Refinement

Drive from LA to NYC.

#.Drive from LA to Tokyo.
#.Drive from Tokyo to NYC.

You can’t drive from LA to Tokyo.

Drive from LA to NYC.

#.Drive from LA to Tokyo.
#.Drive from Tokyo to NYC.

You can’t drive from LA to Tokyo.

☞ Don’t be wedded to code. Revise and rewrite when you discover a better way.

Example 4, continued: Backtrack out of an infeasible Sequential Refinement

Example 4, continued: An infeasible Sequential Refinement undone.

#.Drive from LA to NYC.

☞ Don’t be wedded to code. Revise and rewrite when you discover a better way.

Drive from LA to NYC.

#.Drive from LA to Denver.
#.Drive from Denver to NYC.

You can drive from LA to Denver and from Denver to NYC.

Example 4, continued: An infeasible Sequential Refinement revised.

☞ Don’t be wedded to code. Revise and rewrite when you discover a better way.

Example 5: A new top-level specification

#.Drive from LA to NYC and buy a new car (in any order).

Example 5: A new top-level specification

#.Drive from LA to NYC and buy a new car (in any order).

⟨LA,old⟩ ⟨NYC,new⟩

Example 5: One possible order

Drive from LA to NYC and buy a new car (in any order).
--
#.Buy a new car.
#.Drive from LA to NYC.

Example 5: Another possible order

Drive from LA to NYC and buy a new car (in any order).
--
#.Drive from LA to NYC.
#.Buy a new car.

Example 5: and its possible refinement.

Implicitly, unmentioned components of state may not be changed.

