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A Knight can move 2 squares in 
one direction, and 1 square in the 
perpendicular direction.
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0 25 40 35 20 31 16 0

0 36 21 0 39 0 33 30

26 0 38 0 34 29 0 0

37 0 0 28 0 0 0 0

0 27 0 0 0 0 0 0

Can a Knight start in the upper left square, 
and visit every square of an 8-by-8 board 
exactly once?

This attempt failed after move 42, because 
the Knight got caught in a cul-de-sac.



We present a systematic top-down development of an entire program to find a Knight’s Tour. 
The use of already-presented techniques includes:

• Sequential search.
• Sentinels.
• Find an integer argument at which a function value is minimal.

New techniques introduced include:

• Data representations, and their invariants.
• Use of symbolic constants, and tables of constants.
• Incremental testing.

Two new programming approaches that, while not guaranteed to solve a problem, may be 
effective, nonetheless:

• Use of heuristics.
• Use of randomness.



Where to begin: Get your feet wet.

You can start by working the problem by hand, but may find it a bit 
overwhelming. 

An alternative is to generalize to an N-by-N chess board, and then 
re-instantiate the problem for small values of N.

☞ Make sure you understand the problem.
☞ Confirm your understanding with concrete examples.
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N=1. Solved from the get-go. So, the problem is solvable, in general.
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N=1. Solved from the get-go. So, the problem is solvable, in general.

N=2. Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.
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N=1. Solved from the get-go. So, the problem is solvable, in general.

N=2. Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.

N=3. There is a choice at the begin, but thereafter the (partial) tour is 
proscribed. However, no tour can reach the central square. Taking 
symmetry into account, the initial choices were not fundamentally 
different. Might symmetry play a role?
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N=1. Solved from the get-go. So, the problem is solvable, in general.

N=2. Impossible, and stuck from the get-go. So, the problem may be
not solvable, in general.

N=3. There is a choice at the begin, but thereafter the (partial) tour is 
proscribed. However, no tour can reach the central square. Taking 
symmetry into account, the initial choices were not fundamentally 
different. Might symmetry play a role?

N=4. Lots of choices. The tour shown is stuck in a cul-de-sac at move 12. 
No solution is readily found, and it is unclear whether there is one. 
The problem is already big enough to frustrate. 
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class Tour {
   
   static void main() { } /* main */
   } /* Tour */

Establish a framework

☞ Aggregate the definitions of related variables and methods in a class.



Establish a framework

☞ A class header-comment is descriptive, and omits the details of the methods 
and variables of the class. Reference available auxiliary documentation.

/* Knight’s Tour. */
class Tour {

   static void main() { } /* main */
   } /* Tour */

There are standards for header comments, but we will simplify.



Establish a framework 

☞ A method header-comment specifies the effect of invoking it, and (if the 
method has non-None type) the value returned. If the method has 
parameters, the specification is written in terms of those parameters.

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
   static void main() { } /* main */
   } /* Tour */

There are standards for header comments, but we will simplify.



☞ Master stylized code patterns, and use them.

Establish a framework 

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
   static void main() { 
      /* Initialize. */
      /* Compute. */
      /* Output. */
      } /* main */
   } /* Tour */

A standard pattern.



☞ A statement-comment is written in terms of program variables, and assumes 
the representation invariants of those variables.

Establish a framework 

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
   static void main() { 
      /* Initialize: Establish a tour of length 1. */
      /* Compute: Extend the tour, if possible. */
      /* Output: Print the tour as numbered cells in an N-by-N grid of 0s. */
      } /* main */
   } /* Tour */

A standard pattern, elaborated for the problem at hand.



Code structure: Invoke separate methods to do the work.

☞ Many short procedures are better than large blocks of code.

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
   static void main() { 
      /* Initialize: Establish a tour of length 1. */
         Initialize();
      /* Compute: Extend the tour, if possible. */
         Solve();
      /* Output: Print the tour as numbered cells in an N-by-N grid of 0s. */
         Display();
      } /* main */
   } /* Tour */

Each pattern part to be implemented by a method of the class.



Code structure: Create stubs for methods.

/* Knight’s Tour. */
class Tour {

   /* Establish a tour of length 1. */
   static void Initialize() { } /* Initialize */

   /* Extend the tour, if possible. */
   static void Solve() { } /* Solve */

   /* Print tour as numbered cells in N-by-N grid of 0s. */
   static void Display() { } /* Display */

   ...
   } /* Tour */

☞ Write method stubs that allow partial programs to execute.

Method stubs easily created by cut and paste, and light editing.



Test early and often.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Add a temporary output statement to 
Tour.main

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
   static void main() { 
      /* Initialize: Establish a tour of length 1. */
         Initialize();
      /* Compute: Extend the tour, if possible. */
         Solve();
      /* Output: Print the tour as numbered cells in an N-by-N grid of 0s. */
         Display();
      /* Temporary output. */
         System.out.println("done");             
      } /* main */
   } /* Tour */



Test early and often.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Add a temporary output statement to 
Tour.main and invoke it from the 
interactive shell:

Tour.main()

/* Knight’s Tour. */
class Tour {
 /* Output a (possibly partial) Knight’s Tour. */
   static void main() { 
      /* Initialize: Establish a tour of length 1. */
         Initialize();
      /* Compute: Extend the tour, if possible. */
         Solve();
      /* Output: Print the tour as numbered cells in an N-by-N grid of 0s. */
         Display();
      /* Temporary output. */
         System.out.println("done");             
      } /* main */
   } /* Tour */



Test early and often.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Incremental Testing:

Output:

done

What has been validated?
• Syntactic correctness of overall framework
• That the 3 methods were (presumably) 

executed in turn.

