Principled Programming

Introduction to Coding in Any Imperative Language

Tim Teitelbaum

Emeritus Professor
Department of Computer Science
Cornell University

Cellular Automata

Copyright©2024 by Tim Teitelbaum; Most recent revision, 09/27/2025

We illustrate two-dimensional arrays, and enumerations over them, using the examples of
Cellular Automata and the Game of Life.

Cellular Automata model the Universe as a rectangular grid of cells, each in a given state.
Time progresses in discrete steps. On each clock tick, each cell simultaneously decides what
state to enter based on its current state and the current states of its neighbors. Each cell
makes its decision independently, but all cells follow the same rules.

The Game of Life is a particular Cellular Automaton that models birth and death.

Systematic top-down development of an entire program is illustrated. Deeply-nested for-
statements in the code arise naturally as a consequence of stepwise refinement, but are
readily understood.

uo3oNpoJuj

Class Sim models the notion of a Cellular Automaton, and its simulation.

class Sim:

= Aggregate the definitions of related variables and methods in a class.

9.1N39n.3S apo) |[ans|-do|

The simulation as a whole is implemented as method main.
class Sim:

@classmethod
def main(cls) -> None:

= Aggregate the definitions of related variables and methods in a class.

uiewl

A class method is defined within a class using
* Decorator @classmethod
* First parameter cls

The simulation as a whole is implemented-as method main.

class Sim:

@classmethod
def main(cls) -> None:

= Aggregate the definitions of related variables and methods in a class.

uiewl

A class method is defined within a class using
* Decorator @classmethod
* First parameter cls

The simulation as a whole is implemented-as method main.
class Sim:

@classmethod
def main(cls) -> None:

The simulation will be run by invoking this
class method using its qualified name, i.e.,
Sim.main(), which passes the class itself

as an implicit first argument matching cls.

= Aggregate the definitions of related variables and methods in a class.

uiewl

uiewl

The simulation as a whole is implemented as method main.
class Sim:

@classmethod
def main(cls) -> None:
"""Simulate a cellular automaton.

= A method header-comment specifies the effect of invoking it, and (if the
method has non-None type) the value returned. If the method has
parameters, the specification is written in terms of those parameters.

For the implementation of main, adopt the pattern that first initializes, then computes.
class Sim:

@classmethod

def main(cls) -> None:
"""Simulate a cellular automaton.
#.Initialize.
#.Compute.

= [Master stylized code patterns, and use them.

uiewl

Instantiate placeholders Initialize and Compute for the problem at hand.
class Sim:

@classmethod

def main(cls) -> None:
"""Simulate a cellular automaton.
#.Create the initial Universe and display it.

#.Simulate and display LAST GEN additional generations.

= Master stylized code patterns, and use them.

uiewl

Refine the specifications.

class Sim:

@classmethod

def main(cls) -> None:
"""Simulate a cellular automaton.
Create the initial Universe and display it.
Sim.initialize()
Sim.display()

#.Simulate and display LAST_GEN additional generations.

== Program top-down, outside-in.

uiewl

Refine the specifications.
class Sim:

@classmethod

def main(cls) -> None:
"""Simulate a cellular automaton.
Create the initial Universe and display it.
Sim.initialize()
Sim.display()

Simulate and display LAST_GEN additional generations.
for Sim.generation in range(1l, Sim.LAST GEN + 1):
Sim.next _generation()
Sim.display()

= Program top-down, outside-in.

uiewl

initialize, display, and next_generation are other
class methods to be defined. Class methods are always
invoked using their qualified names, e.g., Sim.display().

Refine the specifications.

class Sim:

@classmethod

def main(cls) -> None:
"""Simulate a cellular automaton.
Create the initial Universe and display it.
Sim.initialize()
Sim.display()

Simulate and display LAST_GEN additional generations.
for Sim.generation in range(1l, Sim.LAST GEN + 1):
Sim.next_generation()
Sim.display()

== Many short procedures are better than large blocks of code.

uiewl

Method specifications use a syntactic construct known as a “docstring”.

