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Abstract

The ongoing convergence of grid computing and web
services has inspired a number of studies on the use of
SOAP-based web services for scientific computing. These
studies have exposed several performance problems in us-
ing SOAP-based communication; to eliminate these bottle-
necks, extensions to the SOAP standard and sophisticated
implementation strategies have been proposed. In this pa-
per, we will describe the ASP system, a simulation testbed
based on web services for simulating multi-physics, coupled
fluid/thermal/mechanical/fracture problems. The system is
organized as a collection of geographically-distributed soft-
ware components in which each component provides a web
service, and uses standard SOAP-based web service proto-
cols to interact with other components. There are a number
of advantages to organizing a system in this way, which we
discuss. We have analyzed the performance of our system
for several applications and a number of problem sizes and
have found that the overhead for using SOAP-based web
services is small and tends to decrease as the problem size
increases. Our results suggest that the previously identi-
fied potential bottlenecks may not be major issues in prac-
tice, and that a standards-compliant implementation like
ours can delivery excellent scalable performance even on
tightly-coupled problems, provided web services are used
judiciously.

1 Introduction

Grid computing is being used for a restricted class of
applications, such as problems that require a large number
of small, independent tasks, or problems that access remote
instruments [14]. The majority of computational science
applications however do not fall into these categories. Most
of these applications are not embarrassingly parallel, so they
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cannot be decomposed into tasks that execute independently
on a computational grid. In addition, most of them do not
require on-line interaction with instruments or other data
sources.

Nevertheless, we believe that the metaphor of grid
computing is useful for implementing large-scale,loosely-
coupledcomputational science applications. To appreciate
this point, it is useful to consider how these applications
are usually created. Almost invariably, large applications
are created by a multi-institutional team, whose members
contribute legacy and new modules to the project. Mod-
ules from different members may be written in different
programming languages and developed for different com-
puting platforms. Since re-implementing all the software
in a single programming language is not practical, all the
code must be ported to a single high-performance comput-
ing platform so that these modules can inter-operate with
each other.

Building a monolithic application in this way has several
disadvantages. Porting code from one platform to another
takes time and effort. Moreover, thorny intellectual prop-
erty (IP) issues may arise if the common platform is at a
remote institution. Even if these problems are overcome,
the contributed code modules are usually under continuous
development, so the process of porting code to the common
platform may need to be repeated every time there is a new
release of these modules.

In principle, these problems can be avoided by designing
the system as a collection of distributed components that
interact by using a mechanism like remote procedure call
(RPC). Each site maintains its own code on whatever plat-
form the code was developed on, but it provides a server that
can be invoked from remote sites to access the functionality
of that code. Instead of exporting code, each site therefore
exports only the functionality of the code, thereby imple-
menting awrite once, run from anywherephilosophy. The
distributed systems community in particular has explored
RPC mechanisms extensively, and there are many standards
and implementations such as Sun RPC [25] and the Java
RMI [28].
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Although RPC has been around for two decades, this ar-
chitecture is used by few if any computational science ap-
plications. The conventional wisdom about why this is so is
summarized by the following points.

1. There is no RPC standard supported by all vendors, so
interoperability is a problem.

2. The basic RPC mechanism was intended for a state-
less, service-oriented architecture in which the service
is relatively light-weight, and the client and server ex-
change only a small amount of data. As a consequence,
most RPC standards and implementations have fea-
tures that made them unsuitable for use in computa-
tional science programs. For example, many RPC im-
plementations use UDP for data transport, which re-
stricts RPC calls to 8KB of data. This is not acceptable
for computational science programs which may need
to exchange data sets that may be many megabytes or
gigabytes in size.

3. Similarly, in most RPC implementations, a client is re-
quired to block after making a remote request, until it
receives a response from the remote server. This is fine
if the service is light-weight, but if the component that
is invoked takes many minutes or hours to produce a
result, most RPC implementations will time-out and
assume that the remote server has crashed. An asyn-
chronous interaction mechanism in which notification
of completion of remote requests is decoupled from
the request itself would address the problem, but this
requires a stateful message-exchange paradigm.

