Copyright©2023 by Tim Teitelbaum; Most recent revision,

Principled Programming

Introduction to Coding in Any Imperative Language

Tim Teitelbaum

Emeritus Professor
Department of Computer Science
Cornell University

Knight’s Tour

10/12/2025

A Knight can move 2 squares in Can a Knight start in the upper left square,
one direction, and 1 square in the and visit every square of an 8-by-8 board
perpendicular direction. exactly once?

111012342 7 |4 |13|18

X X 2414118 3 |12(17]| 6 |15

X X 912 ([11122]| 5|14]|19]32
ﬁ 0125|40135]20(31]16(O

X X 0136(21]1 0 |39] 0 3330
X X 261 01380 |34(29]1 0|0

3710102801000
0127010100100

This attempt failed after move 42, because
the Knight got caught in a cul-de-sac.

uo3oNpoJuj

We present a systematic top-down development of an entire program to find a Knight’s Tour.
The use of already-presented techniques includes:

 Sequential search.
* Sentinels.
* Find an integer argument at which a function value is minimal.

New techniques introduced include:

* Data representations, and their invariants.
* Use of symbolic constants, and tables of constants.
* Incremental testing.

Two new programming approaches that, while not guaranteed to solve a problem, may be
effective, nonetheless:

e Use of heuristics.
e Use of randomness.

uo3oNpoJuj

Where to begin: Get your feet wet.

You can start by working the problem by hand, but may find it a bit
overwhelming.

An alternative is to generalize to an N-by-N chess board, and then
re-instantiate the problem for small values of N.

waj|qo.id ay3l suipuejsiapun

= [Make sure you understand the problem.
== Confirm your understanding with concrete examples.

N=1. Solved from the get-go. So, the problem is solvable, in general.

waj|qo.id ay3l suipuejsiapun

N=1. Solved from the get-go. So, the problem is solvable, in general.

N=2. Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.

waj|qo.id ay3l suipuejsiapun

N=1. Solved from the get-go. So, the problem is solvable, in general.

N=2. Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.

N=3. There is a choice at the begin, but thereafter the (partial) tour is
proscribed. However, no tour can reach the central square. Taking
symmetry into account, the initial choices were not fundamentally
different. Might symmetry play a role?

waj|qo.id ay3l suipuejsiapun

12

10

N

N

N

N

1.

2.

3.

4.

Solved from the get-go. So, the problem is solvable, in general.

Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.

There is a choice at the begin, but thereafter the (partial) tour is
proscribed. However, no tour can reach the central square. Taking
symmetry into account, the initial choices were not fundamentally
different. Might symmetry play a role?

Lots of choices. The tour shown is stuck in a cul-de-sac at move 12.

No solution is readily found, and it is unclear whether there is one.

The problem is already big enough to frustrate.

waj|qo.id ay3l suipuejsiapun

Establish a framework

class Tour {

static void main() { } /* main */
} /* Tour */

= Aggregate the definitions of related variables and methods in a class.

9.1N39n.3S apo) |[ans|-do|

There are standards for header comments, but we will simplify.

Establish a framework

/* Knight’s Tour. */
class Tour {

static void main() { } /* main */
} /* Tour */

= A class header-comment is descriptive, and omits the details of the methods
and variables of the class. Reference available auxiliary documentation.

9.1N39n.3S apo) |[ans|-do|

There are standards for header comments, but we will simplify.

Establish a framework

* Knight’s Tour. */
ass Tour {
/* Output a (possibly partial) Knight’s Tour. */
static void main() { } /* main */
} /* Tour */

= A method header-comment specifies the effect of invoking it, and (if the
method has non-None type) the value returned. If the method has
parameters, the specification is written in terms of those parameters.

9.1N39n.3S apo) |[ans|-do|

A standard pattern.

Establish a framework

/* Knight’s Tour. */

class Tour {

/* Output a (possibly partial) Knight’s Tour. */
static void main() {

/* Initialize. */

/* Compute. */

/* Output. */

} /* main */

} /* Tour */

= Master stylized code patterns, and use them.

9.1N39n.3S apo) |[ans|-do|

A standard pattern, elaborated for the problem at hand.

Establish a framework

/* Knight’s Tour. */

class Tour {

/* Output a (possibly partial) Knight’s Tour. */

static void main() {

/* Initialize: Establish a tour of length 1. */

/* Compute: Extend the tour, if possible. */

/* Output: Print the tour as numbered cells in an N-by-N grid of @s. */
} /* main */

} /* Tour */

== A statement-comment is written in terms of program variables, and assumes
the representation invariants of those variables.

9.1N39n.3S apo) |[ans|-do|

Each pattern part to be implemented by a method of the class.

Code structure: Invoke separate methods to do the work.

* Knight’s Tour. */
class Tour {
* Output a (possibly partial) Knight’s Tour. */
tic void main() {
* Initialize: Establish a tour of length 1. */
Initialize();
/* Compute: Extend the tour, if possible. */
Solve();
/* Output: Print the tour as numbered cells in an N-by-N grid of @s. */
Display();
} /* main */
+ /* Tour */

w Many short procedures are better than large blocks of code.

9.1N39n.3S apo) |[ans|-do|

Method stubs easily created by cut and paste, and light editing.

Code structure: Create stubs for methods.

/* Knight’s Tour. */
class Tour {

/* Establish a tour of length 1. */
static void Initialize() { } /* Initialize */

/* Extend the tour, if possible. */
static void Solve() { } /* Solve */

/* Print tour as numbered cells in N-by-N grid of ©@s. */
static void Display() { } /* Display */

} }* Tour */

== Write method stubs that allow partial programs to execute.

9.1N39n.3S apo) |[ans|-do|

Test early and often.

Add a temporary output statement to
Tour.main

/* Knight’s Tour. */
class Tour {
/* Output a (possibly partial) Knight’s Tour. */
static void main() {
/* Initialize: Establish a tour of length 1. */
Initialize();
/* Compute: Extend the tour, if possible. */
Solve();
/* Output: Print the tour as numbered cells in an N-by-N grid of @s. */
Display();
/* Temporary output. */
System.out.println("done");
} /* main */
} /* Tour */

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

= Validate output thoroughly.

sunsay

Test early and often.

Add a temporary output statement to
Tour.main and invoke it from the
interactive shell:

Tour.main()

/* Knight’s Tour. */
class Tour {
/* Output a (possibly partial) Knight’s Tour. */
static void main() {
/* Initialize: Establish a tour of length 1. */
Initialize();
/* Compute: Extend the tour, if possible. */
Solve();
/* Output: Print the tour as numbered cells in an N-by-N grid of @s. */
Display();
/* Temporary output. */
System.out.println("done");
} /* main */
} /* Tour */

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

= Validate output thoroughly.

sunsay

Test early and often.

Add a temporary output statement to
Tour.main and invoke it from the
interactive shell:

Tour.main()

Incremental Testing:

Output:

done

What has been validated?

* Syntactic correctness of overall framework

* That the 3 methods were (presumably)
executed in turn.

= Test programs incrementally.

== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

= Validate output thoroughly.

sunsay

Don’t go far before thinking about the (internal) data representation.

== Dovetail thinking about code and data.

9.1N39n.3S apo) |[ans|-do|

Data Representation:

We need representations of the board and a (partial) tour.

uoijejuasaiday eyeq

== A program’s internal data representation is central to the code; consider it early.