Refine the specifications.
class Sim:

@classmethod

def main(cls) -> None:
"""Simulate a cellular automaton.
Create the initial Universe and display it.
Sim.initialize()
Sim.display()

Simulate and display LAST_GEN additional generations.
for Sim.generation in range(1, Sim.LAST GEN + 1):
Sim.next_generation()
Sim.display()

uiewl

Create stubs for the methods that have been introduced, which you can do mindlessly.

class Sim:

@classmethod

def initialize(cls) -> None:
"""Create the initial Universes old.™""
pass

@classmethod

def display(cls) -> None:
"""Display the present Universe.
pass

@classmethod

def next generation(cls) -> None:
"""Update Universe to be the next generation.
pass

== Defer challenging code for later; do the easy parts first.

9.1N39n.3S apo) |[ans|-do|

The simulation of a cellular automaton models a finite M-by-N Universe of cells.

LAST _GEN: int = 40
generation: int = ©

Last generation.
Generation number.

The states of each generation of next cells is determined from the states of O
the old cells, where generations are numbered from 0 through LAST_GEN. The 'n.,p
state of each cell is modeled as an int. Q)
A

Specify and declare the data representation. %

—

class Sim: 8

d

M: int = 5 # Height of Universe. -3

N: int = 20 # Width of Universe. cr

old: list[list[int]] = [] # old Universe. gi
next: list[list[int]] = [] # next Universe. 5'

-

#

= Aggregate the definitions of related variables and methods in a class.

The simulation of a cellular automaton models a finite M-by-N Universe of cells.

LAST GEN: int = 40
generation: int = 0

Last generation.
Generation number.

The states of each generation of next cells is determined from the states of O
the old cells, where generations are numbered from 0 through LAST_GEN. ?.’p
state of each cell is modeled as an int. Q)
, A

, , N.B. The term “state” is overloaded. ()

Specify and declare the data representation. Each cell of the Universe has a “state”. | "3

—

class Sim: 8

D

M: int = 5 # Height of Universe. -3

N: int = 20 # Width of Universe. cr

old: list[list[int]] = [] # old Universe. gi
next: list[list[int]] = [] # next Universe. 5'

=

#

= Introduce program variables whose values describe “state”.

The simulation of a cellular automaton models a finite M-by-N Universe of cells.
The states of each generation of next cells is determined from the states of
the old cells, where generations are numbered from 0 through LAST_GEN. The
state of each cell is modeled as an int.

N.B. The term “state” is overloaded. Each
cell of the Universe has a “state”, and the
simulation as a whole has a “state”.

Specify and declare the data representation.

LAST GEN: int = 40
generation: int = 0

Last generation.
Generation number.

class Sim:
M: int = 5 # Height of Universe.
N: int = 20 # Width of Universe.
old: list[list[int]] = [] # old Universe.
next: list[list[int]] = [] # next Universe.
#
#

/
= Introduce program variables whose values describe “state”.

uoijejuasaiday eyeq

Specify and declare the data representation.

LAST GEN: int = 40
generation: int = ©

Last generation.
Generation number.

class Sim:
M: int = 5 # Height of Universe.
N: int = 20 # Width of Universe.
old: list[list[int]] = [] # old Universe.
next: list[list[int]] = [] # next Universe.
#
#

Names of variables intended to be constant throughout program execution are, by convention, all capital letters.

= Minimize use of literal numerals in code; define and use symbolic constants.

uoijejuasaiday eyeq

Specify and declare the data representation.

LAST GEN: int = 40
generation: int = 0

class Sim:
M: int = 5 #
N: int = 20 #
old: list[list[int]] = [] #
next: list[list[int]] = [] #
#
#

Height of Universe.

Width of Universe.
old Universe.

next Universe.
Last generation.
Generation number.

Variables declared and initialized at the top-level of a class are called
class variables, and are shared among all methods of the class.

uoijejuasaiday eyeq

Specify and declare the data representation.

class Sim:
M: int = 5
N: int = 20

old: list[list[int]] = []
next: list[list[int []
LAST GEN: int =

H H H H HHE

Height of Universe.

Width of Universe.
old Universe.

next Universe.
Last generation.
Generation number.

The initial value of the 2-D array must be created in method initialize

because the needed construct (list comprehension) is not permitted here.

uoijejuasaiday eyeq

Specify and declare the data representation.

class Sim:
M: int = 5
N: int = 20

old: list[list[int]] = []
next: list[list[int []
LAST GEN: int =

H H H H HHE

Height of Universe.
Width of Universe.
old Universe.

next Universe.