4. Perhaps the most important issue is the overhead of
data transfer between distributed components. Two
procedures in the same program can exchange data
by passing pointers to data structures, which is a very
low-cost operation. If the two procedures are in com-
ponents at different sites on the Internet, exchanging
data is a far more elaborate and expensive operation
- the calling component must linearize the data struc-
ture, convert it to some common data exchange format
like XDR and transmit it to the remote site which re-
verses this process to rebuild the data structure.

Because of recent developments in the area of web ser-
vices for business applications, this conventional wisdom
must be re-examined. To support seamless application-to-
application communication in a decentralized, distributed
environment, the web services community has defined the
Standard Object Access Protocol (SOAP) which can be
viewed as a “protocol specification that defines a uniform
way of passing XML-encoded data” [17]. While SOAP
can be used to implement many kinds of interactions be-
tween applications, the SOAP standard also specifies a pro-
tocol for performing RPC’s, using HTTP as the underlying
communication protocol. Most computer vendors are com-

mitted to supporting this standard, which addresses the first
problem discussed above.

Nevertheless, like existing RPC implementations, SOAP
is intended for light-weight services that exchange small
amounts of data. Although the amount of data that can be
passed in a SOAP message is implementation-dependent,
our experiments show that it is at most a few megabytes
on all implementations we have looked at. Moreover,
SOAP is “fundamentally a stateless message-exchange
paradigm” [17], so it does not directly support the stateful
interaction paradigm that is better suited for computational
science applications as described above.

To address these concerns, we have implemented a sys-
tem, called O’SOAP, that is layered on top of SOAP and
is described in Section 2. It permits asynchronous client-
server interactions in which arbitrarily large amounts of data
can be exchanged. A particularly useful feature of O’SOAP
is that it permits legacy command-line-oriented applications
to be deployed as web-services without any modification.
We believe that O’SOAP addresses the second and third
problems with conventional RPC’s described above.

The final problem that must be addressed is the over-
head of data exchange between distributed components us-
ing SOAP and XML. Two previous studies of this issue that
appeared in HPDC’02 reported that the use of SOAP and
XML imposed a large performance penalty in scientific ap-
plications, and concluded that SOAP was not practical for
computational science applications unless a number of so-
phisticated optimizations and changes to the protocols were
made [10, 24].

We argue in this paper that these studies are misleading.
In Section 3, we describe three large computational science
applications that we have implemented using our infrastruc-
ture. Two of these applications are coupled fluid-thermal-
mechanical computational fracture simulations, while one
is a simulation of blunt trauma on human brains. In Sec-
tion 4, we describe performance results that show that the
overhead of using O’SOAP based distributed components
to implement these applications is small. To the best of our
knowledge, this is the first performance evaluation of entire
state-of-the-art scientific applications built using the web-
service framework.

In Section 5 we discuss other related work. Finally, in
Section 6, we highlight lessons that we have learned from
this implementation.

2 O’SOAP

O’SOAP [26] is an O’Caml [23] base, web services
framework that we have developed for distributed com-
putational science applications. The primary benefits of
O’SOAP over other frameworks are its support for legacy
scientific applications and the manner in which it builds
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upon the basic SOAP protocol to enable efficient interac-
tions between distributed scientific components.

2.1 Deploying Applications as Distributed Com-
ponents

On the server side, O’SOAP enables existing, command-
line oriented applications to be made into web services
without any modification. The user only needs to write
a small CGI script that calls O’SOAP server-side applica-
tions. Placed in the appropriate directory on a web server,
this script will execute when the client accesses its URL. An
example of such a script is shown in Figure 1.

#! /bin/bash

oids_server \
-n arithmetic-test -U urn:test \
-N ’Arithmetic Server’ \
-- ./add.sh ’[in val x:int]’ \

’[in val y:int]’ \
’>’ ’[out file result:int]’

Figure 1. Sample O’SOAP Server

Theoids server program, which is provided by the
O’SOAP framework, processes the client’s SOAP request.
The -n , -N , and -U parameters specify the short name,
full name, and namespace, respectively, of the web service.
What appears after-- is a template of the command line
that is to be used to run the legacy program,add.sh . The
text that appears within[...] describes the arguments to
the legacy program. Each argument specification includes
at least four properties,

• The directionality of the parameter, i.e., “in”, “out”, or
“in out”.

