Principled Programming

Introduction to Coding in Any Imperative Language

Tim Teitelbaum

Emeritus Professor
Department of Computer Science
Cornell University

Specifications and Implementations

Copyright©2024 by Tim Teitelbaum; Most recent revision, 08/13/2025

We describe the specification of various kinds of programming-language constructs,
and how their implementations contribute to a program that meets its requirements:

e Statements, which define effects.
e Declarations, which create program variables.
e Methods, which group statements and declarations into meaningful operations.

e Classes, which aggregate methods and declarations into coherent modules.

uo3oNpoJuj

Programs serve a purpose. They satisfy a requirement.

suoijeolyioads Juswajels

Programs serve a purpose. They satisfy a requirement.

Some requirements are small: Square a number.
Some requirements are large: Control a rocket to the moon.

Regardless, our goal is to write a program that satisfies a requirement.

suoijeolyioads Juswajels

A specification, written as comment, is a precise articulation of a requirement.

#.Specification.

suoijeolyioads Juswajels

A specification, written as comment, is a precise articulation of a requirement.

#.Specification.

The dot (.) after the hash mark (#) signifies that the specification has not yet been implemented.

suoijeolyioads Juswajels

An implementation, aligned below it, says how to meet the requirement.

' # Specification.
' Implementation

suonejuswa|dwy|
suonesljioadg Jusawajels

Write specifications as imperatives that say what must be accomplished.

' # Specification.
' Implementation

suonejuswa|dwy|
suonesljioadg Jusawajels

Write specifications as imperatives that say what must be accomplished.

' # Specification.
' Implementation

Sample program-segment derivations starting with the specification-implementation pattern.

suonejuswa|dwy|
suonesljioadg Jusawajels

Write specifications as imperatives that say what must be accomplished.

' # Specification.
' Implementation

Specification.
Implementation

suonejuswa|dwy|
suonesljioadg Jusawajels

Write specifications as imperatives that say what must be accomplished.

' # Specification.
' Implementation

Output the square of an integer that is provided as input.
Implementation

suonejuswa|dwy|
suonesljioadg Jusawajels

Write implementations that say how to do so.

' # Specification.
' Implementation

Output the square of an integer that is provided as input.
n = int(input())
print(n * n)

suonejuswa|dwy|
suonesljioadg Jusawajels

A given specification can be implemented in multiple ways.

' # Specification.
' Implementation

— # Output the square of an integer that is provided as input.
2 h = int(input())
= print(n * n)

suonejuswa|dwy|
suonesljioadg Jusawajels

WAY 2

A given specification can be implemented in multiple ways.

' # Specification.
' Implementation

n = int(input())
#.Let s be the square of n.
print(s)

suonejuswa|dwy|
suonesljioadg Jusawajels

When the implementation of one specification contains another specification, the first
should be followed by a line of dashes to indicate that the first specification is a level
above its implementation.

A given specification can be implemented in multiple ways.

' # Specification.
' Implementation

H

n = int(input())
#.Let s be the square of n.

print(s)

suonejuswa|dwy|

suoijeolyioads Juswajels

WAY 2

A given specification can be implemented in multiple ways.

' # Specification.
' Implementation

Output the square of an integer that

n = int(input())
#.Let s be the square of n.

print(s)

When the specification is not yet implemented, it can stand as a single line within
other lines, with no vertical whitespace around it.

1S provided as input.

suonejuswa|dwy|

suoijeolyioads Juswajels

WAY 2a

N

Y

=

° '3

A given specification can be implemented in multiple ways. g g
e | ®
' # Specification. ! EI_ %2
' Implementation ! Q) -8
"""""""""""""""""""" T o
Output the square of an integer that is provided as input. g Eli
ST T e w O
n = int(input()) 2‘
Let s be the square of n. gg
S = n * N m

print(s)

WAY 2a

When the specification is not yet implemented, it can stand as a single line within
other lines, with no vertical whitespace around it. But once it has been implemented,
it (together with its implementation) should be set off from the rest with blank lines.

A given specification can be implemented in multiple ways.

' # Specification.
' Implementation

Output the square of an int r that is provided as input.

suonejuswa|dwy|

suoijeolyioads Juswajels

WAY 2b

A given specification can be implemented in multiple ways.

' # Specification.
' Implementation

n = int(input())

Let s be the square of n.
m = abs(n)
S =0
for k in range(@, m):
S =S +m

print(s)

suonejuswa|dwy|

suoijeolyioads Juswajels

Write specifications as imperatives.

