
Performance Analysis of a Multi-Physics Simulation System Based on Web
Services∗

Paul Stodghill, Rob Cronin, Keshav Pingali
Dept. of Computer Science

Cornell University

Gerd Heber
Cornell Theory Center

Cornell University

Abstract

The ongoing convergence of Grid computing and Web
Services has motivated a number of research groups to
study the use of SOAP-based Web Services for scientific
computing. These studies have exposed various perfor-
mance problems in using SOAP-based communication, and
a number of suggested extensions to the SOAP standard
and/or sophisticated implementation strategies have been
proposed to eliminate these bottlenecks.

In this paper, we describe our experience in build-
ing a system based on Web Services for simulating a
multi-physics, coupled fluid/thermal/mechanical fracture
problem. The system is organized as a collection of
geographically-distributed software components in which
each component provides a Web Service, and uses standard
SOAP-based Web Service protocols to interact with other
components. There are a number of advantages to organiz-
ing a system in this way, which we discuss.

We have analyzed the performance of our system and
found that the overhead for using SOAP-based Web Services
is small. Our results suggest that the previously identified
potential bottlenecks may not be major issues in practice,
and that even a standards-compliant implementation like
ours can delivery good performance provided Web Services
are used judiciously.

1 Introduction

The Adaptive Software Project (ASP)1 is a multi-
institutional, multi-disciplinary computational science
project that is studying adaptivity in computational science
applications. Our project includes members from a num-
ber of colleges and universities and from a number of dis-
ciplines, ranging from civil engineering and physics, to nu-

∗This research is partially supported by NSF grants EIA-9726388, EIA-
9972853, and ACIR-0085969.

1Additional information about the ASP project can be found athttp:
//www.asp.cornell.edu/ .

merical analysis and computational geometry, to restructur-
ing compilers and distributed systems. One of our goals is
to develop state of the art simulation systems for coupled
multi-physics problems with complicated and evolving ge-
ometries.

We feel that building adaptive systems within a project
like ours requires a design that is based upon distributed
software components.

Why components? Componentization is a necessary (but
not sufficient) condition for interchanging modules
within an adaptive system. Consider, for example, an
application that switches from one algorithmic tech-
nique to another: if the two techniques do not have
clearly defined interfaces or use similar parameter (or
data) types, then dynamically switching between them
would be impossible.

Why distributed? Our project members use many differ-
ent architectures and operating systems, and it would
be a tremendous burden if every developer had to port
their code to every other platform. Ideally, a compo-
nent could be deployed on just one platform and in-
voked remotely by project partners. In other words,
our components should be “write once, runfrom any-
where”. In addition, some adaptive systems (e.g,
DDDAS ([11])) include data collection devices (e.g.,
VLA radio telescopes, sensor arrays) that are neces-
sarily physically separated.

To summarize, our applications require that we build a
distributed component-based system whose configuration
evolves dynamically and whose implementation and exe-
cution spans institutions. In the parlance of Grid comput-
ing, we need to build avirtual organization([14]). To build
such a virtual organization, we need a system infrastructure
with certain functionality, much of which is specified in the
Open Grid Services Architecture ([13]). In this paper, we
will focus on one aspect of this infrastructure, namely the
programming model and its implementation.

Our current programming model is based upon the con-
cept of theremote procedure call (RPC). In our current sys-

1

http://www.asp.cornell.edu/
http://www.asp.cornell.edu/


tem, a client implements the simulation workflow by us-
ing the RPC mechanism to execute components on remote
servers. This is a baseline; in a more advanced system, parts
of the workflow might be executed by agents or other spe-
cialized servers.

There are at least two systems available that implement
RPC for virtual organizations, Ninf ([22]) and NetSolve
([1]). The Global Grid Forum (GGF) GridRPC Working
Group is attempting to define standard API’s for these sys-
tems ([25]), but the protocols that these systems use for
communicating over the Internet are not standardized.

The lack of standard protocols presents us with two dif-
ficulties. The first is philosophical: we have argued that an
adaptive system like ours should be built from distributed
components with standardized interfaces. If we then use
a proprietary mechanism for invoking these standardized
components, we will lose many of the benefits of standard-
ization. The second difficulty is practical: in order not
to force our project members and users to migrate to new
client and programming tools, we need to use standard pro-
tocols that are supported by a wide array of programming
languages and frameworks.