• Whether the parameter value should appear directly
on the command line (“val”) or whether the parameter
value should be placed in a file whose name appears
on the command line (“file”).

• The name of the parameter, e.g., “x”, “y” and “result”.
• The type of the parameter value, i.e., “int”, “float”,

“string”, “raw” (arbitrary binary file), “xml” (a struc-
tured XML file).

A component implemented using O’SOAP will expose a
number of methods, discussed below, that can be invoked
using the SOAP protocol. The component also provides a
means for generating a WSDL [11] document that describes
these methods, their arguments, and additional binding in-
formation.

On the client-side, O’SOAP provides two tools for ac-
cessing remote web services. Theosoap tool program
provides a command-line interface to remote web services.

In addition, thewsdl2ml program generates stub code for
invoking web services from O’Caml programs.

To summarize, O’SOAP is a framework that hides most
of the details of the SOAP protocol from the client and
server programs. With this in place, we can now discuss
how the interactions between the clients and servers can be
organized to support distributed computational science ap-
plications.

2.2 Asynchronous interactions

The SOAP protocol was designed for synchronous
client-server interactions. That is, the client sends a SOAP
request to the server and then waits to receive a SOAP re-
sponse1. However, many computational science applica-
tions can take a very long time to execute. Using the syn-
chronous interaction model directly in this case is often not
possible. For instance, many SOAP clients will signal an
error if a response is not received within a fixed timeout in-
terval. While it might be possible to increase this timeout
interval, a better approach is to use an asynchronous inter-
action model.

O’SOAP’s server-side programs provide basic job man-
agement by exposing a number of methods to the client.
The “spawn” method invokes the application on the server
and returns a job id to the client. The client can then pass
this job id as the argument to the “running” method to dis-
cover whether or not the application has finished execution.
Once completed, the client uses the “results” method to re-
trieve the results. There are additional methods, such as
“kill”, for remotely managing the application process.

Since the server is able to generate a response for these
methods almost immediately, the synchronous SOAP pro-
tocol can be used for such method invocations. Also, since
a new network connection is established for each method
invocation, detached execution and fault recovery are pos-
sible without additional system support (e.g., to re-establish
network connections).

2.3 Support for small and large data sizes

Data set sized in computational science applications can
vary greatly. For example, for the Fluid/Thermal solver in
the Pipe problem described in Section 3, the input boundary
conditions are a few kilobytes, but the results of the solver
can be tens of megabytes. For small data sets, it makes sense
to include the data within the SOAP envelope that is passed
between the client and the server. This eliminates the need
for a second round of communication to retrieve the data.

However, there are several reasons why embedding large
data sets in SOAP envelopes is problematic. One reason

1Other modes of interaction were defined by the SOAP 1.1 Specifica-
tion, but were dropped in SOAP 1.2.
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that has been observed by others [10, 24] is that translating
binary data into ASCII for inclusion in the SOAP envelope
can add a large overhead to a system. The second reason
is that many SOAP implementations have preset limits on
the size of SOAP envelopes. Many of our data sets exceed
these limits.

For these reasons, O’SOAP enables data sets to be op-
tionally separated from the SOAP request and response en-
velopes. If a data set is included, it is encoded using XML
or Base64. We call this case “pass by value”. If it is not
included, then a URL to the data set is included instead. We
call this “pass by reference”. Furthermore, O’SOAP en-
ables clients and servers to dynamically specify whether a
data set will be passed by value or reference.

O’SOAP currently supports the HTTP, FTP, and SMTP
protocols, and we have plans to provide support for IBP
[22].

3 Application Description

In this section, we give a high-level description of the
three large-scale, distributed, computational science, sim-
ulations we have implemented in the Adaptive Software
Project (ASP) [18].