Add a temporary output statement to 
Tour.main and invoke it from the 
interactive shell:

Tour.main()



Don’t go far before thinking about the (internal) data representation.

☞ Dovetail thinking about code and data.



We need representations of the board and a (partial) tour.

☞ A program’s internal data representation is central to the code; consider it early.

Data Representation:
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Board Representation 1: The 2-D physical board can correspond directly to a 2-D array.
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Tour Representation 1: The tour can be represented by visit numbers in array elements.



0 1 2 3 4 5 6 7

0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

Board Representation 1: A (currently) unvisited square can be 0.



☞ Aspire to making code self-documenting by choosing descriptive names.
☞ Use single-letter variable names when it makes code more understandable.

B 0 1 2 3 4 5 6 7

0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

Board Representation 1: The array needs a name.



B 0 1 2 3 4 5 6 7 N

0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

N

☞ Minimize use of literal numerals in code; define and use symbolic constants.
☞ Aim for single-point-of-definition.

Board Representation 1: Plan for generality by representing the problem size as N.



☞ Minimize use of literal numerals in code; define and use symbolic constants.
☞ Aim for single-point-of-definition.

lo hi

B 0 1 2 3 4 5 6 7 N

lo 0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

hi 7 0 0 0 0 0 0 0 0

N

BLANK 0

Board Representation 1: To allow for future flexibility, use symbolic constants for index limits.



☞ Introduce redundant variables in a representation to simplify code, or make 
it more efficient.

lo c hi

B 0 1 2 3 4 5 6 7 N

lo 0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

r  2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

hi 7 0 0 0 0 0 0 0 0

N

BLANK 0

move 5

Board Representation 1: Keep track of state in redundant variables.



☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

lo c hi

B 0 1 2 3 4 5 6 7 N

lo 0 1 0 0 0 0 4 0 0

1 0 0 0 3 0 0 0 0

r  2 0 2 0 0 5 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

hi 7 0 0 0 0 0 0 0 0

N

BLANK 0

move 5

Board Representation 1: Write invariants for the data representations as specifications.



/* Knight’s Tour. */
class Tour {

   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      static final int N = 8;           // Size of the chess board.
      static final int BLANK = 0;       // Square not on the current tour.
      static final int lo = 0;          // Row/column of upper-left square.
      static final int hi = lo+N-1;     // Row/column of lower-right square.
      static int B[][] = new int[N][N]; // Chess board, initially 0s.

   } /* Tour */

Board Representation 1: Specify the data representation.

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).



/* Knight’s Tour. */
class Tour {

   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      static final int N = 8;           // Size of the chess board.
      static final int BLANK = 0;       // Square not on the current tour.
      static final int lo = 0;          // Row/column of upper-left square.
      static final int hi = lo+N-1;     // Row/column of lower-right square.
      static int B[][] = new int[N][N]; // Chess board, initially 0s.

   } /* Tour */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Board Representation 1: Specify the data representation.

Variables declared at the top-level of a class are called class (or static) variables, and 
are shared among all of the methods of the class.



☞ Avoid rigid code. Anticipate change. Parameterize

/* Knight’s Tour. */
class Tour {

   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      static final int N = 8;           // Size of the chess board.
      static final int BLANK = 0;       // Square not on the current tour.
      static final int lo = 0;          // Row/column of upper-left square.
      static final int hi = lo+N-1;     // Row/column of lower-right square.
      static int B[][] = new int[N][N]; // Chess board, initially 0s.

   } /* Tour */

Board Representation 1: Specify the data representation.

Define hi in terms of lo and N to facilitate possible future changes. 



/* Knight’s Tour. */
class Tour {

   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      static final int N = 8;           // Size of the chess board.
      static final int BLANK = 0;       // Square not on the current tour.
      static final int lo = 0;          // Row/column of upper-left square.
      static final int hi = lo+N-1;     // Row/column of lower-right square.
      static int B[][] = new int[N][N]; // Chess board, initially 0s.

   } /* Tour */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Board Representation 1: Specify the data representation.

Define initial values for variables, as much as possible in terms of one another.



☞ Leverage features of the programming language and its compiler that protect you 
from mistakes.

/* Knight’s Tour. */
class Tour {

   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      static final int N = 8;           // Size of the chess board.
      static final int BLANK = 0;       // Square not on the current tour.
      static final int lo = 0;          // Row/column of upper-left square.
      static final int hi = lo+N-1;     // Row/column of lower-right square.
      static int B[][] = new int[N][N]; // Chess board, initially 0s.

   } /* Tour */

Board Representation 1: Specify the data representation.

Variables denoted as final are constants.



/* Knight’s Tour. */
class Tour {

   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      static final int N = 8;           // Size of the chess board.
      static final int BLANK = 0;       // Square not on the current tour.
      static final int lo = 0;          // Row/column of upper-left square.
      static final int hi = lo+N-1;     // Row/column of lower-right square.
      static int B[][] = new int[N][N]; // Chess board, initially 0s.

   } /* Tour */

☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Board Representation 1: Specify the data representation.

The default value for integers is 0, which we have chosen as the value of BLANK.



☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

Tour Representation 1: Write invariants for the data representations as specifications.

/* Knight’s Tour. */
class Tour {
   ...
   /* A Tour of length move is given by elements of B numbered 1
       to move. Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩, 
       and correspond to legal moves for a Knight. */
       static int r = lo    // Row coordinate of Knight.
       static int c = lo;   // Column coordinate of Knight.
       static int move= 1;  // Length of tour.
       // B[lo][lo] = move;  // Part of the tour invariant includes the
                             // Knight being in the upper-left square
                             // when move=1. It is not possible to do
                             // that here (in the middle of declarations)
                             // so we defer it until Initialize.