Last generation.
Generation number.

The initial value of the 2-D array must be created in method initialize

Technically, initializationto [] is a

because the needed construct (list comprehension) is not permitted here. violation of the representation

invariant because [] is not M-by-N.

uoijejuasaiday eyeq

We now turn to implementation of the methods: initialize.

class Sim:

@classmethod

def initialize(cls) -> None:
"""Create the initial Universe.
pass

len

oZl

We now turn to implementation of the methods: initialize.

class Sim:

@classmethod

def initialize(cls) -> None:
"""Create the initial Universe.
#.Initialize old and next Universes to M-by-N arrays of 0.

len

oZl

We now turn to implementation of the methods: initialize.

class Sim:

@classmethod
def initialize(cls) -> None:
"""Create the initial Universe.
Initialize old and next Universes to M-by-N arrays of 0.
Sim.old = [[© for _ in range(©, Sim.N)]
for _ in range(@, Sim.M)]
Sim.next = [[@ for _ in range(@, Sim.N)]
for _ in range(@, Sim.M)]

len

oZl

Long lines can be split if between matched parentheses or brackets.

We now turn to implementation of the methods: initialize.

class Sim:

@classmethod
def initialize(cls) -> None:
"""Create the initial Universe.
Initialize old and next Universes to M-by<N arrays of 0.
Sim.old = [[© for _ in range(©, Sim.N)]
for _ in range(@, Sim.M)]
Sim.next = [[@ for _ in range(©, Sim.N)]
for _ in range(@, Sim.M)]

len

oZl

We now turn to implementation of the methods: initialize.

class Sim:

@classmethod
def initialize(cls) -> None:
"""Create the initial Universe.
Initialize old and next Universes to M-by-N arrays of 0.
Sim.old = [[© for _ in range(©, Sim.N)]
for _ in range(@, Sim.M)]
Sim.next = [[@ for _ in range(©, Sim.N)]
for _ in range(@, Sim.M)]

len

oZl

The temporary violation of
the representation invariant
has now been corrected.

Turn to implementing method display.

class Sim:

@classmethod

def display(cls) -> None:
"""Display the present Universe.
pass

Ae|dsip

Turn to implementing method display.

class Sim:

@classmethod

def display(cls) -> None:
"""Display the present Universe.
print("Generation: ", Sim.generation)

Ae|dsip

Use a standard row-major-order traversal.

class Sim:

@classmethod
def display(cls) -> None:
"""Display the present Universe.
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):
for c in range(@, Sim.N): print(Sim.old[r][c], end="")
print()

= Master stylized code patterns, and use them.

Ae|dsip

Use a standard row-major-order traversal, output cells.

class Sim:

@classmethod
def display(cls) -> None:
"""Display the present Universe.
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):
for c in range(@, Sim.N): print(Sim.old[r][c], end="")
print()

= Master stylized code patterns, and use them.

Ae|dsip

Use a standard row-major-order traversal, output cells, and output newlines at row ends.

class Sim:

@classmethod
def display(cls) -> None:
"""Display the present Universe.
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):
for c in range(@, Sim.N): print(Sim.old[r][c], end="")
print()

= Master stylized code patterns, and use them.

Ae|dsip

Use a standard row-major-order traversal, output cells, and output newlines at row ends.

class Sim:

@classmethod

def display(cls) -> None:
"""Display the present Universe.
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):

for c in range(@, Sim.N): print(Sim.old[r][c], end="")

print()

= Master stylized code patterns, and use them.

Means: Don’t go to the beginning
of the next line after printing.

Ae|dsip

Use a standard row-major-order traversal, output cells, and output newlines at row ends.

class Sim:

@classmethod
def display(cls) -> None:

print("Generation:
for r in range(@, Sim.M):

Display the present Universe.
, Sim.generation)

for c_in range(@, Sim.N): print(Sim.old[r][c], end="'")

print()

Variables r and c are local variables of method display.
Use local variables without qualification.

Ae|dsip

Use a standard row-major-order traversal, output cells, and output newlines at row ends.

class Sim:

@classmethod
def display(cls) -> None:

print("Generation:
for r in range(@, Sim.M):

Display the present Universe.
, Sim.generation)

for c in range(@, Sim.N): print(Sim.old[r][c], end="'")

print()

Variables generation, M, N, and old are class variables.
Use class variables with qualified names.