Board Representation 1: The 2-D physical board can correspond directly to a 2-D array.

uoijejuasaiday eyeq

N oo o~ w0 DN

Tour Representation 1: The tour can be represented by visit numbers in array elements.

uoijejuasaiday eyeq

N oo o~ w0 DN

Data Representation

Board Representation 1: A (currently) unvisited square can be 0.

Board Representation 1: The array needs a name.

uoijejuasaiday eyeq

B o 1 2 3 4 5 6 7
0]1{0({0(0]|0|4(0]0O0
1101003 [0]0]|0(O
210|2(0(0]|5|]0(0]O0
3]0 0(0(0]0O|0OfO0]O
4/0|10(0(0]J0O|0OfO0O]O
5/0{0(0(0]0|]0OfO0O]O
6|0 | 0(0(0]|]O0O|O0OfO0]|O
710({0(0]0]0Of(0]0]O0

== Aspire to making code self-documenting by choosing descriptive names.
= Use single-letter variable names when it makes code more understandable.

Board Representation 1: Plan for generality by representing the problem size as N.

uoijejuasaiday eyeq

B 0o 1 2 3 4 5 6 7
0]1{0({0(0]|0|4(0]0O0
1101003 [0]0]|0(O
210|2(0(0]|5|]0(0]O0
3]0 0(0(0]0O|0OfO0]O
4/0|10|0|0|0O]J0O]0OfO
5/0{0(0(0]0|]0OfO0O]O
6|0 | 0(0(0]|]O0O|O0OfO0]|O
710({0(0]0]0Of(0]0]O0
N

== Minimize use of literal numerals in code; define and use symbolic constants.
= Aim for single-point-of-definition.

Board Representation 1: To allow for future flexibility, use symbolic constants for index limits.

uoijejuasaiday eyeq

lo hi
B o 1 2 3 4 5 6 7
lo0Oj1{0(0|0|0(4]0]0 BLANK| O
10]0[0(3]0]0[0]O0
210|2(0(0]|5|]0(0]O0
30({0(0]0]O0Of(0]|0]O0
4/0|10(0(0]J0O|0OfO0O]|O
5{0(0(0]0]O0Of0]|]0]O0
60| 0(0(0]0|]O0OfO0O]|O
hi7]0{0(0|]0]|]0(0]0]O0
N

== Minimize use of literal numerals in code; define and use symbolic constants.
= Aim for single-point-of-definition.

Board Representation 1: Keep track of state in redundant variables.

uoijejuasaiday eyeq

lo c hi

B 0o 1 2 3 4 5 6 7
loOl1]|]0|0]0(O0]4]|]0]|0O0 BLANK| O

110|001 3(0]0]0(0O
move| 5

r2/0|12(0|]0|5]0]0(0O0

30| O0(O0O]J]OfO]J0O0]0O0](O

401 0|]O0OlO0O]JOf(O]O0O0]O

500010001 0]0O0]|O

6|0 O0O(O0O]J]O|O]JO0O]O]|O

hi7|] 0|01 O0]JO0Of[O0O]O0O]O0O0]|O

N

== Introduce redundant variables in a representation to simplify code, or make
it more efficient.

Board Representation 1: \Write invariants for the data representations as specifications.

lo c hi
B 0O 1 2 3 4 5 6 7 N
loOl1]|]0|0]0(O0]4]|]0]|0O0 BLANK| O
110|001 3(0]0]0(0O
move| 5
r2/0|12(0|]0|5]0]0(0O0
30| O0(O0O]J]OfO]J0O0]0O0](O
401 0|]O0OlO0O]JOf(O]O0O0]O
500010001 0]0O0]|O
6|0 O0O(O0O]J]O|O]JO0O]O]|O
hi7|] 0|01 O0]JO0Of[O0O]O0O]O0O0]|O
N

== A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

uoijejuasaiday eyeq

Board Representation 1: Specify the data representation.

/* Knight’s Tour. */

class Tour {

/* Chess board B is an N-by-N int array, for N==8. Unvisited squares
are BLANK, and row and column indices range from lo to hi. */

static
static
static
static
static

} /* Tour

final int N = 8; // Size of the chess board.

final int BLANK = 0O; // Square not on the current tour.
final int lo = ©; // Row/column of upper-left square.
final int hi = lo+N-1; // Row/column of lower-right square.
int B[][] = new int[N][N]; // Chess board, initially ©s.

*/

== A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

uoijejuasaiday eyeq

Variables declared at the top-level of a class are called class (or static) variables, and
are shared among all of the methods of the class.

static
static
static
static
static

} /* Tour

are BLANK, an

Board Representation 1: Specify the data representation.

row and column indices range from lo to hi. */
final int N = 8; // Size of the chess board.
final int BLANK = ©; // Square not on the current tour.
final int lo = ©; // Row/column of upper-left square.
final int hi = lo+N-1; // Row/column of lower-right square.
int B[][] = new int[N][N]; // Chess board, initially ©s.
*/

== A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

uoijejuasaiday eyeq

Define hi in terms of 1o and N to facilitate possible future changes.

oard Representation 1: Specify the data representation.

nd row and column indices range From lo to hi. */

static t N = 8; // Size of the chess board.

static final int™\BLANK = 0©; // Square not on the current tour.
static final int 1 0; // Row/column of upper-left square.
static final int hi = lo+N-1; // Row/column of lower-right square.

static int B[][] = new int[N][N]; // Chess board, initially @s.

} /* Tour */

= Avoid rigid code. Anticipate change. Parameterize

uoijejuasaiday eyeq

Define initial values for variables, as much as possible in terms of one another.

oard Representation 1: Specify the data representation.

nd row and column indices range From lo to hi. */

static t N = 8; // Size of the chess board.

static final int™\BLANK = 0©; // Square not on the current tour.
static final int 1 0; // Row/column of upper-left square.
static final int hi = lo+N-1; // Row/column of lower-right square.

static int B[][] = new int[N][N]; // Chess board, initially ©s.

} /* Tour */

== A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

uoijejuasaiday eyeq

Variables denoted as final are constants.

static int B[][] = new int[N][N]; // Chess board, initially @s.

ob)

~

Board Representation 1: Specify the data representation. o
J

night’s Tour. */ ¢)
@

®

s board B is an N-by-N int array, for N==8. Unvisited squares (77

ANK, and row and column indices range from lo to hi. */ (¢’

static final int N = 8; // Size of the chess board. -)
static final int BLANK = 0©; // Square not on the current tour. ~
static final int lo = ©; // Row/column of upper-left square. 'n_,l_
static final int hi = lo+N-1; // Row/column of lower-right square. 5-
=

} /* Tour */

== Leverage features of the programming language and its compiler that protect you
from mistakes.

The default value for integers is 0, which we have chosen as the value of BLANK.

oard Representation 1: Specify the data representation.

> and row and column indices range From lo to hi. */

= 8; // Size of the chess board.
static BLANK = 0O; // Square not on the current tour.
static final int = 0; // Row/column of upper-left square.

static final int hi < _lo+N-1; // Row/column of lower-right square.
static int B[][] = new int[N][N]; // Chess board, initially @s.

} /* Tour */

== A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

uoijejuasaiday eyeq

Tour Representation 1: Write invariants for the data representations as specifications.