By our evaluation, one set of Internet protocols meets our
needs, namely Web Services ([30]). Many businesses need
to form collaborations that span company boundaries, and
they need a software infrastructure that will support their
efforts and not force them to use a small set of proprietary
client and programming tools. As a result of this, the W3C,
Oasis and other organizations have started to define the nec-
essary Web Services protocols.

Of course, these protocols have been designed primar-
ily with business applications in mind, so one question
is whether they are suitable for scientific applications like
ours. Previous papers ([9],[26]) have looked at the use of
XML and SOAP, two of the fundamental Web Services pro-
tocols, for this class of application. Their conclusions are
that their use in scientific applications can impose a large
performance penalty and recommend several sophisticated
implementation strategies and changes to these protocols to
account for this.

These two papers measured the overhead of using Web
Services for benchmarks and small parts of applications.
In this paper, we offer an end-to-end performance evalu-
ation of our Web Services-based system. To the best of
our knowledge, this is the first performance evaluation of an
entire state-of-the-art scientific application built upon Web
Services.

Section 2 gives a high-level description of our system
and the problem that it simulates. Section 3 describes the
Web Services infrastructure that supports our system. In
Section 4, we present preliminary performance measure-
ments and in Section 5, we compare our performance results
with the previous results. In Section 6 we discuss other re-

lated work. In Section 7, we draw some conclusions about
the success of our efforts and about how to organize dis-
tributed simulation systems and discuss our future work.

2 Application Description

In this section, we briefly describe the physical problem
that we are simulating and give a high-level description of
our system. [7] contains a more detailed description of the
physical problem and the components of our system.

The applications engineers on our research team work
in computational fluid mechanics and solid mechanics, so
we decided to tackle a problem involving high Reynolds
number, chemically reacting gas flow coupled with linear
elastic fracture mechanics.

The geometry of our problem is an idealized segment
of a rocket engine modeled after actual NASA experimen-
tal spacecraft hardware. The object is a curved, cooled pipe
segment that transmits a chemically reacting, high-pressure,
high-velocity gas through the inner, large diameter passage,
and cooling fluid through the outer array of smaller diame-
ter passages. The curve in the pipe segment causes a non-
uniform flow field that creates steady-state but non-uniform
temperature and pressure distributions on the inner passage
surface. These temperature and pressure distributions cou-
ple with non-uniform thermomechanical stress and defor-
mation fields within the pipe segment. In turn, the thermo-
mechanical fields act on an initial crack-like defect in the
pipe wall, causing this defect to propagate.

The workflow of a single time step of the simulation is
shown in Figure 1. In this figure, the components of our
system appear likethis , the intermediate data sets appear

like this , and the “human in the loop” appears likethis .
In our current workflow, the only data that is passed from
one timestep to the next is the geometric model of the pipe,
which is updated in each time step as the defect is inserted
and grown.

Crack initiation is an active area of research in Fracture
Mechanics, and, at present, is not understood well enough
to do automatically. Hence, in our present system, we re-
quire a knowledgeable user to manually determine the Ini-
tial Flaw Parameters by studying the displacement field at
the end of time stept = 0. This is shown as a component
labeled “Client: Crack Initiation” in Figure 1. In subsequent
timesteps,t = 1, 2, . . ., state of the art Fracture Mechanics
techniques are used to predict the trajectory along which the
crack defect will grow.

Here is a brief description of the some of the components
of our system that are especially relevant to this paper:

• The Surface Mesherproduces triangular meshes for
each of a model’s geometric surfaces. This component

2



Figure 1. Workflow for the Pipe problem

produces surface meshes with certain quality guaran-
tees [5].

• TheGeneralized Mesher([4, 3]) generates high qual-
ity meshes consisting of extruded triangular prisms,
tetrahedral elements, and generalized prisms. These
highly anisotropic elements are required for simulat-
ing viscous fluid flows required in regions near no-slip
boundaries, i.e., boundary layers.

• Jmesh([2]) generates unstructured tetrahedral meshes
for arbitrarily shaped three-dimensional regions, and
was designed to handle the unique geometric problems
that occur in Fracture Mechanics.

• The Fluid/Thermal Solveris based upon the CHEM
code [18, 19], which is a library of Loci ([18, 17])
rules that simulate 3-D chemically reacting flows of
thermally perfect, calorically imperfect gases.