3.1 Pipe Problem

This application simulates an idealized segment of a
rocket engine modeled after actual NASA experimental
spacecraft hardware. The object is a curved, cooled
pipe segment that transmits a chemically-reacting, high-
pressure, high-velocity gas through the inner, large diam-
eter passage, and a cooling fluid through the outer array
of smaller diameter passages. The curve in the pipe seg-
ment causes a non-uniform flow field that creates steady-
state but non-uniform temperature and pressure distribu-
tions on the inner passage surface. These temperature and
pressure distributions couple with non-uniform thermome-
chanical stress and deformation fields within the pipe seg-
ment. In turn, the thermomechanical fields act on an ini-
tial crack-like defect in the pipe wall, causing this defect to
propagate.

The workflow for the Pipe simulation is shown in Fig-
ure 2. The components of our system appear likethis ,

and the intermediate data sets appear like�this� .
In order to enhance interoperability, we have established

a set of common, XML-based [31], file formats for some of
our data sets. These formats are described elsewhere [7, 9].

Some of the components used in the Pipe Problem are
the following.

• The Surface Mesherproduces triangular surface
meshes for each of the model’s geometric surfaces.

Figure 2. Workflow for the Pipe Problem

This component produces surface meshes with certain
quality guarantees [6].

• JMesh[3] generates unstructured tetrahedral meshes
for arbitrarily shaped three-dimensional regions, and
was designed to handle the unique geometric problems
that occur in Fracture Mechanics.

• If the surface mesh is too coarse to allow a quality
volume mesh to be produced, JMesh will produce a
list of surface mesh triangles that require refinement.
This list is passed back to the Surface Mesher, which
then passes a new surface mesh to JMesh, etc. The
loop between the Surface Mesher and JMesh compo-
nents for automatically and adaptively producing sur-
face and volume meshes will be referred to as the
Meshing Loop.

• The Generalized 3D Mesher[5, 4] generates high
quality meshes consisting of extruded triangular
prisms, tetrahedral elements, and generalized prisms.
These highly anisotropic elements are required for
simulating viscous fluid flows required in regions near
no-slip boundaries, i.e., boundary layers.

• The Fluid/Thermal Solveris based upon the CHEM
code [19, 20], which simulates 3D chemically react-
ing flows of thermally-perfect, calorically-imperfect
gases.

3.2 Single Element Injector

The Single Element Injector (SEI) Problem models a
component of a next-generation rocket engine in which oxy-
gen and hydrogen are combined and ignited. One very im-
portant aspect of the geometry of this problem is the tip of
the post at which oxygen and hydrogen first combine. The
design of this post is critical to the performance and robust-
ness of the SEI component. One challenge in simulating
the SEI is to accurately model the way in which the flame
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adheres to the surface of the post.

The workflow of the SEI simulation is shown in Fig-
ure 3. One way in which the SEI simulation differs from
the Pipe simulation is that two different surface meshes are
generated for the SEI simulation. This creates the need for
an interpolation component for conveying boundary condi-
tions between the Fluid/Thermal and Mechanical solvers.
Another difference is that, because the SEI model is axi-
ally symmetric, the Fluid/Thermal solve is done on a small
wedge of the SEI model.

Figure 3. Workflow for the SEI Problem

Here is a brief description of some of the components
used in the SEI Problem that differ from those used in the
Pipe Problem

• The2D Slicercomponent produces a 2D model repre-
senting a slice along the SEI’s axis of symmetry.

• The Extruder produces a 3D mesh from a 2D mesh
by rotating the mesh a few degrees along the axis of
symmetry. The resulting 3D mesh corresponds to a
pie-shaped wedge of the original SEI model.

• Since the Fluid/Thermal solver computes temperatures
and pressures for only a small wedge of the original
model, these results have to be interpolated back to the
full SEI model. TheSweep Interpolatorcomponent
performs this calculation.

• TheError Estimatorcomponent is uses to evaluate the
quality of the displacements produced by the Mechan-
ical Solver. If the quality is poor, the Error Estimator
will produce a list of tetrahedra that require refinement.
This list is passed back to the Meshing Loop, which
is rerun to generate new and finer surface and volume
meshes. This process is repeated until the quality of
the solution is acceptable.

