
Principled Programming
Introduction to Coding in Any Imperative Language

Tim Teitelbaum
Emeritus Professor

Department of Computer Science
Cornell University

Cellular Automata

Copyright©2024 by Tim Teitelbaum; Most recent revision, 09/27/2025

We illustrate two-dimensional arrays, and enumerations over them, using the examples of
Cellular Automata and the Game of Life.

Cellular Automata model the Universe as a rectangular grid of cells, each in a given state.
Time progresses in discrete steps. On each clock tick, each cell simultaneously decides what
state to enter based on its current state and the current states of its neighbors. Each cell
makes its decision independently, but all cells follow the same rules.

The Game of Life is a particular Cellular Automaton that models birth and death.

Systematic top-down development of an entire program is illustrated. Deeply-nested for-
statements in the code arise naturally as a consequence of stepwise refinement, but are
readily understood.

class Sim:

Class Sim models the notion of a Cellular Automaton, and its simulation.

☞ Aggregate the definitions of related variables and methods in a class.

class Sim:

 @classmethod
 def main(cls) -> None:

The simulation as a whole is implemented as method main.

☞ Aggregate the definitions of related variables and methods in a class.

class Sim:

 @classmethod
 def main(cls) -> None:

The simulation as a whole is implemented as method main.

A class method is defined within a class using
• Decorator @classmethod
• First parameter cls

☞ Aggregate the definitions of related variables and methods in a class.

class Sim:

 @classmethod
 def main(cls) -> None:

The simulation as a whole is implemented as method main.

The simulation will be run by invoking this
class method using its qualified name, i.e.,
Sim.main(), which passes the class itself
as an implicit first argument matching cls.

A class method is defined within a class using
• Decorator @classmethod
• First parameter cls

☞ Aggregate the definitions of related variables and methods in a class.

class Sim:

 @classmethod
 def main(cls) -> None:
 """Simulate a cellular automaton."""

The simulation as a whole is implemented as method main.

☞ A method header-comment specifies the effect of invoking it, and (if the
method has non-None type) the value returned. If the method has
parameters, the specification is written in terms of those parameters.

class Sim:

 @classmethod
 def main(cls) -> None:
 """Simulate a cellular automaton."""
 #.Initialize.
 #.Compute.

For the implementation of main, adopt the pattern that first initializes, then computes.

☞ Master stylized code patterns, and use them.

class Sim:

 @classmethod
 def main(cls) -> None:
 """Simulate a cellular automaton."""
 #.Create the initial Universe and display it.
 #.Simulate and display LAST_GEN additional generations.

☞ Master stylized code patterns, and use them.

Instantiate placeholders Initialize and Compute for the problem at hand.

class Sim:

 @classmethod
 def main(cls) -> None:
 """Simulate a cellular automaton."""
 # Create the initial Universe and display it.
 Sim.initialize()
 Sim.display()

 #.Simulate and display LAST_GEN additional generations.

Refine the specifications.

☞ Program top-down, outside-in.

class Sim:

 @classmethod
 def main(cls) -> None:
 """Simulate a cellular automaton."""
 # Create the initial Universe and display it.
 Sim.initialize()
 Sim.display()

 # Simulate and display LAST_GEN additional generations.
 for Sim.generation in range(1, Sim.LAST_GEN + 1):
 Sim.next_generation()
 Sim.display()

Refine the specifications.

☞ Program top-down, outside-in.

class Sim:

 @classmethod
 def main(cls) -> None:
 """Simulate a cellular automaton."""
 # Create the initial Universe and display it.
 Sim.initialize()
 Sim.display()

 # Simulate and display LAST_GEN additional generations.
 for Sim.generation in range(1, Sim.LAST_GEN + 1):
 Sim.next_generation()
 Sim.display()

Refine the specifications.

initialize, display, and next_generation are other
class methods to be defined. Class methods are always
invoked using their qualified names, e.g., Sim.display().

