The Nuprl Proof Development System

Christoph Kreitz

Department of Computer Science, Cornell University Ithaca, NY 14853

http://www.nuprl.org

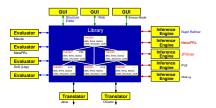
THE NUPRL PROJECT AT

• Computational formal logics

Type Theory

Proof & program development systems

- The Nuprl Logical Programming Environment
- Fast inference engines + proof search techniques
- Natural language generation from formal mathematics
- Program extraction + automated complexity analysis



• Application to reliable, high-performance networks

- Assigning precise semantics to system software
- Performance Optimizations
- Assurance for reliability (verification)
- Verified System Design

Nuprl's Type Theory

- Constructive higher-order logic
 - Reasoning about types, elements, propositions, proofs, functions . . .
- Functional programming language
 - Similar to core ML: polymorphic, with partial recursive functions
- Expressive data type system
 - Function, product, disjoint union, Π & Σ -types, atoms, void, top
 - Integers, lists, inductive types, universes
 - Propositions as types, equality type, subsets, subtyping, quotient types
 - (Dependent) intersection, union, records, modules
- Open-ended
 - new types can be added if needed
- User-defined extensions possible

THE NUPRL PROOF DEVELOPMENT SYSTEM

• Beginnings in 1984

- Nuprl 1 (Symbolics): proof & program refinement in Type Theory
- Book: $Implementing\ Mathematics \dots$ (1986)
- Nuprl 2: Unix Version

• Nuprl 3: Mathematical problem solving

(1987 - 1994)

- Constructive machine proofs for unsolved mathematical problems
- Nuprl 4: System verification and optimization (1993–2001)
 - Verification of logic synthesis tools & SCI cache coherency protocol
 - Optimization/verification of the **Ensemble** group communication system

• Nuprl 5: Open distributed architecture

(2000-...)

- Cooperating proof processes centered around persistent knowledge base
- Asynchronous, concurrent, and external proof engines
- → Interactive digital libraries of formal algorithmic knowledge

APPLICATIONS: MATHEMATICS & PROGRAMMING

• Formalized mathematical theories

- Elementary number theory, real analysis, group theory

- Discrete mathematics (Allen, 1994 -...)

- General algebra (Jackson, 1994)

- Finite and general automata (Constable, Naumov & Uribe 1997, Bickford, 2001)

- Basics of Turing machines (Naumov, 1998 ...)

- Formal mathematical textbook (Constable, Allen 1999)

http://www.nuprl.org/Nuprl4.2/Libraries/Welcome.html

• Machine proof for unsolved problems

- Girard's paradox (Howe 1987)

- Higman's Lemma (Murthy 1990)

• Algorithms and programming languages

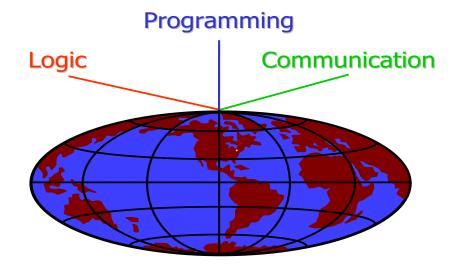
- Synthesis of elementary algorithms: square-root, sorting, ...

- Simple imperative programming (Naumov, 1997)

- Programming semantics & complexity analysis (Benzinger, 2000)

- Type-theoretical semantics of large OCAML fragment (Kreitz 1997/2002)

APPLICATIONS: SYSTEM VERIFICATION AND OPTIMIZATION



Secure software infrastructure

• Verification of a logic synthesis tool

- (Aagaard & Leeser 1993)
- Verification of the SCI cache coherency protocol
- (Howe 1996)

- Ensemble group communication toolkit
 - Optimization of application protocol stacks (by factor 3–10)

(Kreitz, Hayden, Hickey, Liu, van Renessee 1999)

- Verification of protocol layers

- (Bickford 1999)
- Formal design of new adaptive protocols (Bickford, Kreitz, Liu, van Renessee 2001)
- MediaNet stream computation network
 - Validation of real-time schedules wrt. resource limitations

(ongoing)

After more than 15 years ...

• Insights

- Type theory expressive enough to formalize today's software systems
- Formal optimization can significantly improve practical performance
- Formal verification reveals errors even in well-explored designs
- Formal design reveals hidden assumptions and limitations for use of software

• Ingredients for success in applications...

- Precise semantics for implementation language of a system
- Formal models of: application domain, system model, programming language
- Knowledge-based formal reasoning tools
- Collaboration between systems and formal reasoning groups

PURPOSE OF THIS COURSE

- Understand Nuprl's theoretical foundation
- Understand features of the Nuprl proof development system
- Learn how to formalize mathematics and computer science

Additional material can be found at

http://www.nuprl.org

http://www.cs.cornell.edu/home/kreitz/Abstracts/02calculemus-nuprl.html

OVERVIEW

✓ Introduction

1. Nuprl's Type Theory

- Distinguishing Features
- Standard Nuprl Types

2. The Nuprl Proof Development System

- Architecture and Feature Demonstration

3. Proof Automation in Nuprl

- Tactics & Rewriting
- Decision Procedures
- External Proof Systems

4. Building Formal Theories

– (Dependent) Records, Algebra, Abstract Data Types

5. Future Directions

Part I:

Nuprl's Type Theory

THE NUPRL TYPE THEORY AN EXTENSION OF MARTIN-LÖF TYPE THEORY

• Foundation for computational mathematics

- Higher-order logic + programming language + data type system
- Focus on constructive reasoning
- Reasoning about types, elements, and (extensional) equality ...

• Open-ended, expressive type system

- Function, product, disjoint union, Π & Σ -types, atoms \rightarrow programming
- Integers, lists, inductive types
- Propositions as types, equality type, void, top, universes \sim logic
- Subsets, subtyping, quotient types

 \sim mathematics

→ inductive definition

- (Dependent) intersection, union, records

→ modules, program composition New types can/will be added as needed

• Self-contained

- Based on "formalized intuition", not on other theories

Distinguishing Features of Nuprl's Type Theory

• Uniform internal notation

- Independent display forms support flexible term display

 \sim free syntax

• Expressions defined independently of their types

- No restriction on expressions that can be defined

→ Y combinator

- Expressions in proofs must be typeable

→ "total" functions

• Semantics based on values of expressions

- Judgments state what is true

→ computational semantics

- Equality is extensional

• Refinement calculus

- Top-down sequent calculus

- Proof expressions linked to inference rules

- Computation rules

→ interactive proof development

→ program extraction

→ program evaluation

• User-defined extensions possible

– User-defined expressions and inference rules

 \rightarrow abstractions & tactics

SYNTAX ISSUES

- Uniform notation: $opid\{p_i:F_i\}$ $(x_{11},...,x_{m_11}.t_1;...;x_{1n},...,x_{m_nn}.t_n)$
 - Operator name *opid* listed in operator tables
 - Parameters $p_i: F_i$ for base terms (variables, numbers, tokens...)
 - Sub-terms t_j may contain bound variables $x_{1j}, ..., x_{m_j j}$
 - No syntactical distinction between types, members, propositions . . .

• Display forms describe visual appearance of terms

Internal Term Structure	Display Form
$variable\{x:v\}()$	\overline{x}
function $\{\}(S; x.T)$	$x: S \rightarrow T$
function $\{\}(S; .T)$	$S{\longrightarrow}T$
:	:
$lambda{}(x.t)$	λx . t
$apply\{\}(f;t)$	f t
<u>:</u>	:

→ conventional notation, information hiding, auto-parenthesizing, aliases, ...

SEMANTICS MODELS PROOF, NOT DENOTATION

• (Lazy) evaluation of expressions

- Identify canonical expressions (values)
- Identify principal arguments of non-canonical expressions
- Define reducible non-canonical expressions (redex)
- Define reduction steps in redex-contracta table

$\overline{canonical}$	$non ext{-}canonical$	Redex	Contractum
$S \rightarrow T$			
$\lambda x.t$	$f \mid t$	$[\lambda x.u] t$	$\stackrel{g}{\longrightarrow} u[t/x]$

• Judgments: semantical truths about expressions

- 4 categories: Typehood (T Type), Type Equality (S=T),
 Membership ($t \in T$), Member equality (s=t in T)
- Semantics tables define judgments for values of expressions

$$S_1 \rightarrow T_1 = S_2 \rightarrow T_2$$
 iff $S_1 = S_2$ and $T_1 = T_2$
$$\lambda x_1.t_1 = \lambda x_2.t_2 \text{ in } S \rightarrow T \text{ iff } S \rightarrow T \text{ Type and } t_1[s_1/x_1] = t_2[s_2/x_2] \text{ in } T$$
 for all s_1, s_2 with $s_1 = s_2 \in S$:

Nuprl's Proof Theory

• Sequent $x_1:T_1,\ldots,x_n:T_n \vdash C$ jext t_1 "If x_i are variables of type T_i then C has a (yet unknown) member t" - A judgment $t \in T$ is represented as T ext t_{\parallel} \rightarrow proof term construction - Equality is represented as type $s=t \in T$ ext Ax \rightarrow propositions as types - Typehood represented by (cumulative) universes \bigcup_{i} ext T_i

• Refinement calculus

- Bottom-up construction of proof terms

 \rightarrow program extraction

$$\Gamma \vdash S \rightarrow T \text{ [ext } \lambda x \cdot e]$$
 by lambda-formation x
 Γ , $x \colon S \vdash T \text{ [ext } e]$
 $\Gamma \vdash S = S \in \mathbf{U}_i \text{ [ext Ax]}$

- Computation rules

→ program evaluation

About 8–10 inference rules for each NUPRL type

EXECUTING A FORMAL PROOF STEP

Theorem name

Status + position in proof

Hypothesis of main goal

Conclusion

Inference rule

 $First\ subgoal\ -\ status,\ conclusion$

 $Second\ subgoal-status, \\ new\ hypotheses$

conclusion

THM intsqrt

top 1

1. x: IN

 $\vdash \exists y : \mathbb{N}. \ y^2 \leq x \land x < (y+1)^2$

BY natE 1

 $1\# \vdash \exists y : \mathbb{N}. \ y^2 \le 0 \land 0 < (y+1)^2$

2# 2. n:IN

3. 0<n

4. $v: \exists y: \mathbb{N}. y^2 \le n-1 \land n-1 < (y+1)^2$

 $\vdash \exists y : \mathbb{N}. \ y^2 \leq n \land n < (y+1)^2$

METHODOLOGY FOR BUILDING TYPES

• Syntax:

- Define canonical type
- Define canonical members of the type
- Define noncanonical expressions corresponding to the type

Semantics

- Introduce evaluation rules for non-canonical expressions
- Define type equality judgment for the type
 The typehood judgment is a special case of type equality
- Define member equality judgment for canonical members

 The membership judgment is a special case of member equality

Define judgments only in terms of the new expressions \rightarrow consistency

• Proof Theory

- Introduce proof rules that are consistent with the semantics

METHODOLOGY FOR DEFINING PROOF RULES

• Type Formation rules:

- When are two types equal?