Output the square of an integer that is provided as input.
n = int(input()); print(n * n)

Avoid meandering descriptions.

9|35 uoneayyoads
suoljesljioads juswaljels

Be succinct. Eliminate needless words.

Output the square of an integer that—is provided as input.
n = int(input()); print(n * n)

9|35 uoneayyoads
suoljesljioads juswaljels

== Repeatedly improve comments by relentless copy editing.

By convention, state input before output.

Input an integer, and output the square of that integer.
n = int(input()); print(n * n)

9|35 uoneayyoads
suoljesljioads juswaljels

Use pronouns.

Input an integer, and output its square.
n = int(input()); print(n * n)

9|35 uoneayyoads
suoljesljioads juswaljels

Use letters as pronouns.

Input integer k, and output k squared.
n = int(input()); print(n * n)

9|35 uoneayyoads
suoljesljioads juswaljels

Use letters as pronouns.

Input integer j, and output j squared.
n = int(input()); print(n * n)

The scope of such a pronoun is local to the specification.

9|35 uoneayyoads
suoljesljioads juswaljels

Use letters as pronouns, or as the names of variables.

Input integer n, and output n squared.
n = int(input()); print(n * n)

9|35 uoneayyoads
suoljesljioads juswaljels

Use letters as pronouns, or as the names of variables.

Input integer n, and output n squared.
print(math.pow(int(input()), 2)

But in this implementation there is no variable n, so n must be a pronoun.

9|35 uoneayyoads
suoljesljioads juswaljels

Use programming-language expressions in specifications, if you wish.

Input integer n, and output n*n.
n = int(input()); print(n * n)

9|35 uoneayyoads
suoljesljioads juswaljels

But an expression in a specification isn’t necessarily computed.

Input integer x, and output the number n such that n*n=x.
print(math.sqrt(int(input()))

9|35 uoneayyoads
suoljesljioads juswaljels

Suppose, in a program, you need to exchange the values of variables x and y.

Program

apo) |9na7-19Y3IH se soads

suoijeolyioads Juswajels

Write the specification as if in a higher-level programming language.

#.Swap x and vy.

== \Write comments as an integral part of the coding process, not as
afterthoughts.

apo) |9na7-19Y3IH se soads

suoijeolyioads Juswajels

Defer implementation so you don’t get distracted. Move on to other matters.

#.Swap x and vy.

other matters

suoijeolyioads Juswajels

== \Write comments as an integral part of the coding process, not as
afterthoughts.

apo) |9na7-19Y3IH se soads

Or implement it now, if simple enough to not get distracted.

Swap x and vy.
temp = X

X =Y
y = temp

other matters

suoijeolyioads Juswajels

== \Write comments as an integral part of the coding process, not as
afterthoughts.

apo) |9na7-19Y3IH se soads

Then ignore it in considering the specification’s relationship to other matters.

Let your eye skip over the implementation.

Swap x and vy.
temp = X

X =Y
y = temp

other matters

suoijeolyioads Juswajels

== \Write comments as an integral part of the coding process, not as
afterthoughts.

apo) |9na7-19Y3IH se soads

Then ignore it in considering the specification’s relationship to other matters.

Let your eye skip over the implementation
Swap x and vy. as if it were elided.

other matters

suoijeolyioads Juswajels

== \Write comments as an integral part of the coding process, not as
afterthoughts.

apo) |9na7-19Y3IH se soads

An implementation can include another specification

Swap x and vy.

Copy x to temp.

#.
X
y

y
temp

other matters

apo) |9na7-19Y3IH se soads

suoijeolyioads Juswajels

which is then implemented.

Swap x and vy.

Copy x to temp.
temp = X

X =Y
y = temp

other matters

apo) |9na7-19Y3IH se soads

suoijeolyioads Juswajels

A specification faces two directions, like the Roman god Janus.

Swap x and vy.

Copy x to temp.
temp = X

X =Yy
y = temp
other matters

apo) |9na7-19Y3IH se soads

suoijeolyioads Juswajels

Outward, it is part of the implementation of an encompassing specification.

Swap x and vy.

Copy x to temp.
temp = X

X =Yy
y = temp
other matters

apo) |9na7-19Y3IH se soads

suoijeolyioads Juswajels

Inward, it is a specification that is being implemented.

—C
—

Swap x and vy.

Copy x to temp.
temp = X

X =Yy
y = temp
other matters

apo) |9na7-19Y3IH se soads

suoijeolyioads Juswajels

Avoid redundant specifications that say the obvious.