   } /* Tour */



☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

/* Knight’s Tour. */
class Tour {
   ...
   /* A Tour of length move is given by elements of B numbered 1
       to move. Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩, 
       and correspond to legal moves for a Knight. */
       static int r = lo    // Row coordinate of Knight.
       static int c = lo;   // Column coordinate of Knight.
       static int move= 1;  // Length of tour.
       // B[lo][lo] = move;  // Part of the tour invariant includes the
                             // Knight being in the upper-left square
                             // when move=1. It is not possible to do
                             // that here (in the middle of declarations)
                             // so we defer it until Initialize.

   } /* Tour */

Tour Representation 1: Write invariants for the data representations as specifications.

Define initial values for variables, as much as possible in terms of one another.



☞ A representation invariant describes the value(s) of one or more program variables, 
and their relationships to one another as the program runs. The invariant is typically 
written as a comment associated with the declaration(s) of the relevant variable(s).

/* Knight’s Tour. */
class Tour {
   ...
   /* A Tour of length move is given by elements of B numbered 1
       to move. Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩, 
       and correspond to legal moves for a Knight. */
       static int r = lo    // Row coordinate of Knight.
       static int c = lo;   // Column coordinate of Knight.
       static int move= 1;  // Length of tour.
       // B[lo][lo] = move;  // Part of the tour invariant includes the
                             // Knight being in the upper-left square
                             // when move=1. It is not possible to do
                             // that here (in the middle of declarations)
                             // so we defer it until Initialize.

   } /* Tour */

Comment out part of the invariant that cannot be established until later.

Tour Representation 1: Write invariants for the data representations as specifications.



Assess the Representation: What operations are needed, and what is the utility of the 
representation proposed?

• Plan, as appropriate.
• Stop at a cul-de-sac, either on the 64th move or earlier.
• Extend the tour, if possible.
• Retract the tour, if the strategy calls for backtracking.

☞ The touchstone of a data representation is its utility in performing the needed operations.



Assess the Representation: What operations are needed, and what is the utility of the 
representation proposed?
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▪ Access to full board B could provide any information needed.

• Stop at a cul-de-sac, either on the 64th move or earlier.
• Extend the tour, if possible.
• Retract the tour, if the strategy calls for backtracking.

☞ The touchstone of a data representation is its utility in performing the needed operations.
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representation proposed?

• Plan, as appropriate.
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▪ Access to full board B will provide visibility of available neighbors. 

• Extend the tour, if possible.
• Retract the tour, if the strategy calls for backtracking.

☞ The touchstone of a data representation is its utility in performing the needed operations.



Assess the Representation: What operations are needed, and what is the utility of the 
representation proposed?

• Plan, as appropriate.
▪ Access to full board B could provide any information needed.

• Stop at a cul-de-sac, either on the 64th move or earlier.
▪ Access to full board B will provide visibility of available neighbors. 

• Extend the tour, if possible.
• To advance from B[r][c] to the neighbor B[r′][c′], set ⟨r,c⟩ to ⟨r′, c′⟩, 

increment move, and store move in B[r′][c′].
• Retract the tour, if the strategy calls for backtracking.

☞ The touchstone of a data representation is its utility in performing the needed operations.



Assess the Representation: What operations are needed, and what is the utility of the 
representation proposed?

• Plan, as appropriate.
▪ Access to full board B could provide any information needed.

• Stop at a cul-de-sac, either on the 64th move or earlier.
▪ Access to full board B will provide visibility of available neighbors. 

• Extend the tour, if possible.
▪ To advance from B[r][c] to the neighbor B[r′][c′], set ⟨r,c⟩ to ⟨r′, c′⟩, 

increment move, and store move in B[r′][c′].
• Retract the tour, if the strategy calls for backtracking.

▪ To undo the most recent extend, store BLANK in B[r][c], locate previous 
square ⟨r′,c′⟩, set ⟨r,c⟩ to ⟨r′,c′⟩, and decrement move.

☞ The touchstone of a data representation is its utility in performing the needed operations.



Alternative Representation: Address a shortcoming of Representation 1.

• Retract the tour, if the strategy calls for backtracking.
▪ To undo the most recent extend, store BLANK in B[r][c], locate previous 

square ⟨r′,c′⟩, set ⟨r,c⟩ to ⟨r′,c′⟩, and decrement move.
For Representation  1, a search would be required to find ⟨r′, c′⟩.

☞ The touchstone of a data representation is its utility in performing the needed operations.

Such a search would inspect the eight 
neighbors of ⟨r,c⟩ to find which 
B[r′][c′] was move-1.



Alternative Representation:

• Retract the tour, if the strategy calls for backtracking.
▪ To undo previous extend, locate previous square ⟨r′, c′⟩, set ⟨r,c⟩ to ⟨r′, c′⟩,  

and decrement move.
For Representation  1, a search would be required to find ⟨r′,c′⟩.

But if the coordinates of tour squares  
were represented as ordered collections, 
row and column, retract could be 
implemented by just decrementing move. 
No search would be required.

☞ The touchstone of a data representation is its utility in performing the needed operations.



Alternative Representation: Why do we need the board B at all? 

Why not just represent the tour by the two ordered collections, row and column?

☞ The touchstone of a data representation is its utility in performing the needed operations.



Alternative Representation: Why do we need the board B at all? 

Why not just represent the tour by the two ordered collections, row and column?

• Extend the tour, if possible. 