(typeEquality)

 $\Gamma \vdash S = T \in \mathbf{U}_{j}$

- How to build the type?

(typeFormation)

 $\Gamma \vdash \mathbf{U}_j \quad [\mathsf{ext} \ T]$

• Canonical rules:

- When are two members equal?

(member Equality)

 $\Gamma \vdash s = t \in T$

- How to build members?

(member Formation)

 $\Gamma \vdash T \mid \mathsf{ext} \ t_{||}$

• Noncanonical rules:

- When does a term inhabit a type? (noncanonical Equality) $\Gamma \vdash s = t \in T$

- How to use a variable of the type (typeElimination) Γ , x:S, $\Delta \vdash T$ ext t_{\parallel}

• Computation rules:

- Reduction of redices in an equality (noncanonical Reduce*) $\Gamma \vdash redex = t \in T$

• Special purpose rules

Proof Rules for the Function Type

```
\Gamma \vdash x_1:S_1 \rightarrow T_1 = x_2:S_2 \rightarrow T_2 \in \mathbf{U}_j [ext Ax]
\Gamma \vdash \mathbf{U}_i \mid \text{ext } x : S \rightarrow T_1
                                                                                                            by functionEquality a
   by dependent_functionFormation x S
   \Gamma \vdash S \in \mathbf{U}_{j} [ext Ax]
                                                                                                            \Gamma \vdash S_1 = S_2 \in \mathbf{U}_i |ext Ax|
                                                                                                            \Gamma, x:S_1 \vdash T_1[x/x_1] = T_2[x/x_2] \in \mathbf{U}_i ext A_X
   \Gamma, x:S \vdash \mathbf{U}_i ext T_1
\Gamma \vdash \lambda x_1 \cdot t_1 = \lambda x_2 \cdot t_2 \in x: S \rightarrow T \text{ [ext Ax]}
                                                                                                        \Gamma \vdash x:S \rightarrow T \mid \text{ext } \lambda x' \cdot t
   by lambdaEquality j x'
                                                                                                            by lambdaFormation i x'
   \Gamma, x':S \vdash t_1[x'/x_1] = t_2[x'/x_2] \in T[x'/x] ext Ax
                                                                                                            \Gamma, x':S \vdash T[x'/x] \mid \text{ext } t
   \Gamma \vdash S \in \mathbf{U}_i ext Ax_i
                                                                                                            \Gamma \vdash S \in \mathbf{U}_i ext Ax_i
\Gamma \vdash f_1 t_1 = f_2 t_2 \in T[t_1/x] ext Ax
                                                                                                         \Gamma, f: x: S \rightarrow T, \Delta \vdash C \text{ [ext } t[fs, Ax/y, z]
   by applyEquality x:S \rightarrow T
                                                                                                            by dependent function Elimination i \ s \ y \ z
   \Gamma \vdash f_1 = f_2 \in x: S \rightarrow T \mid \text{ext Ax} \mid
                                                                                                            \Gamma, f: x: S \rightarrow T, \Delta \vdash s \in S ext Ax
   \Gamma \vdash t_1 = t_2 \in S \mid \text{ext Ax} \mid
                                                                                                            \Gamma, f: x: S \rightarrow T, y: T[s/x], z: y = f s \in T[s/x], \Delta \vdash C ext t
                                                                                                         \Gamma \vdash f_1 = f_2 \in x: S \rightarrow T \text{ [ext } t_1
\Gamma \vdash (\lambda x.t) s = t_2 \in T lext Ax
   by applyReduce
                                                                                                            by functionExtensionality j x_1: S_1 \rightarrow T_1 x_2: S_2 \rightarrow T_2 x'
   \Gamma \vdash t[s/x] = t_2 \in T |ext Ax|
                                                                                                            \Gamma, x': S \vdash f_1 x' = f_2 x' \in T[x'/x] ext t
                                                                                                            \Gamma \vdash S \in \dot{\mathbf{U}}_{i} ext Ax
                                                                                                            \Gamma \vdash f_1 \in x_1: \tilde{S}_1 \rightarrow T_1 \mid \text{ext Ax} \mid
                                                                                                            \Gamma \vdash f_2 \in x_2:S_2 \rightarrow T_2 \mid \text{ext Ax} \mid
```

Note: $e=e \in T$ is usually abbreviated by $e \in T$

USER-DEFINED EXTENSIONS

• Conservative extension of the formal language

- = Abstraction: $new-opid\{parms\}(sub-terms) \equiv expr[parms, sub-terms]$ e.g. exists $\{\}(T; x.A[x]) \equiv x:T\times A[x]$
- + **Display Form** for newly defined term

e.g.
$$\exists x : T . A[x] \equiv \text{exists}\{\}(T; x . A[x])$$

Library contains many standard extensions of Type Theory

e.g. Intuitionistic logic, Number Theory, List Theory, Algebra, ...

• Tactics: User-defined inference rules

- Meta-level programs built using basic inference rules and existing tactics
- May include meta-level analysis of the goal to find a proof
- Always result in a valid proof

Library contains many standard tactics and proof search procedures

STANDARD NUPRL TYPES

Function Space	$S \rightarrow T, x: S \rightarrow T$	$\lambda x.t, ft$
Product Space	$S \times T$, $x: S \times T$	$\langle s,t \rangle, \ let \ \langle x,y \rangle = e \ in \ u$
Disjoint Union	S+T	$inl(s), inr(t), case\ e\ of\ inl(x) \mapsto u\ \ inr(y) \mapsto v$
Universes	\mathbf{U}_{j}	— types of level j —
Equality	$s = t \in T$	Ax
Empty Type	Void	any(x), — no members —
Atoms	Atom	" $token$ ", if a = b then s else t
Numbers	Z	$0,1,-1,2,-2,$ $s+t$, $s-t$, $s*t$, $s \div t$, $s \text{ rem } t$,
		if $a=b$ then s else t , if $i < j$ then s else t
		$ind(u; x, f_x.s; base; y, f_y.t)$
	<i>i</i> < <i>j</i>	Ax
Lists	$S { t list}$	[], $t\!::\!list$, rec-case L of [] $\mapsto base$ $x\!::\!l\mapsto [f_l].t$
Inductive Types	$rectype\ X = T[X]$	
Subset	$\{x : S \mid P[x]\},\$	— some members of S —
Intersection	$\cap x : S . T[x],$	— members that occur in all $T[x]$ —
	$x : S \cap T[x]$	— members x that occur S and $T[x]$ —
Union	$\cup x : S . T[x]$	— members that occur in some $T[x]$, tricky equality—
Quotient	x , $y:S/\!/\!E[x,y]$	— members of S, new equality —
	[, 0]	
Very Dep. Functions	$\{f \mid x : S \rightarrow T[f, x]\}$	

_ The Nuprl Proof Development System ______ 20 _____ I. Type Theory: Standard Nuprl types ___

FUNCTIONS: BASIC PROGRAMMING CONCEPTS

Syntax:

Canonical: $S \rightarrow T$, $\lambda x \cdot e$

Noncanonical: $e_1 e_2$

Evaluation:

$$\lambda x.u$$
 $t \stackrel{\beta}{\longrightarrow} u[t/x]$

Semantics:

- $\cdot S \rightarrow T$ is a type if S and T are
- $\cdot \lambda x_1 \cdot e_1 = \lambda x_2 \cdot e_2$ in $S \rightarrow T$ if $S \rightarrow T$ type and $e_1[s_1/x_1] = e_2[s_2/x_2]$ in T for all s_1, s_2 with $s_1 = s_2 \in S$

Proof System: — see above —

CARTESIAN PRODUCTS: BUILDING DATA STRUCTURES

Syntax:

Canonical: $S \times T$, $\langle e_1, e_2 \rangle$

Noncanonical: let $\langle x, y \rangle = e$ in u

Evaluation:

let
$$\langle x, y \rangle = \boxed{\langle e_1, e_2 \rangle}$$
 in $u \stackrel{\beta}{\longrightarrow} u[e_1, e_2 / x, y]$

Semantics:

- $\cdot S \times T$ is a type if S and T are
- $\cdot \langle e_1, e_2 \rangle = \langle e_1', e_2' \rangle$ in $S \times T$ if $S \times T$ type, $e_1 = e_1'$ in S, and $e_2 = e_2'$ in T

Library Concepts: e.1, e.2

DISJOINT UNION: CASE DISTINCTIONS

Syntax:

Canonical: S+T, inl(e), inr(e)

Noncanonical: case e of $\operatorname{inl}(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v$

Evaluation:

case
$$\overline{\inf(e')}$$
 of $\inf(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \stackrel{\beta}{\longrightarrow} u[e' \mid x]$ case $\overline{\inf(e')}$ of $\inf(x) \mapsto u \mid \operatorname{inr}(y) \mapsto v \stackrel{\beta}{\longrightarrow} v[e' \mid y]$

Semantics:

- $\cdot S + T$ is a type if S and T are
- \cdot inl(e) = inl(e') in S+T if S+T type, e = e' in S
- \cdot inr(e) = inr(e') in S+T if S+T type, e=e' in T

Library Concepts: —

THE CURRY-HOWARD ISOMORPHISM, FORMALLY

Propositions are represented as types

Proposition		\mathbf{Type}
$P \wedge Q$	=	$P \times Q$
$P \vee Q$	=	P+Q
$P \Rightarrow Q$	=	$P{\rightarrow}Q$
$\neg P$	=	$P{ ightarrow}{\sf Void}$
$\exists x : T \cdot P[x]$	=	$x:T\times P[x]$
$\forall x : T \cdot P[x]$	=	$x:T \rightarrow P[x]$

Need an empty type to represent "falsehood" Need dependent types to represent quantifiers

EMPTY TYPE

Syntax:

Canonical: Void – no canonical elements –

Noncanonical: any(e)

Evaluation: - no reduction rules -

Semantics:

- · Void is a type
- $\cdot e = e'$ in Void $never\ holds$

Library Concepts: —

Warning: rules for Void allows proving semantical nonsense like

 $x: Void \vdash 0=1 \in 2$ or $\vdash Void \rightarrow 2$ type

SINGLETON TYPE

Syntax:

Canonical: Unit, Ax

Noncanonical: - no noncanonical expressions -

Evaluation: - no reduction rules -

Semantics:

- · Unit is a type
- $\cdot Ax = Ax \text{ in Unit}$

Library Concepts: —

Defined type in Nuprl, see the library theory core_1 for further details

DEPENDENT TYPES

- Allow representing logical quantifiers as type constructs
- Allow typing functions like λx . if x=0 then $\lambda x.x$ else $\lambda x,y.x$
- Allow expressing mathematical concepts such as finite automata
 - $-(Q, \Sigma, q_0 \delta, F)$, where $q_0 \in Q$, $\delta: Q \times \Sigma \longrightarrow Q$, $F \subseteq Q$.
- Allow representing dependent structures in programming languages
 - Record types $[f_1:T_1; \ldots; f_n:T_n]$
 - Variant records type date = January of 1..31 | February of 1..28 | ...
- Nuprl had them from the beginning
 - ... as did **Coq**, **Alf**, ...
 - Other systems have recently adopted them (PVS, SPECWARE, ...)

