
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Knight’s Tour

Copyright©2023 by Tim Teitelbaum; Most recent revision, 10/12/2025

A Knight can move 2 squares in
one direction, and 1 square in the
perpendicular direction.

X X

X X

X X

X X

1 10 23 42 7 4 13 18

24 41 8 3 12 17 6 15

9 2 11 22 5 14 19 32

0 25 40 35 20 31 16 0

0 36 21 0 39 0 33 30

26 0 38 0 34 29 0 0

37 0 0 28 0 0 0 0

0 27 0 0 0 0 0 0

Can a Knight start in the upper left square,
and visit every square of an 8-by-8 board
exactly once?

This attempt failed after move 42, because
the Knight got caught in a cul-de-sac.

We present a systematic top-down development of an entire program to find a Knight’s Tour.
The use of already-presented techniques includes:

• Sequential search.
• Sentinels.
• Find an integer argument at which a function value is minimal.

New techniques introduced include:

• Data representations, and their invariants.
• Use of symbolic constants, and tables of constants.
• Incremental testing.

Two new programming approaches that, while not guaranteed to solve a problem, may be
effective, nonetheless:

• Use of heuristics.
• Use of randomness.

Where to begin: Get your feet wet.

You can start by working the problem by hand, but may find it a bit
overwhelming.

An alternative is to generalize to an N-by-N chess board, and then
re-instantiate the problem for small values of N.

☞ Make sure you understand the problem.
☞ Confirm your understanding with concrete examples.

x

N=1. Solved from the get-go. So, the problem is solvable, in general.
1

N=1. Solved from the get-go. So, the problem is solvable, in general.

N=2. Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.

1

1

1 4 7

6 2

3 8 5

1 6 3

4 8

7 2 5

N=1. Solved from the get-go. So, the problem is solvable, in general.

N=2. Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.

N=3. There is a choice at the begin, but thereafter the (partial) tour is
proscribed. However, no tour can reach the central square. Taking
symmetry into account, the initial choices were not fundamentally
different. Might symmetry play a role?

1

1

1 4 7

6 2

3 8 5

1 6 3

4 8

7 2 5

N=1. Solved from the get-go. So, the problem is solvable, in general.

N=2. Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.

N=3. There is a choice at the begin, but thereafter the (partial) tour is
proscribed. However, no tour can reach the central square. Taking
symmetry into account, the initial choices were not fundamentally
different. Might symmetry play a role?

N=4. Lots of choices. The tour shown is stuck in a cul-de-sac at move 12.
No solution is readily found, and it is unclear whether there is one.
The problem is already big enough to frustrate.

1

1

1 8 3

5 12 9

11 2 7 4

6 10

class Tour {

 static void main() { } /* main */
 } /* Tour */

Establish a framework

☞ Aggregate the definitions of related variables and methods in a class.

Establish a framework

☞ A class header-comment is descriptive, and omits the details of the methods
and variables of the class. Reference available auxiliary documentation.

/* Knight’s Tour. */
class Tour {

 static void main() { } /* main */
 } /* Tour */

There are standards for header comments, but we will simplify.

Establish a framework

☞ A method header-comment specifies the effect of invoking it, and (if the
method has non-None type) the value returned. If the method has
parameters, the specification is written in terms of those parameters.

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
 static void main() { } /* main */
 } /* Tour */

There are standards for header comments, but we will simplify.

☞ Master stylized code patterns, and use them.

Establish a framework

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
 static void main() {
 /* Initialize. */
 /* Compute. */
 /* Output. */
 } /* main */
 } /* Tour */

A standard pattern.

☞ A statement-comment is written in terms of program variables, and assumes
the representation invariants of those variables.

Establish a framework

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
 static void main() {
 /* Initialize: Establish a tour of length 1. */
 /* Compute: Extend the tour, if possible. */
 /* Output: Print the tour as numbered cells in an N-by-N grid of 0s. */
 } /* main */
 } /* Tour */

A standard pattern, elaborated for the problem at hand.

Code structure: Invoke separate methods to do the work.

☞ Many short procedures are better than large blocks of code.

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
 static void main() {
 /* Initialize: Establish a tour of length 1. */
 Initialize();
 /* Compute: Extend the tour, if possible. */
 Solve();
 /* Output: Print the tour as numbered cells in an N-by-N grid of 0s. */
 Display();
 } /* main */
 } /* Tour */

Each pattern part to be implemented by a method of the class.

Code structure: Create stubs for methods.

/* Knight’s Tour. */
class Tour {

 /* Establish a tour of length 1. */
 static void Initialize() { } /* Initialize */

 /* Extend the tour, if possible. */
 static void Solve() { } /* Solve */

 /* Print tour as numbered cells in N-by-N grid of 0s. */
 static void Display() { } /* Display */

 ...
 } /* Tour */

☞ Write method stubs that allow partial programs to execute.

Method stubs easily created by cut and paste, and light editing.