/* Knight’s Tour. */
class Tour {

/* A Tour of length move is given by elements of B numbered 1

to move. Squares numbered consecutively go from (0,0) to (r,c),

and correspond to legal moves for a Knight. */

static int r = lo // Row coordinate of Knight.

static int c = lo; // Column coordinate of Knight.

static int move= 1; // Length of tour.

// B[lo][lo] = move; // Part of the tour invariant includes the
// Knight being in the upper-left square
// when move=1. It is not possible to do
// that here (in the middle of declarations)
// so we defer it until Initialize.

} /* Tour */

== A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

uoijejuasaiday eyeq

Define initial values for variables, as much as possible in terms of one another.

our Representation 1: Write invariants for the data representations as specifications.

*/

/* A Tour length move is given by elements of B numbered 1

uares numbered consecutively go from (0,0) to (r,c),

static int r =10 // Row coordinate of Knight.

static int ¢ = lo; // Column coordinate of Knight.

static int move= 1; // Length of tour.

// B[lo][lo] = move; // Part of the tour invariant includes the
// Knight being in the upper-left square
// when move=1. It is not possible to do
// that here (in the middle of declarations)
// so we defer it until Initialize.

} /* Tour */

== A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

uoijejuasaiday eyeq

Comment out part of the invariant that cannot be established until later.

Tour Representation 1: Write invariants for the data representations as specifications.

/* Knight’s Tour. */
class Tour {

/* A Tour of length move is given by elements of B numbered 1

to move. Squares numbered consecutively go from (0,0) to (r,c),

and correspond to legal moves for a Knight. */

static int r = lo // Row coordinate of Knight.

static int ¢ = lo; // Column coordinate of Knight.

static int move= 1; // Length of tour.

// B[lo][lo] = move; // Part of the tour invariant includes the
// Knight being in the upper-left square
// when move=1. It is not possible to do
// that here (in the middle of declarations)
// so we defer it until Initialize.

} /* Tour */

== A representation invariant describes the value(s) of one or more program variables,
and their relationships to one another as the program runs. The invariant is typically
written as a comment associated with the declaration(s) of the relevant variable(s).

uoijejuasaiday eyeq

Assess the Representation: \What operations are needed, and what is the utility of the
representation proposed?

* Plan, as appropriate.

» Stop at a cul-de-sac, either on the 64" move or earlier.
* Extend the tour, if possible.

* Retract the tour, if the strategy calls for backtracking.

uoijejuasaiday eyeq

== The touchstone of a data representation is its utility in performing the needed operations.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

* Plan, as appropriate.
= Access to full board B could provide any information needed.
» Stop at a cul-de-sac, either on the 64" move or earlier.
* Extend the tour, if possible.
* Retract the tour, if the strategy calls for backtracking.

uoijejuasaiday eyeq

== The touchstone of a data representation is its utility in performing the needed operations.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

* Plan, as appropriate.
= Access to full board B could provide any information needed.
» Stop at a cul-de-sac, either on the 64" move or earlier.
= Access to full board B will provide visibility of available neighbors.
* Extend the tour, if possible.
e Retract the tour, if the strategy calls for backtracking.

uoijejuasaiday eyeq

== The touchstone of a data representation is its utility in performing the needed operations.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

* Plan, as appropriate.
= Access to full board B could provide any information needed.
» Stop at a cul-de-sac, either on the 64" move or earlier.
= Access to full board B will provide visibility of available neighbors.
* Extend the tour, if possible.
* Toadvance fromB[r][c] tothe neighborB[r’][c’], set(r,c)to(r’, c’),
increment move, and store move inB[r’][c’].
e Retract the tour, if the strategy calls for backtracking.

uoijejuasaiday eyeq

== The touchstone of a data representation is its utility in performing the needed operations.

Assess the Representation: What operations are needed, and what is the utility of the
representation proposed?

* Plan, as appropriate.
= Access to full board B could provide any information needed.
» Stop at a cul-de-sac, either on the 64" move or earlier.
= Access to full board B will provide visibility of available neighbors.
* Extend the tour, if possible.
* Toadvance fromB[r][c] tothe neighborB[r’][c’], set(r,c)to(r’, c’),
increment move, and store move inB[r’][c’].
e Retract the tour, if the strategy calls for backtracking.
= To undo the most recent extend, store BLANK in B[r][c], locate previous
square (r’,c’), set(r,c)to(r’,c’), and decrement move.

uoijejuasaiday eyeq

== The touchstone of a data representation is its utility in performing the needed operations.

Alternative Representation: Address a shortcoming of Representation 1.

* Retract the tour, if the strategy calls for backtracking.
= To undo the most recent extend, store BLANK in B[r][c], locate previous
square (r’,c’), set(r,c)to(r’,c’), and decrement move.
For Representation 1, a search would be required to find (r’, c’).

B ICCJ, 1 2 3 Z (; 6 r'lll N
move| 5 | 1oro[1[oo]o]o @] a0 Such a search would inspect the eight
i i I) neighbors of (r,c) to find which
r2l0|2|0(0|5|0|0]|0
3jo{ojofofofo0f0]oO B[I’"] [C'] was move-1.
4)]0(0(0(0|0O|0O|0O]|O
510(0(0(0|0O|O|0O]|O
g|ojofofoj0o|O|0O]|O
hi7{0|0|JO0O|O0O|O0O|O0O]O0]|O
N

== The touchstone of a data representation is its utility in performing the needed operations.

uoijejuasaiday eyeq

Alternative Representation:

* Retract the tour, if the strategy calls for backtracking.
= To undo previous extend, locate previous square (r’, c’), set (r,c) to(r’, c’),
and decrement move.
For Representation 1, a search would be required to find (r’,c’).

uoijejuasaiday eyeq

lo c c hi
B o 1 2 3 4 5 6 7N])
move| 5 | 1o ro[1 o000 @ o]0 . But if the coordinates of tour squares
> .
;3 Z z z Z z 3 g o 1 2 3 4¢2. e Wererepresented as ordered collections,
r
s[ofofo]o]o]o]o]o row| 012]1]0]2 row and column, retract could be
dlojojojojojojojol coumnfO]1]3]5]4 implemented by just decrementing move.
510|(0|0]JO0O|OfO|0O]|O N h |db . d
6|l 0 0 0 0 0 0 0 0 O Searc WOU e reqUIre .
hi7]0jo0f0O|0|OjO|0]O
N

== The touchstone of a data representation is its utility in performing the needed operations.

Alternative Representation: Why do we need the board B at all?

Why not just represent the tour by the two ordered collections, row and column?

uoijejuasaiday eyeq

lo c c hi
01 2 3 4 5 6 7 N
1lolololola]olo
Q
ololof3|lo]ololo 3
0 1 2 3 4 E.. 64
W2 |o]o|s]o|o]o0
row|0O[2]|1]|10]|2
0 }\\o ololofo]o
003\\00000 column|0[1]|3|5|4
ololo o\\o ololo
olololo o\\o 0olo
ololololo o‘\g 0

/

== The touchstone of a data representation is its utility in performing the needed operations.

Alternative Representation: Why do we need the board B at all?

Why not just represent the tour by the two ordered collections, row and column?

* Extend the tour, if possible.

=

row

column

ooooo/o—on
y
ooooymoo—n
0007’OOOON
o
o|lo|lo|o|o|lo|o|o|~w

o
Z

AOOOOOOOG)

/

move

BN

. 64

Without the board B, testing whether an
(r’,c’)is “unvisited” would require
determining whether it is on the current
tour, which would require a search of the

tour in row and column.