DEPENDENT FUNCTIONS (II-Types)

Subsumes independent function type

 \forall generalizes \Rightarrow

Syntax:

Canonical: $x: S \rightarrow T$, $\lambda x. e$

Noncanonical: $e_1 e_2$

Evaluation:

$$\lambda x.u$$
 $t \stackrel{\beta}{\longrightarrow} u[t/x]$

Semantics:

 $\cdot x: S \to T$ is a type if S is a type and T[e/x] is a type for all e in S

$$\cdot \lambda x_1 \cdot e_1 = \lambda x_2 \cdot e_2$$
 in $x: S \rightarrow T$ if $x: S \rightarrow T$ type and
$$e_1[s_1/x_1] = e_2[s_2/x_2]$$
 in $T[s_1/x]$ for all s_1, s_2 with $s_1 = s_2 \in S$

DEPENDENT PRODUCTS (Σ-TYPES)

Subsumes (independent) cartesian product

 \exists generalizes \land

Syntax:

Canonical: $x: S \times T$, $\langle e_1, e_2 \rangle$

Noncanonical: let $\langle x, y \rangle = e$ in u

Evaluation:

let
$$\langle x,y\rangle = \boxed{\langle e_1,e_2\rangle}$$
 in $u \stackrel{\beta}{\longrightarrow} u[e_1,e_2/x,y]$

Semantics:

 $\cdot x: S \times T$ is a type if S is a type and T[e/x] is a type for all e in S

$$\cdot \langle e_1, e_2 \rangle = \langle e_1', e_2' \rangle$$
 in $x: S \times T$ if $x: S \times T$ type,
$$e_1 = e_1' \text{ in } S, \text{ and } e_2 = e_2' \text{ in } T[e_1/x]$$

Well-formedness Issues

- Formation rules for dependent type require checking x': $S \vdash T[x'/x]$ type
 - -T is a function from S to types that could involve complex computations, e.g. $T[i] \equiv \text{if } M_i(i) \text{ halts then } \mathbb{N} \text{ else Void}$

Well-formedness is undecidable in (extensional) theories with dependent types

- Programming languages must restrict dependencies
 - Only allow finite dependencies

→ decidable typechecking

- Typechecking in Nuprl cannot be fully automated
 - Typechecking becomes part of the proof process
 → heuristic typechecking

- Additional problem
 - What is the type of a function from IN to types?

→ Girard Paradox

Universes

- Syntactical representation of typehood
 - -T type expressed as $T \in \mathbf{U}$ S=T expressed as $S=T \in \mathbf{U}$
- Universes are object-level terms
 - **U** is a type and a universe
 - Girard's Paradox: a theory with dependent types and $\mathbf{U} \in \mathbf{U}$ is inconsistent \mapsto No single universe can capture the notion of typehood
 - Typehood $\hat{=}$ cumulative hierarchy of universes $\mathbf{U} = \mathbf{U}_1 \stackrel{\in}{\subset} \mathbf{U}_2 \stackrel{\in}{\subset} \mathbf{U}_3 \stackrel{\in}{\subset} \dots$

Syntax:

Canonical: U_j

Noncanonical: —

Semantics:

 $\cdot \mathbf{U}_j$ is a type for every positive integer j

 $\cdot S = T$ in \mathbf{U}_{j} if ... mimic semantics for S = T as types...

 $\cdot \mathbf{U}_{j_1} = \mathbf{U}_{j_2}$ in \mathbf{U}_j if $j_1 = j_2 < j$

INTEGERS: BASIC ARITHMETIC

Syntax:

```
\mathbb{Z}, 0, 1, -1, 2, -2, ... i < j. Ax
Canonical:
Noncanonical: rec-case i of x<0 \mapsto [f_x].s \mid 0 \mapsto b \mid y>0 \mapsto [f_y].t,
                  s+t. s-t. s^*t. s \div t. s rem t.
                  if i=j then s else t, if i < j then s else t,
```

Evaluation:

```
rec-case \boxed{\mathbf{0}} of x < \mathbf{0} \mapsto [f_x] \cdot s \mid \mathbf{0} \mapsto b \mid y > \mathbf{0} \mapsto [f_y] \cdot t \stackrel{\beta}{\longrightarrow} b
rec-case i of x < 0 \mapsto [f_x] \cdot s \mid 0 \mapsto b \mid y > 0 \mapsto [f_y] \cdot t
                                                                                             where i > 0
       \xrightarrow{\beta} t[i, \text{rec-case } i-1 \text{ of } x < 0 \mapsto [f_x] . s \mid 0 \mapsto b \mid y > 0 \mapsto [f_y] . t \mid /x, f_x]
rec-case i of x < 0 \mapsto [f_x] . s \mid 0 \mapsto b \mid y > 0 \mapsto [f_y] . t
                                                                                             where i < 0
       \xrightarrow{\beta} s[i, \text{rec-case } i+1 \text{ of } x < 0 \mapsto [f_x] . s \mid 0 \mapsto b \mid y > 0 \mapsto [f_y] . t \mid /x, f_x]
other noncanonical expressions evaluate as usual
```

Semantics:

- · **Z** is a type
- $\cdot i < j$ is a type if $i \in \mathbb{Z}$ and $j \in \mathbb{Z}$
- i = i in **Z** for all integer constants i
- $\cdot Ax = Ax \text{ in } i < j \text{ if } i, j \text{ are integers with } i < j$

Library Concepts: see the library theories int_1, int_2, and num_thy ...

LISTS: BASIC DATA CONTAINERS

Syntax:

Canonical: T list $, [], e_1 :: e_2$

Noncanonical: rec-case e of $[] \mapsto base \mid x::l \mapsto [f_{xl}] \cdot up$

Evaluation:

```
rec-case  []  of  [] \mapsto base \mid x::l \mapsto [f_{xl}] .up \stackrel{\beta}{\longrightarrow} base 
\text{rec-case } \boxed{e_1 :: e_2} \text{ of } \boxed{]} \mapsto base \mid x :: l \mapsto [f_{xl}] \cdot up
              \xrightarrow{\overline{\beta}} up[e_1, e_2, \text{ rec-case } e_2 \text{ of } [] \mapsto base \mid x :: l \mapsto [f_{xl}] \cdot up \mid /x, l, f_{xl}]
```

Semantics:

- $\cdot T$ list is a type if T is
- $\cdot [] = [] \text{ in } T \text{ list } \text{ if } T \text{ list is a type}$
- $e_1: e_2 = e_1' : e_2'$ in T list if T list type, $e_1 = e_1'$ in T, and $e_2 = e_2'$ in T list

Library Concepts:

$$hd(e), tl(e), e_1@e_2 length(e), map(f;e), rev(e), e[i], e[i..j^-], ...$$

Inductive Types: Recursive Definition

• Representation of recursively defined data types

- Recursive type definition X = T[X]
- Canonical elements determined by unrolling T[X]
- Noncanonical form for inductive evaluation of elements

• Recursion must be well-founded

- Least fixed point semantics
- -T[X] must contain a "base" case
- -X must only occur positively in T[X]

• Extensions possible

- Parameterized, simultaneous recursion rectype $X_1(x_1) = T[X_1]$ and ... $X_n(x_n) = T[X_n]$ select $X_i(a_i)$
- Co-inductive type inftype $X = T_X$: greatest fixed point semantics
- Partial recursive functions $S \rightarrow T$: unrestricted recursive induction

Inductive Types, formally

Syntax:

Canonical: rectype $X = T_X$

Noncanonical: $let^* f(x) = t$ in f(e)

Evaluation:

$$\det^* f(x) = t$$
 in $f(e) \xrightarrow{\beta} t[\lambda y. \det^* f(x) = t$ in $f(y), e / f, x]$

Termination of $let^* f(x) = t$ in f(e) requires e in rectype X = T[X]

Semantics:

· rectype
$$X_1 = T_{X1} = \text{rectype } X_2 = T_{X2}$$

if $T_{X1}[X/X_1] = T_{X2}[X/X_2]$ for all types X

$$\cdot s = t$$
 in rectype $X = T_X$ if rectype $X = T_X$ type and $s = t$ in $T_X[\text{rectype } X = T_X/X]$

Subset Types: Hiding Computational Content

• Representation of mathematical concept of subsets

- $-\{x:S \mid T[x]\}$ formally similar to dependent product $x:S \times T[x]$... but ...
- Members are elements of $s \in S$, not pairs $\langle s, t \rangle$
- Only implicit evidence for T[s] but no explicit proof component

Syntax:

Canonical: $\{x:S \mid T\}, \{S \mid T\}$

Noncanonical: —

Semantics:

 $\begin{array}{l} \cdot \{x_1 \!\!:\! S_1 \!\mid T_1\} = \{x_2 \!\!:\! S_2 \!\mid T_2\} \quad \text{if} \quad S_1 \!\!=\! S_2 \ \text{and there are terms} \ p_1, \ p_2 \, \text{and a} \\ \text{variable} \ x, \text{ which occurs neither in } T_1 \, \text{nor in } T_2 \, \text{such that} \end{array}$

$$p_1 \text{ in } \forall x : S_1. \ T_1[x/x_1] \Rightarrow T_2[x/x_2]$$

and p_2 in $\forall x : S_1$. $T_2[x/x_2] \Rightarrow T_1[x/x_1]$.

(violates separation principle)

 $\cdot s = t \text{ in } \{x:S \mid T\} \text{ if } \{x:S \mid T\} \text{ type,}$

s=t in S, and there is some p in T[s/x].