☞ Many short procedures are better than large blocks of code.

class Sim:

 @classmethod
 def main(cls) -> None:
 """Simulate a cellular automaton."""
 # Create the initial Universe and display it.
 Sim.initialize()
 Sim.display()

 # Simulate and display LAST_GEN additional generations.
 for Sim.generation in range(1, Sim.LAST_GEN + 1):
 Sim.next_generation()
 Sim.display()

Refine the specifications.

Method specifications use a syntactic construct known as a “docstring”.

class Sim:
 ...

 @classmethod
 def initialize(cls) -> None:
 """Create the initial Universes old."""
 pass
 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 pass
 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 pass

Create stubs for the methods that have been introduced, which you can do mindlessly.

☞ Defer challenging code for later; do the easy parts first.

☞ Aggregate the definitions of related variables and methods in a class.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[int]] = [] # old Universe.
 next: list[list[int]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

 ...

Specify and declare the data representation.

The simulation of a cellular automaton models a finite M-by-N Universe of cells.
The states of each generation of next cells is determined from the states of
the old cells, where generations are numbered from 0 through LAST_GEN. The
state of each cell is modeled as an int.

Specify and declare the data representation.

☞ Introduce program variables whose values describe “state”.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[int]] = [] # old Universe.
 next: list[list[int]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

 ...

The simulation of a cellular automaton models a finite M-by-N Universe of cells.
The states of each generation of next cells is determined from the states of
the old cells, where generations are numbered from 0 through LAST_GEN. The
state of each cell is modeled as an int.

N.B. The term “state” is overloaded.
Each cell of the Universe has a “state”.

Specify and declare the data representation.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[int]] = [] # old Universe.
 next: list[list[int]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

 ...

☞ Introduce program variables whose values describe “state”.

N.B. The term “state” is overloaded. Each
cell of the Universe has a “state”, and the
simulation as a whole has a “state”.

The simulation of a cellular automaton models a finite M-by-N Universe of cells.
The states of each generation of next cells is determined from the states of
the old cells, where generations are numbered from 0 through LAST_GEN. The
state of each cell is modeled as an int.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[int]] = [] # old Universe.
 next: list[list[int]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

 ...

☞ Minimize use of literal numerals in code; define and use symbolic constants.

Names of variables intended to be constant throughout program execution are, by convention, all capital letters.

Specify and declare the data representation.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[int]] = [] # old Universe.
 next: list[list[int]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

 ...

Variables declared and initialized at the top-level of a class are called
class variables, and are shared among all methods of the class.

Specify and declare the data representation.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[int]] = [] # old Universe.
 next: list[list[int]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

 ...

Specify and declare the data representation.

The initial value of the 2-D array must be created in method initialize
because the needed construct (list comprehension) is not permitted here.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[int]] = [] # old Universe.
 next: list[list[int]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

 ...

Specify and declare the data representation.

The initial value of the 2-D array must be created in method initialize
because the needed construct (list comprehension) is not permitted here.

Technically, initialization to [] is a
violation of the representation
invariant because [] is not M-by-N.

We now turn to implementation of the methods: initialize.

class Sim:
 ...

 @classmethod
 def initialize(cls) -> None:
 """Create the initial Universe."""
 pass

 ...

class Sim:
 ...

 @classmethod
 def initialize(cls) -> None:
 """Create the initial Universe."""
 #.Initialize old and next Universes to M-by-N arrays of 0.

 ...

We now turn to implementation of the methods: initialize.

class Sim:
 ...

 @classmethod
 def initialize(cls) -> None:
 """Create the initial Universe."""
 # Initialize old and next Universes to M-by-N arrays of 0.
 Sim.old = [[0 for _ in range(0, Sim.N)]
 for _ in range(0, Sim.M)]
 Sim.next = [[0 for _ in range(0, Sim.N)]
 for _ in range(0, Sim.M)]

 ...

We now turn to implementation of the methods: initialize.

class Sim:
 ...

 @classmethod
 def initialize(cls) -> None:
 """Create the initial Universe."""
 # Initialize old and next Universes to M-by-N arrays of 0.
 Sim.old = [[0 for _ in range(0, Sim.N)]
 for _ in range(0, Sim.M)]
 Sim.next = [[0 for _ in range(0, Sim.N)]
 for _ in range(0, Sim.M)]

 ...