Drive from LA to NYC and buy a new car (in any order).
--
Drive from LA to NYC.
~~~~~~~~~~~~~~~~~~~~~
#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

#.Buy a new car (in NYC).

Example 5: and its possible refinement.

Get from ⟨LA,old⟩ to ⟨NYC,new⟩.

Get from ⟨LA,old⟩ to NYC,old⟩.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#.Get from ⟨LA,old⟩ to ⟨Chicago,old⟩.
#.Get from ⟨Chicago,old⟩ to NYC,old⟩.

#.Get from ⟨NYC,old⟩ to ⟨NYC,new⟩.

I.e., the convention that unmentioned state components may not be changed
implies that the previous version would be as shown above.

Generalization:

Get from PRE to POST.

#.Get from PRE to MID.
#.Get from MID to POST.

PRE MID POST

Loosening the Coupling: Between the two sub-steps

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to NYC.

Loosening the Coupling: by weakening a precondition

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Illinois to NYC.

Loosening the Coupling: by weakening a precondition

Drive from LA to NYC.

#.Drive from California to Chicago.
#.Drive from Chicago to NYC.

Loosening the Coupling: or by strengthening a postcondition

Drive from LA to NYC.

#.Drive from LA to Chicago.
#.Drive from Chicago to Manhattan.

Loosening the Coupling: or by doing both.

Drive from LA to NYC.

#.Drive from California to Chicago.
#.Drive from Illinois to Manhattan.

LA

California

Chicago

Illinois

Manhattan

NYC

Specification P: Get from PRE to POST.

#.Get from A1 to B1.
#.Get from A2 to B2.

where
establishing PRE automatically establishes A1,
establishing B1 automatically establishes A2, and
establishing B2 automatically establishes POST.+

2-Step Sequential Refinement: In general

Specification P: Get from PRE to POST.

#.Get from A1 to B1.
#.Get from A2 to B2.
...
#.Get from An to Bn.

where
establishing PRE automatically establishes A1,
establishing Bk automatically establishes Ak+1, for k from 1 through n-1, and
establishing Bn automatically establishes POST.

n-Step Sequential Refinement: In general

Loosening in Practice: Consider an individual specification

#.Get from PRE to POST.

Program

Specification.

in the context of a program

Loosening in Practice: The specification

#.Get from PRE′ to POST′.

where PRE′ is any weakening of PRE, and POST′ is any strengthening
of POST.

#.Get from PRE to POST.

can be implemented by any code that satisfies the specification

Example 1: Precondition is essential, but postcondition can be strengthened

Get from x≥0 to y is a number that when squared equals x.
y = math.sqrt(x)

Any weakening of x≥0 would make the specification infeasible for real y, but we
are free to choose y as either the positive or negative root of x.

Example 2: Precondition is convenient, but not essential

Get from x≥0 to y is |x|.
y = x

The precondition x≥0 simplifies the code that sets y to the absolute value
of x, because in that case the absolute value of x is just x itself.

Example 3: Precondition is irrelevant

Get from x≥0 to y is x squared.
y = x * x

because x squared is x*x regardless of whether x is positive or negative.

Example 4: Precondition is customarily ignored

#.Get from array A’s elements are unique to A’s elements are
numerically ordered.

because conventional techniques for establishing the postcondition are
more general, and do not rely on the given precondition.

Example 5: Chapter-1 example, revisited

Given n≥0, output the integer part of the square root of n.

#.Given n≥0, let r be the integer part of the square root of n≥0.
print(r)

Consider the domain and range of the general-purpose output statement

print(r)

domain range

The domain is any state where variable r exists and contains a value, regardless of
whether it is the integer square root of n. The range is any state with the additional
property that the output ends with the given value.

Conjunctive Normal Form: A condition of the form

C1 and C2 and … and Cn

where each Ci is called a conjunct.

Example:

x is declared and x contains a value and x is greater than or equal to 0

state is NY and city is NYC

Conjunctive Normal Form: A condition in CNF can be weakened by
dropping a conjunct, e.g.,

Replace:

x is declared and x contains a value and x is greater than or equal to 0

with:

x is declared and x contains a value

and can be strengthened by appending an additional conjunct, e.g.,

Replace:

state is NY and city is NYC

with:

state is NY and city is NYC and borough is Manhattan

Implicit Preconditions: In practice, explicit preconditions are often omitted.

Get from LA to NYC.

#.Get to Chicago.
#.Get to St. Louis.
#.Get to NYC.

implicitly means

Get from LA to NYC.

#.(Given that we are in LA) Get to Chicago.
#.(Given that we are in Chicago) Get to St. Louis.
#.(Given that we are in St. Louis) Get to NYC.

Implicit Preconditions: The reader of

Get from LA to NYC.

#.Get to Chicago.
#.Get to St. Louis.
#.Get to NYC.

must infer the relevant precondition, and scan backwards to confirm
that it has been established and survives, i.e., has not subsequently
been invalidated.

Implicit Preconditions: Minimize the distance between code that
establishes a precondition, and code that relies on it, if possible.

k = 0
10 pages of code to do whatever.
k += 1

If the 10 pages have nothing to do with variable k, the following is better

k = 0
whatever()
k += 1

☞ Many short procedures are better than large blocks of code.

Implicit Preconditions: Minimize the distance between code that
establishes a precondition, and code that relies on it, if possible, especially
if the procedure can be placed outside of the scope of such a variable k.

If the distance remains great, consider an explicit indication of where the
precondition was established:

#.Given PRE (established at point p in the code), get to POST.

☞ Many short procedures are better than large blocks of code.

Problem Reduction: A special case of Sequential Refinement

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occur in A[0..k-1], for k
from 0 through n-1.

Problem Reduction: An example

☞ Solve a different problem, and use that solution to solve the original problem.

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occur in A[0..k-1], for k
from 0 through n-1.

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occur in A[0..k-1], for k
from 0 through n-1.

A′ 7 7 14 14 34

Problem Reduction: An example

☞ Solve a different problem, and use that solution to solve the original problem.

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7 A′ 7 7 14 14 34

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occur in A[0..k-1], for k
from 0 through n-1.

1 + the number of adjacent pairs of
unequal elements in A′, a version of A
rearranged into numerical order.

Problem Reduction: An example

☞ Solve a different problem, and use that solution to solve the original problem.

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occur in A[0..k-1], for k
from 0 through n-1.

1 + the number of adjacent pairs of
unequal elements in A′, a version of A
rearranged into numerical order.

In worst case, running time is
proportional to n2.

A′ 7 7 14 14 34

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occur in A[0..k-1], for k
from 0 through n-1.

1 + the number of adjacent pairs of
unequal elements in A′, a version of A
rearranged into numerical order.

In worst case, running time is
proportional to n2.

In worst case, running time is proportional to
n log n, i.e., time to sort an array of length n +
time to count the number of unequal
adjacent element pairs.

A′ 7 7 14 14 34

Problem Reduction: An example

How many distinct values occur in an int array A[0..n-1]?

A 14 7 14 34 7

Tally of each first instance of a value
i.e., each A[k] for which that value
doesn’t occur in A[0..k-1], for k
from 0 through n-1.

1 + the number of adjacent pairs of
unequal elements in A′, a version of A
rearranged into numerical order.

In worst case, running time is
proportional to n2.

In worst case, running time is proportional to
n log n, i.e., time to sort an array of length n +
time to count the number of unequal
adjacent element pairs.

A′ 7 7 14 14 34

Problem Reduction: An example

Specification P: Get from PRE to POST.

#.Get from PRE to A.
#.Get from B to POST.

where establishing A automatically establishes B.

Problem Reduction: In general

Specification P: Get from PRE to POST.

#.Get from PRE to A.
#.Get from B to POST.

where establishing A automatically establishes B.

Problem Reduction: In general

☞ Solve a different problem, and use that solution to solve the original problem.

Specification P: Get from PRE to POST.

Get from PRE to A.
~~~~~~~~~~~~~~~~~~
#.Define problem P′ based on PRE.
#.Solve problem P′.
#.Establish A from the solution to P′.

#.Get from B to POST.

where establishing A automatically establishes B.

Problem Reduction: In general

☞ Solve a different problem, and use that solution to solve the original problem.

Case Analysis: Implement a specification P as a choice of one step to execute
from among P1, ... , Pn.

Specification P.
if condition1:
 #.Specification P1.
elif condition2:
 #.Specification P2.
...
elif conditionn-1:
 #.Specification Pn-1.
else:
 #.Specification Pn.

Case Analysis: Implement a specification P as a choice of one step to execute
from among P1 and P2.

Specification P.
if condition1:
 #.Specification P1.

else:
 #.Specification P2.

Case Analysis: Implement a specification P as a choice of one step to execute
or not.

Specification P.
if condition1:
 #.Specification P1.