== The touchstone of a data representation is its utility in performing the needed operations.

uoijejuasaiday eyeq

Alternative Representation: Why do we need the board B at all?

Why not just represent the tour by the two ordered collections, row and column?

* Extend the tour, if possible.

=

row

column

OOOOO/OAOE
y
ooooymoo—n
0007’OOOON
o
o|lo|lo|o|o|lo|o|o|~w

o
Z

AOOOOOOOG)

/

move

BN

. 64

Without the board B, testing whether an
(r’,c’)is “unvisited” would require
determining whether it is on the current
tour, which would require a search of the

tour in row and column.

Of course, an auxiliary 2-D boolean array B
indicating “visited” would obviate a search.

== The touchstone of a data representation is its utility in performing the needed operations.

uoijejuasaiday eyeq

Y
1. . ®
Representation 1: Representation 2: -
. . [. . 1
Primary: tour recorded in cells of 2-D int array B. Primary: tour recorded in variables row and column. 8
Auxiliary: Variables row and column to facilitate Auxiliary: 2-D boolean array B to facilitate testing g
finding predecessor square, for Retract. whether a square is unvisited, for Extend. ==
lo c c hi g
B o 1 2 3 4 5 6 7N g . @
move| 5 lorol1|0|0|0|0f410]|0 001 2 3 4 g 64 °
11oloflo|s|o|ofo]o cowloT2T1 1012 1
r2l0|2(0|0|5[0|0]0O0
3jojoflofojo|o|ofoO column| 0| 1|3 |5 |4
4)0|0(0|0|jO0O|0O|O0]O
500|0(0|0]|O0]|O0O|0]O
6|ojojojojojo|0]|o0
hi7{0|0|JO0O|O0O|O0O|O0O]O0]|O
N

== The touchstone of a data representation is its utility in performing the needed operations.

Alternative Representation: Which is better? Or is it “six or half dozen the other”? o)
~
o)
Representation 1: Representation 2: %
1
Primary: tour recorded in cells of 2-D int array B. Primary: tour recorded in variables row and column. 8
Auxiliary: Variables row and column to facilitate Auxiliary: 2-D boolean array B to facilitate testing g
finding predecessor square, for Retract. whether a square is unvisited, for Extend. ==
lo c c hi g
B o 1 2 3 4 5 6 7N g . @
move| 5 lorol1|0|0|0|0f410]|0 001 2 3 4 g 64 °
11o|ofo|3|o|o]o]o0 cowloT2T1 1012 1
r2l0|2(0|0|5[0|0]0O0
3djojojofojofofo]oO column| 0|1 [3 |5 |4
4)0|0(0|0|jO0O|0O|O0]O
500|0(0|0]|O0]|O0O|0]O
6|ojojojojojo|0]|o0
hi7{0|0|JO0O|O0O|O0O|O0O]O0]|O
N

== The touchstone of a data representation is its utility in performing the needed operations.

Alternative Representation: Which is better? Or is it “six or half dozen the other”?

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?

Representation 1: Representation 2:
Primary: tour recorded in cells of 2-D int array B. Primary: tour recorded in variables row and column.
Auxiliary: Variables row and column to facilitate Auxiliary: 2-D boolean array B to facilitate testing
finding predecessor square, for Retract. whether a square is unvisited, for Extend.
lo c c hi
B o 1 2 3 4 5 6 7N g
move| 5 lorol1|0|0|0|0f410]|0 001 2 3 4 g 64
1fojoj0|3|0(0]j0]|O0 rowl 01211 0l 2
r2l0|2|0(0|5|0|0]|0
3djojojofojofofo]oO column| 0|1 [3 |5 |4
4)]0(0(0(0|0O|0O|0O]|O
510(0(0(0|0O|O|0O]|O
g|ojofofoj0o|O|0O]|O
hi7{0|0|JO0O|O0O|O0O|O0O]O0]|O
N

== The touchstone of a data representation is its utility in performing the needed operations.

uoijejuasaiday eyeq

Alternative Representation: Which is better? Or is it “six or half dozen the other”?

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?

Representation 1: Representation 2:
Primary: tour recorded in cells of 2-D int array B. Primary: tour recorded in variables row and column.
Auxiliary: Variables row and column to facilitate Auxiliary: 2-D boolean array B to facilitate testing
finding predecessor square, for Retract. whether a square is unvisited, for Extend.
lo c c hi
B o 1 2 3 4 5 6 7N g
move| 5 lorol1|0|0|0|0f410]|0 001 2 3 4 g 64
ifojfojo|{3|0|O0Of0O]|O rowl 01 2 1 0l 2
r2l0|2(0|0|5[0|0]0O0
3djojojofojofofo]oO column| 0|1 [3 |5 |4
4)0|0(0|0|jO0O|0O|O0]O
500|0(0|0]|O0]|O0O|0]O
elojojojojojojolo Choose Representation 1 (without the auxiliary collections),
hi7{0|0|JO0O|O0O|O0O|O0O]O0]|O
N for now. Revisit later if tour retraction becomes an issue.

== The touchstone of a data representation is its utility in performing the needed operations.

uoijejuasaiday eyeq

Alternative Representation: Which is better? Or is it “six or half dozen the other”?

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?

Representation 1: Representation 2:

Primary: tour recorded in cells of 2-D int array B. Primary: tour recorded in variables row and column.

Auxiliary: Variables row and column to facilitate Auxiliary: 2-D boolean array B to facilitate testing
finding predecessor square, for Retract. whether a square is unvisited, for Extend.
lo c c hi
B o 1 2 3 4 5 6 7N g
move| 5 lorogl1|0|0|0|0f440]|0 001 2 3 4 g 64
110/ofo|3|ofof0o]o0 row02102m
r2l0|2|0(0|5|0|0]|0
3djojojofojofofo]oO column| 0|1 [3 |5 |4
4)]0(0(0(0|0O|0O|0O]|O
510(0(0(0|0O|O|0O]|O
elojojojojojojolo Choose Representation 1 (without the auxiliary collections),
hi7{0|0|JO0O|O0O|O0O|O0O]O0]|O
N for now. Revisit later if tour retraction becomes an issue.

== Don’t let the “perfect” be the enemy of the “good”. Be prepared to
compromise because there may be no perfect representation. Don’t freeze.

uoijejuasaiday eyeq

Define methods:

azijeniu|

/* Knight’s Tour. */
class Tour {

/* Establish a tour of length 1. */
static void Initialize() {
/* Start a tour with the Knight in the upper-left corner. */
B[lo][1lo] = move;
} /* Initialize */

i.}* Tour */

Define methods: Row-major order enumeration should be second nature.

/* Knight’s Tour. */
class Tour {

/* Print tour as numbered cells in N-by-N grid of ©@s. */
static void Display() {
for (int r=lo; r<=hi; r++) {
for (int c=lo; c<=hi; c++)
System.out.print(B[r][c] + " ");
System.out.println();
}
} /* Display */
+ /* Tour */

= Master stylized code patterns, and use them.

Ae|dsiq

Test early and often.

Invoke Tour.main()

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
= Validate output thoroughly.

sunsay

Test early and often.