Subset Types: Proof theory

Proof rules must manage implicit information

- We "know" T[s] if s in $\{x:S \mid T\}$
- We cannot use the proof term for T[s] computationally
- Proof term for T[s] must be available in non-computational proof parts
- Some refinement rules generate hidden assumptions

```
\begin{split} &\Gamma,\,z{:}\,\{x{:}S\mid T\,\},\,\Delta\vdash C\quad\text{ext }(\lambda y{\,.}t)\,z_{\!\rfloor}\\ &\text{by setElimination }i\ y\ v\\ &\Gamma,\,z{:}\,\{x{:}S\mid T\,\},\,y{:}S,\,[\![v]\!]{:}T[y/x],\,\Delta[y/z]\vdash C[y/z]\quad\text{ext }t_{\!\rfloor} \end{split}
```

- Hidden assumptions made visible by refinement rules with extract term Ax

Intersection Types: Polymorphism without parameters

• Represent mathematical concept of intersection

- $-\cap x:S:T[x]$ formally similar to dependent functions $x:S\to T[x]$... but ...
- Members are elements of all T[s] with $s \in S$, not functions
- "Range parameter" $s \in S$ only implicitly present

Syntax:

Canonical: $\cap x : S . T[x]$

Noncanonical: —

Evaluation: —

Semantics:

- $\cdot \cap x : S . T[x]$ is a type if S is a type and T[e/x] is a type for all e in S
- s = t in $\cap x : S . T[x]$ if $\cap x : S . T[x]$ type and s = t in T[e/x] for all e in S

QUOTIENT TYPES: USER-DEFINED EQUALITY

• Representation of equivalence classes

- Members of x, $y:T/\!/\!E$ are elements of T (but x, $y:T/\!/\!E\not\sqsubseteq T$)
- Equality s=t redefined as E[s,t/x,y]
- -E must be type of an equivalence relation

Syntax:

Canonical: x, y: T//E

Noncanonical: —

Semantics:

```
\begin{array}{l} \cdot x_{1},y_{1}\colon T_{1}\!/\!/E_{1}=x_{2},y_{2}\colon T_{2}\!/\!/E_{2} \quad \text{if} \quad T_{1}\!=T_{2} \quad \text{and there are terms } p_{1}p_{2}r,\\ s,t \text{ and variables } x,y,z, \text{ which occur neither in } E_{1} \text{ nor in } E_{2} \text{ such that}\\ p_{1} \text{ in } \forall x\colon\! T_{1}\!.\, \forall y\colon\! T_{1}\!.\, E_{1}[x,y/x_{1},y_{1}] \Rightarrow E_{2}[x,y/x_{2},y_{2}],\\ p_{2} \text{ in } \forall x\colon\! T_{1}\!.\, \forall y\colon\! T_{1}\!.\, E_{2}[x,y/x_{2},y_{2}] \Rightarrow E_{1}[x,y/x_{1},y_{1}],\\ r \text{ in } \forall x\colon\! T_{1}\!.\, \forall y\colon\! T_{1}\!.\, E_{2}[x,y/x_{2},y_{2}] \Rightarrow E_{1}[y,x/x_{1},y_{1}],\\ s \text{ in } \forall x\colon\! T_{1}\!.\, \forall y\colon\! T_{1}\!.\, E_{1}[x,y/x_{1},y_{1}] \Rightarrow E_{1}[y,x/x_{1},y_{1}] \Rightarrow E_{1}[x,z/x_{1},y_{1}]\\ \Rightarrow s = t \text{ in } x,y\colon\! T/\!/\!E \quad \text{if } x,y\colon\! T/\!/\!E \quad \text{type, } s \text{ in } T, \ t \text{ in } T,\\ \text{and there is some term } p \text{ in } E[s,t/x,y] \end{array}
```

QUOTIENT TYPES: PROOF THEORY

Proof rules must manage implicit information

- We "know" E[s, t/x, y] if s = t in $x, y : T/\!/E$
- Proof term for E[s, t/x, y] can only be used non-computationally
- Hidden assumptions generated by decomposing equalities in hypotheses

```
\begin{array}{l} \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}\,y:T/\!/\!E\,,\,\Delta\vdash C\quad\text{[ext }u_{\!\!|}\\ \textbf{by }\text{ quotient\_equalityElimination }i\ j\ v'\\ \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}\,y:T/\!/\!E\,,\,[\![v']\!]{:}E[s,t/x,y],\,\Delta\vdash C\quad\text{[ext }u_{\!\!|}\\ \Gamma,\,v{:}\,s=t\,\in\,x\,\text{,}\,y:T/\!/\!E\,,\,\Delta\vdash E[s,t/x,y]\,\in\,\textbf{U}_{j}\,\,\text{[Ax]} \end{array}
```

User-predicates may require type-squashing

- $-\downarrow P \equiv \{x: Top \mid P\}: reduce P to it's truth content$
- Necessary if there is too much structure on $x, y: T/\!/E$

DEPENDENT INTERSECTION

- Intersection with self-reference
- $-x:S\cap T$ somewhat similar to dependent products $x:S\times T[x]$...but ...
- Members are elements $s \in S$ with $s \in T[s]$ ("very dependent pairs")

Syntax:

Canonical: $x:S\cap T$

Noncanonical: —

Evaluation: —

Semantics:

- $\cdot x: S \cap T$ is a type if S is a type and T[e/x] is a type for all e in S
- $s = t \text{ in } x : S \cap T \text{ if } x : S \cap T \text{ type, } s = t \text{ in } S, \text{ and } s = t \text{ in } T[s]$

Useful for representing dependent records, ADT's, objects, etc.

Important Defined Types

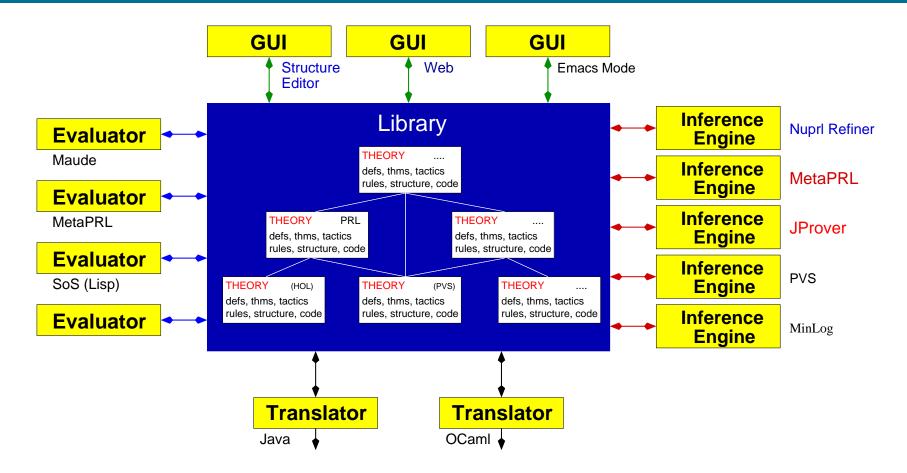
- Integer ranges: $\mathbb{N} \equiv \{i: \mathbb{Z} \mid 0 \leq i\}, \{j...\} \equiv \{i: \mathbb{Z} \mid j \leq i\},$ $\mathbb{N}^+ \equiv \{i: \mathbb{Z} \mid 0 \le i\}, \{\ldots j\} \equiv \{i: \mathbb{Z} \mid i \le j\}$
- Logic: ∀ ∃ ∧ ∨ ⇒ ¬ True False (Curry-Howard isomorphism)
- Singleton type: Unit $\equiv 0 \in \mathbb{Z}$
- \bullet Boolean: $\mathbb{B} \equiv \text{Unit} + \text{Unit}, \uparrow b \equiv \text{if } b \text{ then True else False}$
- Top type: Top $\equiv \cap x$: Void. Void
- Subtyping: $S \sqsubseteq T \equiv \forall x : S. x \in T$
- Type squashing: $\downarrow P \equiv \{ \text{True} \mid P \}$
- Recursive functions: $Y \equiv \lambda f$. $(\lambda x.f(x x))$ $(\lambda x.f(x x))$
- (Dependent) records $\{x_1:T_1; x_2:T_2[x_1]; \ldots; x_n:T_n[x_1...x_{n-1}]\}$ (\rightarrow part IV)

See the standard theories of NUPRL 5 for further details

Part II:

The Nuprl System

Nuprl's Automated Reasoning Environment

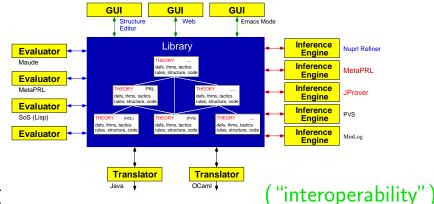


Interactive proof development

- Supports program extraction and evaluation
- Proof automation through tactics & decision procedures
- Highly customizable: conservative language extensions, term display, ...
- Supports cooperation with other proof systems

System Architecture (Allen et. al, 2000)

- Collection of cooperating processes
 - → Asynchronous, distributed& collaborative theorem proving



- Centered around a common knowledge base
 - Library of formal algorithmic knowledge
 - Persistent data base, version control, dependency tracking → accountability
- Connected to external systems
 - MetaPRL (fast rewriting, multiple logics)

(Hickey & Nogin, 1999)

JProver (matrix-based intuitionistic theorem prover)

(IJCAR 2001)

- Multiple user interfaces
 - Structure editor, web browser

→ collaborative proving

- Reflective system structure
 - System designed within the system's library

INITIAL Nuprl 5 SCREEN

- Navigator for browsing and invoking editors
- ML top loop for entering meta-level commands
- 3 windows for library, refiner, and editor Lisp processes

FEATURES OF THE PROOF DEVELOPMENT SYSTEM

• Interactive proof editor

 \rightarrow readable proofs

• Flexible definition mechanism

 \rightarrow user-defined terms

• Customizable term display

 \sim flexible notation

• Structure editor for terms

 \sim no ambiguities

- Tactics & decision procedures
- \sim user-defined inferences
- ◆ Proof objects, program extraction
 → program synthesis

- Program evaluation
- Library mechanism

 \sim user-theories

- Large mathematical libraries & tactics collection
- Command interface: navigator + ML top loops
- Formal documentation mechanism

→ LATEX, HTML

Basic Navigator Operations

- Creating, copying, renaming, removing, printing objects, directories, and links
 - Objects will never be destroyed only references to objects change
- Browsing and searching the library
- Invoking editors on objects
- Checking theories
- Importing and exporting theories
- Invoking operations on collections of objects

:

THE PROOF EDITOR

- Invoke proof editor by opening an object of kind THM
- State theorem as top goal, using structured term editor
- Prove a goal by entering proof tactics and parameters after the BY
- Proof editor refines goal and displays remaining subgoals
 - Proof steps are immediately committed to library
 - Proof engine may be invoked asynchronously
- User can move into subgoal nodes if necessary

```
THM not_over_and
* top
\forall A,B:\mathbb{P}. (((\neg A) \lor (\neg B)) \Rightarrow (\neg (A \land B)))
BY D 0
* 1
1. A:IP
\vdash \forall B: \mathbb{P}. (((\neg A) \lor (\neg B)) \Rightarrow (\neg (A \land B)))
BY Auto
* 1 1
2. B: IP
3. (\neg A) \lor (\neg B)
\vdash \neg (A \land B)
BY D O THEN D 3 THEN Auto
* 2
....wf.....
\mathbb{P} \in \mathbb{U}
BY Auto
```