Ae|dsip

A method stub may suffice for a program test.

class Sim:

uoijesduag 1xau

@classmethod
def next generation(cls) -> None:
"""Update Universe to be the next generation.

pass

== \Write degenerate program stubs that allow partial programs to execute.

Test early and often.

To try it out, invoke Sim.main().

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

sunsay

Output:

Generation: ©
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 1
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Generation: 2
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
Etc.

What has been validated?

* Generation counting

e Array creation and initialization
* Formatting of output

= Validate output thoroughly.

sunsay

We now turn to implementation of the method stub: next generation.

class Sim:

@classmethod
def next generation(cls) -> None:
"""Update Universe to be the next generation.

pass

= Master stylized code patterns, and use them.

uoijelaudas xau

Instance of the standard compute-use pattern.

class Sim:

@classmethod

def next _generation(cls) -> None:
"""Update Universe to be the next generation.
#.Determine the states of next[][] as F(old[][] states).
#.Swap old[][] and next[][] Universes.

= Master stylized code patterns, and use them.

uoijelaudas xau

Standard row-major-order traversal for determining new states of each cell of next.

class Sim:

@classmethod
def next _generation(cls) -> None:
"""Update Universe to be the next generation.
Determine the states of next[][] as F(old[][] states).
for r in range(@, Sim.M):
for c in range(@, Sim.N):

old next

F

#.Swap old[][] and next[][] Universes.

uoijesduag 1xau

Standard row-major-order traversal for determining new states of each cell of next.

class Sim:

@classmethod
def next _generation(cls) -> None:
"""Update Universe to be the next generation.
Determine the states of next[][] as F(old[][] states).
for r in range(@, Sim.M):
for ¢ in range(@, Sim.N):
Sim.next[r][c] F(Sim.old[r][c] and its neighbors)

uoijesduag 1xau

#.Swap old[][] and next[][] Universes.

Standard code for swap

class Sim:

@classmethod
def next _generation(cls) -> None:
"""Update Universe to be the next generation.
Determine the states of next[][] as F(old[][] states).
for r in range(@, Sim.M):
for ¢ in range(@, Sim.N):
Sim.next[r][c] F(Sim.old[r][c] and its neighbors)

uoijesduag 1xau

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

= Master stylized code patterns, and use them.

Notice that swap is a constant-time operation, independent of the size of the Universes.

old

old

next

next

TPty

!

!

1

uoijesduag 1xau

Notice that swap is a constant-time operation, independent of the size of the Universes.*

uoijesduag 1xau

0o 1 2 o 1 2
2| o LT 1T 1T 2| o
o 1 2 0o 1 2
1 e (T T T | e4——[1T 1T T
0o 1 2 0o 1 2
od ¢| 0| e [T 1T 1T next| ¢ (O e4+——[T T T
] |
o 1 2 o 1 2
2| o T 1T 1 2| e—— [T T T
0o 1 2 o 1 2
1 o T 11 |eq+——[TT T
o 1 2 o 1 2
old| ¢ | 0| e YT T 1T next| ¢ [Of e+—[T T T
t »

*C/C++ Constant-time swap is not available for C-style arrays in C/C++. Rather, this can be read as describing one
of the alternatives to C-style arrays that are available in C++.

Completed next_generation for a generic cellular automaton.

class Sim:

@classmethod
def next _generation(cls) -> None:
"""Update Universe to be the next generation.
Determine the states of next[][] as F(old[][] states).
for r in range(@, Sim.M):
for ¢ in range(©®, Sim.N):
Sim.next[r][c] = F(Sim.old[r][c] and its neighbors)

uoijesduag 1xau

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

For easy immediate testing, let each cell increment its state on each generation.

sunsa]

class Sim:

@classmethod
def next _generation(cls) -> None:
"""Update Universe to be the next generation.
Determine the states of next[][] as F(old[][] skates).
for r in range(@, Sim.M):
for ¢ in range(@, Sim.N):
Sim.next[r][c] = Sim.old[r][c] + 1

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

= Test programs incrementally.

Test early and often.

To try it out again, invoke Sim.main().