Case Analysis: Implement a specification P as a choice of one step to execute
from among P1, ... , Pn.

Specification P.
 if condition1:
 #.Specification P1.
 elif condition2:
 #.Specification P2.
 ...
 elif conditionn-1:
 #.Specification Pn-1.
 else:
 #.Specification Pn.

Appropriate when distinct program behaviors are required for different situations.

Case Analysis: Implement a specification P as a choice of one step to execute
from among P1, ... , Pn.

• In the real world: Animal, vegetable, or mineral?
• In a maze: Facing a wall or not?
• After a search: Found or not found?
• In mathematics: Positive or negative? Even or odd? Real or imaginary roots?

Appropriate when distinct program behaviors are required for different situations.

Case Analysis: An example

#.Let y be |x|.

Appropriate when distinct program behaviors are required for different situations.

Case Analysis: An example

Let y be |x|.
if x >= 0:
 y = x
else:
 y = -x

Appropriate when distinct program behaviors are required for different situations.

Case Analysis: An example

Let y be |x|.
if x >= 0:
 y = x
else:
 y = -x

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

Case Analysis: An example

Let y be |x|.
y = abs(y)

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

Case Analysis: A second example

#.Advance k to the next hour.

Case Analysis: A second example

Advance k to the next hour.
if k == 11:
 k = 0
else:
 k = k + 1

Case Analysis: A second example

Advance k to the next hour.
if k == 11:
 k = 0
else:
 k = k + 1

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

Case Analysis: A second example

Advance k to the next hour.
k = (k + 1) % 12

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

Case Analysis: A third example

#.Advance k to the previous hour.

Case Analysis: A third example

Advance k to the previous hour.
if k == 0:
 k = 11
else:
 k = k – 1

Case Analysis: A third example

Advance k to the previous hour.
if k == 0:
 k = 11
else:
 k = k – 1

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

Case Analysis: A third example

Advance k to the previous hour.
k = (k + 11) % 12

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

Case Analysis: A third example

Advance k to the previous hour.
k = (k + 11) % 12

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

Why not (k-1)%12 ?

Case Analysis: A third example

Advance k to the previous hour.
k = (k + 11) % 12

Why not (k-1)%12 ?
This would be fine in Python, but in other languages (e.g., Java), (k-1)%12 is
negative for negative k-1. The issue is avoided if we write (k+11)%12

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code
bloat.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Case Analysis: The condition in a Case Analysis is often the locus of error.

☞ Be alert to high-risk coding steps associated with binary choices: “==” or “!=”, “<”
or “<=”, “x” or “x-1”, condition or not(condition), positive or negative, 0-origin
or 1-origin, “even integers are divisible by 2, but array segments of odd length
have middle elements”.

Case Analysis: The condition in a Case Analysis is often the locus of error.

☞ Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: parity

#.Output whether n is odd or even.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Output whether n is odd or even.
if (n % 2) == 1:
 print("odd")
else:
 print("even")

Example: parity

Case Analysis: The condition in a Case Analysis is often the locus of error.

Output whether n is odd or even.
if (n % 2) == 1:
 print("odd")
else:
 print("even")

Example: parity

☞ Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Output whether n is odd or even.
if (n % 2) == 1:
 print("odd")
else:
 print("even")

The code is correct in Python, but because in some languages (e.g., Java) n%2 is
negative for negative n, the code is fragile.

Example: parity

☞ Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Output whether n is odd or even.
if (n % 2) == 0:
 print("even")
else:
 print("odd")

Example: parity, more robust

☞ Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

#.Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B * B) – (4 * A * C)) < 0:
 im = True
else:
 im = False

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B * B) – (4 * A * C)) < 0:
 im = True
else:
 im = False

☞ Be alert to high-risk coding steps associated with binary choices.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

Is the case of ((B*B)-(4*A*C))==0 correct?

☞ Be alert to high-risk coding steps associated with binary choices.

Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B * B) – (4 * A * C)) < 0:
 im = True
else:
 im = False

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

Is the case of ((B*B)-(4*A*C))==0 correct? Yes.

☞ Be alert to high-risk coding steps associated with binary choices.

Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B * B) – (4 * A * C)) < 0:
 im = True
else:
 im = False

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool # Roots are imaginary.
if ((B * B) – (4 * A * C)) < 0:
 im = True
else:
 im = False

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

#.Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: roots, real or imaginary

Let im be True iff the roots of quadratic Ax2+Bx+C=0 are imaginary.
im: bool = ((B * B) – (4 * A * C)) < 0 # Roots are imaginary.

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

#.Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if (m1 == m2) and (b1 != b2):
 print("parallel")
else:
 print("intersect")

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

☞ Be alert to high-risk coding steps associated with binary choices.

Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if (m1 == m2) and (b1 != b2):
 print("parallel")
else:
 print("intersect")

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

What if m1 is 0.0e0 and m2 is smallest floating-point number?

☞ Be alert to high-risk coding steps associated with binary choices.

Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if (m1 == m2) and (b1 != b2):
 print("parallel")
else:
 print("intersect")

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

What if m1==m2, but b1 is 0.0e0 and b2 is smallest floating-point number?

☞ Be alert to high-risk coding steps associated with binary choices.

Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if (m1 == m2) and (b1 != b2):
 print("parallel")
else:
 print("intersect")

Case Analysis: The condition in a Case Analysis is often the locus of error.