Test early and often.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Add a temporary output statement to
Tour.main

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
 static void main() {
 /* Initialize: Establish a tour of length 1. */
 Initialize();
 /* Compute: Extend the tour, if possible. */
 Solve();
 /* Output: Print the tour as numbered cells in an N-by-N grid of 0s. */
 Display();
 /* Temporary output. */
 System.out.println("done");
 } /* main */
 } /* Tour */

Test early and often.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Add a temporary output statement to
Tour.main and invoke it from the
interactive shell:

Tour.main()

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
 static void main() {
 /* Initialize: Establish a tour of length 1. */
 Initialize();
 /* Compute: Extend the tour, if possible. */
 Solve();
 /* Output: Print the tour as numbered cells in an N-by-N grid of 0s. */
 Display();
 /* Temporary output. */
 System.out.println("done");
 } /* main */
 } /* Tour */

Test early and often.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Incremental Testing:

Output:

done

What has been validated?
• Syntactic correctness of overall framework
• That the 3 methods were (presumably)

executed in turn.

Add a temporary output statement to
Tour.main and invoke it from the
interactive shell:

Tour.main()

Don’t go far before thinking about the (internal) data representation.

☞ Dovetail thinking about code and data.

We need representations of the board and a (partial) tour.

☞ A program’s internal data representation is central to the code; consider it early.

Data Representation:

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Board Representation 1: The 2-D physical board can correspond directly to a 2-D array.

0 1 2 3 4 5 6 7

0 1 4

1 3

2 2 5

3

4

5

6

7

Tour Representation 1: The tour can be represented by visit numbers in array elements.

0 1 2 3 4 5 6 7

0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

Board Representation 1: A (currently) unvisited square can be 0.

☞ Aspire to making code self-documenting by choosing descriptive names.
☞ Use single-letter variable names when it makes code more understandable.

B 0 1 2 3 4 5 6 7

0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

Board Representation 1: The array needs a name.

B 0 1 2 3 4 5 6 7 N

0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

N

☞ Minimize use of literal numerals in code; define and use symbolic constants.
☞ Aim for single-point-of-definition.

Board Representation 1: Plan for generality by representing the problem size as N.

☞ Minimize use of literal numerals in code; define and use symbolic constants.
☞ Aim for single-point-of-definition.

lo hi

B 0 1 2 3 4 5 6 7 N

lo 0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

hi 7 0 0 0 0 0 0 0 0

N

BLANK 0

Board Representation 1: To allow for future flexibility, use symbolic constants for index limits.

☞ Introduce redundant variables in a representation to simplify code, or make
it more efficient.

lo c hi

B 0 1 2 3 4 5 6 7 N

lo 0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

r 2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

hi 7 0 0 0 0 0 0 0 0

N

BLANK 0

move 5

Board Representation 1: Keep track of state in redundant variables.

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

lo c hi

B 0 1 2 3 4 5 6 7 N

lo 0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

r 2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

hi 7 0 0 0 0 0 0 0 0

N

BLANK 0

move 5

Board Representation 1: Write invariants for the data representations as specifications.

/* Knight’s Tour. */
class Tour {

 /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
 are BLANK, and row and column indices range from lo to hi. */
 static final int N = 8; // Size of the chess board.
 static final int BLANK = 0; // Square not on the current tour.
 static final int lo = 0; // Row/column of upper-left square.
 static final int hi = lo+N-1; // Row/column of lower-right square.
 static int B[][] = new int[N][N]; // Chess board, initially 0s.

 } /* Tour */

Board Representation 1: Specify the data representation.

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

/* Knight’s Tour. */
class Tour {

 /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
 are BLANK, and row and column indices range from lo to hi. */
 static final int N = 8; // Size of the chess board.
 static final int BLANK = 0; // Square not on the current tour.
 static final int lo = 0; // Row/column of upper-left square.
 static final int hi = lo+N-1; // Row/column of lower-right square.
 static int B[][] = new int[N][N]; // Chess board, initially 0s.

 } /* Tour */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Board Representation 1: Specify the data representation.

Variables declared at the top-level of a class are called class (or static) variables, and
are shared among all of the methods of the class.

☞ Avoid rigid code. Anticipate change. Parameterize

/* Knight’s Tour. */
class Tour {

 /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
 are BLANK, and row and column indices range from lo to hi. */
 static final int N = 8; // Size of the chess board.
 static final int BLANK = 0; // Square not on the current tour.
 static final int lo = 0; // Row/column of upper-left square.
 static final int hi = lo+N-1; // Row/column of lower-right square.
 static int B[][] = new int[N][N]; // Chess board, initially 0s.

 } /* Tour */

Board Representation 1: Specify the data representation.

Define hi in terms of lo and N to facilitate possible future changes.

/* Knight’s Tour. */
class Tour {

 /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
 are BLANK, and row and column indices range from lo to hi. */
 static final int N = 8; // Size of the chess board.
 static final int BLANK = 0; // Square not on the current tour.
 static final int lo = 0; // Row/column of upper-left square.
 static final int hi = lo+N-1; // Row/column of lower-right square.
 static int B[][] = new int[N][N]; // Chess board, initially 0s.

 } /* Tour */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Board Representation 1: Specify the data representation.

Define initial values for variables, as much as possible in terms of one another.

☞ Leverage features of the programming language and its compiler that protect you
from mistakes.

/* Knight’s Tour. */
class Tour {

 /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
 are BLANK, and row and column indices range from lo to hi. */
 static final int N = 8; // Size of the chess board.
 static final int BLANK = 0; // Square not on the current tour.
 static final int lo = 0; // Row/column of upper-left square.
 static final int hi = lo+N-1; // Row/column of lower-right square.
 static int B[][] = new int[N][N]; // Chess board, initially 0s.