• Proof editor may generate extract terms from complete proofs

THE STRUCTURED TERM EDITOR

Edit internal structure of terms while showing external display

- Invoke by opening or entering a term slot
- Entering opid of term opens template

```
e.g. _exists ← _ generates the template 「∃[var]:[type]. [prop]
```

- [type] and prop] are new term slots, [var] is a text slot
- Users may navigate through term tree and edit subterms
 - Motion by mouse or emacs-like key combinations (m-p, m-b, m-f, m-n)
 - Cutting and pasting of terms possible (c-k, m-k, c-y)
 - Text oriented editing possible as well
 - Insert non-ASCII characters with c-#num
- Internal structure can be made visible
 - Explode (c-x ex) and implode (c-x im) terms
 - Entirely new terms can be inserted by entering opid {parms} (arity)
- Terms have hyperlinks to abstractions and display forms
 - Use c-x ab / Mouse-Right and c-x df / Mouse-Middle

CREATING DEFINITIONS

Define new terms in terms of existing ones

• Click the AddDef* button

```
OK* Cancel*
add def : [lhs] ==
              [rhs]
MkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*
CheckMinTHY* MinTHY* EphTHY* ExTHY*
Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops* PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* ProofStats* showRefEnvs* FixRefEnvs*
CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*
ShowRefenv* SetRefenvSibling* SetRefenvUsing* SetRefenv* ProveRR* SetInOBJ* MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce* NavAtAp*
Act* DeAct* MkThyDir* RmThyObj* MvThyObj*
\uparrow\uparrow\uparrow\uparrow\uparrow \uparrow\uparrow\uparrow\uparrow \downarrow\downarrow\downarrow\downarrow\downarrow \downarrow\downarrow\downarrow \leftrightarrow \rightarrow
Navigator: [kreitz; user; theories]
Scroll position: 0
List Scroll: Total 1, Point 0, Visible: 1
 -> STM FFF not_over_and
```

• Insert a new term into the [lhs] slot

- Enter its definition into [rhs] $\exists x: T. P[x] \land (\forall y: T. P[y] \Rightarrow y=x \in T)$

 - All free variables of the new term must occur
- Edit the generated display form and wellformedness theorem

Modifying the Term Display

• Open display form object for the term

- create a new one if necessary

```
DISP exists_uni_df
EdAlias exists_uni ::
    exists_uni(<T:T:*>;<x:var:*>.<P:P:*>)
    == exists_uni(<T>;<x>.<P>)
```

- Edit text on left hand side of ==
 - Special characters may be inserted, e.g. c-# 163 inserts ∃
 - Template slots may be moved or deleted (mark with m-p)
 - Slot description between colons may be modified
 - Precedences for use of parentheses may be described after last colon

```
DISP exists_uni_df

EdAlias exists_uni ::
    ∃!<x:var:*>:<T:type:*>. <P:prop:*>)
    == exists_uni(<T>;<x>.<P>)
```

- Add additional display forms for iteration and special cases
 - Iteration: instead of $\forall x:T. \forall y:T. P display \forall x,y:T. P$
 - Special cases: instead of $\lceil x=y \in \mathbb{Z} \rceil$ display $\lceil x=y \rceil$ (delete the type slot)

EVALUATION OF TERMS

• Invoke the term evaluator on a Nuprl term by entering view_showc name term into the editor ML top loop

```
compute addition

Compute1* Compute5* Compute10* ComputeAll*

((3 * 4) - 5) + 6
```

- Click the buttons to perform one top-level reduction steps
 - Use c-_ to undo a step

Extracting Programs from Proofs

- Generate extract term of completed proof
 - Close proof editor with c-z instead of c-q
- Make extract term available for editing
 - Enter require termof (ioid obid) into the editor ML top loop
 - obid is abstract identifier of proof object
 mark in navigator with left mouse and copy into top loop with c-y
- Open term evaluator on extract term
 - Enter _view_show_co obid_ into the editor ML top loop

```
compute intsqrt

Compute1* Compute5* Compute10* ComputeAll*

TERMOF{intsqrt:o, \\v:1}
```

- Evaluate one step to see the extract
 - Edit term to supply arguments to a Nuprl function, if desired

Should be simplified in the future

Part III:

Proof Automation in Nuprl

Automating the Construction of Proofs

- Tactics: Programmed application of inference rules
 - Easy to implement, even by users
 - Flexible, guaranteed to be correct
- Rewriting: Replace terms by equivalent ones
 - Computational and definitional equality
 - Derived equivalences in lemmata and hypotheses
- Decision Procedures: Solve problems in narrow application domains
 - Translate proof goal into different problem domain
 - Use efficient algorithms for checking translated problems
- Proof Search Procedures: Compact representation of proof tree
 - "Unintuitive", but efficient proof procedure
 - Only for "small" theories
 - Correct integration into interactive proof system?

TACTICS: USER-DEFINED INFERENCE RULES

• Meta-level programs built using

- Basic inference rules
- Predefined tacticals . . .
- Meta-level analysis of the proof goal and its context
- Large collection of standard tactics in the library

• May produce incomplete proofs

- \mapsto User has to complete the proof by calling other tactics
- May not terminate
 - \mapsto User has to interrupt execution

but

Applying a tactic always results in a valid proof

Basic Tactics

Subsume primitive inferences under a common name

Hypothesis: Prove $\lceil \dots C \dots \vdash C' \rceil$ where $C' \alpha$ -equal to C

Declaration: Prove $\lceil \dots x : T \dots \vdash x \in T' \rceil$ where $T' \alpha$ -equal to T

Variants: NthHyp i, NthDecl i

Decompose the outermost connective of clause c D *c*:

Decompose immediate subterms of an equality in clause c EqD c:

Decompose subterm of a membership term in clause c MemD c:

Variants: EqCD , EqHD i, MemCD , MemHD i

Decompose type subterm of an equality in clause c EqTypeD c:

Decompose type subterm of a membership term in clause c MemTypeD c:

 $Variants: {\tt EqTypeCD}$, ${\tt EqTypeHD}$ i, ${\tt MemTypeCD}$, ${\tt MemTypeHD}$ i

Assert (or cut) term t as last hypothesis Assert t:

Apply trivial reasoning, decomposition, decision procedures . . . Auto:

Reduce all primitive redices in clause c Reduce c:

PARAMETERS IN TACTICS

• Position of a hypothesis to be used

NthHyp *i*

• Names for newly created variables

- New [x] (D 0)
- Type of some subterm in the goal With $x:S \rightarrow T$ (MemD 0)

• Term to instantiate a variable

With |S| (D 0)

• Selection from a number of alternatives

Sel n (D 0)

• Universe level of a type

(D 0)

• Dependency of a term instance C[z]on a variable z

Using |[z,C]| $(D \ 0)$

TACTICALS

Compose tactics into new ones

Apply tac_2 to all subgoals created by tac_1 tac_1 THEN tac_2 :

t THENL [tac_1 ; ...; tac_n]: Apply tac_i to the i-th subgoal created by t

 tac_1 THENA tac_2 : Apply tac_2 to all auxiliary subgoals created by tac_1

 tac_1 THENW tac_2 : Apply tac_2 to all wf subgoals created by tac_1

 tac_1 ORELSE tac_2 : Apply tac_1 . If this fails apply tac_2 instead

Apply tac. If this fails leave the proof unchanged Try tac:

Apply tac only if this completes the proof Complete tac:

Apply tac only if that causes the goal to change Progress tac:

Repeat tac until it fails Repeat tac:

RepeatFor *i* tac: Repeat tac exactly i times

Try to apply tac to all hypotheses AllHyps tac:

Apply tac to the first possible hypotheses On Som Hyp tac:

ADVANCED TACTICS

Induction

- Natind i: standard natural-number induction on hypothesis i
- IntInd, NSubsetInd, ListInd: induction on **Z**, IN subranges, lists
- CompNatInd i: complete natural-number induction on hypothesis i

• Case Analysis

- BoolCases i: case split over boolean variable in hypothesis i
- Cases $[t_1; \ldots; t_n]$: n-way case split over terms t_i
- Decide P: case split over (decidable) proposition P and its negation

Chaining

- InstHyp $[t_1; \ldots; t_n]$ i: instantiate hypothesis i with terms $t_1 \ldots t_n$
- FHyp i $[h_1; ...; h_n]$: forward chain through hypothesis i matching its antecedents against any of the hypotheses $h_1...h_n$
- BHyp i: backward chain through hypothesis i matching its consequent against the conclusion of the proof
- Backchain bc_names: backchain repeatedly through lemmas and hypotheses

Variants: InstLemma name $[t_1; ...; t_n]$, FLemma name $[h_1; ...; h_n]$, BLemma name.

DECISION PROCEDURES

• Decide problems in narrow application domains

- Translate proof goal into different problem domain
- Decide translated problem using efficient standard algorithms
- Implement directly in Nuprl or connect as external proof tool

• Currently available

- ProveProp: simple propositional reasoning
- Eq: trivial equality reasoning (limited congruence closure algorithm)
- RelRST: exploit properties of binary relations (find shortest path in relation graph)
- Arith: standard, induction-free arithmetic
- SupInf: solve linear inequalities over Z

Arith: INDUCTION-FREE ARITHMETIC

- Input sequent: $H \vdash C_1 \lor \ldots \lor C_m$
 - $-C_i$ is an arithmetic relation over **Z** built from <, \leq , >, \geq , =, \neq , and \neg

• Theory covered:

- ring axioms for + and *
- total order axioms of <
- reflexivity, symmetry and transitivity of =
- limited substitutivity

• Proof procedure:

- Translate sequent into a directed graph whose egdes are labeled with natural numbers
- Check if the graph contains positive cycles
- Implemented as Nuprl procedure (Lisp level)
- Integrated into the tactic Auto

SupInf: LINEAR INEQUALITIES OVER Z

• Adaptation of Bledsoe's Sup-Inf method

- Complete only for the rationals
- Sound for integers

• Proof procedure:

- Convert sequent into conjunction of terms $0 \le e_i$ where each e_i is a linear expression over \mathbb{Q} in variables $x_1 \dots x_n$
- Check if some assignment of values to the x_j satisfies the conjunction
- Determine upper and lower bounds for each variable in turn
- Identify counter-examples if no assignment exists
- Implemented as Nuprl procedure (ML level)
- Integrated into the tactic Auto'