☞ The touchstone of a data representation is its utility in performing the needed operations.

Without the board B, testing whether an 
⟨r′,c′⟩ is “unvisited” would require 
determining whether it is on the current 
tour, which would require a search of the 

tour in row and column.



Alternative Representation: Why do we need the board B at all? 

Why not just represent the tour by the two ordered collections, row and column?

• Extend the tour, if possible. 

☞ The touchstone of a data representation is its utility in performing the needed operations.

Without the board B, testing whether an 
⟨r′,c′⟩ is “unvisited” would require 
determining whether it is on the current 
tour, which would require a search of the 

tour in row and column.

Of course, an auxiliary 2-D boolean array B 
indicating “visited” would obviate a search. 



Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate 
finding predecessor square, for Retract. 

☞ The touchstone of a data representation is its utility in performing the needed operations.

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing 
whether a square is unvisited, for Extend.
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Auxiliary: 2-D boolean array B to facilitate testing 
whether a square is unvisited, for Extend.

Alternative Representation: Which is better? Or is it “six or half dozen the other”?



Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate 
finding predecessor square, for Retract. 

☞ The touchstone of a data representation is its utility in performing the needed operations.

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing 
whether a square is unvisited, for Extend.

Alternative Representation: Which is better? Or is it “six or half dozen the other”? 

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?



Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate 
finding predecessor square, for Retract. 

☞ The touchstone of a data representation is its utility in performing the needed operations.

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing 
whether a square is unvisited, for Extend.

Alternative Representation: Which is better? Or is it “six or half dozen the other”? 

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?

Choose Representation 1 (without the auxiliary collections), 
for now. Revisit later if tour retraction becomes an issue.



Representation 1:

Primary: tour recorded in cells of 2-D int array B.

Auxiliary: Variables row and column to facilitate 
finding predecessor square, for Retract. 

Representation 2:

Primary: tour recorded in variables row and column.

Auxiliary: 2-D boolean array B to facilitate testing 
whether a square is unvisited, for Extend.

Alternative Representation: Which is better? Or is it “six or half dozen the other”? 

(a) We don’t know yet that we need retract. (b) Won’t 2-D output require int B[][] anyway?

Choose Representation 1 (without the auxiliary collections), 
for now. Revisit later if tour retraction becomes an issue.

☞ Don’t let the “perfect” be the enemy of the “good”. Be prepared to 
compromise because there may be no perfect representation. Don’t freeze.



/* Knight’s Tour. */
class Tour {
   ...
   /* Establish a tour of length 1. */
   static void Initialize() {
      /* Start a tour with the Knight in the upper-left corner. */
         B[lo][lo] = move;
      } /* Initialize */
   ...
   } /* Tour */

Define methods:



Define methods: Row-major order enumeration should be second nature.

/* Knight’s Tour. */
class Tour {
   ...
   /* Print tour as numbered cells in N-by-N grid of 0s. */
   static void Display() {
      for (int r=lo; r<=hi; r++) {
         for (int c=lo; c<=hi; c++)
            System.out.print(B[r][c] + " ");
         System.out.println();
         }
      } /* Display */
   } /* Tour */

☞ Master stylized code patterns, and use them.



☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Invoke Tour.main() 

Test early and often.



Output:

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

What has been validated?
• Syntactic correctness of overall framework
• Creation of initial data representation
• Correct 2-D output format
• That the 3 methods were actually executed. 

Test early and often.



It’s no secret why the tour isn’t very long: Solve is just a stub.

But if the problem statement is: Write a program that attempts 
to find a complete Knight’s Tour, our program is correct. 

It just doesn’t try very hard!

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Output:

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.
☞ Validate output thoroughly.

Test early and often.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      _________
      } /* Solve */   
   ...
   } /* Tour */

Let’s try a little harder.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      before
      while ( condition ) each-time
      after
      } /* Solve */   
   ...
   } /* Tour */

☞ If you “smell a loop”, write it down.

Iterative Refinement: Indeterminate form, because we can’t predict when to stop.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      /* Initialize. */
      while ( not-finished ) {
         /* Compute. */
         /* Go on to next. */
         }
      } /* Solve */   
   ...
   } /* Tour */

☞ Master stylized code patterns, and use them.

Standard Pattern: Specialize the loop as an instance of the general-iteration pattern.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      /* Start-at-the-beginning. */
      while ( not-beyond-the-end ) {
         /* Process-the-current-place. */
         /* Advance-to-the-next-place. */
         }
      } /* Solve */   
   ...
   } /* Tour */

☞ Master stylized code patterns, and use them.

Refine: Express the general-iteration pattern as a journey through an abstract space.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      /* Start-at-the-beginning. */
      while ( not-beyond-the-end ) {
         /* Process-the-current-place. */
         /* Advance-to-the-next-place. */
         }
      } /* Solve */   
   ...
   } /* Tour */

☞ Master stylized code patterns, and use them.

Refine: Express the general-iteration pattern as a journey through an abstract space.

This pattern is not a good match because, by definition, a cul-de-sac is a place from which there is no next place.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      /* Start-at-the-beginning. */
      /* Process-the-current-place. */
      while ( not-at-the-end ) {
         /* Determine-a-next-place-to-go-or-at-the-end. */
         if ( not-at-the-end ) {
            /* Advance-to-the-next-place. */
            /* Process-the-current-place. */
            }
         } 
      } /* Solve */   
   ...
   } /* Tour */

Specialize as an alternative version that goes no further than the end.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      /* Start-at-the-beginning. */
      /* Process-the-current-place. */
      while ( not-at-the-end ) {
         /* Determine-a-next-place-to-go-or-at-the-end. */
         if ( not-at-the-end ) {
            /* Advance-to-the-next-place. */
            /* Process-the-current-place. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Specialize as an alternative version that goes no further than the end.