 } /* Tour */

Board Representation 1: Specify the data representation.

Variables denoted as final are constants.

/* Knight’s Tour. */
class Tour {

 /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
 are BLANK, and row and column indices range from lo to hi. */
 static final int N = 8; // Size of the chess board.
 static final int BLANK = 0; // Square not on the current tour.
 static final int lo = 0; // Row/column of upper-left square.
 static final int hi = lo+N-1; // Row/column of lower-right square.
 static int B[][] = new int[N][N]; // Chess board, initially 0s.

 } /* Tour */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Board Representation 1: Specify the data representation.

The default value for integers is 0, which we have chosen as the value of BLANK.

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

Tour Representation 1: Write invariants for the data representations as specifications.

/* Knight’s Tour. */
class Tour {
 ...
 /* A Tour of length move is given by elements of B numbered 1
 to move. Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩,
 and correspond to legal moves for a Knight. */
 static int r = lo // Row coordinate of Knight.
 static int c = lo; // Column coordinate of Knight.
 static int move= 1; // Length of tour.
 // B[lo][lo] = move; // Part of the tour invariant includes the
 // Knight being in the upper-left square
 // when move=1. It is not possible to do
 // that here (in the middle of declarations)
 // so we defer it until Initialize.

 } /* Tour */

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

/* Knight’s Tour. */
class Tour {
 ...
 /* A Tour of length move is given by elements of B numbered 1
 to move. Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩,
 and correspond to legal moves for a Knight. */
 static int r = lo // Row coordinate of Knight.
 static int c = lo; // Column coordinate of Knight.
 static int move= 1; // Length of tour.
 // B[lo][lo] = move; // Part of the tour invariant includes the
 // Knight being in the upper-left square
 // when move=1. It is not possible to do
 // that here (in the middle of declarations)
 // so we defer it until Initialize.

 } /* Tour */

Tour Representation 1: Write invariants for the data representations as specifications.

Define initial values for variables, as much as possible in terms of one another.

☞ A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

/* Knight’s Tour. */
class Tour {
 ...
 /* A Tour of length move is given by elements of B numbered 1
 to move. Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩,
 and correspond to legal moves for a Knight. */
 static int r = lo // Row coordinate of Knight.
 static int c = lo; // Column coordinate of Knight.
 static int move= 1; // Length of tour.
 // B[lo][lo] = move; // Part of the tour invariant includes the
 // Knight being in the upper-left square
 // when move=1. It is not possible to do
 // that here (in the middle of declarations)
 // so we defer it until Initialize.

 } /* Tour */

Comment out part of the invariant that cannot be established until later.

Tour Representation 1: Write invariants for the data representations as specifications.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

• Plan, as appropriate.
• Stop at a cul-de-sac, either on the 64th move or earlier.
• Extend the tour, if possible.
• Retract the tour, if the strategy calls for backtracking.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

• Plan, as appropriate.
▪ Access to full board B could provide any information needed.

• Stop at a cul-de-sac, either on the 64th move or earlier.
• Extend the tour, if possible.
• Retract the tour, if the strategy calls for backtracking.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

• Plan, as appropriate.
▪ Access to full board B could provide any information needed.

• Stop at a cul-de-sac, either on the 64th move or earlier.
▪ Access to full board B will provide visibility of available neighbors.

• Extend the tour, if possible.
• Retract the tour, if the strategy calls for backtracking.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

• Plan, as appropriate.
▪ Access to full board B could provide any information needed.

• Stop at a cul-de-sac, either on the 64th move or earlier.
▪ Access to full board B will provide visibility of available neighbors.

• Extend the tour, if possible.
• To advance from B[r][c] to the neighbor B[r′][c′], set ⟨r,c⟩ to ⟨r′, c′⟩,

increment move, and store move in B[r′][c′].
• Retract the tour, if the strategy calls for backtracking.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

• Plan, as appropriate.
▪ Access to full board B could provide any information needed.

• Stop at a cul-de-sac, either on the 64th move or earlier.
▪ Access to full board B will provide visibility of available neighbors.

• Extend the tour, if possible.
▪ To advance from B[r][c] to the neighbor B[r′][c′], set ⟨r,c⟩ to ⟨r′, c′⟩,

increment move, and store move in B[r′][c′].
• Retract the tour, if the strategy calls for backtracking.

▪ To undo the most recent extend, store BLANK in B[r][c], locate previous
square ⟨r′,c′⟩, set ⟨r,c⟩ to ⟨r′,c′⟩, and decrement move.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Alternative Representation: Address a shortcoming of Representation 1.

• Retract the tour, if the strategy calls for backtracking.
▪ To undo the most recent extend, store BLANK in B[r][c], locate previous

square ⟨r′,c′⟩, set ⟨r,c⟩ to ⟨r′,c′⟩, and decrement move.
For Representation 1, a search would be required to find ⟨r′, c′⟩.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Such a search would inspect the eight
neighbors of ⟨r,c⟩ to find which
B[r′][c′] was move-1.

Alternative Representation:

• Retract the tour, if the strategy calls for backtracking.
▪ To undo previous extend, locate previous square ⟨r′, c′⟩, set ⟨r,c⟩ to ⟨r′, c′⟩,

and decrement move.
For Representation 1, a search would be required to find ⟨r′,c′⟩.