Proving the Existence of an Integer Square Root

```
THM intsqrt
                \forall n: \mathbb{N}. \exists r: \mathbb{N}. r^2 < n < (r+1)^2
* top
                BY allR
           1. n : IN
* 1
                \vdash \exists r : \mathbb{N}. \ r^2 < n < (r+1)^2
                BY NatInd 1
* 1 1 .....basecase.....
                \exists r : \mathbb{N}. \ r^2 \leq 0 < (r+1)^2
                BY With [O] (D O) THEN Auto
* 1 2 .....upcase.....
                1. i : IN
               2. 0 < i
3. r : IN
4. r^2 \le i-1 < (r+1)^2
                \vdash \exists r: IN. r^2 \leq i < (r+1)^2
                BY Decide (r+1)^2 < i \mid THENW Auto
* 1 2 1 5. (r+1)^2 < i
                \vdash \exists r : \mathbb{N}. \ r^2 < i < (r+1)^2
                BY With [r+1] (D 0) THEN Auto'
* 1 2 2 5. \neg((r+1)^2 \le i)
                \vdash \exists r: IN. r^2 \leq i < (r+1)^2
                BY With [r] (D 0) THEN Auto
```

REWRITING: REPLACE TERMS BY EQUIVALENT ONES

• Simple rewrite tactics

Fold name c: fold abstraction name in clause c

Unfold name c: unfold abstraction name in clause c

Subst $t_1 = t_2 \in T$ c: substitute t_1 by t_2 in clause c

Reduce c: repeatedly evaluate redices in clause c

Nuprl's rewrite package

- Functions for creating and applying term rewrite rules
- Supports various equivalence relations
- Based on tactics for applying conversions to clauses in proofs

Conversions

- Language for systematically building rewrite rules
- Transform terms and provide justifications
- Need to be supported by various kinds of lemmata
- Organized like tactics: atomic conversions, conversionals, advanced conversions

ATOMIC CONVERSIONS

• Folding and Unfolding Abstractions

- UnfoldC abs: Unfold all occurrences of abstraction abs
- FoldC abs : Fold all instances of abstraction abs

Versions for (un)folding specific instances available as well

• Evaluating Redices

- ReduceC: contract all primitive redices
- AbReduceC: contract primitive and abstract (user-defined) redices

• Applying Lemmata and Hypotheses

- Universally quantified formulas with consequent a r b
- HypC i: rewrite instances of a into instances of b
- RevHypC i: rewrite instances of b into instances of a

Variants: LemmaC name, RevLemmaC name

Building Rewrite Tactics

• Construct advanced Conversions using Conversionals

- ANDTHENC, ORTHENC, ORELSEC, RepeatC, ProgressC, TryC
- SubC, NthSubC, AddrC, SweepUpC, SweepDnC, DepthC, AllC, SomeC, FirstC

• Define Macro Conversions

- MacroC name c_1 t_1 c_2 t_2 : Rewrite instance of t_1 into instance of t_2 c_1 and c_2 must rewrite t_1 and t_2 into the same term, name is a failure token
- SimpleMacroC name t_1 t_2 abs: Rewrite t_1 into t_2 by unfolding abstractions from abs and contracting primitive redices

• Transform Conversions into Tactics

- Rewrite c i: Apply conversion c to clause i

Variants: RewriteType c i, RWAddr addr c i, RWU, RWD

Writing a tactic-based proof search procedure is easy

Sort rule applications by cost of induced proof search

```
let simple_prover = Repeat
                            hypotheses
                     ORELSE contradiction
                     ORFLSE InstantiateAll
                     ORELSE InstantiateEx
                     ORELSE conjunctionE
                     ORELSE existentialE
                     ORELSE nondangerousI
                     ORELSE disjunctionE
                     ORELSE not chain
                     ORELSE iff_chain
                     ORELSE imp_chain
                    );;
letrec prover = simple_prover
                THEN Try ( Complete (orI1 THEN prover)
                          ORELSE (Complete (orI2 THEN prover))
                ;;
```

simple_prover: COMPONENT TACTICS

```
let contradiction
                   = TryAllHyps andE is_and_term
and conjunctionE
and existentialE = TryAllHyps exE is_ex_term
and disjunctionE = TryAllHyps orE is_or_term
and nondangerous I pf = let kind = operator_id_of_term (conclusion pf)
                     in
                        if mem mkind ['all'; 'not'; 'implies';
                                     'rev_implies'; 'iff'; 'and']
                           then Run (termkind ^ 'R') pf
                           else failwith 'tactic inappropriate'
                     ;;
let imp_chain pf = Chain impE (select_hyps is_imp_term pf) hypotheses pf
let not_chain
                = TryAllHyps (\pos. notE pos THEN imp_chain) is_not_term
                  , ,
                = TryAllHyps (\pos. (iffE pos THEN (imp_chain
let iff_chain
                                                    ORELSE not_chain))
                                    ORELSE
                                    (iffE_b pos THEN (imp_chain
                                                    ORELSE not_chain))
                             ) is_iff_term
```

simple_prover: Rule Tactics for First-Order Logic

	left	right	
andE i	Γ , $\underline{A \wedge B}$, $\Delta \vdash G$	$\Gamma \vdash \underline{A \wedge B}$	andI
	Γ , \underline{A} , \underline{B} , $\Delta \vdash G$	$\Gamma \vdash \underline{A}$	
		$\Gamma \vdash \underline{B}$	
$orE\ i$	Γ , $\underline{A \lor B}$, $\Delta \vdash G$	$\Gamma \vdash \underline{A \lor B}$	orI1
	Γ , \underline{A} , $\Delta \vdash G$	$\Gamma \vdash \underline{A}$	
	Γ , \underline{B} , $\Delta \vdash G$	$\Gamma \vdash \underline{A \lor B}$	orI2
		$\Gamma \vdash \underline{B}$	
impE i	Γ , $\underline{A \Rightarrow B}$, $\Delta \vdash G$	$\Gamma \vdash \underline{A \Rightarrow B}$	impI
	Γ , $\underline{A} \Rightarrow \underline{B}$, $\Delta \vdash \underline{A}$	Γ , $\underline{A} \vdash \underline{B}$	
	Γ , Δ , $\underline{B} \vdash G$		
notE i	Γ , $\underline{\neg A}$, $\Delta \vdash G$	$\Gamma \vdash \underline{\neg A}$	notI
	Γ , $\underline{\neg A}$, $\Delta \vdash \underline{A}$	Γ , $\underline{A} \vdash \mathtt{false}$	
exE i	Γ , $\exists x:T.B$, $\Delta \vdash G$	$\Gamma \vdash \underline{\exists x : T . B}$	exI t
	Γ , $\underline{x:T}$, \underline{B} , $\Delta \vdash G$	$\Gamma \vdash \underline{B[t/x]}$	
allE i t	Γ , $\forall x:T.B$, $\Delta \vdash G$	$\Gamma \vdash \underline{\forall x : T . B}$	allI
	Γ , $\forall x:T.B$, $B[t/x]$, $\Delta \vdash G$	Γ , $\underline{x:T} \vdash \underline{B}$	

simple_prover: MATCHING AND INSTANTIATION

```
let InstantiateAll =
    let InstAll_aux pos pf =
         let concl = conclusion pf
         and qterm = type_of_hyp pos pf
                                                  in
            let sigma = match_subAll qterm concl in
               let terms = map snd sigma
                                                  in
                  (allEon pos terms THEN (OnLastHyp hypothesis)) pf
    in
       TryAllHyps InstAll_aux is_all_term
;;
let InstantiateEx =
  let InstEx_aux pos pf =
        let qterm = conclusion pf
        and hyp = type_of_hyp pos pf
                                                in
           let sigma = match_subEx qterm hyp
                                                in
              let terms = map snd sigma
                                                in
                 (exIon terms THEN (hypothesis pos)) pf
 in
       TryAllHyps InstEx_aux (\h.true)
;;
```

Integrating Complete Proof Search Procedures

• Tactic-based proof search has limitations

- Many proofs require some "lookahead"
- Proof search must perform meta-level analysis first

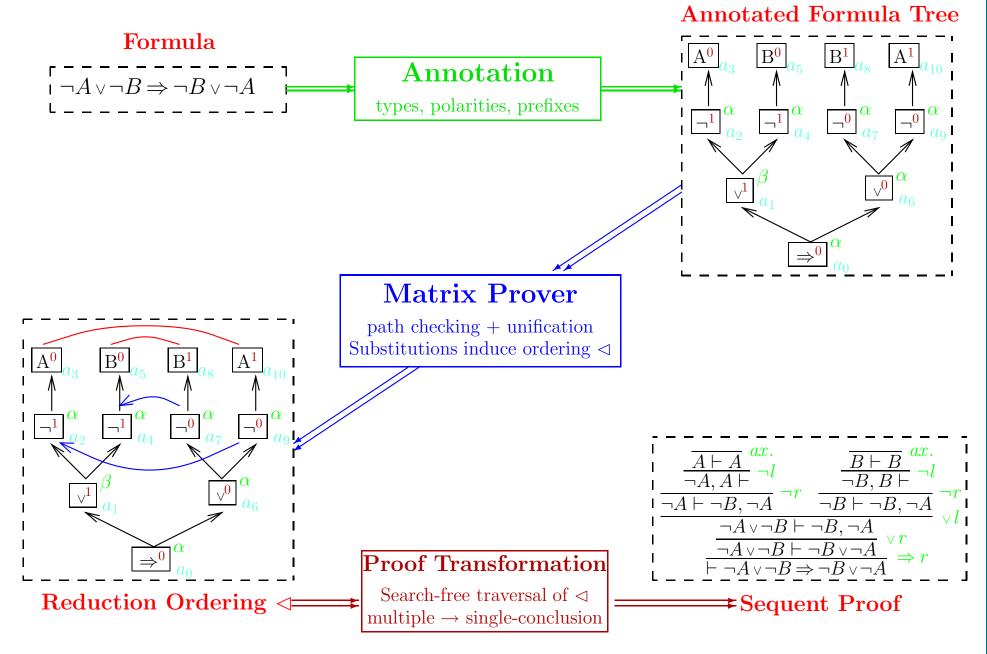
• Complete proof search procedures are "unintuitive"

- Proof search tree represented in compact form
- Link similar subformulas that may represent leafs of a sequent proof
- Proof search checks if all leaves can be covered by connections and if parameters all connected subformulas can be unified