• The Mechanical Solversolves the equations of linear
elasticity to determine the deformation of the pipe due
to different loading conditions (e.g. pressure on the
inner pipe) and thermal expansion.

In a project such as this, common data formats are neces-
sary for conveying information between the components. In
past projects, we have used file formats encoded with XDR
([27]) and HDF5 ([15]). However, we found that, while bi-
nary encodings are ideal for productions systems, they make
research and development more difficult.

One of the earliest decisions that we made in our project
was to establish a set of common file formats that used XML
[31] for encoding. We decided to use XML because it is
widely supported and because XML parsers and validation
tools are available for all of the languages and platforms that
we use. We have also found that having a human readable
format has made debugging much easier. Some of these
formats are described elsewhere ([6],[8]).

3 Web Services Infrastructure

We have implemented the components described in the
previous section as a set of Web Services. In particular, each
of the components in our current system has been devel-
oped and deployed using the following Web Services frame-
works:

Microsoft .NET On our Windows platforms, we use Mi-
crosoft .NET ([10]), which provides a “holistic” ap-
proach to distributed applications.

SOAP::Clean On our UNIX and Linux platforms, we
use SOAP::Clean ([28]), a Perl module for expos-
ing legacy applications as Web Services. Compared
with .NET, SOAP::Clean provides a “minimalistic”
approach to distributed applications.

Since .NET is already extensively documented and be-
cause SOAP::Clean is used for most of the components in
our experiments, we will discuss SOAP::Clean is more de-
tail below.

3.1 SOAP::Clean

SOAP::Clean was original developed for two purposes,
to enable legacy applications to be easily deployed as Web
Services, and to provide a command-line tool for invoking
Web Services.

On the server-side, SOAP::Clean enables existing,
command-line oriented applications to be made into Web
Services with no modification. In order to deploy an ap-
plication as a Web Service, a user must write a small CGI
script using the SOAP::Clean library. An example of such a
script is shown in Figure 2.

When this script is executed, a number of methods in the
SOAP::Clean library are executed. Theurn , name, and
full name methods are used to specify the namespace
and name of the Web Service. Thedescr method is used
to specify the command line that is to be run when the Web
Service is invoked. The text that appears within[...] de-
scribes the parameters to the command line. Each parameter
specification includes at least four properties,

• The directionality of the parameter, i.e., “in”, “out”, or
“in out”.

• Whether the parameter value should appear directly
on the command line (“val”) or whether the parameter
value should be placed in a file whose name appears
on the command line (“file”).

• The name of the parameter, e.g., “x”, “y” and “out”.
• The type of the parameter value, i.e., “int”, “float”,

“string”, “raw” (arbitrary binary file), “xml” (a struc-
tured XML file).

Finally, the go method is invoked to inform the
SOAP::Clean library that the Web Service is completely

3



specified, and that the request message should be read and
processed.

#! /usr/bin/env perl

use SOAP::Clean::CGI;

new SOAP::Clean::CGI
->urn(’urn:test’)
->name(’arithmetic-test’)
->full_name(’Arithmetic Test Server’)
->descr("./test.sh -x[in val x:int] ".

" -y[in val y:int] ".
" > [out file result:int]")

->go();

Figure 2. Sample SOAP::Clean Server

% wsdl-client.pl \
http://somewhere.com/test.cgi?WSDL \
call x=2 y=3 out:output.txt

Figure 3. Sample invocation of a remote Web
Service

On the client-side, SOAP::Clean provides the
wsdl-client.pl program, which is intended to make
Web Services look like legacy, command-line oriented
applications. Figure 3 shows showingwsdl-client.pl
being used to invoke the Web Service from Figure 2.

It may seem odd to want to run a Web Service as if
it were a traditional command-line-oriented program, but
there are a number of benefits that come from this. For in-
stance, if Web Services appear as programs, then a com-
putational scientist can write a script using, for example,
Bourne Shell or UNIX Make that composes several Web
Services into a larger application. This is, in fact, how we
have implemented the pipe problem simulation described in
Section 2.