Output:

/ What has been validated?
109000000 * Syntactic correctness of overall framework
© 000000 o e Creation of initial data representation
© 000000 o e Correct 2-D output format
© 000000 o * That the 3 methods were actually executed.
© 0000000
© 0000000
© 0000000
© 0000000

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
= Validate output thoroughly.

sunsay

Test early and often.

sunsay

Output:
10000000 It’s no secret why the tour isn’t very long: Solve is just a stub.
© 0000000 . - .
00000000 But if the problem statement is: Write a program that attempts
D OO OOOOO to find a complete Knight’s Tour, our program is correct.
© 0000000
:) '
00000000 It just doesn’t try very hard!
© 0000000
© 0000000

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
= Validate output thoroughly.

Let’s try a little harder.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */
static void Solve() {

} /* Solve */

i.}* Tour */

9A|0S

Iterative Refinement: Indeterminate form, because we can’t predict when to stop.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */
static void Solve() {

|before '

\while (condition) each-time
l after

} /* Solve */

i.}* Tour */

= If you “smell a loop”, write it down.

9A|0S

Standard Pattern: Specialize the loop as an instance of the general-iteration pattern.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */
static void Solve() {___ __ __ __ __ __ __ o _______._ ,
1 /* Initialize. */
\while (not-finished) {
! /* Compute. */
; /* Go on to next. */
|

I-} /* Solve */

i.}* Tour */

= Master stylized code patterns, and use them.

9A|0S

Refine: Express the general-iteration pattern as a journey through an abstract space.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */
static void Solve() { ___ __ __ __ __ __ __ o _______._ ,
1 /* Start-at-the-beginning. */
\while (not-beyond-the-end) {
; /* Process-the-current-place. */
; /* Advance-to-the-next-place. */
|

I-} /* Solve */

i.}* Tour */

= Master stylized code patterns, and use them.

9A|0S

This pattern is not a good match because, by definition, a cul-de-sac is a place from which there is no next place.

Refine: Express the general-iteration pattern as a journey through an abstract space.

* Knight’s Tour. */
ass Tour {

/* Compute: Extend the tour, if possible. */

/* Process-the-current-place. */
/* Advance-to-the-next-place. */

|
|
|
|
|
L

} /* Solve */

i.}* Tour */

= Master stylized code patterns, and use them.

9A|0S

Specialize as an alternative version that goes no further than the end.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */
static void Solve() {___ __ __ __ __ __ __ o _______._
1 /* Start-at-the-beginning. */
\ /* Process-the-current-place. */
lwhile (not-at-the-end) {
/* Determine-a-next-place-to-go-or-at-the-end. */
if (not-at-the-end) {
/* Advance-to-the-next-place. */
/* Process-the-current-place. */

} /* Solve */

i.}* Tour */

9A|0S

Processing instructions appear twice in the code, which is a disadvantage.

Specialize as an alternative version that goes no further than the end.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */

/* Start-at-the-beginning. */
\ /* Process-the-current-place. */
lwhile (not-at-the-end) {
/* Determine-a-next-place-to-go-or-at-the-end. */
if (not-at-the-end) {
/* Advance-to-the-next-place. */
/* Process-the-current-place. */

} /* Solve */

i.}* Tour */

9A|0S

Omit first two lines, which are done by class-variable declarations and Initialize.

Specialize for the Knight’s Tour.

/X Knight’s Tour. */
class Tour {

/™ Compute: Extend the tour, if possible. */

|

1

|

lwhile (not-at-the-end) {

; /* Determine-a-next-place-to-go-or-at-the-end. */
! if (not-at-the-end) {

I /* Advance-to-the-next-place. */

: /* Process-the-current-place. */

:
|
1

} /* Solve */

i.}* Tour */

9A|0S

Specialize for the Knight’s Tour.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */

|

1

|

lwhile (not-at-the-end) {

; /* Locate an unvisited neighbor, or indicate cul-de-sac. */
! if (not-at-the-end) {

I /* Advance-to-the-next-place. */

: /* Process-the-current-place. */

:
|
1

} /* Solve */

i.}* Tour */

9A|0S

Specialize for the Knight’s Tour.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */

|

1

|

'while (not-in-cul-de-sac) {

; /* Locate an unvisited neighbor, or indicate cul-de-sac. */
! if (not-in-cul-de-sac) {

I /* Advance-to-the-next-place. */

: /* Process-the-current-place. */

:
|
1

} /* Solve */

i.}* Tour */

9A|0S

Specialize for the Knight’s Tour.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */

1

|

I

' while (not-in-cul-de-sac) {

; /* Locate an unvisited neighbor, or indicate cul-de-sac. */
! if (not-in-cul-de-sac) {

I /* Extend the tour to the unvisited neighbor. */

I
|
1
|
I
1

i.}* Tour */

9A|0S

Introduce a Coordinate System: Polar-like neighbor numbers, k.

== |nvent (or learn) vocabulary for concepts that arise in a problem.

9A|0S

Refine: Using polar-like neighbor numbers, k.

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */

1

|

I

' while (not-in-cul-de-sac) {

; /* Let k = index of an unvisited neighbor, or CUL_DE SAC. */
' if (k != CUL_DE_SAC) {

! /* Extend the tour to the unvisited neighbor. */

:
|
I
1

i.}* Tour */

9A|0S

Refine: Use sequential search pattern to find an unvisited neighbor.

/* Knight’s Tour. */
class Tour {

/* Compute Extend the tour, if possible. */

i while (not-1in- cul-de-sac) {
' /* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */
int k =
while ((k<=maximum) && condition) k++;
if (k !'= CUL_DE SAC) {
/* Extend the tour to the unvisited neighbor. */
}
}
} /* Solve */

i./* Tour */

= Master stylized code patterns, and use them.

9A|0S

Variable k will automatically be set to CUL_DE_SAC on a failed search if we choose CUL_DE_SAC to be 8.

Refine: Use sequential search pattern to find an unvisited neighbor.

while (not-tg-cul-de-sac) {
' /* Let k = hodex of an unvisited neighbor, or CUL_DE_SAC. */
int k = 0;
while ((k<CUL DE SAC) && /* neighbor k is visited */) k++;
if (k !'= CUL_DE SAC) {
/* Extend the tour to the unvisited neighbor. */
}
}
} /* Solve */

r
1

i.}* Tour */

9A|0S

Refine: Have faith in the expressive power of the language.

/* Knight’s Tour. */
class Tour {

/* Compute Extend the tour, if possible. */

' while (not-1in- cul-de-sac) { I
' /* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */ :
int k = :
while ((k<CUL _DE_SAC) && B| 11 J'=BLANK) k++; |

if (k !'= CUL_DE _SAC) { :
:

I

|

1

|

|

/* Extend the tour to the unvisited neighbor. */
}
}
} /* Solve */

i./* Tour */

= Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.

9A|0S

Introduce another Coordinate System: (Ar,Ac)

>C Introduce a local coordinate system (Ar,Ac) with origin at
2 1 the location of a Knight at (r,c) in the global coordinate
3 0 system.
2 > Ac . . .
p . If the Knight has a neighbor (®) at (Ar,Ac) in the local
: - system, then that neighbor is at (r+Ar,c+Ac) in the global

system.

9A|0S

Introduce a Table of Constants: It can obviate an explicit Case Analysis.

2 1
3 0
) » Ac
4 7
5 6
\/
Ar = O O O O O C =
// (%] 1 2 3 4 5 6 7
static final int deltaR[] = {-1, -2, -2, -1, 1, 2, 2, 1};
static final int deltaC[] ={ 2, 1, -1, -2, -2, -1, 1, 2};

= Introduce auxiliary data to allow code to be uniform.