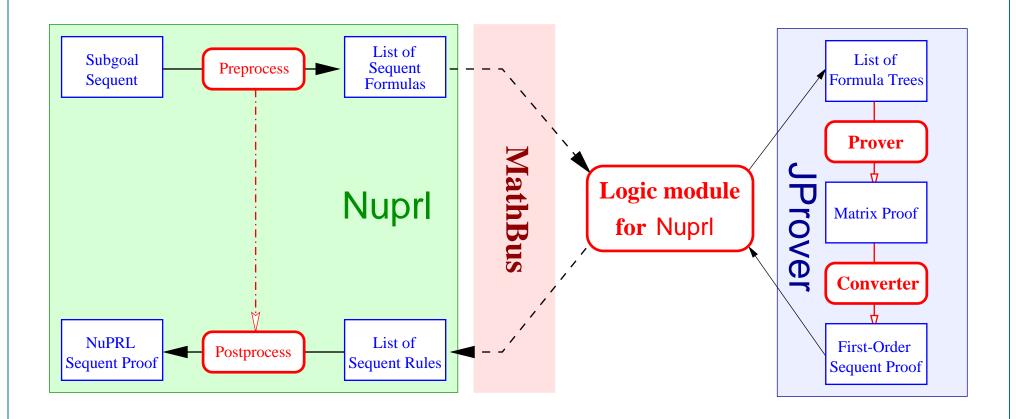
• JProver: inutionistic proof search for Nuprl

- Find matrix proof of goal sequent and convert it into sequent proof

JProver: PROOF METHODOLOGY (Kreitz, Otten, Schmitt 1995–2000)

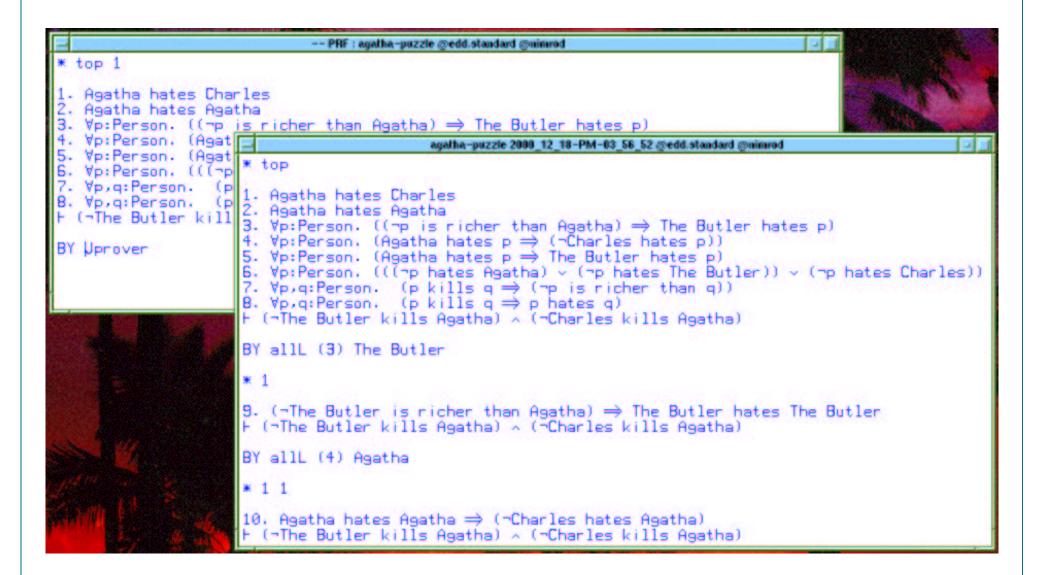


JPROVER: INTEGRATION ARCHITECTURE (Schmitt, et. al 2001)



- Communicate formulas in uniform format (MathBus) over INET sockets
- Logic module converts between internal term representations
- Pre- and postprocessing in Nuprl widens range of applicability

SOLVING THE "AGATHA MURDER PUZZLE"



JProver can run in trusted mode or with all proof details expanded

Part IV:

Building Formal Theories

An elegant account of Record Types

• Express records as (dependent) functions from labels to types

```
\begin{array}{lll} -\left\{x_1\!\!:\!T_1\!\!:\!\ldots\;;\;x_n\!\!:\!T_n\!\!\right\} &\equiv 1\!\!:\! \mathrm{Labels} \to \mathrm{if}\; \mathrm{l}\!\!=\!\!x_i\; \mathrm{then}\; T_i\; \mathrm{else}\; \mathrm{Top}\\ -\left\{x_1\!\!=\!\!t_1\!\!:\!\ldots\;;\;x_n\!\!=\!\!t_n\!\!\right\} &\equiv \lambda \mathrm{l.if}\; \mathrm{z}\!\!=\!\!x_i\; \mathrm{then}\; t_i\; \mathrm{else}\; \mathrm{()}\\ -r.l &\equiv (r\;l) \end{array}
```

- Dependent Records $\{x_1:T_1; x_2:T_2[x_1]; \ldots; x_n:T_n[x_1;...x_{n-1}]\}$
 - Type T_i may depend on value of components $x_1; ... x_{i-1}$
 - Used for describing algebra, abstract data types, inheritance, ...
- Use (dependent) intersection to formalize both

```
\{x\!:\!T\} \equiv z:Labels \rightarrow if z=x then T else Top \{R_1;\ R_2\} \equiv R_1\cap R_2 \{x\!:\!S;\ y\!:\!T[x]\} \equiv r\!:\!\{x\!:\!S\}\cap \{y\!:\!T[r\!.\!x]\} r\!.\!l \equiv (r\ l) r\!.\!l<-t \equiv \lambdaz. if z=l then t else r\!.\!z \{\} \{r;\ l\!=\!t\} \equiv r\!.\!l<-t
```

 \sim Subtyping $\{x_1:T\} \subseteq \{x_1:T_1; x_2:T_2[x_1]\}$ is easy to prove

Syntax of iterations can be adjusted using display forms

FORMAL ALGEBRA: SEMIGROUPS

Tuple (M, \circ) where M is a type and $\circ: M \times M \to M$ associative

• Formalization as dependent product (Σ type)

```
SemiGroup \equiv M: \mathbf{U} \times \circ: M \times M \to M \times \forall x, y, z: M. \ x \circ (y \circ z) = (x \circ y) \circ z \in M

\rightarrow semigroups represented as triples (M, \circ, assoc\_pf)
```

• Formalization via set types

```
SemiGroupSig \equiv M: \mathbf{U} \times \circ: M \times M \rightarrow M
SemiGroup \equiv {sg:SemiGroupSig | \forall x,y,z: M_{sg}. x \circ_{sg} (y \circ_{sg} z) = (x \circ_{sg} y) \circ_{sg} z \in M_{sg}}
```

- → tedious to access components or use associativity in proofs
- Formalization via dependent records

```
SemiGroupSig \equiv \{M: \mathbf{U}; \circ: M \times M \rightarrow M\}
SemiGroup \equiv \{\text{SemiGroupSig}; \text{ assoc}: \downarrow (\forall x,y,z:M. \ x \circ (y \circ z) = (x \circ y) \circ z \in M)\}
```

- → Accessing components and properties straightforward
- → Type squashing suppresses explicit proof component
- → Subtyping relation SemiGroup

 ⊆ SemiGroupSig easy to prove

FORMAL ALGEBRA: MONOIDS AND GROUPS

• Monoid: semigroup with identity

```
MonoidSig \equiv { SemiGroupSig; e:M}
Monoid \equiv { SemiGroup; MonoidSig; id: \downarrow(\forallx:M. e\circx=x\inM)}
\rightarrow natural use of multiple inheritance
```

• Group: monoid with inverse

```
GroupSig \equiv { MonoidSig; ^{-1}:M\rightarrow M}
Group \equiv { Monoid; GroupSig; inv: \downarrow (\forall x:M.x \circ x^{-1}=e \in M)}
```

→ refinement hierarchy follows directly from definitions

FORMALIZATION: ABSTRACT DATA TYPES

• Abstract Data Type for stacks over a type T

```
TYPES Stack OPERATORS empty: Stack push: Stack\times T \to \text{Stack} \times T \to \text{Stack} \times T pop: \{s:\text{Stack} | s \neq \text{empty}\} \to \text{Stack} \times T AXIOMS pushpop: \forall s:\text{Stack}.\forall t:T. pop(push(s,a)) = (s,a)
```

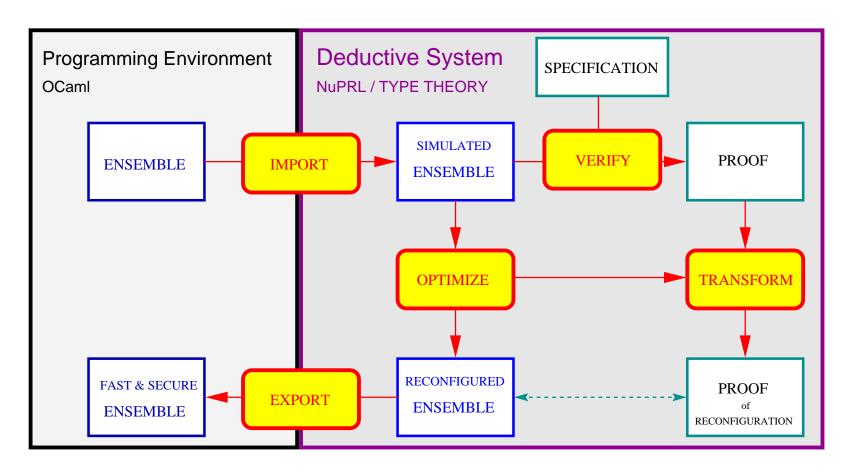
Formalization

- Dependent products unsuited for same reason as above
- Dependent records lead to "natural formalization"

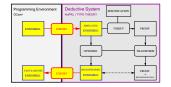
```
\begin{array}{lll} \mathtt{STACKSIG}(T) & \equiv \left\{ \begin{array}{ll} \mathtt{Stack} \colon \mathbf{U} \\ & ; \ \mathtt{empty} \colon \ \mathtt{Stack} \\ & ; \ \mathtt{push} \colon \ \mathtt{Stack} \times T \to \mathtt{Stack} \\ & ; \ \mathtt{pop} \colon \ \left\{ \mathtt{s} \colon \mathtt{Stack} \mid \mathtt{s} \neq \mathtt{empty} \right\} \to \mathtt{Stack} \times T \right\} \\ \\ \mathtt{STACK}(T) & \equiv \left\{ \mathtt{STACKSIG}(T) \, ; \ \mathtt{pf} \colon \downarrow (\forall \mathtt{s} \colon \mathtt{Stack} . \forall \mathtt{t} \colon T . \ \mathtt{pop}(\mathtt{push}(\mathtt{s},\mathtt{a})) = (\mathtt{s},\mathtt{a}) \in \mathtt{M}) \right\} \end{array}
```

• Formalizing the implementation of stacks through lists

HOW TO APPROACH LARGE APPLICATION EXAMPLES? Verify and optimize distributed systems (Ensemble)