Example: Parallel or intersecting lines

Output whether lines y=m1·x+b1 and y=m2·x+b2 are parallel or intersect.
if compare-slopes-and-intercepts-wrt-tolerances:
 print("parallel")
else:
 print("intersect")

☞ Never test two floating-point numbers for equality or inequality.

Iterative Refinement: Implement a specification P by repeatedly executing
step P′.

Specification P.

#.Setup for P′.
while condition:
 #.Specification P′.

Iterative Refinement: Implement a specification P by repeatedly executing
step P′.

Invariant: The thing that stays the same, and allows P′ to remain applicable.

Variant: The thing that changes, and eventually causes the loop to stop.

Specification P.

#.Setup for P′.
while condition:
 #.Specification P′.

Iterative Refinement: Implement a specification P by repeatedly executing
step P′.

Invariant: The thing that stays the same, and allows P′ to remain applicable.

Variant: The thing that changes, and eventually causes the loop to stop.

Infinite loops have their utility, but termination is the norm.

Specification P.

#.Setup for P′.
while condition:
 #.Specification P′.

Iterative Refinement: Implement a specification P by repeatedly executing
step P′.

Invariant: The thing that stays the same, and allows P′ to remain applicable.

Variant: The thing that changes, and eventually causes the loop to stop.

Infinite loops have their utility, but termination is the norm. For termination, think of
the variant as a necessarily nonnegative integer that necessarily decreases by 1 on
each iteration. You can only do that a finite number of times.

Specification P.

#.Setup for P′.
while condition:
 #.Specification P′.

Iterative Refinement: Implement a specification P by repeatedly executing
step P′.

A fruitful real-world analogy: Hammering a nail into a block of wood.

Specification P.

#.Setup for P′.
while condition:
 #.Specification P′.

#.Drive a nail vertically into a block of wood.

Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height≥0. In doing so,

establish the invariant (nail vertical, and height≥0) and the

initial variant (height of nail).

Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height≥0. In doing so,

establish the invariant (nail vertical, and height≥0) and the

initial variant (height of nail).

while the-head-of-the-nail-sticks-out :

 #.Hit the nail with the hammer squarely. In doing so, maintain the invariant (by

 # hitting the nail vertically, but not so hard that its height becomes negative),

 # and reduce the variant (by hitting the nail hard enough to reduce the height

 # such that a finite number of hits suffices).

Drive a nail vertically into a block of wood.

#.Setup: Stabilize the nail vertically, with height≥0. In doing so,

establish the invariant (nail vertical, and height≥0) and the

initial variant (height of nail).

while the-head-of-the-nail-sticks-out :

 #.Hit the nail with the hammer squarely. In doing so, maintain the invariant (by

 # hitting the nail vertically, but not so hard that its height becomes negative),

 # and reduce the variant (by hitting the nail hard enough to reduce the height

 # such that a finite number of hits suffices).

#.The invariant still holds (nail vertical, and height≥0), and the

variant is reduced to zero (height==0).

Iterative Refinement: What can go wrong?

• Setup doesn’t establish the nail’s verticality (the invariant). The very
first hammer blow flattens the nail, or begins the process of bending
it, even if the loop body is perfectly correct.

Iterative Refinement: What can go wrong?

• Loop body doesn’t maintain the nail’s verticality (the invariant) because
it hits the nail at a crooked angle. Eventually, the nail is flattened.

Iterative Refinement: What can go wrong?

• Loop body doesn’t maintain the nail’s nonnegative height (the
invariant), splits the wood, and the nail goes into the table top.

Iterative Refinement: What can go wrong?

• Loop body makes insufficient progress (the variant). The loop runs
forever and the nail never gets flush with the surface.

This can be because the height is an infinite decreasing sequence that
doesn’t converge to zero, or because you hit a knot, and stop advancing
altogether.

No advancement: Use a feather instead of a hammer, or at a knot.

stuck state

Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

#.Make triangle point down.

Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

Make triangle point down.

#.Compute angle δ.
while not-pointing-down:
 #.Turn angle δ.

Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

Make triangle point down.

#.Compute angle δ.
while not-pointing-down:
 #.Turn angle δ.

Runs forever if δ is 120°

Cyclic advancement: Movement, but destined to return to a prior state.

orbit of states

Make triangle point down.

#.Compute angle δ.
while not-pointing-down:
 #.Turn angle δ.

Runs forever if δ is 120°

(Doesn’t happen in hammering a nail.)

Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

sequence of states

h: int = 10
while h > 0:
 h = h // 2

Terminates

Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

sequence of states

h: float = 10.0
while h > 0:
 h = h / 2

Terminates

Non-convergent advancement: Variant must be a nonnegative integer
that is reduced by at least 1 on each iteration.

sequence of states

zero: Rational = Rational(0,1)
two: Rational = Rational(2,1)
h3: Rational = Rational(10, 1)
while h3 != zero:

h3 = rational_divide(h3, two)

Runs forever (Code explained in Chapter 18.)

Iterative Refinement: In general

Specification P: Get from PRE to POST.

#.Setup: Get from PRE to INVARIANT.
while condition:
 #.Get from condition and INVARIANT to INVARIANT.

where not(condition) and INVARIANT entails POST.