= Test programs incrementally.
== Never be (very) lost. Don’t stray far from a correct (albeit, partial) program.

sunsay

Output:

Generation: ©
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
000000000000V
Generation: 1
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
Generation: 2
22222222222222222222
22222222222222222222
22222222222222222222
22222222222222222222
22222222222222222222
Etc.

What has been validated?

e Creation of next Universe from old Universe
e Swapping of old and next Universes

= Validate output thoroughly.

sunsay

Game of Life. A Cellular Automaton in which each cell is either dead or alive.

In each generation:

Each live cell with 2 or 3 live neighbors lives on to the next generation (life)
otherwise it dies (death).

Each dead cell with 3 live neighbors comes alive in the next generation (birth)
otherwise it remains dead.

3417 J0 swren

Each cell is either dead or alive, so specialize the Universes as Boolean 2-D arrays.

LAST GEN: int = 40
generation: int = ©

Last generation.
Generation number.

class Sim:
M: int = 5 # Height of Universe.
N: int = 20 # Width of Universe.
old: list[list[bool]] = [] # old Universe.
next: list[list[bool]] = [] # next Universe.
#
#

== Choose representations that by design don’t have nonsensical configurations.

3417 J0 swren

Revise method initialize similarly.

class Sim:

@classmethod
def initialize(cls) -> None:
"""Create the initial Universe.
Initialize old and next Universes to M-by-N arrays of False.
Sim.old = [[False for _ in range(@, Sim.N)]
for _ in range(@, Sim.M)]
Sim.next = [[False for _ in range(@, Sim.N)]
for _ in range(@, Sim.M)]

== Choose representations that by design don’t have nonsensical configurations.

len

oZl

an

Revise method display to compactly render dead as and alive as “X"“.

class Sim:

@classmethod
def display(cls) -> None:
"""Display the present Universe.
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):
for c in range(@, Sim.N): print(Sim.old[r][c], end="")
print()

Ae|dsip

an

Revise method display to compactly render dead as and alive as “X"“.

class Sim:

@classmethod
def display(cls) -> None:
"""Display the present Universe.""®
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):
for ¢ in range(@, Sim.N):
if Sim.old[r][c]: print("X", end="")
else: print(" ", end="'")
print()

Ae|dsip

While we are at it, revise the method header to be more informative.
class Sim:

@classmethod
def display(cls) -> None:
"""Display Universe old[][] as an M-by-N grid."""
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):
for ¢ in range(@, Sim.N):
if Sim.old[r][c]: print("X", end="")
else: print("_ ", end="")
print()

== Repeatedly improve comments by relentless copy editing.

uoileuawWndo0Q

That way, for example, the tip provided in an IDE editor will be more helpful.

class Sim:

@classmethod

def main(cls) -> None:
"""Simulate a cellular automaton.
Create the initial Universe and display it.
Sim.initialize()
Sim.display()

@classmethod
- IESTORE: def display(cls) -> None

for Sim.
Sim. I
Sim.display()

ing generations.

I —— | GEN + 1) :
Display Universe old[][] as an M-by-N grid. -

= Repeatedly improve comments by relentless copy editing.

uoileuawWndo0Q

Similarly, turn end-of-line comments of variable declarations into docstrings.

LAST GEN: int = 40
generation: int = ©

Last generation.
Generation number.

class Sim:
M: int = 5 # Height of Universe.
N: int = 20 # Width of Universe.
old: list[list[bool]] = [] # old Universe.
next: list[list[bool]] = [] # next Universe.
#
#

== Repeatedly improve comments by relentless copy editing.

uoileuawWndo0Q

Similarly, you can turn end-of-line comments of variable declarations into docstrings.

class Sim:

M: int = 5
"""M is the height of the Universe.

N: int = 20
"""N is the width of the Universe.

old: list[list[bool]] = []
"""old is the present state of the Universe.

next: list[list[bool]] = []
"""next is the upcoming generation of the Universe, in preparation.™"""

LAST_GEN: int = 40
"""LAST_GEN is last generation to be simulated."""

generation: int = 0
"""generation is the number of the present generation."""

uoileuawWndo0Q

The docstring of a variable is the variable’s representation invariant.
class Sim:

@classmethod
def display(cls) -> None:
"""Display Universe old[][] as an M-by-N grid."""
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):
for c in range (0, FAERRELadaloVaa-N Moy a1
if Sim.old[r] R
else: print("
print()

M is the height of the Universe.

