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The Problem
• Decreasing hardware reliability

– Extremely large systems 
(millions of parts)

– Large clusters of commodity 
parts

– Grid Computing

• Program runtimes greatly 
exceed mean time to failure

– ASCI, Blue Gene, PSC, Illinois 
Rocket Center

• ∴ Fault-tolerance necessary for 
high-performance computing
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What kinds of failures?

Fault Models
• Byzantine: a processor can 

be arbitrarily malicious (e.g., 
incorrect data, a hacker, etc.) 

• Fail-silent: a processor stops 
sending and responding to 
messages

• Fail-Stop: fail-silent + 
surviving processors can tell

Number of component failures
• 1, k, n

In this work, Fail-Stop faults,
n processors

• Necessary first step
• Usually sufficient in practice
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What is done by hand?
• Application-level (i.e., source code) Checkpointing

– Save key problem state vs system (core) state
– Used at Sandia, BlueGene, PSC, …

• Advantages:
– Minimizes amount of state saved

• e.g., Alegra (application state = 5% of core size)
• Crucial for future large systems (BlueGene: Mb’s vs Tb’s)

– Can be portable across platforms and MPI implementations
• Disadvantages:

– Lots of manual work
– Correctly checkpointing programs without barriers requires a 

coordination protocol

• We want to automate this process
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Goals
• A tool to convert existing MPI applications into fault-tolerance 

MPI applications

• Requirements
– Use Application-level checkpointing
– Use native MPI implementation 
– Handle full range of MPI semantics

• Desirable features
– Minimize programmer annotations
– Automatically optimize checkpoints sizes

• Necessary technologies
– Program transformations for application-level checkpointing
– Novel algorithm for distributed application-level checkpointing
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Programmer’s Perspective
• Programmer places calls to 

potentialCheckpoint()

• Precompiler transforms 
program to save application 
state at 
potentialCheckpoint() calls

• Runtime system decides at 
each potentialCheckpoint()
whether or not a checkpoint 
is taken

int main()
{

MPI_Init();

initialization();
� potentialCheckpoint(); 

while (t < tmax) {
big_computation();
…

� potentialCheckpoint();
}

MPI_Finalize();
}
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C3 Architecture

Application 
+               

State-saving

Original 
Application

Precompiler

Thin Coordination 
Layer

MPI ImplementationMPI Implementation

Reliable communication layer

��������
	�
��
��



���

Outline

• Introduction
� The paper

– Precompiler
– Coordination Layer
– Performance

• Current work
– Optimizing Checkpoint Size
– Other Current Work

• Related Work
• Conclusions
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Precompiler
Transformation to save application 

state:
• Parameters, local variables, 

program location
– Record local variables and function 

calls
– Checkpoint: save record
– Recovery: reconstruct application 

state from record
– Only functions on path to 

potentialCheckpoint() calls must be 
instrumented

• Globals
– main() is instrumented to record 

global locations
• Heap

– Custom, checkpointable heap 
allocator

What about the network “state”?

int main()
{

if (recovery) { … goto Lx; … }
add_globals(…);
push_locals(&t, &tmax);
MPI_Init();

initialization();
L1: potentialCheckpoint(); 

while (t < tmax) {
big_computation();
…
L2: potentialCheckpoint();

}

MPI_Finalize();
pop_locals();

}
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Can existing Distributed Systems solutions 
be used?

• Why not checkpoint at barriers?
– What barriers?
– MPI is non-FIFO! Messages cross barriers!

• Why not use message logging?
– Does not handle n failures
– Constant overhead, even when no failures
– Message logs fill memory in minutes (seconds)
– Checkpointing to clear logs

• Why not use Chandy-Lamport (or your other favorite distributed 
snapshot algorithm)?
– Requires system-level checkpointing for correctness or progress
– Can Tb’s of data be saved before a component fails?
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Distributed Application-level Checkpointing

• Potential checkpoint locations are fixed in 
program source code

• May not force checkpoints to happen at any 
other time

Process P

Process Q

Potential  Checkpoint Locations
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Distributed Application-level Checkpointing 
(cont.)

• Recovery Line
– A set of checkpoints, one per processor
– represents global system state on recovery
– When one node fails, everybody rolls back to a recent 

recovery line
• Problems to solve

– How to select potentialCheckpoint()’s for recovery line?
– What about MPI messages that cross recovery line?

P Takes Local Checkpoint

Q Takes Local Checkpoint

Process P

Process Q

Recovery Line
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Distributed Application-level Checkpointing 
(cont.)