Processing instructions appear twice in the code, which is a disadvantage.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      

      while ( not-at-the-end ) {
         /* Determine-a-next-place-to-go-or-at-the-end. */
         if ( not-at-the-end ) {
            /* Advance-to-the-next-place. */
            /* Process-the-current-place. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Omit first two lines, which are done by class-variable declarations and Initialize.

Specialize for the Knight’s Tour.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      

      while ( not-at-the-end ) {
         /* Locate an unvisited neighbor, or indicate cul-de-sac. */
         if ( not-at-the-end ) {
            /* Advance-to-the-next-place. */
            /* Process-the-current-place. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Specialize for the Knight’s Tour.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      

      while ( not-in-cul-de-sac ) {
         /* Locate an unvisited neighbor, or indicate cul-de-sac. */
         if ( not-in-cul-de-sac ) {
            /* Advance-to-the-next-place. */
            /* Process-the-current-place. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Specialize for the Knight’s Tour.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      

      while ( not-in-cul-de-sac ) {
         /* Locate an unvisited neighbor, or indicate cul-de-sac. */
         if ( not-in-cul-de-sac ) {
            /* Extend the tour to the unvisited neighbor. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Specialize for the Knight’s Tour.



☞ Invent (or learn) vocabulary for concepts that arise in a problem.

k

Introduce a Coordinate System: Polar-like neighbor numbers, k.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      

      while ( not-in-cul-de-sac ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Refine: Using polar-like neighbor numbers, k.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( not-in-cul-de-sac ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            int k = 0;
            while ( (k<=maximum) && condition ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Refine: Use sequential search pattern to find an unvisited neighbor.

☞ Master stylized code patterns, and use them.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( not-in-cul-de-sac ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            int k = 0;
            while ( (k<CUL_DE_SAC) && /* neighbor k is visited */ ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Refine: Use sequential search pattern to find an unvisited neighbor.

Variable k will automatically be set to CUL_DE_SAC on a failed search if we choose CUL_DE_SAC to be 8.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( not-in-cul-de-sac ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            int k = 0;
            while ( (k<CUL_DE_SAC) && B[___________][___________]!=BLANK ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Refine: Have faith in the expressive power of the language.

☞ Beware of unnecessary Case Analysis; hope for code uniformity; avoid code bloat.



Introduce another Coordinate System: ⟨Δr,Δc⟩

Introduce a local coordinate system ⟨Δr,Δc⟩ with origin at 
the location of a Knight at ⟨r,c⟩ in the global coordinate 
system. 

If the Knight has a neighbor (   ) at ⟨Δr,Δc⟩ in the local 
system, then that neighbor is at ⟨r+Δr,c+Δc⟩ in the global 
system.



//                            0   1   2   3   4   5   6   7
static final int deltaR[] = {-1, -2, -2, -1,  1,  2,  2,  1};
static final int deltaC[] = { 2,  1, -1, -2, -2, -1,  1,  2};

Introduce a Table of Constants: It can obviate an explicit Case Analysis.

☞ Introduce auxiliary data to allow code to be uniform.



//                            0   1   2   3   4   5   6   7
static final int deltaR[] = {-1, -2, -2, -1,  1,  2,  2,  1};
static final int deltaC[] = { 2,  1, -1, -2, -2, -1,  1,  2};

Introduce a Table of Constants: It can obviate an explicit Case Analysis.

If the Knight has a neighbor (   ) at ⟨Δr,Δc⟩ in the local system, 
then that neighbor is at ⟨r+Δr,c+Δc⟩ in the global system.



Introduce a Table of Constants: It can obviate an explicit Case Analysis.

//                            0   1   2   3   4   5   6   7
static final int deltaR[] = {-1, -2, -2, -1,  1,  2,  2,  1};
static final int deltaC[] = { 2,  1, -1, -2, -2, -1,  1,  2};

If the Knight has a neighbor (   ) at ⟨Δr,Δc⟩ in the local system, 
then that neighbor is at ⟨r+Δr,c+Δc⟩ in the global system.

If the Knight has a neighbor (k) at ⟨deltaR[k],deltaC[k]⟩ in 
the local system, then that neighbor is at 
⟨r+deltaR[k],c+deltaC[k]⟩ in the global system.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( not-in-cul-de-sac ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            int k = 0;
            while ( (k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Refine: Have faith in the expressive power of the language.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( not-in-cul-de-sac ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            int k = 0;
            while ( (k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Refine: Update tour, referring to its data-representation invariant to know what must change.

/* A Tour of length move is given by elements of B numbered 1 to move.
   Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩, and
  correspond to legal moves for a Knight. */
   static int r, c;                 // Position of Knight.   
   static int move;                 // Length of Tour.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( not-in-cul-de-sac ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            int k = 0;
            while ( (k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Refine: Update tour, referring to its data-representation invariant to know what must change.

/* A Tour of length move is given by elements of B numbered 1 to move.
   Squares numbered consecutively go from ⟨0,0⟩ to ⟨r,c⟩, and
  correspond to legal moves for a Knight. */
   static int r, c;                 // Position of Knight.   
   static int move;                 // Length of Tour.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( not-in-cul-de-sac ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            int k = 0;
            while ( (k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Termination:



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      while ( k!=CUL_DE_SAC ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            int k = 0;
            while ( (k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Termination:

Termination can use failure to find an unvisited 
neighbor on the previous iteration, 



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      int k = 0;  // Neighbor number not CUL_DE_SAC.
      while ( k!=CUL_DE_SAC  ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            k = 0;
            while ( (k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Termination:

Termination can use failure to find an unvisited 
neighbor on the previous iteration, but we 
must make sure the loop iterates the first time.