Of course, since Web Services are based on standard pro-
tocols, there are many other ways of invoking our compo-
nents. First, many Web Services infrastructures (such as
SOAP::Clean and Microsoft’s .NET) allow services to be
accessed via conventional web browsers. Second, libraries
for accessing Web Services are available for many lan-
guages. These include, gSOAP ([12]) for C/C++, SOAPpy
([24]) for Python and SOAP::Clean and SOAP::Lite ([16])
for Perl.

3.2 Potential performance overheads

There are a number of places in the pipe simulation sys-
tem and SOAP::Clean infrastructure where our current im-

plementation is suboptimal. We highlight these deficiencies
here, and discuss their impact on the overall system perfor-
mance in Section 5.

As noted in Section 2, we have established a num-
ber of XML-based file formats that we use for encoding
data objects, like geometric models, unstructured and semi-
structured meshes, and field results, between each of the
components. As we will discuss in Section 5, there is an
overhead associated with using XML instead of a more tra-
ditional binary data encoding.

There are two basic approaches to parsing XML objects,
DOM and SAX. The DOM approach involves parsing an
entire XML file and constructing a data structure represent-
ing its content in memory. The SAX style approach involves
calling user-supplied call-back functions during XML pars-
ing. By doing so, this approach can avoid having to store the
entire XML file in memory. SOAP::Clean uses the DOM
approach, which is probably the less efficient of the two. In
addition, SOAP::Clean actually parses each XML filetwice
in order to circumvent a bug in the underlying XML parser.

Because SOAP::Clean serves as an interface to existing
application codes, each XML file is parsed and copied sev-
eral more times than would occur in an optimized Web
Service. For example, if each component in our sys-
tem had been originally implemented as a Web Services,
then the intermediate XML files used to pass data between
SOAP::Clean and the application would not be needed.
Also, it is possible that SOAP::Clean could be made to
copy unparsed XML files directly into these intermediate
files, but it does not currently do so. At present, both
SOAP::Clean and the application parse each XML file.

At present,wsdl-client.pl requests the WSDL in-
terface from a Web Service prior to performing any method
invocation. This doubles the number, but not size, of the
messages required to perform an invocation. It should be
possible to cache the WSDL on the client and use it over
multiple method invocations.

4 Performance Results

The following machines were used for the experiments
below,

• The ASPcluster is housed in the Cornell Computer
Science department and consists of 5 Dell PowerEdge
1650’s, each with Pentium III’s at 1.26GHz (1 dual and
4 single). Each node had 512MB-1GB RAM and ran
Red Hat Linux 8.0.

• Web Services at the Cornell Theory Center, orCTC,
are implemented using a number of machines. CTC-
STAGER hosts the web server (IIS 5.0) that receives
the SOAP requests. LSQLSRV03 hosts the databases
(SQL Server) that are used for storing the input and
output data files. The computation was performed on

4



the CMI cluster, which has 32 dual nodes (Dell 1550),
each with 2 PIII at 1GHz. Each node has 2 GB RAM.
All machines run Windows 2000 Advanced Server.

• Web Services at Mississippi State University, orMSU,
were executed on an IBM x330 server, with dual
1.266GHz Intel Pentium III CPUs and 1.25GB RAM
running Red Hat Linux version 7.3.

• The machine used at the University of Alabama at
Birmingham, or UAB, is an IBM x335, with dual
2.4GHz Xeon and 2GB RAM, and runs Red Hat Linux
release 7.3.

Except where noted, the components used in these experi-
ments were deployed on the ASP cluster.

4.1 Overhead of using XML files

As we described in Section 2, we designed and used
common formats based upon XML for our intermediate
files. Since many of our component applications were de-
veloped before this project, we have implement converters
to translate between their original formats and our common
XML-based formats.

Runtime (seconds) Overhead
Base Appl. w/XML Abs. Rel.

Surface Mesher 58.68 61.93 3.25 5.54%
JMesh 101.59 109.71 8.12 7.99%
Fluid/Thermal 1527.86 1627.15 99.29 6.50%

Table 1. Overhead of using XML files

We can easily measure the cost of this file conversion
for three components in our system. Both JMesh and the
Fluid/Thermal solver have to convert their input and output
files between XML and their original file formats, while the
Surface Mesher only has to convert its output. The costs of
these conversions are shown in Table 1. The columns la-
beled “Base Appl.” and “w/XML” show the running time in
seconds of each component without and with, respectively,
XML file conversion. The next two columns show the ab-
solute and relative overhead of the file conversion, with re-
spect to the “Base Appl.”

