
���

C3: A System for Automating
Application-level Checkpointing of

MPI Programs

Greg Bronevetsky, Daniel Marques,
Keshav Pingali, Paul Stodghill

Department of Computer Science,
Cornell University

���

The Problem
• Decreasing hardware reliability

– Extremely large systems
(millions of parts)

– Large clusters of commodity
parts

– Grid Computing

• Program runtimes greatly
exceed mean time to failure

– ASCI, Blue Gene, PSC, Illinois
Rocket Center

• ∴ Fault-tolerance necessary for
high-performance computing

���

What kinds of failures?

Fault Models
• Byzantine: a processor can

be arbitrarily malicious (e.g.,
incorrect data, a hacker, etc.)

• Fail-silent: a processor stops
sending and responding to
messages

• Fail-Stop: fail-silent +
surviving processors can tell

Number of component failures
• 1, k, n

In this work, Fail-Stop faults,
n processors

• Necessary first step
• Usually sufficient in practice

���

What is done by hand?
• Application-level (i.e., source code) Checkpointing

– Save key problem state vs system (core) state
– Used at Sandia, BlueGene, PSC, …

• Advantages:
– Minimizes amount of state saved

• e.g., Alegra (application state = 5% of core size)
• Crucial for future large systems (BlueGene: Mb’s vs Tb’s)

– Can be portable across platforms and MPI implementations
• Disadvantages:

– Lots of manual work
– Correctly checkpointing programs without barriers requires a

coordination protocol

• We want to automate this process

���

Goals
• A tool to convert existing MPI applications into fault-tolerance

MPI applications

• Requirements
– Use Application-level checkpointing
– Use native MPI implementation
– Handle full range of MPI semantics

• Desirable features
– Minimize programmer annotations
– Automatically optimize checkpoints sizes

• Necessary technologies
– Program transformations for application-level checkpointing
– Novel algorithm for distributed application-level checkpointing

���

Programmer’s Perspective
• Programmer places calls to

potentialCheckpoint()

• Precompiler transforms
program to save application
state at
potentialCheckpoint() calls

• Runtime system decides at
each potentialCheckpoint()
whether or not a checkpoint
is taken

int main()
{

MPI_Init();

initialization();
� potentialCheckpoint();

while (t < tmax) {
big_computation();
…

� potentialCheckpoint();
}

MPI_Finalize();
}

���

C3 Architecture

Application
+

State-saving

Original
Application

Precompiler

Thin Coordination
Layer

MPI ImplementationMPI Implementation

Reliable communication layer

��������
	�
��
��

���

Outline

• Introduction
� The paper

– Precompiler
– Coordination Layer
– Performance

• Current work
– Optimizing Checkpoint Size
– Other Current Work

• Related Work
• Conclusions

���

Precompiler
Transformation to save application

state:
• Parameters, local variables,

program location
– Record local variables and function

calls
– Checkpoint: save record
– Recovery: reconstruct application

state from record
– Only functions on path to

potentialCheckpoint() calls must be
instrumented

• Globals
– main() is instrumented to record

global locations
• Heap

– Custom, checkpointable heap
allocator

What about the network “state”?

int main()
{

if (recovery) { … goto Lx; … }
add_globals(…);
push_locals(&t, &tmax);
MPI_Init();

initialization();
L1: potentialCheckpoint();

while (t < tmax) {
big_computation();
…
L2: potentialCheckpoint();

}

MPI_Finalize();
pop_locals();

}

���

Can existing Distributed Systems solutions
be used?

• Why not checkpoint at barriers?
– What barriers?
– MPI is non-FIFO! Messages cross barriers!

• Why not use message logging?
– Does not handle n failures
– Constant overhead, even when no failures
– Message logs fill memory in minutes (seconds)
– Checkpointing to clear logs

• Why not use Chandy-Lamport (or your other favorite distributed
snapshot algorithm)?
– Requires system-level checkpointing for correctness or progress
– Can Tb’s of data be saved before a component fails?

���

Distributed Application-level Checkpointing

• Potential checkpoint locations are fixed in
program source code

• May not force checkpoints to happen at any
other time

Process P

Process Q

Potential Checkpoint Locations

���

Distributed Application-level Checkpointing
(cont.)

• Recovery Line
– A set of checkpoints, one per processor
– represents global system state on recovery
– When one node fails, everybody rolls back to a recent

recovery line
• Problems to solve

– How to select potentialCheckpoint()’s for recovery line?
– What about MPI messages that cross recovery line?

P Takes Local Checkpoint

Q Takes Local Checkpoint

Process P

Process Q

Recovery Line

���

Distributed Application-level Checkpointing
(cont.)