We now turn to implementation of the methods: initialize.

Long lines can be split if between matched parentheses or brackets.

class Sim:
 ...

 @classmethod
 def initialize(cls) -> None:
 """Create the initial Universe."""
 # Initialize old and next Universes to M-by-N arrays of 0.
 Sim.old = [[0 for _ in range(0, Sim.N)]
 for _ in range(0, Sim.M)]
 Sim.next = [[0 for _ in range(0, Sim.N)]
 for _ in range(0, Sim.M)]

 ...
The temporary violation of
the representation invariant
has now been corrected.

We now turn to implementation of the methods: initialize.

class Sim:
 ...

 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 pass

 ...

Turn to implementing method display.

class Sim:
 ...

 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 print("Generation: ", Sim.generation)

 ...

Turn to implementing method display.

class Sim:
 ...

 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N): print(Sim.old[r][c], end='')
 print()

 ...

☞ Master stylized code patterns, and use them.

Use a standard row-major-order traversal.

class Sim:
 ...

 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N): print(Sim.old[r][c], end='')
 print()

 ...

☞ Master stylized code patterns, and use them.

Use a standard row-major-order traversal, output cells.

class Sim:
 ...

 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N): print(Sim.old[r][c], end='')
 print()

 ...

☞ Master stylized code patterns, and use them.

Use a standard row-major-order traversal, output cells, and output newlines at row ends.

class Sim:
 ...

 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N): print(Sim.old[r][c], end='')
 print()

 ...

☞ Master stylized code patterns, and use them.

Means: Don’t go to the beginning
of the next line after printing.

Use a standard row-major-order traversal, output cells, and output newlines at row ends.

class Sim:
 ...

 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N): print(Sim.old[r][c], end='')
 print()

 ...
Variables r and c are local variables of method display.
Use local variables without qualification.

Use a standard row-major-order traversal, output cells, and output newlines at row ends.

class Sim:
 ...

 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N): print(Sim.old[r][c], end='')
 print()

 ...
Variables generation, M, N, and old are class variables.
Use class variables with qualified names.

Use a standard row-major-order traversal, output cells, and output newlines at row ends.

class Sim:
 ...

 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 pass
 ...

☞ Write degenerate program stubs that allow partial programs to execute.

A method stub may suffice for a program test.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

Test early and often.

To try it out, invoke Sim.main().

Generation: 0
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 1
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 2
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Etc.

☞ Validate output thoroughly.

Output:

What has been validated?
• Generation counting
• Array creation and initialization
• Formatting of output

class Sim:
 ...

 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 pass

 ...

☞ Master stylized code patterns, and use them.

We now turn to implementation of the method stub: next_generation.

class Sim:
 ...

 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 #.Determine the states of next[][] as F(old[][] states).
 #.Swap old[][] and next[][] Universes.

Instance of the standard compute-use pattern.

☞ Master stylized code patterns, and use them.

class Sim:
 ...

 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):

 #.Swap old[][] and next[][] Universes.

Standard row-major-order traversal for determining new states of each cell of next.

class Sim:
 ...

 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 # Sim.next[r][c] = F(Sim.old[r][c] and its neighbors)

 #.Swap old[][] and next[][] Universes.

Standard row-major-order traversal for determining new states of each cell of next.

class Sim:
 ...

 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 # Sim.next[r][c] = F(Sim.old[r][c] and its neighbors)

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

Standard code for swap

☞ Master stylized code patterns, and use them.

Notice that swap is a constant-time operation, independent of the size of the Universes.

Notice that swap is a constant-time operation, independent of the size of the Universes.*

*C/C++ Constant-time swap is not available for C-style arrays in C/C++. Rather, this can be read as describing one
of the alternatives to C-style arrays that are available in C++.

class Sim:
 ...

 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 # Sim.next[r][c] = F(Sim.old[r][c] and its neighbors)

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

Completed next_generation for a generic cellular automaton.

class Sim:
 ...

 @classmethod
 def next_generation(cls) -> None:
 """Update Universe to be the next generation."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 Sim.next[r][c] = Sim.old[r][c] + 1

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

☞ Test programs incrementally.