3.3 Brain Trauma

The third application that we have developed is a
simulation of blunt force trauma on a skull and brain.
Like the previous two problems, this involves a coupled
fluid/mechanical/fracture simulation. Unlike the previous
two simulations, contact between the brain and the skull can
occur, so explicit dynamics are modeled.

The workflow of the Brain simulation is shown in Fig-
ure 4. Because of the explicit nature of the solution, the
solver component is different than those used for the Pipe
and SEI Problems; however the JMesh component is the
same.

Figure 4. Workflow for the Brain Problem

Here is a brief description of some of the components
used in the Brain Problem that differ from those used in the
Pipe and SEI Problems

• The Explicit Solvercomponent currently only imple-
ments a structural mechanics model. In other words,
the cerebral fluid is modeled as a solid and not a fluid.
This component shares some code with the Mechan-
ical Solver used for the Pipe and SEI problems, but
because it is an explicit solver, it is implemented as a
separate component.

4 Performance Experiments

This section describes performance results and analysis
for the Pipe Problem. Performance results for the SEI Prob-
lem and the Brain Problem will be included in the final ver-
sion of this paper.

4.1 Experimental setup

The following machines were used for the experiments
below,
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• The ASPcluster is housed in the Cornell Computer
Science department and consists of 5 Dell PowerEdge
1650’s, each with Pentium III’s at 1.26GHz (1 dual and
4 single). Each node has 512MB-1GB RAM and runs
Red Hat Linux 8.0.

• Web services at Mississippi State University, orMSU,
were executed on an IBM x330 server, with dual
1.266GHz Intel Pentium III CPUs and 1.25GB RAM
running Red Hat Linux version 7.3.

• The machine used at the University of Alabama at
Birmingham, or UAB, is an IBM x335, with dual
2.4GHz Xeon and 2GB RAM, and runs Red Hat Linux
release 7.3.

Except where noted, the components used in these experi-
ments were deployed on the ASP cluster.

We used the adaptive Meshing Loop discussed in Sec-
tion 3 to generate three different problem sizes for the Pipe
Problem to understand how increasing the problem size
changes the performance of our system. The sizes of the
meshes for the solid and interior volumes of the Pipe, gen-
erated by JMesh and the Generalized Mesher respectively,
are shown in Table 1.

The clients used in these experiments were all developed
using O’SOAP. Except for the Generalized Mesher, all of
the components used in these experiments were deployed
using the O’SOAP framework. The Generalized Mesher
was deployed using SOAP::Clean [27, 8], a Perl-based an-
cestor of O’SOAP.

4.2 Performance Results

Table 2 shows the running time for all of the compo-
nents up to and including the Fluid/Thermal solver. The
Mechanical Solver, which is the next component, is the only
component in our system that must be executed via a batch
queue. Currently, it is impossible for us to measure the run-
ning time of the Mechanical Solver without including the
time spent in the batch queue, so we have not included its
runtimes.

The column labeled “Local runtime” shows the run-
ning time in seconds of each component when it is ex-
ecuted directly on the server, without using the web ser-
vices infrastructure. The overheads are measured relative to
these times. The columns labeled “Intra-campus runtime”
and “Inter-state runtime” show the running times when the
client is run on different machines than the components.
The “Intra-campus” client runs on a machine on the same
LAN as the ASP server, and the “Inter-state” client runs on
a machine at UAB, roughly 1000 miles away.

Each row shows the running times for the individual
components, The row marked “Download” shows the time
taken to download the results from the server after all of
the computations have completed. This operation is not

performed for the “Local” client. The row marked “Total”
shows the aggregate results for the entire run.

For the final version of the paper, we will include results
for the SEI and Brain Problem. Since these problems use
many of the same components as the Pipe Problem, we ex-
pect the results to be similar. The one major difference that
we expect involves the Explicit Solver component. Since
this component runs significantly longer than either of the
other two solvers, we expect that the overheads for the Brain
Problem will be significantly less than either Pipe or SEI.

4.3 Performance Analysis

There are a number of interesting points in the perfor-
mance results of Table 2 which we now discuss.