/* Knight’s Tour. */
class Tour {
   ...
   /* Compute: Extend the tour, if possible. */
   static void Solve() {
      int k = 0;  // Neighbor number not CUL_DE_SAC.
      while ( k!=CUL_DE_SAC  ) {
         /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
            k = 0;
            while ( (k<CUL_DE_SAC) && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
         if ( k != CUL_DE_SAC ) {
            /* Extend the tour to the unvisited neighbor. */

r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c] = move;
            }
         }      
      } /* Solve */   
   ...
   } /* Tour */

Termination:

Notice that we have moved the declaration of k outside the loop.



/* Knight’s Tour. */
class Tour {
   ...
   /* Auxiliary constants. */
      final int[] deltaR = {-1, -2, -2, -1,  1,  2,  2,  1};
      final int[] deltaC = { 2,  1, -1, -2, -2, -1,  1,  2};
      int CUL_DE_SAC = 8;      
   ...
   } /* Tour */

Auxiliary Constants:



• Hit the execute button now, and you will get a “subscript out of bounds” error.

     ...
     /* Let k = # of an unvisited neighbor, or CUL_DE_SAC. */
        k = 0;
        while ( k<CUL_DE_SAC && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
     ...

• You can waste a lot of time debugging things you could have anticipated if you had 
thought a little more deeply: Some squares have fewer than eight neighbors because 
they are at the board boundary.

☞ Boundary conditions. Dead last, but don’t forget them.

Incremental Testing: But don’t be overeager.



• Hit the execute button now, and you will get a “subscript out of bounds” error.

     ...
     /* Let k = # of an unvisited neighbor, or CUL_DE_SAC. */
        k = 0;
        while ( k<CUL_DE_SAC && B[r+deltaR[k]][c+deltaC[k]]!=BLANK ) k++;
     ...

• You can waste a lot of time debugging things you could have anticipated if you had 
thought a little more deeply: Some squares have fewer than eight neighbors because 
they are at the board boundary.

• We seek a way to deal with the boundaries without doing major surgery on the code.

☞ Boundary conditions. Dead last, but don’t forget them.

Incremental Testing: But don’t be overeager.



☞ Boundary conditions. Dead last, but don’t forget them.

/* Knight’s Tour. */
class Tour {
   /* Chess board B is an N-by-N int array, for N==8. Unvisited squares
      are BLANK, and row and column indices range from lo to hi. */
      static final int N = 8;           // Size of B.
      static int B[][];                 // Chess board, initially 0s.
      static final int BLANK = 0;       // Unvisited square in board.
      static final int lo = 0;          // First row or column index.
      static final int hi = hi+N-1;     // Last row or column index.
   ...
   } /* Tour */

Sentinels to the Rescue: Original representation invariant



/* Knight’s Tour. */
class Tour {
   /* Chess board B is an N-by-N int sub-array, for N==8, embedded in a
      2-cell ring of sentinel squares. Unvisited squares are BLANK, and
      row and column indices range from lo to hi. */
      static final int N;               // Size of B.
      static int B[][];                 // Chess board, initially 0s.
      static final int BLANK = 8;       // Unvisited square in board.
      static final int lo = 2;          // First row or column index.
      static final int hi = hi+N-1;     // Last row or column index.
   ...
   } /* Tour */

☞ Boundary conditions. Dead last, but don’t forget them.

Sentinels to the Rescue: Updated representation invariant



☞ Boundary conditions. Dead last, but don’t forget them.

Sentinels to the Rescue: Original Initialize

/* Knight’s Tour. */
class Tour {
   ...
   /* Initialize: Establish invariant for a tour of length 1. */
   static void Initialize() { 
      /* Start a tour with the Knight in the upper-left corner. */
         B[lo][lo] = move;
      } /* Initialize */
   ...
} /* Tour */



/* Knight’s Tour. */
class Tour {
   ...
   /* Initialize: Establish invariant for a tour of length 1. */
   static void Initialize() { 
      /* Set B to an (N+4)-by-(N+4) array of all non-BLANK. */
         for (int r=lo-2; r<=hi+2; r++)
            for (int c=lo-2; c<=hi+2; c++)
               B[r][c] = BLANK+1;
      /* Reset inner N-by-N array to all BLANK. */
         for (int r=lo; r<=hi; r++)
            for (int c=lo; c<=hi; c++)
               B[r][c] = BLANK;
      /* Start a tour with the Knight in the upper-left corner. */
         B[lo][lo] = move;
      } /* Initialize */
   ...
} /* Tour */

Sentinels to the Rescue: Revised Initialize



Incremental Testing: Good to go!



1 10 23 42 7 4 13 18
24 41 8 3 12 17 6 15
9 2 11 22 5 14 19 32
0 25 40 35 20 31 16 0
0 36 21 0 39 0 33 30
26 0 38 0 34 29 0 0
37 0 0 28 0 0 0 0
0 27 0 0 0 0 0 0

What has been validated?
• Syntactic correctness of overall framework
• Creation of initial data representation
• Correct 2-D output format
• Correct search for an unvisited neighbor
• Correct extension of tour to that neighbor
• Correct treatment of boundaries
Unanticipated problem detected
• Ragged output due to variable-length integers

Incremental Testing: Good to go!

Output:



Incremental Testing: Good to go!