POST

Iteration: To get to POST iteratively

Iteration: To get to POST iteratively, choose a weakened POST as INVARIANT

POST INVARIANT

Iteration: Then, iteratively change the INVARIANT’s parameters.

POST improving approximations

Example: Hammering a nail, the goal

POST

nail vertical and height=0

Example: Hammering a nail, set up the INVARIANT

POST INVARIANT

nail vertical and height=0
nail vertical and height≥0

Example: Hammering a nail, the process

POST

nail vertical and height=0

improving approximations

nail vertical and height≥0

nail vertical and height≥0

Example: Hammering a nail, the process

POST

nail vertical and height=0

improving approximations

nail vertical and height=0

nail vertical and height≥0

nail vertical and height≥0

Example: Integer division. The goal.

#.Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.

y y y y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

Example: Integer division. The process: Choose the INVARIANT …

#.Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.

y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT:

#.Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.

y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT: x=q*y+r, 0≤r , and 0≤q

Example: Integer division. … INVARIANT as a weakened POST.

Example: Integer division. The process …

Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = ___
q: int = ___
while condition:

y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT: x=q*y+r, 0≤r , and 0≤q

Example: Integer division. The process of maintaining the INVARIANT …

Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = ___
q: int = ___
while condition:

r = r - y
q += 1

y y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT: x=q*y+r, 0≤r , and 0≤q

Example: Integer division. … while reducing the VARIANT to 0 …

Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = ___
q: int = ___
while r >= y:

r = r - y
q += 1

y y y y y y

x

q
r

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT: x=q*y+r, 0≤r , and 0≤q

VARIANT: x-q*y

Example: Integer division. … after first having established the INVARIANT.

y

x

r
q

Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = x
q: int = 0
while r >= y:

r = r - y
q += 1

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT: x=q*y+r, 0≤r , and 0≤q

VARIANT: x-q*y

y

x

r
q

Example: Played in execution order, with nail and wood analogy: The setup.

Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = x
q: int = 0
while r >= y:

r = r - y
q += 1

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT: x=q*y+r, 0≤r , and 0≤q

VARIANT: x-q*y

x

Example: Played in execution order, with nail and wood analogy: The process.

y y y y y

x

q
r

Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = x
q: int = 0
while r >= y:

r = r - y
q += 1

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT: x=q*y+r, 0≤r , and 0≤q

VARIANT: x-q*y

Example: Played in execution order, with nail and wood analogy: Termination.

y y y y y y y y

x

q
r

Given int x and int y, 0≤x and 0<y, set int q to x//y, and int r to x%y.
r: int = x
q: int = 0
while r >= y:

r = r - y
q += 1

PRE: 0≤x, 0<y

POST: x=q*y+r, 0≤r<y, and 0≤q

INVARIANT: x=q*y+r, 0≤r , and 0≤q

VARIANT: x-q*y

Example: Euclid’s Algorithm, the goal

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y.""“

 return ____

Let X and Y be positive integers, GCD be the mathematical greatest-common-divisor
function, and GCD(X, Y) = d. When invoked on argument expressions with values X and Y,
the Python function gcd is required to return d.

Example: Euclid’s Algorithm, the INVARIANT

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y."""
 while condition:

 return ____

We plan to update x or y on each iteration while maintaining the INVARIANT

x > 0 and y > 0 and GCD(x, y) = d

which holds initially because invocation of gcd with argument values X and Y
initializes parameters x and y to X and Y, respectively.

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y."""
 while x != y:

 return x

To assure termination, we will reduce the non-negative VARIANT expression x+y by
at least 1 on each iteration. You can only do that a finite number of times (while
guaranteeing that x+y remains positive) before x+y stops changing. When it does, we
must show that x=y. (It remains until after knowing how x and y are updated to show
that x+y is reduced by 1 on each iteration.)

The return statement implements the observation that the gcd of any number and
itself is that number.

Example: Euclid’s Algorithm, the VARIANT

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y."""
 while x != y:
 if _____:

 else:

 return x

There are only two cases: either x > y or x < y (the third possibility of x = y having been
ruled out by the loop termination condition).

Example: Euclid’s Algorithm, Case Analysis

Example: Euclid’s Algorithm, Case Analysis, x > y

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y."""
 while x != y:
 if x > y:

 else:

 return x

First case: x > y. Observe by diagrammatic reasoning (next slide), that x can be replaced
by x - y while maintaining the INVARIANT, i.e., designating the new value of x by x′, then

x′> 0 and y > 0 and GCD(x′, y) = d

That x’ > 0 follows from x > y.

d d d d d d d d

x

d d d d d

y d d d

x - y

then y and x-y
have a common
divisor of d.

if x and y have a
common divisor d

Example: Euclid’s Algorithm, Case Analysis, x > y

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y."""
 while x != y:
 if x > y:
 x = x - y
 else:

 return x

Example: Euclid’s Algorithm, Case Analysis, x > y

First case: x > y. Observe by diagrammatic reasoning (next slide), that x can be replaced
by x - y while maintaining the INVARIANT, i.e., designating the new value of x by x′, then

x′> 0 and y > 0 and GCD(x′, y) = d

That x’ > 0 follows from x > y. This has been done, above.

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y."""
 while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x
 return x

Second case: x < y. Follows by the symmetric argument.