But if the coordinates of tour squares
were represented as ordered collections,
row and column, retract could be
implemented by just decrementing move.
No search would be required.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Alternative Representation: Why do we need the board B at all?

Why not just represent the tour by the two ordered collections, row and column?

☞ The touchstone of a data representation is its utility in performing the needed operations.

Alternative Representation: Why do we need the board B at all?

Why not just represent the tour by the two ordered collections, row and column?

• Extend the tour, if possible.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Without the board B, testing whether an
⟨r′,c′⟩ is “unvisited” would require
determining whether it is on the current
tour, which would require a search of the

tour in row and column.

Alternative Representation: Why do we need the board B at all?

Why not just represent the tour by the two ordered collections, row and column?

• Extend the tour, if possible.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Without the board B, testing whether an
⟨r′,c′⟩ is “unvisited” would require
determining whether it is on the current
tour, which would require a search of the

tour in row and column.

Of course, an auxiliary 2-D boolean array B
indicating “visited” would obviate a search.

Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate
finding predecessor square, for Retract.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing
whether a square is unvisited, for Extend.

Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate
finding predecessor square, for Retract.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing
whether a square is unvisited, for Extend.

Alternative Representation: Which is better? Or is it “six or half dozen the other”?

Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate
finding predecessor square, for Retract.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing
whether a square is unvisited, for Extend.

Alternative Representation: Which is better? Or is it “six or half dozen the other”?

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?

Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate
finding predecessor square, for Retract.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing
whether a square is unvisited, for Extend.

Alternative Representation: Which is better? Or is it “six or half dozen the other”?

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?

Choose Representation 1 (without the auxiliary collections),
for now. Revisit later if tour retraction becomes an issue.

Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate
finding predecessor square, for Retract.

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing
whether a square is unvisited, for Extend.

Alternative Representation: Which is better? Or is it “six or half dozen the other”?

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?

Choose Representation 1 (without the auxiliary collections),
for now. Revisit later if tour retraction becomes an issue.

☞ Don’t let the “perfect” be the enemy of the “good”. Be prepared to
compromise because there may be no perfect representation. Don’t freeze.

/* Knight’s Tour. */
class Tour {
 ...
 /* Establish a tour of length 1. */
 static void Initialize() {
 /* Start a tour with the Knight in the upper-left corner. */
 B[lo][lo] = move;
 } /* Initialize */
 ...
 } /* Tour */

Define methods:

Define methods: Row-major order enumeration should be second nature.

/* Knight’s Tour. */
class Tour {
 ...
 /* Print tour as numbered cells in N-by-N grid of 0s. */
 static void Display() {
 for (int r=lo; r<=hi; r++) {
 for (int c=lo; c<=hi; c++)
 System.out.print(B[r][c] + " ");
 System.out.println();
 }
 } /* Display */
 } /* Tour */

☞ Master stylized code patterns, and use them.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Invoke Tour.main()

Test early and often.

Output:

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

What has been validated?
• Syntactic correctness of overall framework
• Creation of initial data representation
• Correct 2-D output format
• That the 3 methods were actually executed.

Test early and often.

It’s no secret why the tour isn’t very long: Solve is just a stub.

But if the problem statement is: Write a program that attempts
to find a complete Knight’s Tour, our program is correct.

It just doesn’t try very hard!

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Output:

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Test early and often.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {

 } /* Solve */
 ...
 } /* Tour */

Let’s try a little harder.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 before
 while (condition) each-time
 after
 } /* Solve */
 ...
 } /* Tour */

☞ If you “smell a loop”, write it down.

Iterative Refinement: Indeterminate form, because we can’t predict when to stop.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 /* Initialize. */
 while (not-finished) {
 /* Compute. */
 /* Go on to next. */
 }
 } /* Solve */
 ...
 } /* Tour */

☞ Master stylized code patterns, and use them.

Standard Pattern: Specialize the loop as an instance of the general-iteration pattern.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 /* Start-at-the-beginning. */
 while (not-beyond-the-end) {
 /* Process-the-current-place. */
 /* Advance-to-the-next-place. */
 }
 } /* Solve */
 ...
 } /* Tour */

☞ Master stylized code patterns, and use them.

Refine: Express the general-iteration pattern as a journey through an abstract space.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 /* Start-at-the-beginning. */
 while (not-beyond-the-end) {
 /* Process-the-current-place. */
 /* Advance-to-the-next-place. */
 }
 } /* Solve */
 ...
 } /* Tour */

☞ Master stylized code patterns, and use them.

Refine: Express the general-iteration pattern as a journey through an abstract space.

This pattern is not a good match because, by definition, a cul-de-sac is a place from which there is no next place.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 /* Start-at-the-beginning. */
 /* Process-the-current-place. */
 while (not-at-the-end) {
 /* Determine-a-next-place-to-go-or-at-the-end. */
 if (not-at-the-end) {
 /* Advance-to-the-next-place. */
 /* Process-the-current-place. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Specialize as an alternative version that goes no further than the end.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 /* Start-at-the-beginning. */
 /* Process-the-current-place. */
 while (not-at-the-end) {
 /* Determine-a-next-place-to-go-or-at-the-end. */
 if (not-at-the-end) {
 /* Advance-to-the-next-place. */
 /* Process-the-current-place. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Specialize as an alternative version that goes no further than the end.