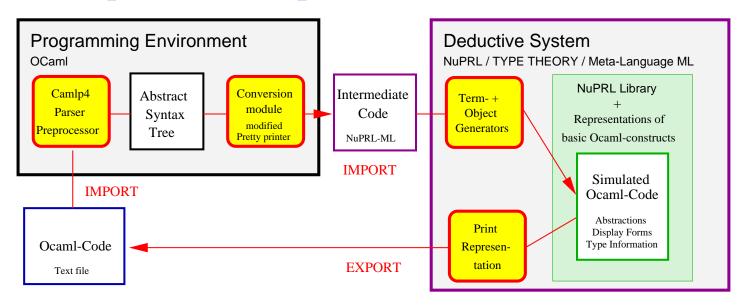


- Formalize semantics of implementation language
- Build tactics for verification of protocols and system configurations
- Build tactics that optimize performance of configured systems



EMBEDDING SYSTEM CODE INTO NUPRL ENABLE FORMAL REASONING ON OCAML LEVEL

- Type-theoretical semantics of OCAML fragment
- Nuprl implementation captures syntax & semantics
- Develop programming logic for OCaml
- Build import and export mechanisms





VERIFYING SYSTEM PROPERTIES LINK FOUR LEVELS OF ABSTRACTION

Formalize system specification and code

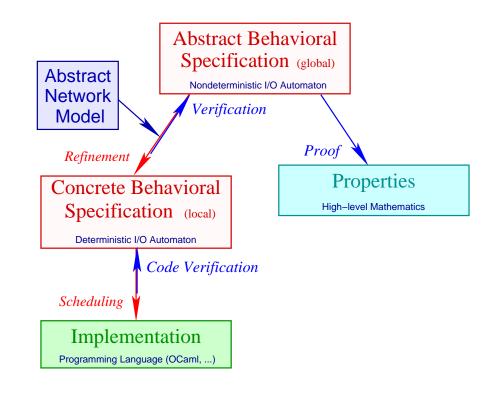
e.g. "Messages are received in the same order in which they were sent"

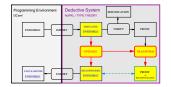
- "Messages may be appended to global event queue and removed from its beginning"
- "Messages whose sequence number is too big will be buffered"
- Ensemble module Pt2pt.ml: 250 lines of OCAML code

All levels represented in type theory

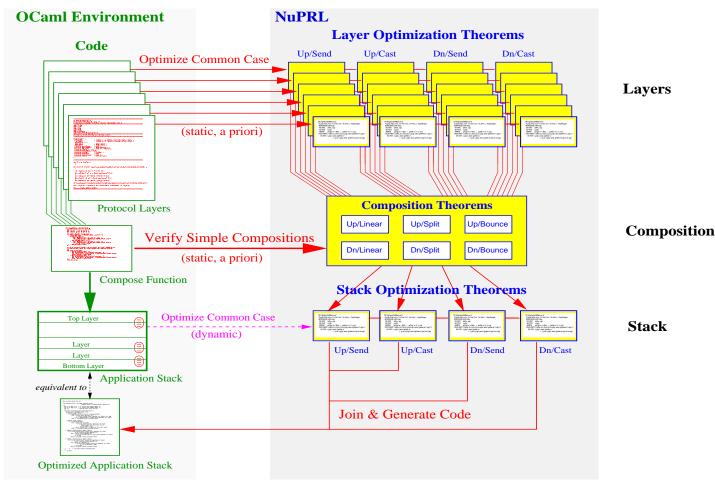
Verification methodology

- Verify component specifications
 (benign assumptions subtle bug detected)
- Verify systems by composition
 (IOA-composition preserves safety properties)
- Weave aspects
- Verify code





OPTIMIZATION OF PROTOCOL STACKS PROVE AND COMPOSE OPTIMIZATION THEOREMS



- 1. Use known optimizations of micro-protocols
- 2. Compose into optimizations of protocol stacks
- 3. Integrate message header compression
- 4. Generate code from optimization theorems and reconfigure system

A priori: Ensemble + Nuprl experts

automatic: application designer

automatic:

automatic:

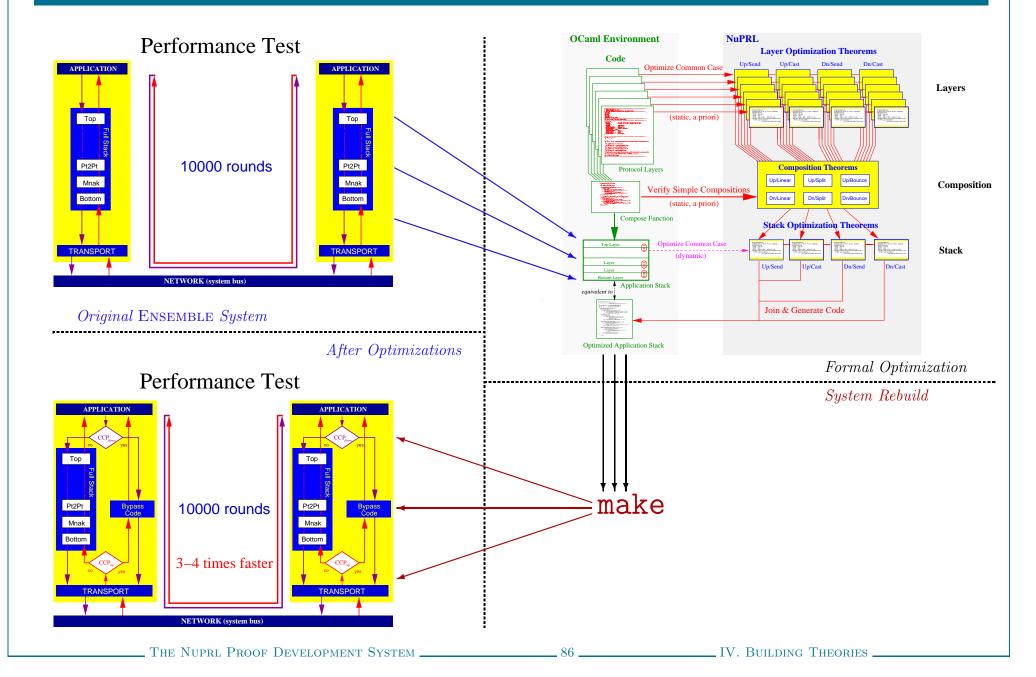
speedup factor 3-10

_____IV. Building Theories _

DEMO: Optimizing a 24-layer Protocol Stack

Top :: Heal :: Switch :: Migrate :: Leave :: Inter :: Intra :: Elect :: Merge :: Slander :: Sync :: Suspect :: Stable :: Vsync :: Sync :: Suspect :: Stable :: Vsync :: Sync :: Sync

 $Partial_appl:: Total:: Collect:: Local:: Frag:: Pt2ptw:: Mflow:: Pt2pt:: Mnak:: Bottom Partial_appl:: Total:: Collect:: Local:: Frag:: Pt2ptw:: Mflow:: Pt2pt:: Mnak:: Bottom Pt2pt:: Bottom Pt2pt:: Bottom Pt2pt:: Bottom Pt2pt:: Bottom Pt2pt:: Bottom Pt2pt:: Botto$



Part V:

Future Directions

Challenges for Automated Theorem Proving

• A more expressive theory

- Reflection: reasoning about syntax and semantics simultaneously
- Reasoning about objects, inheritance, liveness, distributed processes, ...

• A more widely applicable system

- Digital Libraries of Formal Knowledge
- Cooperation between different proof systems

• Learn more from large scale applications

- Synthesize, verify, and optimize high-assurance software systems
- Target "unclean" but popular programming languages
- Aim at pushbutton technology

DIRECTIONS IN THEORY: REFLECTION

- Embed meta-level of type theory into type theory
 - Reason about relation between syntactical form and semantical value
 - · evaluation, resources, complexity
 - · semantical effects of syntactical transformations (reordering, renaming, . . .)
 - \cdot proofs, tactic applications, dependencies (e.g. proofs \leftrightarrow library contents)
 - · relations between different formal theories

... from within the logic

- Extremely powerful, but little utilization
- Approach: mirror type theory as recursive type
 - Logically satisfactory, not efficient enough for practical purposes (LICS 1990)
- New: primitive type of intensional representations
 - Type Term, closed under quotation

(Cornell 2001)

- Theoretically challenging, but much more efficient

Reflection – basic methodology

• Represent object and meta level in type theory

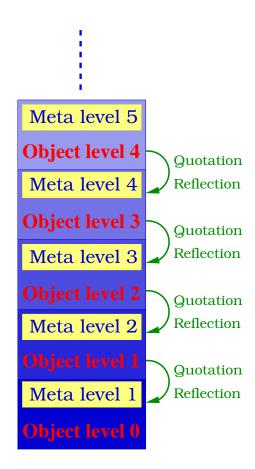
- Represent meta-logical concepts as Nuprl terms
- Express specific object logic in represented meta logic
- Build hierarchy: level i contains meta level for level i+1
- \mapsto Reasoning about both levels from the "outside"

• Link object logic and meta-logic

- Embed object level terms using quotation (operator)
- Embed object level provability using reflection rule

$$\Gamma \vdash_{i+1} A$$
 by reflection i $\vdash_i \exists p : Proof_i$. goal(p) = $\lceil \Gamma \vdash_{i+1} A \rceil$

• Use same reasoning apparatus for object and meta level

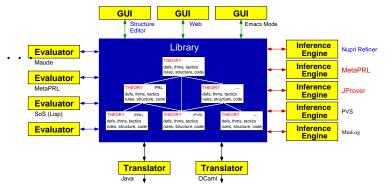


DIGITAL LIBRARIES OF FORMAL ALGORITHMIC KNOWLEDGE

• Library as platform for cooperating reasoning tools

• Connect

- Additional proof engines: PVS, HOL, MinLog, ...
- Multiple browsers (ASCII, web, ...) and editors (structured, Emacs-mode, ...)
- MathWeb (through OmDoc interface)



• Provide new features

- Archival capacities (documentation & certification, version control)
- Embedding external library contents (needs data conversion, proof replay, ...)
- A variety of justifications (levels of trust)
- Creation of formal and textual documents
- Asynchronous and distributed mode of operation
- Meta-reasoning (e.g. about relations between theories) and reflection

Improve cooperation between research groups

Authoritative reference for reliable software construction

Areas for Study & Research

• Formal Logics & Type Theory

- Classes & inheritance, recursive & partial objects, concurrency, real-time
- Meta-reasoning, reflection, relating different logics, ...

• Theorem Proving Environments

- Logical accounting, theory modules, interfaces, proof presentation, ...

• Automated Proof Search Procedures

- Matrix methods, inductive theorem proving, rewriting, proof planning
- Decision procedures, extended type inference, cooperating provers
- Proof reuse, analogy, distributed proof procedures, ...

Applications

- Formal CS knowledge: graph theory, automata, trees, arrays, . . .
- Strategies for program synthesis, verification, and optimization
- Modeling programming languages (OCAML, JAVA, ..)