Copy x to temp.
temp = X

other matters

suoijeolyioads Juswajels

= Omit specifications whose implementations are at least as brief and
clear as the specification itself.

apo) |9na7-19Y3IH se soads

Avoid redundant specifications that say the obvious.

temp = X

other matters

suoijeolyioads Juswajels

= Omit specifications whose implementations are at least as brief and
clear as the specification itself.

apo) |9na7-19Y3IH se soads

A specification is a contract with the rest of the program that says what
must be accomplished, not how to do so.

Program

Specification.

Implementation

Proviso: As long as the program does this and that.
Promise: The specification (and its implementation) will do thus and such.

&MOH 10N éIeyM
suoijeolyioads Juswajels

A specification helps to control complexity.

Program

Specification.

Implementation

The contract (double line) partitions code into the specification and its
implementation (on the one hand), and the rest of the program (on the other).

&MOH 10N éIeyM
suoijeolyioads Juswajels

A specification is both constraining and liberating.

Program

Specification.

Implementation

Constraining: (If the proviso is met) then it must do what is required.
Liberating: But its implementation is free to do so in any way it wants.

EMOH 10N éIeyM
suoijeolyioads Juswajels

A specification promotes pliability and comprehensibility.

Program

Specification.

Implementation

Pliability: The implementation can be changed without affecting the rest of
the program.

Comprehensibility: The program can ignore implementation details not
mentioned by the specification.

EMOH 10N éIeyM
suoijeolyioads Juswajels

Specifications encapsulate details and hide information behind abstraction
barriers.

Program

Specification.

&MOH 10N é1BYM

Implementation

suoijeolyioads Juswajels

These notions are central to object-oriented programming (discussed later, but
already relevant at the level of statement specifications).

An Input/Output specification (“1/O spec”) reads and writes external data

#.Input integer n, and output n squared.

| input sequence ||:>
it}

input cursor

Computer
= Memory
Processor Code || Values

|:> I output sequence

$309)J3 pue sajels
suoijeolyioads Juswajels

Alternatively, an I/O spec sets values of some variables from values of

other variables, leaving the external data unchanged.

#.Given integer variable n, let variable s be n squared.

input sequence

i

input cursor

=

Computer
Processo:r ; Memory
Code |Va|ues|

"

output sequence

$309)J3 pue sajels
suoijeolyioads Juswajels

Alternatively, an |I/O spec sets values of some variables from values of
other variables, leaving the external data unchanged.

#.Given integer variable n, let variable s be n squared.

Before After

n| 4 | inputvariable n| 4

s| 9 s| 16 | output variable

$309)J3 pue sajels
suoijeolyioads Juswajels

In general, an 1/O spec requires changing a before state into an after state.

#.Given before state, establish after state.

$309)J3 pue sajels
suoijeolyioads Juswajels

In general, an 1/O spec requires changing a before state into an after state.

#.Given precondition, establish postcondition.

Before After

described by precondition described by postcondition

$309)J3 pue sajels
suoijeolyioads Juswajels

Use pronouns to distinguish the before and after values of a variable that

is both input and output

#.Swap x and vy.

Before
x| 4
yl 9

input variable

input variable

X

output variable

output variable

$309)J3 pue sajels
suoijeolyioads Juswajels

Use pronouns to distinguish the before and after values of a variable that
is both input and output

#.Given x=X and y=Y, establish x=Y and y=X.

Before After

x| 4 input variable x| 9 output variable

yl 9 input variable y| 4 output variable

$309)J3 pue sajels
suoijeolyioads Juswajels

A specification says what must happen when the precondition holds

#.Given x20, let y be the square root of x.

Before
x| 4
yl 9

input variable

X

After

output variable

$309)J3 pue sajels
suoijeolyioads Juswajels

But says nothing about what may happen otherwise.

#.Given x20, let y be the square root of x.

Before
x| -4
yl 9

input variable

X

After

output variable

$309)J3 pue sajels
suoijeolyioads Juswajels

But says nothing about what may happen otherwise.

#.Given x20, let y be the square root of x.

Before After

x| -4 | inputvariable

yl 9

$309)J3 pue sajels
suoijeolyioads Juswajels

Reaching a specification whose precondition doesn’t hold is indicative of an
error, e.g., we expect X to be nonnegative, so it was incorrectly computed.

#.Given x20, let y be the square root of x.