4.2 SOAP Message Sizes in bytes

Table 2 shows the sizes of SOAP messages that are ex-
changed between the client and servers. There are four sets
of columns, one for each of the four operations required in
order to invoke a component. For the SOAP::Clean compo-
nent, these operations are,

• The client requests the WSDL for the component from
the server, which is labeledRetrieve WSDL.

• The client uses theSpawnoperation to upload argu-
ments to the server and request that it start executing
the component. The server returns a UID, which serves
as a handle for the component instantiation.

• The client uses theRunning?operation to query the
server to see if the component is still running.

• After the component has completed, the client uses
theResultsoperation to download the results from the
server.

The operations for the Mechanical solver, which is the only
.NET-based component, are similar.

The size, in bytes, of the SOAP request (client-to-server)
and response (server-to-client) messages are shown within
each set of columns.

4.3 Overhead of using Web Services

Table 3 shows the running times and Web Service over-
heads for our system. These results are from the first two
time steps,t = 0 and t = 1, of a simulation of the pipe
problem. Each row of the table shows the results for the
individual components within each time step, except for the
last row, which shows the aggregate results for the entire
system. The column labeled “Base Running” shows the
running time in seconds of each component when it is exe-
cuted directly on the server, without using the Web Services
infrastructure. The overheads are based on these times.

Because they can take an unpredictable amount of time
to run, we run most components in an asynchronous man-
ner. The column labeled “Polling Freq.” gives the time in
seconds between subsequent calls to a component’s “Run-
ning?” operation. A few components are known to take
very little time to run and are run synchronously; these com-
ponents are denoted with a polling frequency of 0.

The columns labeled “Local WS” contains the execu-
tion times obtained by running the client and all but one
of the servers on the ASP machine. These times differ from
“Base Running” in that all of the communication between
the client and the servers is forced to go through the HTTP
server and SOAP::Clean libraries. In a sense, they repre-
sent the “pure” overhead from using Web Services, as they
do not include network latency.

The Generalized Mesher component resided on the MSU
machine, so its times always include the use of Web Ser-
vices and network latency. The “Base Running” times mea-
sure the cost of executing this Web Service synchronously,
while the “Local WS” times measure asynchronous execu-
tion.

The columns labeled “Remote WS” contain executions
times obtained by running the client on the UAB machine
in Alabama, while the servers remained on the MSU and
ASP machines in Mississippi and New York, respectively.

5



Retrieve WSDL Spawn Running? Results
request response request response request response request response

Surface Mesher 85 6,708 135,074 875 720 744 720 377,992
JMesh 76 7,176 512,386 908 744 744 744 1,334,431
T4→T10 80 7,004 1,468,764 880 720 744 720 4,454,170
Generalized Mesher 72 7,678 513,015 1,305 1,171 724 1,171 2,824,138
Fluid/Thermal 84 8,490 7,416,514 1,017 861 744 861 1,038,255
Crack Insertion 87 6,556 135,017 851 698 745 698 141,467
Fracture Mechanics 89 7,302 6,621,903 977 826 744 826 3,201
Crack Growth 83 6,552 141,299 851 694 745 694 180,465
Mechanical 81 17,031 5,500,714 670 619 662 640 1,861,450

Table 2. SOAP message sizes in bytes

t Component Base Polling Local WS Remote WS
Running Freq. running absolute relative running absolute relative
(secs.) (secs.) (secs.) (secs.) (secs.) (secs.)

0 Surface Mesher 60.74 10 76.45 15.71 25.86% 75.05 14.31 23.56%
JMesh 91.52 10 101.13 9.61 10.50% 100.01 8.49 9.28%
T4→T10 64.88 10 79.88 15.00 23.12% 81.84 16.96 26.14%
Generalized Mesher 32.03 10 37.19 5.16 16.11% 31.14 -0.89 -2.78%
Fluid/Thermal 1536.95 60 1570.48 33.53 2.18% 1570.80 33.85 2.20%
Crack Insertion 0.30 0 10.46 10.16 3386.67% 8.77 8.47 2823.33%