For easy immediate testing, let each cell increment its state on each generation.

☞ Test programs incrementally.
☞ Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

Test early and often.

To try it out again, invoke Sim.main().

Generation: 0
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 1
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
Generation: 2
22222222222222222222
22222222222222222222
22222222222222222222
22222222222222222222
22222222222222222222
Etc.

☞ Validate output thoroughly.

Output:

What has been validated?
• Generation counting
• Array creation and initialization
• Formatting of output
• Creation of next Universe from old Universe
• Swapping of old and next Universes

Game of Life. A Cellular Automaton in which each cell is either dead or alive.

In each generation:

• Each live cell with 2 or 3 live neighbors lives on to the next generation (life)
otherwise it dies (death).

• Each dead cell with 3 live neighbors comes alive in the next generation (birth)
otherwise it remains dead.

☞ Choose representations that by design don’t have nonsensical configurations.

Each cell is either dead or alive, so specialize the Universes as Boolean 2-D arrays.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[bool]] = [] # old Universe.
 next: list[list[bool]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

 ...

class Sim:
 ...
 @classmethod
 def initialize(cls) -> None:
 """Create the initial Universe."""
 # Initialize old and next Universes to M-by-N arrays of False.
 Sim.old = [[False for _ in range(0, Sim.N)]
 for _ in range(0, Sim.M)]
 Sim.next = [[False for _ in range(0, Sim.N)]
 for _ in range(0, Sim.M)]
 ...

☞ Choose representations that by design don’t have nonsensical configurations.

Revise method initialize similarly.

class Sim:
 ...
 @classmethod
 def display(cls) -> None:
 """Display the present Universe."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N): print(Sim.old[r][c], end='')
 print()
 ...

Revise method display to compactly render dead as “_” and alive as “X“.

class Sim:
 ...
 @classmethod
 def display(cls) -> None:
 """Display the present Universe.""“
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 if Sim.old[r][c]: print("X", end='')
 else: print("_", end='')
 print()
 ...

Revise method display to compactly render dead as “_” and alive as “X“.

class Sim:
 ...
 @classmethod
 def display(cls) -> None:
 """Display Universe old[][] as an M-by-N grid."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 if Sim.old[r][c]: print("X", end='')
 else: print("_", end='')
 print()
 ...

While we are at it, revise the method header to be more informative.

☞ Repeatedly improve comments by relentless copy editing.

That way, for example, the tip provided in an IDE editor will be more helpful.

☞ Repeatedly improve comments by relentless copy editing.

class Sim:
 ...
 @classmethod
 def main(cls) -> None:
 """Simulate a cellular automaton."""
 # Create the initial Universe and display it.
 Sim.initialize()
 Sim.display()

 # Simulate and display LAST_GEN remaining generations.
 for Sim.generation in range(1, Sim.LAST_GEN + 1):
 Sim.next_generation()
 Sim.display()

@classmethod
def display(cls) -> None

Display Universe old[][] as an M-by-N grid.

Similarly, turn end-of-line comments of variable declarations into docstrings.

☞ Repeatedly improve comments by relentless copy editing.

class Sim:

 M: int = 5 # Height of Universe.
 N: int = 20 # Width of Universe.
 old: list[list[bool]] = [] # old Universe.
 next: list[list[bool]] = [] # next Universe.
 LAST_GEN: int = 40 # Last generation.
 generation: int = 0 # Generation number.

Similarly, you can turn end-of-line comments of variable declarations into docstrings.

class Sim:

 M: int = 5
 """M is the height of the Universe."""

 N: int = 20
 """N is the width of the Universe."""

 old: list[list[bool]] = []
 """old is the present state of the Universe."""

 next: list[list[bool]] = []
 """next is the upcoming generation of the Universe, in preparation."""

 LAST_GEN: int = 40
 """LAST_GEN is last generation to be simulated."""

 generation: int = 0
 """generation is the number of the present generation."""

class Sim:
 ...
 @classmethod
 def display(cls) -> None:
 """Display Universe old[][] as an M-by-N grid."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 if Sim.old[r][c]: print("X", end='')
 else: print("_", end='')
 print()
 ...