Before After

x| -4 | inputvariable

$309)J3 pue sajels
suoijeolyioads Juswajels

Interrupt a program’s execution. Before powering the computer down,
save all that you will need to resume later. This is the state.

state and state space

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

The effect of executing code is to transition from one state to another.

)

state transition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

#.Given precondition, establish postcondition .

The specification requires transition from any
state satisfying the precondition to some state
satisfying the postcondition.

precondition to postcondition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

#.0utput “Hello World”.

The specification requires transition from any
state whatsoever to a state where the output
ends with “Hello World”.

precondition to postcondition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

#.Swap x and y.

The specification requires transition from any state
containing variables x and y to a state where the
contents of x and y have been exchanged.

precondition to postcondition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

Define sets of states either in English, or using Boolean expressions.

In code, Boolean expressions control execution flow:

Set y to the square root of x if x is
not negative, and @ otherwise.

if x >= 0:

y = math.sqgrt(x)
else:

y =0

precondition to postcondition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

Define sets of states either in English, or using Boolean expressions.

In specifications, Boolean expressions define state sets:
#.Given x20, let y be the square root of x.

Specifically, the set of all states in which the given
Boolean expression is true.

precondition to postcondition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

Transition to any state satisfying the postcondition is allowed.

For example,

Given x20, let y be the square root of x.
y = math.sqgrt(x)
or

Given x20, let y be the square root of x.
y = -math.sqrt(x)

precondition to postcondition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

Statement Specifications
Conditions and Sets of States

®B

@A

A state either satisfies a condition, or it doesn’t.
condition

A weakened condition satisfies more states than the original condition.

weakened condition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

A strengthened condition satisfies fewer states than the original condition.

@

strengthened condition

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

Statement Specifications
Conditions and Sets of States

NYC, the city of New York.

A geographical example:
condition

A geographical example:

weakened condition

NYC, the city of New York.

NY, the (USA) state of New York.

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

A geographical example:

strengthened condition

NYC, the city of New York.

NY, the (USA) state of New York.

Manhattan, the borough of NYC.

S9]e1S JO S}9S puk suonIpuo)

suoijeolyioads Juswajels

Methods can protect themselves from misuse by their clients by explicitly
checking the validity of their arguments, and aborting execution if any are
invalid.

SUOIJIBSSY

Such a protection may derive from a built-in check, e.g., integer division by
0 aborts execution:

Given n!=0, return x/n.
def nth(x:int, n:int) -> int:
return x // n

suoijeolyioads Juswajels

Consider this computation. If n turns out to be 0 by mistake, method nth
will abort execution:

SUOIJIBSSY

Compute n!=0 such that blah blah.

Given n!=0, let y be the nth part of x.
y = nth(x, n)

Whatever.

suoijeolyioads Juswajels

Aborting execution early is far better than having Whatever crash
(possibly) much later due to a crazy value of n.

This similar code is just as vulnerable to the error in the computation of n,
but without the protection of nth, will likely crash in Whatever.

SUOIJIBSSY

Compute n!=0 such that blah blah.

Given n!=0, do Whatever.

suoijeolyioads Juswajels

It can protect itself by doing the same check as nth using an assert:

SUOIJIBSSY

Compute n!=0 such that blah blah.

Given n!=0, do Whatever.
assert n!=0, "blah blah computed a zero n"

suoijeolyioads Juswajels

é Abort execution early if the precondition of Whatever doesn’t hold

It can protect itself by doing the same check as nth using an assert:

SUOIJIBSSY

Compute n!=0 such that blah blah.

assert n!=0, "blah blah computed a zero n"

Given n!=0, do Whatever.

suoijeolyioads Juswajels

é or if the postcondition of blah blah doesn’t hold.

It can protect itself by doing the same check as nth using an assert:

SUOIJIBSSY

Compute n!=0 such that blah blah.

assert n!=0, "blah blah computed a zero n"

Given n!=0, do Whatever.

suoijeolyioads Juswajels

é Use of assert is preferable to debugging.

Long specifications can continue on multiple lines, but need their own #.

#.This is a long specification stretching over multiple
lines. When it does so, the “continuation lines” have
their own hash marks (#), followed by three spaces.

#.This allows each specification to be read separately and
not confused with a next, quite different specification.

suoljesijioadg Suo
suoijedlj1oadg Juswajels

Declaration Specifications take a data-centric perspective.

A declaration specification provides a representation invariant for the variable
that characterizes the value contained therein. It is a global precondition for
every statement in the scope of the variable (except for brief moments before
the variable has been updated).