1 Surface Mesher 62.69 10 76.80 14.11 22.51% 75.20 12.51 19.96%
JMesh 123.56 10 135.71 12.15 9.83% 137.06 13.50 10.93%
T4→T10 72.90 10 80.19 7.29 10.00% 82.02 9.12 12.51%
Generalized Mesher 34.39 10 39.12 4.73 13.75% 30.12 -4.27 -12.42%
Fluid/Thermal 1628.59 60 1680.90 52.31 3.21% 1678.98 50.39 3.09%
Crack Growth 35.52 0 45.02 9.50 26.75% 51.77 16.25 45.75%
Fracture Mechanics 0.33 0 11.15 10.82 3278.79% 9.49 9.16 2775.76%
Total 3744.40 3944.48 200.08 5.34% 3932.25 187.85 5.02%

Table 3. Overhead of using Web Services

Any difference between these times and the “Local WS”
times should reflect changes in network latency.

We have not included running times for the Mechanical
Solver, which was the only component that required execut-
ing via a batch queue. We found that the time spent waiting
in the queue dominated the total running time and varied
from minutes to days. As a result, we had no way of directly
measuring the Web Services overhead of this component.

5 Performance Analysis

In this section, we analyze the experimental results of the
previous section and discuss the performance bottlenecks
identified by previous work in the context of our system.

5.1 Using XML

[9] states that an XML data representation can be 4-10
times larger than an equivalent binary representation and
that over 90% of the CPU cycles for processing SOAP
messages can be spent performing ASCII-to-double con-

versions. Furthermore, our own results show that the
Fluid/Thermal solver takes 99 seconds to convert approx-
imately 2 megabytes of XML data to and from a native for-
mat.

While these results may appear very alarming, our ob-
served overhead from using XML formats was less than
8%. The reason why the overhead was so low is because
it is offset by the longer running times of the base com-
ponents. This is clearly shown by Table 1. We conclude
that the short-term benefit from having standard, human-
readable file formats has greatly outweighed the small per-
formance penalty.

5.2 Using Web Services

The overhead that we observed from using Web Services
is about 5%. This is significantly less than what was ob-
served by previous studies. How do we account for this?

Is it because our Web Services infrastructure is highly
optimized? Quite the contrary. Section 3.2 enumerated a
number of limitations of our current implementation that

6



might be potential performance bottlenecks. In fact, we
would go so far as to say that we violated every performance
recommendation made in [9] and [26]!

The reason why our overhead is so low is because of
how we have divided our system into components. As Ta-
ble 3 shows, most of the running time of our system is
taken by two executions of the Fluid/Thermal solver2. The
Fluid/Thermal solver is an MPI ([29]) program that is exe-
cuted on a tightly coupled cluster. So, while the execution
of this one component may involve a large number of mes-
sages being exchanged between processors, this is all done
using MPI, a message-passing library designed for this pur-
pose.

To summarize, our system is built on top of a relatively
inefficient Web Services infrastructure, but about 95% of its
execution time is spent within each of the components. Our
conclusion is that the organization of a distributed simula-
tion system makes more of a difference to its performance
than the underlying Web Services infrastructure. The key
seems to be ensuring that most of the time-consuming com-
putation and communication occurwithin and notbetween
components.

6 Related Work

A number of frameworks and standards have been pro-
posed for developing component-based systems. Perhaps
the best known are CORBA ([23]) and COM ([21]). We
investigated these frameworks, but found that using them
would require us to make extensive modifications to our ex-
isting applications. We also found that the existing frame-
works were primarily designed for deploying applications
within a single machine. DCOM ([20]) is one exception
to this. It is also interesting to note that existing compo-
nent frameworks are evolving towards interoperability with
Web Services (witness .NET subsuming COM and DCOM,
and the OMG’s adoption of a specification on CORBA-
WSDL/SOAP Interworking).

Ninf [22] and NetSolve [1] are intended to allow ex-
isting numericallibraries to be executed remotely, while
SOAP::Clean and the other elements of our infrastructure
are intended to allow existingapplicationsto be executed
remotely. As a result, the type systems are different. For
example, both Ninf and NetSolve provide array and subar-
ray types, while SOAP::Clean only provides simple scalar
types (“int”, “float”, “string”), a binary file type (“raw”) or
an arbitrary XML file type (“xml”).

2The running time of the Mechanic Solver, whose results we have not
included here, can be anyway from 50% to 5000% of the running time of
the Fluid/Thermal solver, depending upon how long a job request has to
wait in the batch queue.