The docstring of a variable is the variable’s representation invariant.

☞ Repeatedly improve comments by relentless copy editing.

class attribute M of Sim
M: int = 5

M is the height of the Universe.

class Sim:
 ...
 @classmethod
 def display(cls) -> None:
 """Display Universe old[][] as an M-by-N grid."""
 print("Generation: ", Sim.generation)
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 if Sim.old[r][c]: print("X", end='')
 else: print("_", end='')
 print()
 ...

☞ Repeatedly improve comments by relentless copy editing.

class attribute old of Sim
old: list[list[bool]] = []

old is the present state of the Universe.

The docstring of a variable is the variable’s representation invariant.

Implement the Game of Life rules.

class Sim:
 ...
 @classmethod
 def next_generation(cls) -> None:
 """Update old[][] to be the next generation of the Universe."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 # Set next[r][c] = according to the Game of Life rules.

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = tem

Refine the specification using the standard compute-use pattern.

☞ Master stylized code patterns, and use them.

@classmethod
def next_generation(cls) -> None:
 """Update old[][] to be the next generation of the Universe."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 #.Compute.
 #.Use.

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

Instantiate placeholders Compute and Use for the problem at hand.

☞ Master stylized code patterns, and use them.

@classmethod
def next_generation(cls) -> None:
 """Update old[][] to be the next generation of the Universe."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 #.Let liveNeighbors be # of alive cells around old[r][c].
 #.Set next[r][c] based on old[r][c] and liveNeighbors.
 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

Use is a structured four-way case analysis.

@classmethod
def next_generation(cls) -> None:
 """Update old[][] to be the next generation of the Universe."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 #.Let liveNeighbors be # of alive cells around old[r][c].

 # Set next[r][c] based on old[r][c] and liveNeighbors.
 if Sim.old[r][c]: # Currently live.
 if (live_neighbors == 2) or (live_neighbors == 3):
 Sim.next[r][c] = True
 else: Sim.next[r][c] = False
 else: # Currently dead.
 if live_neighbors == 3:
 Sim.next[r][c] = True
 else: Sim.next[r][c] = False

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

Compute is a 3x3 row-major-order traversal, counting live_neighbors as appropriate.

@classmethod
def next_generation(cls) -> None:
 """Update old[][] to be the next generation of the Universe."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 # Let liveNeighbors be # of alive cells around old[r][c].
 live_neighbors = 0
 for dr in range(-1, 2):
 for dc in range(-1, 2):
 if not((dr == 0) and (dc == 0)) and (
 Sim.old[r + dr][c + dc]):
 live_neighbors += 1

 # Set next[r][c] based on old[r][c] and liveNeighbors.
 ...

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp;

@classmethod
def next_generation(cls) -> None:
 """Update old[][] to be the next generation of the Universe."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 # Let liveNeighbors be # of alive cells around old[r][c].
 live_neighbors = 0
 for dr in range(-1, 2):
 for dc in range(-1, 2):
 if not((dr == 0) and (dc == 0)) and (
 Sim.old[r + dr][c + dc]):
 live_neighbors += 1

 # Set next[r][c] based on old[r][c] and liveNeighbors.
 ...

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp;

To prevent the subscripts from going out of bounds

To prevent the subscripts from going out of bounds, simulate on a torus.

@classmethod
def next_generation(cls) -> None:
 """Update old[][] to be the next generation of the Universe."""
 # Determine the states of next[][] as F(old[][] states).
 for r in range(0, Sim.M):
 for c in range(0, Sim.N):
 # Let liveNeighbors be # of alive cells around old[r][c].
 live_neighbors = 0
 for dr in range(-1, 2):
 for dc in range(-1, 2):
 if not((dr == 0) and (dc == 0)) and (
 Sim.old[(r + dr) % Sim.M][(c + dc) % Sim.N]):
 live_neighbors += 1

 # Set next[r][c] based on old[r][c] and liveNeighbors.
 ...

 # Swap old[][] and next[][] Universes.
 temp = Sim.old; Sim.old = Sim.next; Sim.next = temp;

Create some life, which will glide diagonally down and to the right.