Processing instructions appear twice in the code, which is a disadvantage.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {

 while (not-at-the-end) {
 /* Determine-a-next-place-to-go-or-at-the-end. */
 if (not-at-the-end) {
 /* Advance-to-the-next-place. */
 /* Process-the-current-place. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Omit first two lines, which are done by class-variable declarations and Initialize.

Specialize for the Knight’s Tour.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {

 while (not-at-the-end) {
 /* Locate an unvisited neighbor, or indicate cul-de-sac. */
 if (not-at-the-end) {
 /* Advance-to-the-next-place. */
 /* Process-the-current-place. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Specialize for the Knight’s Tour.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {

 while (not-in-cul-de-sac) {
 /* Locate an unvisited neighbor, or indicate cul-de-sac. */
 if (not-in-cul-de-sac) {
 /* Advance-to-the-next-place. */
 /* Process-the-current-place. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Specialize for the Knight’s Tour.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {

 while (not-in-cul-de-sac) {
 /* Locate an unvisited neighbor, or indicate cul-de-sac. */
 if (not-in-cul-de-sac) {
 /* Extend the tour to the unvisited neighbor. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Specialize for the Knight’s Tour.

☞ Invent (or learn) vocabulary for concepts that arise in a problem.

k

Introduce a Coordinate System: Polar-like neighbor numbers, k.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {

 while (not-in-cul-de-sac) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Refine: Using polar-like neighbor numbers, k.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 while (not-in-cul-de-sac) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 int k = 0;
 while ((k<=maximum) && condition) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Refine: Use sequential search pattern to find an unvisited neighbor.

☞ Master stylized code patterns, and use them.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 while (not-in-cul-de-sac) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 int k = 0;
 while ((k<CUL_DE_SAC) && /* neighbor k is visited */) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Refine: Use sequential search pattern to find an unvisited neighbor.

Variable k will automatically be set to CUL_DE_SAC on a failed search if we choose CUL_DE_SAC to be 8.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 while (not-in-cul-de-sac) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 int k = 0;
 while ((k<CUL_DE_SAC) && B[___________][___________]!=BLANK) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Refine: Have faith in the expressive power of the language.

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

Introduce another Coordinate System: ⟨Δr,Δc⟩

Introduce a local coordinate system ⟨Δr,Δc⟩ with origin at
the location of a Knight at ⟨r,c⟩ in the global coordinate
system.

If the Knight has a neighbor () at ⟨Δr,Δc⟩ in the local
system, then that neighbor is at ⟨r+Δr,c+Δc⟩ in the global
system.

// 0 1 2 3 4 5 6 7
static final int deltaR[] = {-1, -2, -2, -1, 1, 2, 2, 1};
static final int deltaC[] = { 2, 1, -1, -2, -2, -1, 1, 2};

Introduce a Table of Constants: It can obviate an explicit Case Analysis.

☞ Introduce auxiliary data to allow code to be uniform.

// 0 1 2 3 4 5 6 7
static final int deltaR[] = {-1, -2, -2, -1, 1, 2, 2, 1};
static final int deltaC[] = { 2, 1, -1, -2, -2, -1, 1, 2};

Introduce a Table of Constants: It can obviate an explicit Case Analysis.

If the Knight has a neighbor () at ⟨Δr,Δc⟩ in the local system,
then that neighbor is at ⟨r+Δr,c+Δc⟩ in the global system.

Introduce a Table of Constants: It can obviate an explicit Case Analysis.

// 0 1 2 3 4 5 6 7
static final int deltaR[] = {-1, -2, -2, -1, 1, 2, 2, 1};
static final int deltaC[] = { 2, 1, -1, -2, -2, -1, 1, 2};

If the Knight has a neighbor () at ⟨Δr,Δc⟩ in the local system,
then that neighbor is at ⟨r+Δr,c+Δc⟩ in the global system.

If the Knight has a neighbor (k) at ⟨deltaR[k],deltaC[k]⟩ in
the local system, then that neighbor is at
⟨r+deltaR[k],c+deltaC[k]⟩ in the global system.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 while (not-in-cul-de-sac) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 int k = 0;
 while ((k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Refine: Have faith in the expressive power of the language.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 while (not-in-cul-de-sac) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 int k = 0;
 while ((k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Refine: Update tour, referring to its data-representation invariant to know what must change.

/* A Tour of length move is given by elements of B numbered 1 to move.
 Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩, and
 correspond to legal moves for a Knight. */
 static int r, c; // Position of Knight.
 static int move; // Length of Tour.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 while (not-in-cul-de-sac) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 int k = 0;
 while ((k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Refine: Update tour, referring to its data-representation invariant to know what must change.

/* A Tour of length move is given by elements of B numbered 1 to move.
 Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩, and
 correspond to legal moves for a Knight. */
 static int r, c; // Position of Knight.
 static int move; // Length of Tour.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 while (not-in-cul-de-sac) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 int k = 0;
 while ((k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Termination:

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 while (k!=CUL_DE_SAC) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 int k = 0;
 while ((k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Termination:

Termination can use failure to find an unvisited
neighbor on the previous iteration,

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 int k = 0; // Neighbor number not CUL_DE_SAC.
 while (k!=CUL_DE_SAC) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 k = 0;
 while ((k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Termination:

Termination can use failure to find an unvisited
neighbor on the previous iteration, but we
must make sure the loop iterates the first time.