Example: Euclid’s Algorithm, Case Analysis, x < y, by symmetry

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y."""
 while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x
 return x

If the loop stops, the INVARIANT and negation of the condition imply that the value
returned is correct, i.e.,

x > 0 and y > 0 and GCD(x, y) = d and x = y implies x = d.

This is called partial correctness.

Example: Euclid’s Algorithm, correctness

def gcd(x:int, y:int) -> int:
 """Given x>0 and y>0, return the greatest common divisor of x and y."""
 while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x
 return x

Why does x+y stop changing, with x=y, and therefore the iteration stops?

Because one of x or y is reduced by at least 1 on each iteration, and if x is not equal to y,
then in the next iteration x+y can be further reduced.

Partial correctness plus guaranteed termination is called total correctness.

Example: Euclid’s Algorithm, termination

Termination: Can be nontrivial, i.e., hard, unknown, or even unknowable

Termination: Are the following two code segments equivalent?

Given input n>0, output “done”.
n = int(input())
print("done")

Given input n>0, output “done”.
n = int(input())
while n != 1:
 if (n % 2) == 0:
 n = n // 2
 else:
 n = (3 * n) + 1
print("done")

Answer turns on whether the loop terminates for every input.

Termination: Are the following two code segments equivalent?

Given input n>0, output “done”.
n = int(input())
print("done")

Given input n>0, output “done”.
n = int(input())
while n != 1:
 if (n % 2) == 0:
 n = n // 2
 else:
 n = (3 * n) + 1
print("done")

Sample input 3:
3 ➔ 10 ➔ 5 ➔ 16 ➔ 8 ➔ 4 ➔ 2 ➔ 1

Termination: Are the following two code segments equivalent?

Given input n>0, output “done”.
n = int(input())
print("done")

Given input n>0, output “done”.
n = int(input())
while n != 1:
 if (n % 2) == 0:
 n = n // 2
 else:
 n = (3 * n) + 1
print("done")

That every such sequence reaches 1 is an open problem in mathematics.

Collatz Conjecture

n

4, 2, 1

Another approach toHippocratic Coding: AnalysisRecursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblems.

Specification P.
if base-case :
 #.P0.
else:
 #.Identify smaller instance(s) of P within P itself, apply this
 # approach to each such instance, and combine the results.

Another approach toHippocratic Coding: AnalysisSelf-similarity: Same or similar structure at every scale

543210

Another approach toHippocratic Coding: AnalysisRecursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblems.

Specification P.
if base-case :
 #.P0.
else:
 #.Identify smaller instance(s) of P within P itself, apply this
 # approach to each such instance, and combine the results.

To use the refinement within both the specification and in the refinement itself,
define it separately as a procedure, and invoke it by name.

Another approach toHippocratic Coding: AnalysisRecursive Refinement: Implement specification P by using the very
refinement being defined to solve self-similar subproblems.

Specification P.
P(arguments)

and elsewhere define:
def P(parameters) -> type:
 if base-case :
 #.P0.
 else:
 #.Identify smaller instance(s) of P within P itself, invoke
 # P(arguments) on each such instance, and combine the results.

To use the refinement within both the specification and in the refinement itself,
define it separately as a procedure, and invoke it by name.

Another approach toHippocratic Coding: AnalysisExample: 5 4 3 2 1 BLASTOFF

Count down from 5, and say “BLASTOFF” at 0.
countdown(5)

and elsewhere define:

def countdown(n: int) -> None:
 """Count down from n, and say "BLASTOFF" at zero."""
 if n == 0:
 print("BLASTOFF")
 else:
 print(n)
 countdown(n - 1)

Another approach toHippocratic Coding: AnalysisA second example: (…(((0+1)+2)+3)+…+100)

Output the sum of 1 through 100.
print(sum(100))

and elsewhere define:

def sum(n: int) -> int:
 """Return the sum of 0 through n."""
 if n == 0:
 return 0
 else:
 return sum(n - 1) + n

Another approach toHippocratic Coding: AnalysisA third example: (1+(2+(3+…+(100+0)…)))

Output the sum of 1 through 100.
print(sum(100))

and elsewhere define:

def sum(n:int) -> int:
 """Return the sum of 0 through n."""
 return sumAux(n,0)

def sumAux(n: int, acc: int) -> int:
 """Return the sum of 0 through n, and acc."""
 if n == 0:
 return acc
 else:
 return sumAux(n - 1, n + acc)

Library of Patterns: Implement specification P by using a previously used and
analyzed parameterized composition of constructs.

Build your personal library over your lifetime.

Extended Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells
separated (or not) from adjacent cells by walls. One can move between
adjacent cells if and only if no wall divides them. A solid wall surrounds
the entire grid of cells, so there is no escape from the maze.
Problem Statement. Write a program that inputs a maze, and outputs a
direct path from the upper-left cell to the lower-right cell if such a path
exists, or outputs “Unreachable” otherwise. A path is direct if it never
visits any cell more than once.