7 Conclusions

We have described a multi-physics simulation testbed
that consists of a loosely coupled set of distributed com-
ponents implemented using Web Services. This testbed has
enabled us to (a) develop state-of-the-art simulations with-
out having to port codes between each others machines and
(b) provides us with a platform on which to study adaptiv-
ity in scientific applications. This approach has given us a
number of development and software maintenance benefits,
and has cost us very little in terms of performance (about
5% overhead).

Our results suggest that even a simple and standard-
compliant Web Services infrastructure, such as
SOAP::Clean, can be used directly in high performance
distributed scientific computing without introducing bur-
densome performance bottlenecks. We have suggested that
this is a result, not of our Web Services implementation,
but of how we have organized our system into components.

We believe that our work provides a number of impor-
tant lessons for other researchers. First, with this sort of
infrastructure, it is possible for multi-institutional, multi-
disciplinary computational science projects to establish vir-
tual organizations, as envisioned in [14]. This is possible
even with primitive Grid technology.

Second, in order to achieve reasonable performance from
a distributed simulation system, it is important to care-
fully chose the functionality that goes into each of its com-
ponents. Loosely coupled codes that communicate infre-
quently can be placed in separate components, while tightly
coupled codes should almost certainly be placed within
the same component. Individual sites will probably have
enough resources to do matrix multiplication or solve large
systems of linear equations without harnessing computa-
tional resources from multiple sites, so the role of Web
Services in such projects is to make it possible for large
codes to inter-operate with minimal coordination and re-
implementation.

We believe that this sort of decomposition is a natural
result of, not only our physical problem, but of the fact that
we are a multi-disciplinary project. In such a project, each
member has a clearly defined research area, and the compo-
nents seem to natural divide themselves along these lines.
Put differently, our components are loosely coupled because
our project members are! We expect that this will be true of
most other multi-disciplinary projects, and we believe that
Web Services may be appropriate for many of these as well.

We are pleased with the performance of our present sys-
tem, but there is still enormous room for improvement. This
paper has enumerated a number of places where our imple-
mentation can be improved; as part of our future work, we
will address these issues. Another issue that we will address
is scalability. Our experience suggests that the overhead

7



of processing SOAP relative to the cost of the computation
goesdownas the problem size increases. This is inconsis-
tent with previously published results, and we are currently
modifying our system so that we can readily generate prob-
lems of varying size in order to test our hypothesis.

References

[1] D. C. Arnold and J. Dongarra. The netsolve environment:
Progressing towards the seamless grid. In2000 Inter-
national Conference on Parallel Processing (ICPP-2000),
Toronto, Canada, August 21-24 2000.

[2] J. Cavalcante-Neto, P. Wawrzynek, M. Carvalho, L. Martha,
and A. Ingraffea. An algorithm for three-dimensional mesh
generation for arbitrary regions with cracks.Engineering
with Computers, 17:75–91, 2001.

[3] S. Chalasani and D. Thompson. Quality improvements in
extruded meshes using topologically adaptive generalized
elements.International Journal for Numerical Methods in
Engineering, (submitted).

[4] S. Chalasani, D. Thompson, and B. Soni. Topological adap-
tivity for mesh quality improvement. InProceedings of the
8th International Conference on Numerical Grid Genera-
tion in Computational Field Simulations, Honolulu, HI, June
2002.

[5] L. P. Chew. Guaranteed-quality mesh generation for curved
surfaces. InProceedings of the Ninth Symposium on Com-
putational Geometry, pages 274–280. ACM Press, 1993.

[6] L. P. Chew, S. Vavasis, S. Gopalsamy, T. Yu, and B. Soni.
A concise representation of geometry suitable for mesh
generation. InProceedings, 11th International Meshing
Roundtable, pages pp.275–284, Ithaca, New York, USA,
September 15-18 2002.

[7] P. Chew, N. Chrisochoides, S. Gopalsamy, G. Heber, T. In-
graffea, E. Luke, J. Neto, K. Pingali, A. Shih, B. Soni,
P. Stodghill, D. Thompson, S. Vavasis, and P. Wawrzynek.
Computational science simulations based on web services.
In International Conference on Computational Science
2003, June 2003.