/* Knight’s Tour. */
class Tour {
 ...
 /* Compute: Extend the tour, if possible. */
 static void Solve() {
 int k = 0; // Neighbor number not CUL_DE_SAC.
 while (k!=CUL_DE_SAC) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 k = 0;
 while ((k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 if (k != CUL_DE_SAC) {
 /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
 }
 }
 } /* Solve */
 ...
 } /* Tour */

Termination:

Notice that we have moved the declaration of k outside the loop.

/* Knight’s Tour. */
class Tour {
 ...
 /* Auxiliary constants. */
 final int[] deltaR = {-1, -2, -2, -1, 1, 2, 2, 1};
 final int[] deltaC = { 2, 1, -1, -2, -2, -1, 1, 2};
 int CUL_DE_SAC = 8;
 ...
 } /* Tour */

Auxiliary Constants:

• Hit the execute button now, and you will get a “subscript out of bounds” error.

 ...
 /* Let k = # of an unvisited neighbor, or CUL_DE_SAC. */
 k = 0;
 while (k<CUL_DE_SAC && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 ...

• You can waste a lot of time debugging things you could have anticipated if you had
thought a little more deeply: Some squares have fewer than eight neighbors because
they are at the board boundary.

☞ Boundary conditions. Dead last, but don’t forget them.

Incremental Testing: But don’t be overeager.

• Hit the execute button now, and you will get a “subscript out of bounds” error.

 ...
 /* Let k = # of an unvisited neighbor, or CUL_DE_SAC. */
 k = 0;
 while (k<CUL_DE_SAC && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;
 ...

• You can waste a lot of time debugging things you could have anticipated if you had
thought a little more deeply: Some squares have fewer than eight neighbors because
they are at the board boundary.

• We seek a way to deal with the boundaries without doing major surgery on the code.

☞ Boundary conditions. Dead last, but don’t forget them.

Incremental Testing: But don’t be overeager.

☞ Boundary conditions. Dead last, but don’t forget them.

/* Knight’s Tour. */
class Tour {
 /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
 are BLANK, and row and column indices range from lo to hi. */
 static final int N = 8; // Size of B.
 static int B[][]; // Chess board, initially 0s.
 static final int BLANK = 0; // Unvisited square in board.
 static final int lo = 0; // First row or column index.
 static final int hi = hi+N-1; // Last row or column index.
 ...
 } /* Tour */

Sentinels to the Rescue: Original representation invariant

/* Knight’s Tour. */
class Tour {
 /* Chess board B is an N-by-N int sub-array, for N==8, embedded in a
 2-cell ring of sentinel squares. Unvisited squares are BLANK, and
 row and column indices range from lo to hi. */
 static final int N; // Size of B.
 static int B[][]; // Chess board, initially 0s.
 static final int BLANK = 8; // Unvisited square in board.
 static final int lo = 2; // First row or column index.
 static final int hi = hi+N-1; // Last row or column index.
 ...
 } /* Tour */

☞ Boundary conditions. Dead last, but don’t forget them.

Sentinels to the Rescue: Updated representation invariant

☞ Boundary conditions. Dead last, but don’t forget them.

Sentinels to the Rescue: Original Initialize

/* Knight’s Tour. */
class Tour {
 ...
 /* Initialize: Establish invariant for a tour of length 1. */
 static void Initialize() {
 /* Start a tour with the Knight in the upper-left corner. */
 B[lo][lo] = move;
 } /* Initialize */
 ...
} /* Tour */

/* Knight’s Tour. */
class Tour {
 ...
 /* Initialize: Establish invariant for a tour of length 1. */
 static void Initialize() {
 /* Set B to an (N+4)-by-(N+4) array of all non-BLANK. */
 for (int r=lo-2; r<=hi+2; r++)
 for (int c=lo-2; c<=hi+2; c++)
 B[r][c] = BLANK+1;
 /* Reset inner N-by-N array to all BLANK. */
 for (int r=lo; r<=hi; r++)
 for (int c=lo; c<=hi; c++)
 B[r][c] = BLANK;
 /* Start a tour with the Knight in the upper-left corner. */
 B[lo][lo] = move;
 } /* Initialize */
 ...
} /* Tour */

Sentinels to the Rescue: Revised Initialize

Incremental Testing: Good to go!

1 10 23 42 7 4 13 18
24 41 8 3 12 17 6 15
9 2 11 22 5 14 19 32
0 25 40 35 20 31 16 0
0 36 21 0 39 0 33 30
26 0 38 0 34 29 0 0
37 0 0 28 0 0 0 0
0 27 0 0 0 0 0 0

What has been validated?
• Syntactic correctness of overall framework
• Creation of initial data representation
• Correct 2-D output format
• Correct search for an unvisited neighbor
• Correct extension of tour to that neighbor
• Correct treatment of boundaries
Unanticipated problem detected
• Ragged output due to variable-length integers

Incremental Testing: Good to go!

Output:

Incremental Testing: Good to go!