9A|0S

Introduce a Table of Constants: It can obviate an explicit Case Analysis.

>C If the Knight has a neighbor (@) at (Ar,Ac) in the local system,
2 1 then that neighbor is at (r+Ar,c+Ac) in the global system.
3 0
4 » A\c
4 7
5 6
r&

//
static final int deltaR[] =
static final int deltaC[]

9A|0S

Introduce a Table of Constants: It can obviate an explicit Case Analysis.

>c If the Knight has a neighbor (®) at (Ar,Ac) in the local system,
Z 1 then that neighbor is at (r+Ar,c+Ac) in the global system.
3 0
If the Knight has a neighbor (k) at (deltaR[k],deltaC[k]) in
4 » Ac : .
p . the local system, then that neighbor is at
- - (r+deltaR[k],c+deltaC[k]) in the global system.
A
—C——— e OO
// 1 2 3 4 5 6 7

static final int deltaR[] =
static final int deltaC[]

9A|0S

Refine: Have faith in the expressive power of the language.

/* Knight’s Tour. */
class Tour {

/* Compute Extend the tour, if possible. */

' while (not-1in- cul-de-sac) { I
' /* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */ :
int k = ;

while ((k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++; !

if (k !'= CUL_DE SAC) { ;

/* Extend the tour to the unvisited neighbor. */ I

} :

Y :

} /* Solve */ |

i./* Tour */

9A|0S

Refine: Update tour, referring to its data-representation invariant to know what must change.

/* Knight’s Tour. */
class Tour {

/* Compute' Extend the tour, if possible. */

/* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */

int k =

while ((k<CUL _DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) Kk++;
if (k !'= CUL_DE SAC) {

/* Extend the tour to the unvisited neighbor. */

}

}

* *
];/__§91_V_e_ _/_ _______ Squares numbered consecutively go from (0,0) to (r,c), and

. correspond to legal moves for a Knight. */
} /* Tour */ static int r, c; // Position of Knight.
static int move; // Length of Tour.

/* A Tour of length move is given by elements of B numbered 1 to move.

9A|0S

Refine: Update tour, referring to its data-representation invariant to know what must change.

/* Knight’s Tour. */
class Tour {

/* Compute Extend the tour, if possible. */

int k =

/* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */

while ((k<CUL _DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) Kk++;
if (k !'= CUL_DE SAC) {
/* Extend the tour to the unvisited neighbor. */
r = r+deltaR[k]; ¢ = c+deltaC[k]; move++; B[r][c] = move;

} /* Solve */

i.}* Tour */

/* A Tour of length move is given by elements of B numbered 1 to move.

Squares numbered consecutively go from (0,0) to (r,c), and
correspond to legal moves for a Knight. */

static int r, c; // Position of Knight.
static int move; // Length of Tour.

9A|0S

Termination:

9A|0S

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */
static void Solve() {
while (not-in-cul-de-sac) {
/* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */
int k = 0;
while ((k<CUL _DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) Kk++;
if (k !'= CUL_DE SAC) {
/* Extend the tour to the unvisited neighbor. */
r = r+deltaR[k]; c¢ = c+deltaC[k]; move++; B[r][c] = move;
}
}
} /* Solve */

i.}* Tour */

neighbor on the previous iteration,

Termination can use failure to find an unvisited

Termination:

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, 1if possible. */
static void Solve() {
while (k!=CUL DE _SAC") {
/* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */
int k = 0;
while ((k<CUL _DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) Kk++;
if (k !'= CUL_DE SAC) {
/* Extend the tour to the unvisited neighbor. */
r = r+deltaR[k]; c¢ = c+deltaC[k]; move++; B[r][c] = move;
}
}
} /* Solve */

i.}* Tour */

9A|0S

Termination can use failure to find an unvisited
neighbor on the previous iteration, but we

must make sure the loop iterates the first time.

Termination:

/* Knight’s Tour. */
class Tour {

/* Compute: Extend the tour, if possible. */
static void Solve() {
int k = 9; // Neighbor number not CUL_DE_SAC.
while (k!=CUL DE_SAC) {
/* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */
k = 0;
while ((k<CUL _DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) Kk++;
if (k !'= CUL_DE SAC) {
/* Extend the tour to the unvisited neighbor. */
r = r+deltaR[k]; c¢ = c+deltaC[k]; move++; B[r][c] = move;

}
}
} /* Solve */

} }* Tour */

9A|0S

Notice that we have moved the declaration of k outside the loop.

9A|0S

Termination:

* Knight’s Tour. */
class Tour {

* Compute: Extend the tour, if possible. */
static void Solve() {
int k = @; // Neighbor number not CUL DE_SAC.
while (k!=CUL DE_SAC) {
/* Let k = index of an unvisited neighbor, or CUL_DE _SAC. */
k = 0;
while ((k<CUL _DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) Kk++;
if (k !'= CUL_DE SAC) {
/* Extend the tour to the unvisited neighbor. */
r = r+deltaR[k]; ¢ = c+deltaC[k]; move++; B[r][c] = move;
}
}
} /* Solve */

i.}* Tour */

Auxiliary Constants:

/* Knight’s Tour. */
class Tour {

/* Auxiliary constants. */
final int[] deltaR
final int[] deltaC
int CUL _DE SAC = 8;

{-1
{2

i.}* Tour */

J

J

_2’

1,

_2,
_1,

_1)
_2)

1,
_2,

2,
_1,

2,
1,

1};
2};

9A|0S

Incremental Testing: But don’t be overeager.
* Hit the execute button now, and you will get a “subscript out of bounds” error.

/* Let k = # of an unvisited neighbor, or CUL_DE_SAC. */
k = 0;
while (k<CUL_DE_SAC && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;

* You can waste a lot of time debugging things you could have anticipated if you had
thought a little more deeply: Some squares have fewer than eight neighbors because
they are at the board boundary.

suonipuo) Aiepunog

= Boundary conditions. Dead last, but don’t forget them.

Incremental Testing: But don’t be overeager.
* Hit the execute button now, and you will get a “subscript out of bounds” error.

/* Let k = # of an unvisited neighbor, or CUL_DE_SAC. */
k = 0;
while (k<CUL_DE_SAC && B[r+deltaR[k]][c+deltaC[k]]!=BLANK) k++;

* You can waste a lot of time debugging things you could have anticipated if you had
thought a little more deeply: Some squares have fewer than eight neighbors because
they are at the board boundary.

suonipuo) Aiepunog

 We seek a way to deal with the boundaries without doing major surgery on the code.

= Boundary conditions. Dead last, but don’t forget them.

lo 0

Sentinels to the Rescue: Original representation invariant

hi 7

/* Knight’s Tour. */
class Tour {
/* Chess board B is an N-by-N int array, for N==8. Unvisited squares
are BLANK, and row and column indices range from lo to hi. */

static final int N = 8; // Size of B.

static int B[][]; // Chess board, initially @s.

static final int BLANK = ©; // Unvisited square in board.

static final int lo = ©; // First row or column index.

static final int hi = hi+N-1; // Last row or column index.
} /* Tour */

= Boundary conditions. Dead last, but don’t forget them.

uoijejuasaiday eyeq

Sentinels to the Rescue: Updated representation invariant

/* Knight’s Tour. */

class Tour {

/* Chess board B is an N-by-N int sub-array, for N==8, embedded in a
2-cell ring of sentinel squares. Unvisited squares are BLANK, and
row and column indices range from lo

static
static
static
static
static

} /* Tour

final int N;
int B[][];

final int BLANK

final int lo
final int hi

*/

23
hi+N-1;

//
//
//
//
//

to hi. */
Size of B.
Chess board, initially @©s.
Unvisited square in board.
First row or column index.
Last row or column index.