== Repeatedly improve comments by relentless copy editing.

uoileuawWndo0Q

The docstring of a variable is the variable’s representation invariant.
class Sim:

@classmethod
def display(cls) -> None:
"""Display Universe old[][] as an M-by-N grid."""
print("Generation: ", Sim.generation)
for r in range(@, Sim.M):
for c in range(@, Sim.N):
if Sim.old[r][c]: print("X", end="")
CIEY-H class attribute old of Sim
print() old: list[list[bool]] = []

old is the present state of the Universe.

== Repeatedly improve comments by relentless copy editing.

uoileuawWndo0Q

Implement the Game of Life rules.
class Sim:

@classmethod
def next generation(cls) -> None:
"""Update old[][] to be the next generation of the Universe.™""
Determine the states of next[][] as F(old[][] states).
for r in range(@, Sim.M):
for c in range(@, Sim.N):

Set next[r][c] = according to the Game of Life rules.

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = tem

3417 J0 swren

Refine the specification using the standard compute-use pattern.

@classmethod
def next _generation(cls) -> None:
"""Update old[][] to be the next generation of the Universe."""
Determine the states of next[][] as F(old[][] states).
for r in range(9, Sim.M):
for c in range(©, Sim.N):

3417 J0 swren

#.Compute.
#.Use.

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

= Master stylized code patterns, and use them.

Instantiate placeholders Compute and Use for the problem at hand.

@classmethod
def next _generation(cls) -> None:
"""Update old[][] to be the next generation of the Universe."""
Determine the states of next[][] as F(old[][] states).
for r in range(9, Sim.M):
for c in range(©, Sim.N):

#.Set next[r][c] based on old[r][c] and liveNeighbors.

#.Let liveNeighbors be # of alive cells around old[r][c].

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

= Master stylized code patterns, and use them.

3417 J0 swren

Use is a structured four-way case analysis.

@classmethod
def next _generation(cls) -> None:
"""Update old[][] to be the next generation of the Universe."""
Determine the states of next[][] as F(old[][] states).
for r in range(@, Sim.M):
for ¢ in range(@, Sim.N):

#.Let liveNeighbors be # of alive cells around old[r][c].

Set next[r][c] based on old[r][c] and liveNeighbors.
if Sim.old[r][c]: # Currently live.

if (live _neighbors == 2) or (live neighbors == 3):

Sim.next[r][c] = True

else: Sim.next[r][c] = False
else: # Currently dead.

if live neighbors ==

Sim.next[r][c] = True
else: Sim.next[r][c] = False

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = temp

3417 J0 swren

Compute is a 3x3 row-major-order traversal, counting 1ive neighbors as appropriate.

@classmethod
def next generation(cls) -> None:
"""Update old[][] to be the next generation of the Universe."""
Determine the states of next[][] as F(old[][] states).
for r in range(@, Sim.M):
for c in range(©, Sim.N):

Let liveNeighbors be # of alive cells around old[r][c].
live neighbors = ©
for dr in range(-1, 2):
for dc in range(-1, 2):
if not((dr == @) and (dc == 9)) and (
Sim.old[r + dr][c + dc]):
live neighbors += 1

Set next[r][c] based on old[r][c] and liveNeighbors.

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = temp;

3417 J0 swren

To prevent the subscripts from going out of bounds

@classmethod
def next generation(cls) -> None:
"""Update old[][] to be the next generation of the Universe.
Determine the states of next[][] as F(old[][] states).
for r in range(@, Sim.M):
for c in range(©, Sim.N):

3417 J0 swren

Let liveNeighbors be # of alive cells around old[r][c].
live _neighbors = 0
for dr in range(-1, 2):
for dc in range(-1, 2):
if not((dr == @) and (dc #= 9)) and (
Sim.old[r + dr][c + dc]):
live _neighbors += 1

Set next[r][c] based on old[r][c] and liveNeighbors.