Output:

1 10 23 42 7 4 13 18
24 41 8 3 12 17 6 15
9 2 11 22 5 14 19 32
0 25 40 35 20 31 16 0
0 36 21 0 39 0 33 30
26 0 38 0 34 29 0 0
37 0 0 28 0 0 0 0
0 27 0 0 0 0 0 0

Not too shabby considering that we just went to an arbitrary
unvisited square, an approach called a greedy algorithm.

What has been validated?
• Syntactic correctness of overall framework
• Creation of initial data representation
• Correct 2-D output format
• Correct search for an unvisited neighbor
• Correct extension of tour to that neighbor
• Correct treatment of boundaries
Unanticipated problem detected
• Ragged output due to variable-length integers

Incremental Testing: Good to go!

Output:

1 10 23 42 7 4 13 18
24 41 8 3 12 17 6 15
9 2 11 22 5 14 19 32
0 25 40 35 20 31 16 0
0 36 21 0 39 0 33 30
26 0 38 0 34 29 0 0
37 0 0 28 0 0 0 0
0 27 0 0 0 0 0 0

Concatenate a blank at the end of the String representation
of the integer, and then truncate it to 3 characters.

Fix the minor formatting issue by modifying the line:

System.out.print(B[r][c] + " ");

in method Output, as follows:

System.out.print((B[r][c]+" ").substring(0,3));

/* Extend the tour, if possible. */
static void Solve() {
 int k = 0; // A neighbor number that is not CUL_DE_SAC.
 while (k!=CUL_DE_SAC) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 k = 0;
 while ((k<CUL_DE_SAC) && (B[r+deltaR[k]][c+deltaC[k]]!=BLANK))
 k++;
 if (k!=CUL_DE_SAC) {
 /* Extend the tour to unvisited neighbor k. */
 r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
 }
 }
 } /* Solve */

Greedy Selection: A greedy algorithm just picks the first available neighbor.

/* Extend the tour, if possible. */
static void Solve() {
 int k = 0; // A neighbor number that is not CUL_DE_SAC.
 while (k!=CUL_DE_SAC) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 /* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all
 neighbors are already visited. */
 k = bestK;
 if (k!=CUL_DE_SAC) {
 /* Extend the tour to unvisited neighbor k. */
 r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
 }
 }
 } /* Solve */

Heuristic Selection: A better algorithm picks a favored neighbor, which we optimistically
refer to as the “best choice”.

A heuristic is an aid to problem solving that may help.

Heuristic Selection: A better algorithm picks a favored neighbor, which we optimistically
refer to as the “best choice”.

A heuristic is an aid to problem solving that may help.

Adapt the pattern from Chapter 7: Find an argument k that minimizes a function’s value.

/* Extend the tour, if possible. */
static void Solve() {
 int k = 0; // A neighbor number that is not CUL_DE_SAC.
 while (k!=CUL_DE_SAC) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 /* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all
 neighbors are already visited. */
 k = bestK;
 if (k!=CUL_DE_SAC) {
 /* Extend the tour to unvisited neighbor k. */
 r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
 }
 }
 } /* Solve */

/* Extend the tour, if possible. */
static void Solve() {
 int k = 0; // A neighbor number that is not CUL_DE_SAC.
 while (k!=CUL_DE_SAC) {
 /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
 /* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all
 neighbors are already visited. */
 int bestK = CUL_DE_SAC;
 int bestScore = CUL_DE_SAC;
 for (k = 0; k<CUL_DE_SAC; k++) {
 if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) {
 int s = score(r+deltaR[k], c+deltaC[k]);
 if (s<bestScore) {bestScore = s; bestK = k; }
 }
 }
 k = bestK;
 if (k!=CUL_DE_SAC) {
 /* Extend the tour to unvisited neighbor k. */
 r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
 }
 }
 } /* Solve */

Heuristic Selection: Pick the neighbor that minimizes a score, for some score function.

Score:

/* Return 0. */
int Score(int r, int c) { return 0; }

☞ Write method stubs that allow partial programs to execute.

Incremental Testing: Good to go!

Output:

1 10 23 42 7 4 13 18
24 41 8 3 12 17 6 15
9 2 11 22 5 14 19 32
0 25 40 35 20 31 16 0
0 36 21 0 39 0 33 30
26 0 38 0 34 29 0 0
37 0 0 28 0 0 0 0
0 27 0 0 0 0 0 0

What has been validated?
• Syntactic correctness of overall framework
• Creation of initial data representation
• Correct 2-D output format
• Correct search for an unvisited neighbor
• Correct extension of tour to that neighbor
• Correct treatment of boundaries
• Exercising of search for a favored neighbor, albeit

still just selects first unvisited neighbor

Same output as before, because any unvisited neighbor has a
Score of 0.

A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s
unvisited neighbors (pink).

A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s
unvisited neighbors (pink).

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a
subset of the pink squares).

m=0. The Knight’s current square is the only way to get to square 2,
and if it doesn’t go there now, it won’t ever get another chance.

Yes, it will then be in a cul-de-sac, so, if we hope for a tour of length
64, this better be the 64th move. If not, the Knight is effectively cutting
its losses, and ending a doomed tour. If the goal were to maximize tour
length, it would be better not to go there now, unless this is move 64.
Warnsdorff ’s Rule is “going for broke”.

A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s
unvisited neighbors (pink).