Output:

1 10 23 42 7 4 13 18
24 41 8 3 12 17 6 15
9 2 11 22 5 14 19 32
0 25 40 35 20 31 16 0
0 36 21 0 39 0 33 30
26 0 38 0 34 29 0 0
37 0 0 28 0 0 0 0
0 27 0 0 0 0 0 0

Not too shabby considering that we just went to an arbitrary 
unvisited square, an approach called a greedy algorithm.

What has been validated?
• Syntactic correctness of overall framework
• Creation of initial data representation
• Correct 2-D output format
• Correct search for an unvisited neighbor
• Correct extension of tour to that neighbor
• Correct treatment of boundaries
Unanticipated problem detected
• Ragged output due to variable-length integers



Incremental Testing: Good to go!

Output:

1  10 23 42 7  4  13 18
24 41 8  3  12 17 6  15
9  2  11 22 5  14 19 32
0  25 40 35 20 31 16 0
0  36 21 0  39 0  33 30
26 0  38 0  34 29 0  0
37 0  0  28 0  0  0  0
0  27 0  0  0  0  0  0

Concatenate a blank at the end of the String representation 
of the integer, and then truncate it to 3 characters.

Fix the minor formatting issue by modifying the line: 

System.out.print(B[r][c] + " ");

in method Output, as follows:

System.out.print( (B[r][c]+"  ").substring(0,3) );



/* Extend the tour, if possible. */
static void Solve() {
   int k = 0; // A neighbor number that is not CUL_DE_SAC.
   while ( k!=CUL_DE_SAC ) { 
      /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
         k = 0;
         while ( (k<CUL_DE_SAC) && (B[r+deltaR[k]][c+deltaC[k]]!=BLANK) ) 
            k++;
      if ( k!=CUL_DE_SAC ) {
         /* Extend the tour to unvisited neighbor k. */
            r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
         }
      }
   } /* Solve */

Greedy Selection: A greedy algorithm just picks the first available neighbor.



/* Extend the tour, if possible. */
static void Solve() {
   int k = 0; // A neighbor number that is not CUL_DE_SAC.
   while ( k!=CUL_DE_SAC ) { 
      /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
         /* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all
            neighbors are already visited. */
         k = bestK;
      if ( k!=CUL_DE_SAC ) {
         /* Extend the tour to unvisited neighbor k. */
            r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
         }
      }
   } /* Solve */

Heuristic Selection: A better algorithm picks a favored neighbor, which we optimistically 
refer to as the “best choice”.

A heuristic is an aid to problem solving that may help.



Heuristic Selection: A better algorithm picks a favored neighbor, which we optimistically 
refer to as the “best choice”.

A heuristic is an aid to problem solving that may help.

Adapt the pattern from Chapter 7: Find an argument k that minimizes a function’s value. 

/* Extend the tour, if possible. */
static void Solve() {
   int k = 0; // A neighbor number that is not CUL_DE_SAC.
   while ( k!=CUL_DE_SAC ) { 
      /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
         /* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all
            neighbors are already visited. */
         k = bestK;
      if ( k!=CUL_DE_SAC ) {
         /* Extend the tour to unvisited neighbor k. */
            r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
         }
      }
   } /* Solve */



/* Extend the tour, if possible. */
static void Solve() {
   int k = 0; // A neighbor number that is not CUL_DE_SAC.
   while ( k!=CUL_DE_SAC ) { 
      /* Let k = index of an unvisited neighbor, or CUL_DE_SAC. */
         /* Let bestK be a favored unvisited neighbor, or CUL_DE_SAC if all
            neighbors are already visited. */
            int bestK = CUL_DE_SAC;
            int bestScore = CUL_DE_SAC;
            for (k = 0; k<CUL_DE_SAC; k++) {
               if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) {
                  int s = score(r+deltaR[k], c+deltaC[k]);
                  if (s<bestScore) {bestScore = s; bestK = k; }
                  }
               }
         k = bestK;
      if ( k!=CUL_DE_SAC ) {
         /* Extend the tour to unvisited neighbor k. */
            r = r+deltaR[k]; c = c+deltaC[k]; move++; B[r][c]=move;
         }
      }
   } /* Solve */

Heuristic Selection: Pick the neighbor that minimizes a score, for some score function.



Score:

/* Return 0. */
int Score(int r, int c) { return 0; }

☞ Write method stubs that allow partial programs to execute.



Incremental Testing: Good to go!

Output:

1  10 23 42 7  4  13 18
24 41 8  3  12 17 6  15
9  2  11 22 5  14 19 32
0  25 40 35 20 31 16 0
0  36 21 0  39 0  33 30
26 0  38 0  34 29 0  0
37 0  0  28 0  0  0  0
0  27 0  0  0  0  0  0

What has been validated?
• Syntactic correctness of overall framework
• Creation of initial data representation
• Correct 2-D output format
• Correct search for an unvisited neighbor
• Correct extension of tour to that neighbor
• Correct treatment of boundaries
• Exercising of search for a favored neighbor, albeit 

still just selects first unvisited neighbor 

Same output as before, because any unvisited neighbor has a 
Score of 0.



A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s 
unvisited neighbors (pink).



A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s 
unvisited neighbors (pink).

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a 
subset of the pink squares).

m=0. The Knight’s current square is the only way to get to square 2, 
and if it doesn’t go there now, it won’t ever get another chance. 

Yes, it will then be in a cul-de-sac, so, if we hope for a tour of length 
64, this better be the 64th move. If not, the Knight is effectively cutting 
its losses, and ending a doomed tour. If the goal were to maximize tour 
length, it would be better not to go there now, unless this is move 64. 
Warnsdorff ’s Rule is “going for broke”.