= Boundary conditions. Dead last, but don’t forget them.

lo 2

hi 9

(pasinaJ) uoljejuasaiday ejyeq

Sentinels to the Rescue: Original Initialize

/* Knight’s Tour. */
class Tour {

/* Initialize: Establish invariant for a tour of length 1. */
static void Initialize() {
/* Start a tour with the Knight in the upper-left corner. */
B[lo][lo] = move;
} /* Initialize */

} /;.+our */

= Boundary conditions. Dead last, but don’t forget them.

lo 0

hi 7

azijeniu|

Sentinels to the Rescue: Revised Initialize

/* Knight’s Tour. */
class Tour {

/* Initialize: Establish invariant for a tour of length 1. */
static void Initialize() {
/* Set B to an (N+4)-by-(N+4) array of all non-BLANK. */
for (int r=lo-2; r<=hi+2; r++)
for (int c=lo-2; c<=hi+2; c++)
B[r][c] = BLANK+1;
/* Reset inner N-by-N array to all BLANK. */
for (int r=lo; r<=hi; r++)
for (int c=lo; c<=hi; c++)
B[r][c] = BLANK;

/* Start a tour with the Knight in the upper-left corner. */

B[lo][lo] = move;
} /* Initialize */

} /* Tour */

lo 2

hi 9

(pesinai) aziferu

Incremental Testing: Good to go!

sunsay

Incremental Testing: Good to go!

sunsay

Output:
What has been validated?
1 19 23 42 7 4 13 18 — | Syntactic correctness of overall framework
24 41 8 3 12 17 6 15 * Creation of initial data representation
9 2 11 22 5 14 19 32 e Correct 2-D output format
© 25 40 35 20 31 16 © e Correct search for an unvisited neighbor
©@ 36 21 © 39 @ 33 30 e Correct extension of tour to that neighbor
26 © 38 © 34 29 0 © * Correct treatment of boundaries
37 9 0 28 9 0 0 © Unanticipated problem detected
© 27 9000 00 * Ragged output due to variable-length integers

sunsay

Incremental Testing: Good to go!

Output:
What has been validated?
1 19 23 42 7 4 13 18 — | Syntactic correctness of overall framework
24 41 8 3 12 17 6 15 * Creation of initial data representation
9 2 11 22 5 14 19 32 e Correct 2-D output format
© 25 40 35 20 31 16 © e Correct search for an unvisited neighbor
©@ 36 21 © 39 @ 33 30 e Correct extension of tour to that neighbor
26 © 38 © 34 29 0 © * Correct treatment of boundaries
37 9 0 28 9 0 0 © Unanticipated problem detected
© 27 9000 00 * Ragged output due to variable-length integers

Not too shabby considering that we just went to an arbitrary
unvisited square, an approach called a greedy algorithm.

sunsay

Incremental Testing: Good to go!

Output:

1 10 23 42 7 4 13 18 Fix the minor formatting issue by modifying the line:
24 41 8 3 12 17 6 15

9 2 11 225 14 19 32 System.out.print(B[r][c] + " ");

© 25 40 35 20 31 16 ©

© 36210 390 33 30 in method Output, as follows:

26 06 380 34 290 0O . o . |
370 0 290 © 0 © System.out.print((B[r][c]+) .substring(0,3));

O 270 06 06 0 0 0 /

Concatenate a blank at the end of the String representation
of the integer, and then truncate it to 3 characters.

Greedy Selection: A greedy algorithm just picks the first available neighbor.

/* Extend the tour, if possible. */
static void Solve() {
int k = @; // A neighbor number that is not CUL_DE_SAC.
while (k!=CUL _DE_SAC) {
/* Let k = index of an unvisited neighbor, or CUL_DE SAC. */

r==—==1
=
>
[
[
m
—~
—~
~
A
(@)
c
II_
O
II'I'I
n
>
(@)
~
0
Q0
—~
vs)
i
)
+
Q
)
=
—~+
Q
P
i
~
L
e
i
(@
+
Q
)
|
—~+
(o)
(@)
| |
~
| M-
e
Il
(v o)
—
>
=
~
~
~

if (k!=CUL_DE_SAC) {
/* Extend the tour to unvisited neighbor k. */
r = r+deltaR[k]; c¢ = c+deltaC[k]; move++; B[r][c]=move;

}
}
} /* Solve */

SOIISLIN3H

Heuristic Selection: A better algorithm picks a favored neighbor, which we optimistically
refer to as the “best choice”.

/* Extend the tour, if possible. */
static void Solve() {
int k = @; // A neighbor number that is not CUL_DE_SAC.
while (k!=CUL _DE_SAC) {
/* Let k = index of an unvisited neighbor, or CUL_DE SAC. */
I /* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all =
neighbors are already visited. */
if (k!=CUL_DE_SAC) {
/* Extend the tour to unvisited neighbor k. */
r = r+deltaR[k]; c¢ = c+deltaC[k]; move++; B[r][c]=move;
}
}
} /* Solve */

A heuristic is an aid to problem solving that may help.

SOIISLIN3H

Heuristic Selection: A better algorithm picks a favored neighbor, which we optimistically
refer to as the “best choice”.

/* Extend the tour, if possible. */
static void Solve() {
int k = @; // A neighbor number that is not CUL_DE_SAC.
while (k!=CUL _DE_SAC) {
/* Let k = index of an unvisited neighbor, or CUL_DE SAC. */
I //* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all =
neighbors are already visited. */

if (kI=CUL_DE_SAC) {
/* Extend the tour to unvisited neighbor k. */
r = r+deltaR[k]; c¢ = c+deltaC[k]; move++; B[r][c]=move;

}
}
} /* Solve */

Adapt the pattern from Chapter 7: Find an argument k that minimizes a function’s value.

A heuristic is an aid to problem solving that may help.

SOIISLIN3H

Heuristic Selection: Pick the neighbor that minimizes a score, for some score function.

/* Extend the tour, if possible. */
static void Solve() {
int k = @; // A neighbor number that is not CUL_DE_SAC.
while (k!=CUL_DE_SAC) {
/* Let k = index of an unvisited neighbor, or CUL DE SAC. */
I /* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all I
, neighbors are already visited. */ !
: int bestK = CUL_DE_SAC; ;
: int bestScore = CUL_DE SAC; ;
: for (k = 0; k<CUL DE _SAC; k++) { !
I if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) { I
: int s = score(r+deltaR[k], c+deltaC[k]); :
: if (s<bestScore) {bestScore = s; bestK = k; } !
I I
| |
| |
| |

if (k!=CUL_DE_SAC) { T rmrmmmeeem e
/* Extend the tour to unvisited neighbor k. */
r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;

}
}
} /* Solve */

SOIISLIN3H

Score:

/* Return 0. */
int Score(int r, int c) { return 0; }

== Write method stubs that allow partial programs to execute.

SOIISLIN3H

Sunysa)

Incremental Testing: Good to go!