• Past and Future Messages 
– Do not require coordinate

• Late messages
– Require recording and 

replaying

• Early messages
– a.k.a., Inconsistent messages
– Require suppression
– Recording non-determinism

• Collective communication
– Combinations of message 

types
• Hidden state

– MPI_Request, 
MPI_Communication

• Synchronization semantics
– MPI_Barrier, MPI_SSend, …

• Protocol details in the paper

P Takes Checkpoint

Q Takes Checkpoint

Process P

Process Q
Late Message

Early Message

Past  
Message Future 

Message
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Performance
• Prototype implementation

– Precompiler without optimizations
– Point-to-point protocol, no collective, no 

synchronization
• Three benchmarks scientific codes

– Dense Conjugate Gradient
– Laplace Solver
– Neuron Simulator

• 16 processors of Velocity cluster at CTC
• 30 second checkpoint interval

– Overheads amplified for better resolution
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Dense Conjugate Gradient
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Laplace Solver

0

500

1000

1500

2000

2500

3000

3500

512x512 1024x1024 2048x2048
P ro ble m  S ize

1.1%
2.1MB

.4%
532KB2.2%

138KB



���

Outline

• Introduction
• The paper

– Precompiler
– Coordination Layer
– Performance

� Current work
– Optimizing Checkpoint Size
– Other Current Work
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• Conclusions
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Live Variables

• Recent work by Jim Ezick
• Context-Sensitive Gen/Kill analysis

– Utilizes new technique for encoding functions
• Works with full C language
• Analysis generates three levels of output each 

admitting a different C3 optimization
– Flow-Insensitive/Context-Insensitive : 

Eliminate push/pop instructions
– Flow-Sensitive/Context-Insensitive : 

Generate Exclusion List
– Flow-Sensitive/Context-Sensitive : 

Generate DFA to determine liveness
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Live Variables (cont.)

• Effectiveness
– Run on “treecode”, a popular Barnes-Hut 

algorithm for n-body simulation written in C
– Given checkpoint location:

• Finds a live variable set competitive with programmer 
provided state saving routine

• Live variable <50% of total “in-scope” variables
• Only two of 27 elements of the live variable set require 

a DFA

– It remains to reduce the amount of heap saved
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Optimizing Heap Checkpointing

• Saving the whole heap
– Saves “dead” values
– Saves unchanged since 

previous checkpoint

• Incremental checkpointing: 
Save only changed pages
– Changed and unchanged on 

same page: false sharing
– Still saves “dead” values
– Saving every fragmented 

page set is slowing than 
saving the whole heap

Unchanged
Changed

Unchanged
Changed

Unchanged
Changed

Unchanged
Changed

Unchanged
Changed

Chpt
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Optimizing Heap Checkpointing (cont.)
• Allocation coloring

– Assign each allocated object to a 
color

– No two colors assigned to same 
page

– Checkpoint: save subset of colors
– Similar to (but different from) region 

analysis
• Automatic Allocation Coloring:

– assign colors to allocation sites
– Assign colors to 

potentialCheckpoint() calls
• Such that,

– Minimize number of colors saved at 
checkpoints

– Minimize number of pages saved at 
checkpoints

• Live  Variables is necessary for 
Automatic Allocation Coloring

Chpt #2

Chpt #1
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Other Current work
• Precompiler

– Multiple source files
– Colored heap allocation
– Release by 4Q03

• Coordination layer
– Complete reimplementation
– All pt-to-pt and collective calls, 

communicators, datatypes, etc.
– Correctness, performance, 

robustness
– Release by 4Q03

• Shared memory
– Model shared memory objects 

as “processors”, gi

– Shared memory reads: gi � pj

– Shared memory writes: gi � pj

– How to obtain consistent value 
of gi?

• Grid computing
– Goal: Migrate running 

application between clusters
– Different number of processors: 

over decomposition, threaded 
execution

– Heterogeneity:
Type-safe languages – Cyclone
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Related Work

• Fault Tolerant MPI
– FT-MPI, LA-MPI, CoCheck, …
– None allow application-level checkpointing

• Precompiler
– Similar to work done with PORCH (MIT)

• PORCH is portable but not transparent to programmer

• Checkpoint optimization
– CATCH (Illinois): uses runtime learning rather than static 

analysis
– Beck, Plank and Kingsley (UTK): memory exclusion analysis 

of static data
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Conclusions

• C3 – Automatic fault-tolerance for MPI codes
– Precompiler
– Communication coordination layer
– Performance results are encouraging

• Ties together many areas of compiler and systems
– Language design
– Interprocedural data-flow analysis
– Region analysis
– Memory allocation
– Message passing, shared memory
– Grid computing