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a
subset of the pink squares).

m=1. There is only one way out (e.g, the yellow square). If the Knight
were to go to square 2 now, then the next move (to yellow) would
remove 2 from further concern. But if it doesn’t go there now, then
when it eventually gets to the yellow square, it will be forced to go to
2, which will then end the tour in a cul-de-sac. So, it is best to pass
through 2 now, for otherwise it will loom as a hazard.

A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s
unvisited neighbors (pink).

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a
subset of the pink squares).

m=2. Too hard to think about. Perhaps the advantages of m=0 and m=2
are good enough to complete a tour.

/* Return # of unvisited neighbors of ⟨r,c⟩. */
static int Score(int r, int c) {
 int count = 0; // Number of unvisited neighbors of ⟨r,c⟩ found so far.
 for (int k=0; k<CUL_DE_SAC; k++)
 if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) count++;
 return count;
 }

Score: Replace stub by implementation of Warnsdorff’s Rule.

Score: Replace stub by implementation of Warnsdorff’s Rule.

/* Return # of unvisited neighbors of ⟨r,c⟩. */
static int Score(int r, int c) {
 int count = 0; // Number of unvisited neighbors of ⟨r,c⟩ found so far.
 for (int k=0; k<CUL_DE_SAC; k++)
 if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) count++;
 return count;
 }

Call site: int s = Score(r+deltaR[k],c+deltaC[k]);

r and c are class variables that are part of the
tour’s representation invariant, and are the
Knight’s current coordinates.

Score: Replace stub by implementation of Warnsdorff’s Rule.

r and c are class variables that are part of the
tour’s representation invariant, and are the
Knight’s current coordinates.

/* Return # of unvisited neighbors of ⟨r,c⟩. */
static int Score(int r, int c) {
 int count = 0; // Number of unvisited neighbors of ⟨r,c⟩ found so far.
 for (int k=0; k<CUL_DE_SAC; k++)
 if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) count++;
 return count;
 }

☞ Avoid gratuitously different names for parameters and variables whose use
is essentially the same. Practice conceptual economy.

Call site: int s = Score(r+deltaR[k],c+deltaC[k]);

Parameters: Score(int r, int c)

r and c are parameters of Score. On each call, they
are the coordinates of the Knight’s k-th neighbor.

1 22 3 18 25 30 13 16
4 19 24 29 14 17 34 31
23 2 21 26 35 32 15 12
20 5 56 49 28 41 36 33
57 50 27 42 61 54 11 40
6 43 60 55 48 39 64 37
51 58 45 8 53 62 47 10
44 7 52 59 46 9 38 63

Incremental Testing: A complete tour!

Output:

1 22 3 18 25 30 13 16
4 19 24 29 14 17 34 31
23 2 21 26 35 32 15 12
20 5 56 49 28 41 36 33
57 50 27 42 61 54 11 40
6 43 60 55 48 39 64 37
51 58 45 8 53 62 47 10
44 7 52 59 46 9 38 63

Incremental Testing: A complete tour!

Output:

/* Let k = index of unvisited neighbor, or CUL_DE_SAC. */
 /* Let unvisited[0:count-1] be neighbor numbers of the count
 unvisited neighbors of ⟨r,c⟩. */
 if (count==0) k = CUL_DE_SAC;
 else k = a-random-neighbor-selected-from-unvisited[0:count-1];

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.

/* Let k = index of unvisited neighbor, or CUL_DE_SAC. */
 /* Let unvisited[0:count-1] be neighbor numbers of the count
 unvisited neighbors of ⟨r,c⟩. */
 int unvisited[] = new int[CUL_DE_SAC];
 int count = 0; // # unvisited neighbors
 for (k=0; k<CUL_DE_SAC; k++)
 if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) {
 unvisited[count]=k; count++;
 }
 if (count==0) k = CUL_DE_SAC;
 else k = a-random-neighbor-selected-from-unvisited[0:count-1];

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.

/* Let k = index of unvisited neighbor, or CUL_DE_SAC. */
 /* Let unvisited[0:count-1] be neighbor numbers of the count
 unvisited neighbors of ⟨r,c⟩. */
 int unvisited[] = new int[CUL_DE_SAC];
 int count = 0; // # unvisited neighbors
 for (k=0; k<CUL_DE_SAC; k++)
 if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) {
 unvisited[count]=k; count++;
 }
 if (count==0) k = CUL_DE_SAC;
 else k = unvisited[rand.nextInt(count)];

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.

Omitted Details:

Importing of the random library.

A driver that repeatedly invokes the Monte Carlo solve until a solution is found.

Instrumentation of the driver to histogram the tour lengths of each trial.

Who could have guessed that a Knight could be so stupid as to get
himself into a cul-de-sac in just 8 moves!

Summary:

Many standard precepts, patterns, and established coding techniques have been illustrated.

The importance of data representations and invariants was stressed.

The notions of greedy, heuristic, and Monte Carlo algorithms were introduced.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	Understanding the Problem
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	Top-level Code Structure
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	Data Representation
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

	Top-level Procedures
	Slide 53
	Slide 54

	Initial Test
	Slide 55
	Slide 56
	Slide 57

	Method Solve
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

	Boundary Conditions
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

	Testing, revisited
	Slide 92
	Slide 93
	Slide 94
	Slide 95

	Heuristics
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108

	Testing, revisited yet again
	Slide 109
	Slide 110

	Monte Carlo Tours
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