The specification is akin to a glossary entry, and can be used as such. Think of
the specification as being exactly what you want to know (or be reminded of)
when inspecting or writing code that uses the variable.

suoijeolyioads uoijele|oaq

Example: Suppose input values are to be read and “processed”.

Here are two specifications that provide different possible representation invariants
for the variable count.

count: int # Number of input values read so far.

count: int # Number of input values processed so far.

In the first case, count should be incremented immediately upon reading a value. In
the second case, count is only incremented when the program gets around to
processing the value it has already read.

suoijeolyioads uoijele|oaq

Example: A group of related variables, called a data structure, may share a
representation invariant. In this case, it is advantageous to provide a specification for
the whole group as well as for the individual components.

A[O..size-1] are the current int items in a list, ©<size<max_size.
A: list[int] # A[] is the receptacle for items of a list.

size: int # size is the current number of items in A[], ©<size<max_size.

max_size: int # max_size is the maximum number of items storable in A[].

The representation invariant characterizes how A, size, and max_size relate to one
another.

size
maxSize

A items of list unused

suoijeolyioads uoijele|oaq

Alternate form:
Some IDE editors also support a slightly different syntax for Declaration Specifications:

! Declaration-of-one-variable ;
:IIIIIISpeC,if,icat,i—on.IIIIII :

In such editors, you may hover over the variable name (in a use distant from
the declaration) and a helpful pop-up containing the specification appears.

suoijeolyioads uoijele|oaq

Alternate form:

Some IDE editors also support a slightly different syntax for Declaration Specifications:

! Declaration-of-one-variable

' """ Specification.

In such editors, you may hover over the variable name (in a use distant from
the declaration) and a helpful pop-up containing the specification appears.

If you use this form of Declaration Specification, it is best to separate it from
the next line with blank line, so that it is clear that the specification goes with
the variable being declared before it.

suoijeolyioads uoijele|oaq

A method specification describes the effects (if any) and the return value (if any)
of the method in terms of its parameters. This is its postcondition.

def name(parameters) -> type:
llllllspec_ificat,ion. mmn
block

suoljesljioads poyia\l

A method specification describes the effects (if any) and the return value (if any)
of the method in terms of its parameters. This is its postcondition.

' def name(parameters) -> type: |
: |lllllspec_ificat,ion.IIIIII :
! block |

Example

suoljesljioads poyia\l

def sort(A:list[int], n:int) -> None:
"""sort(A, n) rearranges array A[0..n-1] to be in non-decreasing order."™"
(body of sort)

A method specification describes the effects (if any) and the return value (if any)
of the method in terms of its parameters. This is its postcondition.

def name(parameters) -> type:
"""Specification.
block

Example

suoljesljioads poyia\l

def max(x: int, y: int) -> int:
"""max(x, y) returns the larger of the values x and y."""
if x < y:
return y
else:
return x

A method specification may restrict its parameters. This is its precondition.

def name(parameters) -> type:
"""Specification.
block

Example

suoljesljioads poyia\l

def find(A: list[int], n: int, v: int) -> int:
Given int array A[@..n-1] sorted in non-decreasing order, and int v, find(A, n, v)
returns an index k where A[k]==v, or returns n if v does not occur in A.

(blank line)
(body of find)

As with variable specifications, think of a method specification as being exactly
what you want to know (or be reminded of) in a pop up of an IDE’s editor either
when inspecting code that uses the method, or when contemplating a call to it.

def name(parameters) -> type:
"""Specification.
block

Example

def fi

A: list[int], n: int, v: int) -> int:

Given int array A[@..n-1] sorted in non-decreasing order, and int v, find(A, n, v)
returns an index k where A[k]==v, or returns n if v does not occur in A.

(blank line)
(body of find)

suoljesljioads poyia\l

A class specification summarizes the class’s purpose, functionality, and history.
The specifications of the class’s public methods (and variables) are implicitly part
of the class specification, but a list of them (without specifications) is common.

"""Specification."""
declarations-statements-and-method-definitions

suoljeoljloads sse|)

Class specifications are often more descriptive and historical than the other
forms of specification.

class Rational:
Rational. A module for the manipulation of rationals, including operations
for +, -, *, /, conversion to Str, and equality.
Author: Joe Blow.
Created: 12/25/2022.
Revision History: Converted to use unbounded integers, 12/25/2023.
(blank line)
(body of class Rational)

suoljeoljloads sse|)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