1 2 3

5 4

6 7

8

9 10 11

Extended Example: Running a Maze

Background. Define a maze to be a square two-dimensional grid of cells
separated (or not) from adjacent cells by walls. One can move between
adjacent cells if and only if no wall divides them. A solid wall surrounds
the entire grid of cells, so there is no escape from the maze.
Problem Statement. Write a program that inputs a maze, and outputs a
direct path from the upper-left cell to the lower-right cell if such a path
exists, or outputs “Unreachable” otherwise. A path is direct if it never
visits any cell more than once.

1 2 3

5 4

6 7

8

9 10 11

☞ Use Stepwise Refinement. Write simple code immediately, otherwise refine
the problem statement using: (a) Sequential Refinement, (b) Case Analysis,
(c) Iterative Refinement, (d) a known pattern.

#.Find path in maze from upper-left to lower-right, if one exists.

Specify the goal

Find path in maze from upper-left to lower-right, if one exists.
--
#.Input.
#.Compute.
#.Output.

Refine with an architecture

☞ Master stylized code patterns, and use them.

Find path in maze from upper-left to lower-right, if one exists.
--
#.Input a maze of arbitrary size, or output “malformed input” and
stop if the input is improper. Input format: TBD.
#.Compute a direct path through the maze, if one exists.
#.Output the direct path found, or “unreachable” if there is none.
Output format: TBD.

Refine with an architecture and elaborate

☞ Master stylized code patterns, and use them.

Find path in maze from upper-left to lower-right, if one exists.
--
#.Input a maze of arbitrary size, or output “malformed input” and
stop if the input is improper. Input format: TBD.
#.Compute a direct path through the maze, if one exists.
#.Output the direct path found, or “unreachable” if there is none.
Output format: TBD.

Ignore Input and Output, and focus on essence

#.Compute a direct path through the maze, if one exists.

Ignore Input and Output, and focus on essence

Investigate:

☞ Analyze first.
☞ Confirm your understanding of a programming problem with concrete examples.

Elaborate the expected input/output mapping explicitly.
☞ There is no shame in reasoning with concrete examples.
☞ Simple examples may be as good (or better) than complicated ones for guiding

you toward a solution.
☞ Seek algorithmic inspiration from experience. Hand-simulate an algorithm that is

in your “wetware”. Be introspective. Ask yourself: What am I doing?

Example 1

Begin with a (near) empty maze

Investigate:

1 2 3 4 5

6

7

8

9

Example 1

Traverse clockwise along the perimeter

Investigate:

1 2 3 4 5

6

7

8

9

Example 1

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

Interpose a protruding wall. Continue excursion along it, pirouette to
its other size, and continue.

Investigate:

1 2 3 4 5

6

7

8

9

Example 1

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

Interpose a second protruding wall. Continue excursion along it
(effectively backing out of a cul-de-sac), and continue.

Investigate:

1 2 3 4 5

6

7

8

9

Example 1

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

1

2

3

4

5 6 7 8 9

Example 4

Interpose a third protruding wall. Continue excursion along it
(effectively backing out of a room-sized cul-de-sac), and continue.

Investigate:

1 2 3 4 5

6

7

8

9

Example 1

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

1

2

3

4

5 6 7 8 9

Example 4 Example 5

Block access to lower-right cell. Continue excursion along bottom and
left perimeter, and then stop in upper-left cell.

Investigate:

#.Compute a direct path through the maze, if one exists.

Return to code

#.Compute a direct path through the maze, if one exists.

☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

Return to code, and simplify

Compute a direct path through the maze, if one exists.

while _________ :

☞ If you “smell a loop”, write it down.

Iterative Refinement:

Compute a direct path through the maze, if one exists.
____3____
while ____2____ :
 ____1____
____4____

Iterative Refinement:

☞ Code iterations in the following order: (1) body, (2) termination, (3) initialization,
(4) finalization, (5) boundary conditions.

Compute a direct path through the maze, if one exists.
____3____
while ____2____ :
 ____1____
____4____

The loop body

☞ Body. Do 1st.

Example 1

Pick an example, and imagine running the program for a while

☞ Body. Do 1st. Play “musical chairs”

Example 1

☞ Body. Do 1st. Play “musical chairs”

Pick an example, and imagine running the program for a while

Example 1

☞ Body. Do 1st. Play “musical chairs”

Pick an example, and imagine running the program for a while

Example 1

Stop at an arbitrary moment

☞ Body. Do 1st. Play “musical chairs” and “stop the music”.

↑

Example 1

Characterize the state

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again.

Facing a wall

↑

Example 1

Characterize the state, and the state transition

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?

INVARIANT: Hand on wall

↑

Example 1

☞ Body. Do 1st. Play “musical chairs” and “stop the music”. Characterize the “program state”
when the music stops, i.e., at the instant the loop-body is about to execute yet again. If
you had stopped one iteration later, what would have looked the same (the “loop
invariant”), and what would have changed (the “loop variant”)?

INVARIANT: Hand on wall

VARIANT: Distance to goal

Characterize the state, and the state transition

↑

Example 1

☞ A Case Analysis in the loop body is often needed for characterizing different
ways in which to decrease the loop variant while maintaining the loop invariant.