A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s 
unvisited neighbors (pink).

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a 
subset of the pink squares).

m=1. There is only one way out (e.g, the yellow square). If the Knight 
were to go to square 2 now, then the next move (to yellow) would 
remove 2 from further concern. But if it doesn’t go there now, then 
when it eventually gets to the yellow square, it will be forced to go to 
2, which will then end the tour in a cul-de-sac. So, it is best to pass 
through 2 now, for otherwise it will loom as a hazard.



A beneficial heuristic: Warnsdorff’s Rule.

Go to an unvisited neighbor (blue) that has the fewest unvisited neighbors.

That is, the score of a given neighbor of the Knight (e.g., 2) should be a count of that neighbor’s 
unvisited neighbors (pink).

Rationale. Let Knight’s neighbor (e.g., 2) have m unvisited neighbors (a 
subset of the pink squares).

m=2. Too hard to think about. Perhaps the advantages of m=0 and m=2 
are good enough to complete a tour.



/* Return # of unvisited neighbors of ⟨r,c⟩. */
static int Score(int r, int c) {
   int count = 0;  // Number of unvisited neighbors of ⟨r,c⟩ found so far.
   for (int k=0; k<CUL_DE_SAC; k++)
      if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) count++;
   return count;
   }

Score:  Replace stub by implementation of Warnsdorff’s Rule.



Score:  Replace stub by implementation of Warnsdorff’s Rule.

/* Return # of unvisited neighbors of ⟨r,c⟩. */
static int Score(int r, int c) {
   int count = 0;  // Number of unvisited neighbors of ⟨r,c⟩ found so far.
   for (int k=0; k<CUL_DE_SAC; k++)
      if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) count++;
   return count;
   }

Call site:        int s = Score(r+deltaR[k],c+deltaC[k]);

r and c are class variables that are part of the 
tour’s representation invariant, and are the 
Knight’s current coordinates.



Score:  Replace stub by implementation of Warnsdorff’s Rule.

r and c are class variables that are part of the 
tour’s representation invariant, and are the 
Knight’s current coordinates.

/* Return # of unvisited neighbors of ⟨r,c⟩. */
static int Score(int r, int c) {
   int count = 0;  // Number of unvisited neighbors of ⟨r,c⟩ found so far.
   for (int k=0; k<CUL_DE_SAC; k++)
      if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) count++;
   return count;
   }

☞ Avoid gratuitously different names for parameters and variables whose use 
is essentially the same. Practice conceptual economy.

Call site:        int s = Score(r+deltaR[k],c+deltaC[k]);

Parameters:                     Score(int r,      int c      )

r and c are parameters of Score. On each call, they 
are the coordinates of the Knight’s k-th neighbor.



1  22 3  18 25 30 13 16
4  19 24 29 14 17 34 31
23 2  21 26 35 32 15 12
20 5  56 49 28 41 36 33
57 50 27 42 61 54 11 40
6  43 60 55 48 39 64 37
51 58 45 8  53 62 47 10
44 7  52 59 46 9  38 63

Incremental Testing: A complete tour!

Output:



1  22 3  18 25 30 13 16
4  19 24 29 14 17 34 31
23 2  21 26 35 32 15 12
20 5  56 49 28 41 36 33
57 50 27 42 61 54 11 40
6  43 60 55 48 39 64 37
51 58 45 8  53 62 47 10
44 7  52 59 46 9  38 63

Incremental Testing: A complete tour!

Output:



/* Let k = index of unvisited neighbor, or CUL_DE_SAC. */
   /* Let unvisited[0:count-1] be neighbor numbers of the count  
      unvisited neighbors of ⟨r,c⟩. */
   if ( count==0 ) k = CUL_DE_SAC;
   else k = a-random-neighbor-selected-from-unvisited[0:count-1]; 

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.



/* Let k = index of unvisited neighbor, or CUL_DE_SAC. */
   /* Let unvisited[0:count-1] be neighbor numbers of the count  
      unvisited neighbors of ⟨r,c⟩. */
      int unvisited[] = new int[CUL_DE_SAC];
      int count = 0;  // # unvisited neighbors
      for (k=0; k<CUL_DE_SAC; k++)
      if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) {
         unvisited[count]=k; count++;
         }
   if ( count==0 ) k = CUL_DE_SAC;
   else k = a-random-neighbor-selected-from-unvisited[0:count-1]; 

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.



/* Let k = index of unvisited neighbor, or CUL_DE_SAC. */
   /* Let unvisited[0:count-1] be neighbor numbers of the count  
      unvisited neighbors of ⟨r,c⟩. */
      int unvisited[] = new int[CUL_DE_SAC];
      int count = 0;  // # unvisited neighbors
      for (k=0; k<CUL_DE_SAC; k++)
      if ( B[r+deltaR[k]][c+deltaC[k]]==BLANK ) {
         unvisited[count]=k; count++;
         }
   if ( count==0 ) k = CUL_DE_SAC;
   else k = unvisited[rand.nextInt(count)];

Neighbor Selection: Monte Carlo algorithm, pick a random neighbor.



Omitted Details:

Importing of the random library.

A driver that repeatedly invokes the Monte Carlo solve until a solution is found.

Instrumentation of the driver to histogram the tour lengths of each trial.

Who could have guessed that a Knight could be so stupid as to get 
himself into a cul-de-sac in just 8 moves!



Summary:

Many standard precepts, patterns, and established coding techniques have been illustrated.

The importance of data representations and invariants was stressed. 

The notions of greedy, heuristic, and Monte Carlo algorithms were introduced.
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