[8] P. Chew and S. Vavasis. Proposal for mesh representation.
Internal draft, January 21 2003. Accessed February 13,
2003.

[9] K. Chiu, M. Govindaraju, and R. Bramley. Investigating
the limits of soap performance for scientific computing. In
Proceedings of the Eleventh IEEE International Symposium
on High Performance Distributed Computing (HPDC’02),
July 2002.

[10] M. Corporation. Microsoft .NET. Accessed February 11,
2003.

[11] C. Douglas, A. Deshmukh, et al. Report from the March 8-
10, 2000 NSF sponsored workshop on Dynamic Data Driven
Application Systems. Accessed February 8, 2003.

[12] R. A. V. Engelen and K. A. Gallivan. The gsoap toolkit
for web services and peer-to-peer computing networks. In
2nd IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGRID’02), page 128, Berlin, Ger-
many, May 21 – 24 2002.

[13] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The
physiology of the grid: An open grid services architecture
for distributed systems integration. InOpen Grid Service
Infrastructure WG, Global Grid Forum, June 22 2002.

[14] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations.International
J. Supercomputer Applications, 15(3), 2001.

[15] Hdf5 - the next generation of the hdf library & tools. Ac-
cessed on June 3, 2003.

[16] P. Kulchenko. Web services for perl (soap::lite, xmlrpc::lite,
and uddi::lite). Accessed on June 3, 2003.

[17] E. Luke. Loci: A deductive framework for graph-based
algorithms. In S. Matsuoka, R. Oldehoeft, and M. Thol-
burn, editors,Third International Symposium on Comput-
ing in Object-Oriented Parallel Environments, number 1732
in Lecture Notes in Computer Science, pages 142–153.
Springer-Verlag, December 1999.

[18] E. A. Luke. A Rule-Based Specification System for Com-
putational Fluid Dynamics. PhD thesis, Mississippi State
University, 1999.

[19] E. A. Luke, X. Tong, J. Wu, L. Tang, and P. Cinnella. A step
towards “shape-shifting” algorithms: Reacting flow simula-
tions using generalized grids. InProceedings of the 39th
AIAA Aerospace Sciences Meeting and Exhibit. AIAA, Jan-
uary 2001. AIAA-2001-0897.

[20] Microsoft, Inc. Distributed component object model
(DCOM). Accessed February 13, 2003.

[21] Microsoft, Inc. Microsoft COM technologies. Accessed
February 13, 2003.

[22] H. Nakada, M. Sato, and S. Sekiguchi. Design and imple-
mentations of ninf: towards a global computing infrastruc-
ture. Future Generation Computing Systems, Metacomput-
ing Issue, 15(5-6):649–658, 1999.

[23] Object Management Group, Inc. Welcome to the OMG’s
CORBA website. Accessed February 13, 2003.

[24] Python web services. Accessed June 12, 2003.
[25] K. Seymour, H. Nakada, S. Matsuoka, D. Dongarra, C. Lee,

and H. Casanova. Gridrpc: A remote procedure call api for
grid computing. ICL Technical Report ICL-UT-02-06, In-
novative Computing Laboratory, Department of Computer
Science, University of Tennessee, June 2002.

[26] S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi.
Evaluating web services based implementations of gridrpc.
In Proceedings of the Eleventh IEEE International Sym-
posium on High Performance Distributed Computing
(HPDC’02), 2002.

[27] R. Srinivasan. Xdr: External data representation standard,
Aug. 1995. IETF RFC 1832.

[28] P. Stodghill. SOAP::Clean, a Perl module for exposing
legacy applications as web services. Accessed February 11,
2003.

[29] D. W. Walker and J. J. Dongarra. MPI: a standard Message
Passing Interface.Supercomputer, 12(1):56–68, 1996.

[30] World Wide Web Consortium. Web services activity. Ac-
cessed June 11, 2003.

[31] World Wide Web Consortium. Extensible markup language
(xml) 1.0 (second edition). W3C Recommendation, October
6 2000.

8


	Introduction
	Application Description
	Web Services Infrastructure
	SOAP::Clean
	Potential performance overheads

	Performance Results
	Overhead of using XML files
	SOAP Message Sizes in bytes
	Overhead of using Web Services

	Performance Analysis
	Using XML
	Using Web Services

	Related Work
	Conclusions