Consider the Meshing Loop and Fluid/Thermal compo-
nents. Notice that for both clients the overhead for the
Fluid/Thermal component consistently decreases over the
range of problem sizes, while the overhead for the Meshing
Loop components does not exhibit a consistent trend.

This difference can be explained by the components’ ar-
chitectures. The Fluid/Thermal Solver is a single compo-
nent that runs for a relatively long time. There is a cost for
invoking the solver using web services, but this cost is small
relative to its total running time.

On the other hand, recall that the Meshing Loop is,
in fact, two components, the Surface Mesher and JMesh,
that are successively invoked until suitable meshes are pro-
duced. To produce the largest problem size, 18 separate
invocations of the Surface Mesher and JMesh are required.
Since the running time of each invocation is relatively short,
the relative cost of the component invocations is larger.

Another difference worth noting involves the General-
ized Mesher. Since this is the only component not hosted on
the ASP cluster at Cornell, the “Local” runtimes are actually
the time to perform the web service invocation between the
ASP and MSU clusters. The “Local” and “Intra-campus”
runtimes are within a few seconds of one another, but the
“Inter-state” runtimes are measurable less. One explanation
is that, since they are geographically closer together, there
is less latency between the “Inter-state” client, which is run-
ning at UAB, and the Generalized Mesher at MSU.

Overall, the total overhead for both clients falls as the
problem size increases. The overhead for the largest prob-
lem size is 3.2% and 0.1% for the “Intra-campus” and
“Inter-state” clients, respectively. These results are in
marked contrast to the studies in the literature [10, 24] that
concluded that the use of SOAP and XML adds enormous
overhead to computational science applications.

The explanation is the following. The previous stud-
ies measured the overhead of using web services to exe-
cute matrix-multiplication and other small kernels. In ad-
dition, the problem sizes used were very small. Therefore
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Problem Solid Mesh Interior Mesh
Size vertices triangles tet’s vertices tri’s/quad’s tet’s/prisms
1 4,835 4,979 22,045 19,242 3,065 38,220
2 16,832 10,322 83,609 41,216 5,232 85,183
3 54,849 21,127 289,500 79,407 9,074 170,179

Table 1. Pipe Problem Sizes

Local Intra-campus Inter-state
runtime runtime runtime

Size Component (secs.) (secs.) overhead (secs.) overhead
1 Meshing Loop 228.62 250.80 9.70% 247.80 8.39%

Generalized Mesher 40.96 44.63 8.96% 35.75 -12.72%
T4 to T10 18.56 21.49 15.79% 20.67 11.37%
Fluid/Thermal 1342.75 1401.73 4.39% 1390.02 3.52%
Download n.a. 0.79 1.00
Total 1630.89 1719.44 5.43% 1695.24 3.95%

2 Meshing Loop 813.88 884.95 8.73% 884.93 8.73%
Generalized Mesher 79.99 86.01 7.53% 69.38 -13.26%
T4 to T10 62.88 70.52 12.15% 73.07 16.21%
Fluid/Thermal 4636.91 4734.15 2.10% 4715.69 1.70%
Download n.a. 0.92 2.71
Total 5593.66 5776.55 3.27% 5745.78 2.72%

3 Meshing Loop 2622.24 3234.93 23.37% 2699.85 2.96%
Generalized Mesher 208.45 207.55 -0.43% 188.59 -9.53%
T4 to T10 689.04 648.53 -5.88% 634.94 -7.85%
Fluid/Thermal 18683.00 18808.16 0.67% 18690.11 0.04%
Download n.a. 2.22 9.00
Total 22202.73 22901.39 3.15% 22222.49 0.09%

Table 2. Pipe Problem Runtimes
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the amount of computation was small relative to the amount
of communication, and overheads were magnified dramati-
cally. Our measured overheads are small because our com-
ponents perform non-trivial computations like mesh gener-
ation, solving linear equations, etc. As Table 2 shows, most
of the running time of our system is taken by the execution
of the Fluid/Thermal Solver. Although the execution of this
component may involve a large number of messages being
exchanged between processors, all of these processors are
part of a single cluster, and it is done using MPI [30], a
message-passing library designed for this purpose.