• Past and Future Messages
– Do not require coordinate

• Late messages
– Require recording and

replaying

• Early messages
– a.k.a., Inconsistent messages
– Require suppression
– Recording non-determinism

• Collective communication
– Combinations of message

types
• Hidden state

– MPI_Request,
MPI_Communication

• Synchronization semantics
– MPI_Barrier, MPI_SSend, …

• Protocol details in the paper

P Takes Checkpoint

Q Takes Checkpoint

Process P

Process Q
Late Message

Early Message

Past
Message Future

Message

���

Performance
• Prototype implementation

– Precompiler without optimizations
– Point-to-point protocol, no collective, no

synchronization
• Three benchmarks scientific codes

– Dense Conjugate Gradient
– Laplace Solver
– Neuron Simulator

• 16 processors of Velocity cluster at CTC
• 30 second checkpoint interval

– Overheads amplified for better resolution

��� Overheads
Dense Conjugate Gradient

0

500

1000

1500

2000

2500

3000

4096x4096 8192x8192 16834x16834
P roble m S iz e

42.6%
131MB

13.1%
33MB

7.7%
8.2MB

Neurosys

0

500

1000

1500

2000

2500

16x16 32x32 64x64 128x128
P ro b le m S iz e

12.1%
1.24MB

44%
308KB

100.8%
75KB

185.1%
18KB

��
�
��
�������������	����������� �	����
�����
��������	����������
���
�������

���������	
����
������������	
��	��
�����������
�	�������������
�����������

������������
������	�
�����
����

��������� ������
���

!���"#�������$��
����%�
�&�'�
(����	���&�'��$��������
���

!���"#�������$��
����%�
�&�(����	���&
'��$��������
���

!���"#�������$��
����%�
�&�(����	���&
$��������
���

Laplace Solver

0

500

1000

1500

2000

2500

3000

3500

512x512 1024x1024 2048x2048
P ro ble m S ize

1.1%
2.1MB

.4%
532KB2.2%

138KB

���

Outline

• Introduction
• The paper

– Precompiler
– Coordination Layer
– Performance

� Current work
– Optimizing Checkpoint Size
– Other Current Work

• Related Work
• Conclusions

���

Live Variables

• Recent work by Jim Ezick
• Context-Sensitive Gen/Kill analysis

– Utilizes new technique for encoding functions
• Works with full C language
• Analysis generates three levels of output each

admitting a different C3 optimization
– Flow-Insensitive/Context-Insensitive :

Eliminate push/pop instructions
– Flow-Sensitive/Context-Insensitive :

Generate Exclusion List
– Flow-Sensitive/Context-Sensitive :

Generate DFA to determine liveness

���

Live Variables (cont.)

• Effectiveness
– Run on “treecode”, a popular Barnes-Hut

algorithm for n-body simulation written in C
– Given checkpoint location:

• Finds a live variable set competitive with programmer
provided state saving routine

• Live variable <50% of total “in-scope” variables
• Only two of 27 elements of the live variable set require

a DFA

– It remains to reduce the amount of heap saved

���

Optimizing Heap Checkpointing

• Saving the whole heap
– Saves “dead” values
– Saves unchanged since

previous checkpoint

• Incremental checkpointing:
Save only changed pages
– Changed and unchanged on

same page: false sharing
– Still saves “dead” values
– Saving every fragmented

page set is slowing than
saving the whole heap

Unchanged
Changed

Unchanged
Changed

Unchanged
Changed

Unchanged
Changed

Unchanged
Changed

Chpt

���

Optimizing Heap Checkpointing (cont.)
• Allocation coloring

– Assign each allocated object to a
color

– No two colors assigned to same
page

– Checkpoint: save subset of colors
– Similar to (but different from) region

analysis
• Automatic Allocation Coloring:

– assign colors to allocation sites
– Assign colors to

potentialCheckpoint() calls
• Such that,

– Minimize number of colors saved at
checkpoints

– Minimize number of pages saved at
checkpoints

• Live Variables is necessary for
Automatic Allocation Coloring

Chpt #2

Chpt #1

���

Other Current work
• Precompiler

– Multiple source files
– Colored heap allocation
– Release by 4Q03

• Coordination layer
– Complete reimplementation
– All pt-to-pt and collective calls,

communicators, datatypes, etc.
– Correctness, performance,

robustness
– Release by 4Q03

• Shared memory
– Model shared memory objects

as “processors”, gi

– Shared memory reads: gi � pj

– Shared memory writes: gi � pj

– How to obtain consistent value
of gi?

• Grid computing
– Goal: Migrate running

application between clusters
– Different number of processors:

over decomposition, threaded
execution

– Heterogeneity:
Type-safe languages – Cyclone

���

Related Work

• Fault Tolerant MPI
– FT-MPI, LA-MPI, CoCheck, …
– None allow application-level checkpointing

• Precompiler
– Similar to work done with PORCH (MIT)

• PORCH is portable but not transparent to programmer

• Checkpoint optimization
– CATCH (Illinois): uses runtime learning rather than static

analysis
– Beck, Plank and Kingsley (UTK): memory exclusion analysis

of static data

���

Conclusions

• C3 – Automatic fault-tolerance for MPI codes
– Precompiler
– Communication coordination layer
– Performance results are encouraging

• Ties together many areas of compiler and systems
– Language design
– Interprocedural data-flow analysis
– Region analysis
– Memory allocation
– Message passing, shared memory
– Grid computing