INVARIANT: Hand on wall

VARIANT: Distance to goal

Characterize the state, and the state transition

↑

Example 1

Transition rule

↑ ↑(1)

INVARIANT: Hand on wall

VARIANT: Distance to goal

Characterize the state, and the state transition

↑

Example 1

Transition rule

Resume playing musical chairs, applying the transition rule

↑ ↑(1)

INVARIANT: Hand on wall

VARIANT: Distance to goal

→

Example 1

Transition rules

Introduce a new transition rule when needed

↑ →

↑ ↑(1)

(2)

INVARIANT: Hand on wall

VARIANT: Distance to goal

→

Example 1

Transition rules

and resume playing musical chairs

↑ →

↑ ↑(1)

(2)

→

Example 1

Transition rules

↑ →

↑ ↑(1)

(2)

and resume playing musical chairs

→

Example 1

Transition rules

↑ →

↑ ↑(1)

(2)

and resume playing musical chairs

→

Example 1

Transition rules

↑ →

↑ ↑(1)

(2)

and resume playing musical chairs

↓

Example 2

Try another example

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

Transition rules

↑

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Try another example, and introduce a new transition rule when needed

↑

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Then resume playing musical chairs

→

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Then resume playing musical chairs

→

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Then resume playing musical chairs

→

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

Transition rules

Then resume playing musical chairs

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

→

Example 3

Transition rules

Try another example, and see that the three transition rules suffice

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

←

Example 4

Transition rules

Try another example, and see that the three transition rules get you far

Numbering reflects the direct path

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

↓

Example 4

↓

→

(4)

Transition rules

until a fourth rule is needed

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

Resume

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

←

Example 4

↓

→

(4)

Transition rules

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

←

Example 4

↓

→

(4)

Transition rules

Resume

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

→

Example 4

↓

→

(4)

Transition rules

Resume

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

↑

Example 4

↓

→

(4)

Transition rules

Resume, and go all the way

1 2 3 4 5

8 7 6

9 10 11

12

13

Example 2

And yet another example

1 2 3 4 5

6

7

8

9

Example 1

↑ →

↑ ↑(1)

(2)

↓

↑(3)

1 2 3 4 5

8 7 6

9

10 11 12

13

Example 3

1

2

3

4

5 6 7 8 9

Example 4

↓

→

(4)

Transition rules

←

Example 5
Numbering reflects the direct path

Compute a direct path through the maze, if one exists.

while _________ :
 if _________ :

 elif _________ :

 elif _________ :

 else:

The loop body: One case for each transition rule

The loop body: One case for each transition rule, but they are too complex.

Compute a direct path through the maze, if one exists.

while _________ :
 if _________ :

 elif _________ :

 elif _________ :

 else:

The loop body: One case for each transition rule, but they are too complex.
For example: ↑ ↑(1)

Compute a direct path through the maze, if one exists.

while _________ :
 if two-colinear-walls-not-separated-by-a-perpendicular-wall:
 #.sidestep.
 elif _________ :

 elif _________ :

 else:

Idea: Implement coarse-grain transition steps with micro-operations

↑ →

↑ → →

↓ ← ← ↓

↓ ← ← ↓

↓

↑

↓ →

→ → ↑

()

() () ()

()

()(1)

(2)

(3)

(4)

Idea: Implement coarse-grain transition steps with micro-operations

↑ →

↑ → →

↓ ← ← ↓

↓ ← ← ↓

↓

↑

↓ →

→ → ↑

()

() () ()

()

()(1)

(2)

(3)

(4)

Turn 90°clockwise Step forward and turn 90°counterclockwise

Idea: Implement coarse-grain transition steps with micro-operations

↑ →

↑ → →

↓ ← ← ↓

↓ ← ← ↓

↓

↑

↓ →

→ → ↑

()

() () ()

()

()(1)

(2)

(3)

(4)

new INVARIANT: Hand on wall or door
new VARIANT: Number of wall segments or doors to goal

Turn 90°clockwise Step forward and turn 90°counterclockwise

Compute a direct path through the maze, if one exists.

while _________ :
 if facing-wall:
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

The loop body: Now only two simpler cases to consider.

new INVARIANT: Hand on wall or door
new VARIANT: Number of wall segments or doors to goal

Iteration: (2) termination

Compute a direct path through the maze, if one exists.

while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall:
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

Iteration: (3) initialization

Compute a direct path through the maze, if one exists.
~~
#.Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall:
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

Iteration: Correctness relies on subtle problem constraints

Compute a direct path through the maze, if one exists.
~~
#.Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall:
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

Iteration: Correctness relies on subtle problem constraints

1 8 7

2 6

3 4 5

5 4 3

6 1 2

7 8

1 2 3 4 5

16 6

15 7

14 8

13 12 11 10 9

If started facing down, not up If outer wall not solid If cheese could be in interior cell

Iteration: (4) finalization (nothing to do)

Compute a direct path through the maze, if one exists.
~~
#.Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall:
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

The core algorithm is in hand

Compute a direct path through the maze, if one exists.
~~
#.Start in upper-left cell, facing up.
while not(in-lower-right) and not(in-upper-left-about-to-cycle):
 if facing-wall:
 #.Turn 90° clockwise.
 else:
 #.Step forward.
 #.Turn 90° counterclockwise.

	Title
	Slide 1

	Introduction
	Slide 2

	DivideAndConquer
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	Sequential Refinement
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

	Case Analysis
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

	Iterative Refinement
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163

	Recursive Refinement
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170

	Library of Patterns
	Slide 171

	ExtendedExample
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232