Our conclusion is that the organization of a distributed
simulation system makes more of a difference to its per-
formance than the underlying web services infrastructure.
We believe few applications will need to perform matrix
multiplication or solve linear equations on several machines
across the Internet. On the other hand, there is a grow-
ing need for infrastructures to build virtual organizations
in which the code of different project partners can inter-
operate. We believe most of these situations will be sim-
ilar to ours - the modules contributed by different project
partners will have some components that do non-trivial
amounts of computation and internal communication - so a
SOAP/XML-based infrastructure like O’SOAP is eminently
practical.

5 Related Work

Perhaps the most widely know paradigm for distributed
scientific computing is Grid Computing [12], and the most
widely known grid system is the Globus Toolkit [13]. The
Open Grid Services Infrastructure (OGSI) specification [29]
and WS-Resource Framework (WSRF) proposed specifica-
tions [16] build upon the SOAP protocol to define additional
protocols that are useful for distributed computing, such as
resource management, event notification, etc. The function-
ality defined by OGSI/WSRF and O’SOAP is largely or-
thogonal, and we would expect our results to be similar if
our components were deployed within either of these frame-
works.

WS-Context [2] provides a mechanism for correlating
SOAP messages over time. This can be used to implement
stateful interactions, like transactions. Context information
roughly corresponds to the job id’s that are used by O’SOAP
servers. OGSI and WSRF provide alternative mechanisms
for identifying state.

Ninf [21] and NetSolve [1] are intended to allow existing
numericallibraries to be executed remotely, while O’SOAP
and the other elements of our infrastructure are intended to
allow existingapplicationsto be executed remotely. As a
result, the type systems are different. For example, both
Ninf and NetSolve provide array and subarray types, while
O’SOAP provides simple scalars and arbitrary binary and

XML files.

6 Conclusions

We have described a multi-physics simulation testbed
that consists of a loosely coupled set of distributed compo-
nents implemented using a web services framework called
O’SOAP which is based on SOAP/XML. To the best of our
knowledge, this is the first system of its kind. This testbed
has enabled us to develop state-of-the-art simulations with-
out having to port codes between each other’s machines.
This approach has given us a number of development and
software maintenance benefits.

We have also described a set of performance experiments
of our system. To the best of our knowledge, this is the first
such performance analysis of a web services or grid based
simulation system that employs many components. Our re-
sults suggest that even a simple and standard-compliant web
services infrastructure, such as O’SOAP, can be used di-
rectly in high performance distributed scientific computing
without introducing performance bottlenecks. In fact, we
observe that for larger problem sizes, the overhead of using
distributed components is essentially negligible.

We believe that our work provides a number of impor-
tant lessons for other researchers. First, with this sort of
infrastructure, it is possible for multi-institutional, multi-
disciplinary computational science projects to establish vir-
tual organizations, as envisioned in [15], and build efficient,
distributed, component-based applications. This is possible
even with basic web services protocols, let alone the more
recent OGSI or WSRF protocols .

Second, in order to achieve reasonable performance from
a distributed simulation system, it is important to carefully
chose the functionality that goes into each of its compo-
nents. This is illustrated by the overheads that we ob-
served for the Meshing Loop and Fluid/Thermal compo-
nents. Loosely coupled codes that communicate infre-
quently can be placed in separate components, while tightly
coupled codes should almost certainly be placed within the
same component. For many applications, individual sites
will provide enough resources to do matrix multiplication
or solve large systems of linear equations, so the role of
web services in such projects is to make it possible for large
codes to inter-operate with minimal coordination and re-
implementation.

We believe that this sort of decomposition is a natural
result of, not only our physical problem, but of the fact that
we are a multi-disciplinary project. In such a project, each
member has a clearly defined research area, and the compo-
nents seem to natural divide themselves along these lines.
Put differently, our components are loosely coupled because
our project members are! We expect that this will be true of
most other multi-disciplinary projects, and we believe that
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web services may be appropriate for many of these as well.
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