Output:
What has been validated?
1 10 23 42 7 4 13 18 e Syntactic correctness of overall framework
24 41 8 3 12 17 6 15 * Creation of initial data representation
9 2 11225 14 19 32 e Correct 2-D output format
®© 25 40 35 20 31 16 © e Correct search for an unvisited neighbor
© 36 210 390 33 30 e Correct extension of tour to that neighbor
26 © 3830 34290 © * Correct treatment of boundaries
379 © 280 © © © * Exercising of search for a favored neighbor, albeit
O 270 © © © © © still just selects first unvisited neighbor

Same output as before, because any unvisited neighbor has a
Score of 0.

A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s
unvisited neighbors ().

SOIISLIN3H

A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s
unvisited neighbors ().

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a
subset of the pink squares).

m=0. The Knight’s current square is the only way to get to square 2,

2 1
3 0 and if it doesn’t go there now, it won’t ever get another chance.
4 Yes, it will then be in a cul-de-sac, so, if we hope for a tour of length
4 7 64, this better be the 64" move. If not, the Knight is effectively cutting
5 6 its losses, and ending a doomed tour. If the goal were to maximize tour

length, it would be better not to go there now, unless this is move 64.

Warnsdorff ’s Rule is “going for broke”.

SOIISLIN3H

A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s
unvisited neighbors ().

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a
subset of the pink squares).

m=1. There is only one way out (e.g, the yellow square). If the Knight
were to go to square 2 now, then the next move (to yellow) would
remove 2 from further concern. But if it doesn’t go there now, then
2 when it eventually gets to the yellow square, it will be forced to go to
2, which will then end the tour in a cul-de-sac. So, it is best to pass

> 6 through 2 now, for otherwise it will loom as a hazard.

SOIISLIN3H

A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s
unvisited neighbors ().

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a
subset of the pink squares).

m=2. Too hard to think about. Perhaps the advantages of m=0 and m=2
are good enough to complete a tour.

SOIISLIN3H

Score: Replace stub by implementation of Warnsdorff’s Rule.

/* Return # of unvisited neighbors of (r,c). */
static int Score(int r, int c) {
int count = @; // Number of unvisited neighbors of (r,c) found so far.
for (int k=0; k<CUL _DE SAC; k++)
if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) count++;
return count;

}

SOIISLIN3H

r Call site: int s = Score(r+deltaR[k],c+deltaC[k]);

Score: Replace stub by ipdplementation of Warnsdorff’s Rule.

/* Return # of up¥isited neighbors of (r,c). */
static int Scopé(int r, int c) {

int count/= @; // Number of unvisited neighbors of (r,c) found so far.
k=0; k<CUL_DE_SAC; k++)

(B[r+deltaR[k]][c+deltaC[k]]==BLANK) count++;
rn count;

r and c are class variables that are part of the
tour’s representation invariant, and are the
Knight’s current coordinates.

SOIISLIN3H

Call site: int s = Score(r+deltaR[k],c+deltaC[k]);

Parameters: Score(int r, \ int c)

Score: Replace stub by ipdplementation of Warnsdorff’s Rule.

/* Return # of unvisited neighbors of (r,c). */
static int Score(int r, int c) {
int count = @; // Number of unvisited neighbors of (r,c) found so \far.
for (int k=0; k<CUL_DE _SAC; k++)
if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) count++;
return count;

}
y

r and c are class variables that are part of the
tour’s representation invariant, and are the
Knight’s current coordinates.

r and c are parameters of Score. On each call, they
are the coordinates of the Knight’s k-th neighbor.

= Avoid gratuitously different names for parameters and variables whose use
is essentially the same. Practice conceptual economy.

SOIISLIN3H

Incremental Testing: A complete tour!

Output:

1 22
4 19
23 2
20 5
57 50
6 43
51 58
a4 7

3

24
21
56
27
60
45
52

18
29
26
49
42
55

59

25
14
35
28
61
48
53
46

30
17
32
41
54
39
62

13
34
15
36
11
64
47
38

16
31
12
33
40
37
10
63

sunsay

~

135

2.

8
'

B
’L\

Incremental Testing: A complete tourI

Output

‘ 1 22 3
4 19 24
23 2 21
20 5 56
57 50 27

%5 43 60

n 51 58 45
44 7 52

18

25
14
35
28
61
48
53
46

30
17
32
41
54
39
62

’
13
34
15
36
11
64
47
38

-

- »

16 »

31 4

12 '

33

40 -

37

10 |
63

5

B ’ .’
0/,’)'
'.“
e\/“ ;
d'(>1
/.J\.‘ \
N A
ez
» -""
-] "
IS
§ 7 -
e)

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.

/* Let k = index of unvisited neighbor, or CUL_DE _SAC. */
/* Let unvisited[@:count-1] be neighbor numbers of the count
unvisited neighbors of (r,c). */
if (count==0) k = CUL_DE_SAC;
else k = a-random-neighbor-selected-from-unvisited[6:count-1];

sInoj ojies ajuoj\l

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.

/* Let k = index of unvisited neighbor, or CUL_DE _SAC. */
/* Let unvisited[@:count-1] be neighbor numbers of the count
unvisited neighbors of (r,c). */
int unvisited[] = new int[CUL_DE_SAC];
int count = @; // # unvisited neighbors
for (k=0; k<CUL_DE SAC; k++)
if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) {
unvisited[count]=k; count++;
}
if (count==0) k = CUL_DE_SAC;
else k = a-random-neighbor-selected-from-unvisited[6:count-1];

sInoj ojies ajuoj\l

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.

/* Let k = index of unvisited neighbor, or CUL_DE SAC. */
/* Let unvisited[@:count-1] be neighbor numbers of the count
unvisited neighbors of (r,c). */
int unvisited[] = new int[CUL_DE_SAC];
int count = @; // # unvisited neighbors
for (k=0; k<CUL_DE_SAC; k++)
if (B[r+deltaR[k]][c+deltaC[k]]==BLANK) {
unvisited[count]=k; count++;
}
if (count==0) k = CUL_DE_SAC;
else k = unvisited[rand.nextInt(count)];

sInoj ojies ajuoj\l

Omitted Details:

Importing of the random library.
A driver that repeatedly invokes the Monte Carlo solve until a solution is found.

Instrumentation of the driver to histogram the tour lengths of each trial.

Frequencies of Lengths of Random Knight's Tours
40000

35000
30000
> 25000
g
S 20000
[=n

g
o 15000

10000
: 111 1
0 -.IlIIII I IIII-_

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
Tour Length

o

Who could have guessed that a Knight could be so stupid as to get
himself into a cul-de-sac in just 8 moves!

sInoj ojies ajuoj\l

Summary:

Many standard precepts, patterns, and established coding techniques have been illustrated.
The importance of data representations and invariants was stressed.

The notions of greedy, heuristic, and Monte Carlo algorithms were introduced.

	Title
	Slide 1

	Introduction
	Slide 2
	Slide 3

	Understanding the Problem
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

	Top-level Code Structure
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	Data Representation
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

	Top-level Procedures
	Slide 53
	Slide 54

	Initial Test
	Slide 55
	Slide 56
	Slide 57

	Method Solve
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

	Boundary Conditions
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

	Testing, revisited
	Slide 92
	Slide 93
	Slide 94
	Slide 95

	Heuristics
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108

	Testing, revisited yet again
	Slide 109
	Slide 110

	Monte Carlo Tours
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