@classmethod
 def initialize(cls) -> None:
 """Create the initial Universe.""“
 # Initialize old and next Universes to M-by-N arrays of False.
 ...
 # Glider
 Sim.old[0][1] = True
 Sim.old[1][2] = True
 Sim.old[2][0] = True
 Sim.old[2][1] = True
 Sim.old[2][2] = True

To let it rip, invoke Sim.main() yet again.

Generation: 0
_X__________________
__X_________________
XXX_________________

And presto …

Generation: 1

X_X_________________
_XX_________________
_X__________________

And presto …

Generation: 2

__X_________________
X_X_________________
_XX_________________

And presto …

Generation: 3

_X__________________
__XX________________
_XX_________________

And presto …

Generation: 4

__X_________________
___X________________
_XXX________________

Back to the same configuration as Generation 0,
but shifted down and right one cell.

And presto …

Generation: 5

_X_X________________
__XX________________
__X_________________

And presto …

Generation: 6

___X________________
_X_X________________
__XX________________

And presto …

Generation: 7

__X_________________
___XX_______________
__XX________________

And presto …

Generation: 8

___X________________
____X_______________
__XXX_______________

And presto …

Back to the same configuration as Generation 1,
but shifted down and right one cell.

Generation: 9
___X________________

__X_X_______________
___XX_______________

And presto …

Whoa! What’s going on? Oh, I forgot, we are on a torus.

Generation: 10
___XX_______________

____X_______________
__X_X_______________
Generation: 11

And presto …

Generation: 11
___XX_______________

___X________________
____XX______________

And presto …

Generation: 12
___XXX______________

____X_______________
_____X______________

And presto …

Generation: 13
____XX______________
____X_______________

___X_X______________

And presto …

Generation: 14
___X_X______________
____XX______________

_____X______________

And presto …

Generation: 15
_____XX_____________
____XX______________

____X_______________

And presto …

Generation: 16
______X_____________
____XXX_____________

_____X______________

And presto …

Generation: 17
____X_X_____________
_____XX_____________
_____X______________

And presto …

Generation: 18
______X_____________
____X_X_____________
_____XX_____________

And presto …

Generation: 19
_____X______________
______XX____________
_____XX_____________

And presto …

Generation: 20
______X_____________
_______X____________
_____XXX____________

And presto …

Back to the same configuration as Generation 0,
but shifted right several cells. The glider is coiling
around the donut!

What are the boundary conditions for this problem, and did we forget them?

☞ Boundary conditions. Dead last, but don’t forget them.

For example, what if the height of the Universe were only 4? To try it out, change N, and
invoke Sim.main().

Generation: 0
_X__________________
__X_________________
XXX_________________

What are the boundary conditions for this problem, and did we forget them?

☞ Boundary conditions. Dead last, but don’t forget them.

For example, what if the height of the Universe were only 4? To try it out, change N, and
invoke Sim.main().

Generation: 0
_X__________________
__X_________________
XXX_________________

Generation: 1

X_X_________________
_XX_________________
X_X_________________

There isn’t enough “elbowroom” around the glider, and it is
interfering with its own propagation. By generation 6, all life is gone!

Should your program be defensive and prevent this, or is this just
how life goes?

Summary:

The notion of a class has been introduced as a means for aggregating variables and
methods.

Many standard precepts, patterns, and recommended coding techniques have been
illustrated.

Representation invariants for data structures and their components have been emphasized,
and their effective use in IDE’s shown.

And the Game of Life itself is fascinating.

	Title
	Slide 1

	Introduction
	Slide 2

	Top-level Code Structure
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	Data representation
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	Method definitions
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

	Testing
	Slide 36
	Slide 37

	NextGeneration
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

	Testing, again
	Slide 46
	Slide 47
	Slide 48

	Game of Life
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

	Documenttion
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

	Game of Life, continued
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

	Testing
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

	Boundary Conditions
	Slide 90
	Slide 91

	Summary
	Slide 92