Swap old[][] and next[][] Universes.
temp = Sim.old; Sim.old = Sim.next; Sim.next = temp;

@classmethod
def next _gen

for r in
for

To prevent the subscripts from going out of bounds, simulate on a torus.

eration(cls) -> None:

Update old[][] to be the next generation of the Universe.
Determine the states of next[][] as F(old[][] states).

range(@, Sim.M):
c in range(@, Sim.N):

Let liveNeighbors be # of alive cells
live neighbors = ©
for dr in range(-1, 2):
for dc in range(-1, 2):
if not((dr == @) and (dc ==
Sim.old[(r + dr) % Sim
live neighbors +=

around old[f][c].

9)) and (
M][(c * dc) % Sim.N]):
1

Swap o
temp = S

Set next[r][c] based on old[r][c] and

1d[][] and next[][] Universes.

im.old; Sim.old = Sim.next; Sim.next

liveNeighbors.

= temp;

3417 J0 swren

sunsay

Create some life, which will glide diagonally down and to the right.

@classmethod
def initialize(cls) -> None:
"""Create the initial Universe.™"“
Initialize old and next Universes to M-by-N arrays of False.

Glider

Sim.old[@][1] = True
Sim.old[1][2] = True
Sim.old[2][@] = True
Sim.old[2][1] = True
Sim.old[2][2] = True

To let it rip, invoke Sim.main() yet again.

sunsay

And presto ...

Generation:
X

%)

X

XXX

sunsay

And presto ...

Generation:

X_X

XX

X

sunsay

And presto ...

Generation:

sunsay

And presto ...

Generation:

X

XX

XX

sunsay

And presto ...

Generation:

4\

X

Back to the same configuration as Generation O,
but shifted down and right one cell.

X

XXX

sunsay

And presto ...

Generation:

sunsay

And presto ...

Generation:

6

sunsay

And presto ...

Generation:

7

XX

XX

sunsay

And presto ...

Generation:

8\

Back to the same configuration as Generation 1,
but shifted down and right one cell.

XXX

sunsay

And presto ...

Generation:

X

Whoa! What’s going on? Oh, | forgot, we are on a torus.

X X

XX

sunsay

And presto ...

Generation:

XX

10

X

_ XX

Generation:

11

sunsay

And presto ...

Generation:

XX

11

XX

sunsay

And presto ...

Generation:

XXX

12

sunsay

And presto ...

Generation:

XX

13

X

X X

sunsay

And presto ...

Generation:

X_X

14

XX

sunsay

And presto ...

Generation:

XX

15

XX

sunsay

And presto ...

Generation:

X

16

XXX

sunsay

And presto ...

Generation:

XX

17

XX

X

sunsay

And presto ...

Generation:

X

18

XX

XX

sunsay

And presto ...

Generation:

X

19

XX

XX

sunsay

And presto ...

Generation:

X

2@\

X

XXX

Back to the same configuration as Generation O,
but shifted right several cells. The glider is coiling
around the donut!

sunsay

What are the boundary conditions for this problem, and did we forget them?

For example, what if the height of the Universe were only 4? To try it out, change N, and
invoke Sim.main().

Generation: ©
X

X
XXX

suonipuo) Aiepunog

== Boundary conditions. Dead last, but don’t forget them.

What are the boundary conditions for this problem, and did we forget them?

For example, what if the height of the Universe were only 4? To try it out, change N, and
invoke Sim.main().

Generation: ©

X
X
XXX
Generation: 1 There isn’t enough “elbowroom” around the glider, and it is
interfering with its own propagation. By generation 6, all life is gone!
X_X
XX Should your program be defensive and prevent this, or is this just
X X how life goes?

== Boundary conditions. Dead last, but don’t forget them.

suonipuo) Aiepunog

Summary:

The notion of a class has been introduced as a means for aggregating variables and
methods.

Many standard precepts, patterns, and recommended coding techniqgues have been
illustrated.

Representation invariants for data structures and their components have been emphasized,
and their effective use in IDE’s shown.

And the Game of Life itself is fascinating.

Arewwing

	Title
	Slide 1

	Introduction
	Slide 2

	Top-level Code Structure
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	Data representation
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

	Method definitions
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

	Testing
	Slide 36
	Slide 37

	NextGeneration
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

	Testing, again
	Slide 46
	Slide 47
	Slide 48

	Game of Life
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

	Documenttion
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

	Game of Life, continued
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

	Testing
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89

	Boundary Conditions
	Slide 90
	Slide 91

	Summary
	Slide 92

