
Chapter 12

Interfaces

Lesson page 12-1. Interfaces

Activity 12-1-1 The interface

Question 1. Interface means, literally, between the faces. In general, an
interface is a plane or other surface forming a common boundary of bodies or
spaces.

Question 2. The form of an interface is:

interface <identifier> {
<abstract methods and constant definitions>

}

Question 3. The interface is abstract, like an abstract class, in the sense that
it cannot be instantiated. Method frooble is abstract, because it does not
have a method body.

Question 4. False.

Activity 12-1-2 Implementing an interface

Question 5. C’s header: public class C implements In

Question 6. True.

Activity 12-1-3 The real use of interfaceActionListener

Question 7. The header is:
public class SubFrame extends Frame implements ActionListener

Question 8. The statement that adds b is: add(b); .

Question 9. This call registers SubFrame as a listener of b:

b.addActionListener(this);

Question 10. This method will be called when the button is pressed:

public void actionPerformed (ActionEvent e) {
System.out.println("b was pressed.");

}



106 Chapter 12. Interfaces

Lesson page 12-2. The interface as a type

Activity 12-2-1 The interface

Question 1. Orthogonal: lying or intersecting at right angles; mutually
perpendicular; completely independent.

Question 2. True.

Question 3. No type casts are necessary.

Question 4. An instance of an interface In (say) is really an instance of a
class C (say) that implements the interface, so the instance of In has all the
variables and methods that the instance of C has.

Activity 12-2-2 Implementing more than one interface

Question 5. public class C implements In, Jn

Question 6. Class C has to define all the methods that are defined in inter-
faces In and Jn.

Activity 12-2-3 Extending an interface

Question 7. In Java, multiple inheritance occurs when a class inherits the
same method (with the same signature) from two different sources —from a
superclass and an interface or from two interfaces.

Question 8. False.

Question 9. True.

Question 10. False.

Activity 12-2-4 Exercises on interfaces

Lesson page 12-3. Interface Comparable

Activity 12-3-1 Interface Comparable

Question 1. Here is interface Comparable.

public interface Comparable {
// < 0 if b < this object, 0 if b = this
// object, and > 0 if b > this object
int compareTo(Object b);

}

Note that the parameter of compareTo is of type Object! In a few places,
ProgramLive mistakenly says that it is of type Comparable.

Question 2. Interface Comparable is useful in any class in which there is an
ordering of objects; method Comparable defines the ordering. Examples are



Chapter 12. Interfaces 107

the wrapper classes Integer and Double, a class whose instances are dates, a
class whose instances are times, and a class whose instances are colors, where
some ordering of colors can be given.

Activity 12-3-2 Implementing class Comparable

Question 3. This is a bad question, because it can’t be answered. Class
Comparable has nothing to do with negative values, only with comparing
values to see whether one is smaller than, equal to, or greater than another.
For example, the standard implementations of time on our computers do not
allow negative values. Our apologies.

In place of this question, we could have a question to write a nonstatic
method (in a class C) with Comparable array b as a parameter that tests
whether at least one element of b is less than the object in which the method
occurs. We give the outline of class C as well:

import java.util.*;

public class C implements Comparable {
// = <0 if this object is < x; 0 if this
// object = x; > 0 if this object > b
public int compareTo(Object x) {

C c= (C) x;
// put code here to do the comparison
// and return -1, 0, or 1

}

// = "an element of b is less than this object"
public boolean hasSmaller(Comparable[] b) {

// inv: no element of b[0..i-1] is less than this
for (int i= 0; i != b.length; i++) {

if (compareTo(b[i]) > 0) {
return true;

}
}
return false;

}
}

Question 4. The header is: public class C implements Comparable

Question 5. The answer depends on what version of Java you are using.
The old version 1.1 did not have interface Comparable, and consequently, the
wrapper classes like Integer did not implement Comparable. In version 1.2,
wrapper class Integer does indeed implement interface Comparable, so the
methods of class Compares will indeed work on Integers, as well as Pixels,



108 Chapter 12. Interfaces

where class Pixel is defined on lesson page 12.3.

Activity 12-3-3 Casting between Pixel and Comparable

Question 6. False.

Question 7. True.

Lesson page 12-4. Interface Enumeration

Activity 12-4-1 Interface Enumeration

Question 1. An enumeration is a detailed list; an account of a number of
things, in which mention is made of every one of them. One can have an
enumeration of the natural numbers, 0, 1, 2, 3, ..., even though there are an
unbounded number of them.

Question 2. Method nextElement has to yield an element of class Object
(or of some subclass of it), and char is a primitive type, not a class type.

Question 3. The two methods in every Enumeration implementation:

// = ‘‘there are more objects to enumerate’’
boolean hasMoreElements()

// = the next object to enumerate. If there are
// no more, throw a NoSuchElementException
Object nextElement()

Question 4. Here’s the method:

// = the number of blanks in s
public static int numberOfBlanks(String s) {

StringEnumeration= new StringEnumeration(s);
int x= 0;
// {x = number of blanks in chars seen thus far}
while (e.hasMoreElements()) {

char c= ((Character)e.nextElement()).charValue();
if (c == ’ ’) {

x= x+1;
}

}
return x;

}

Activity 12-4-2 A neat use of Enumeration

Question 5. False. The method print that is given in this activity can be
used to print any instance of Enumeration (or its subclasses).



Chapter 12. Interfaces 109

Question 6. Here is method print with an Iterator as a parameter:

// Print the contents of Iterator e.
public static void print(Iterator e) {

while (e.hasNext()) {
System.out.println(e.next());

}
}

Question 7. Here is class StringIterator:

import java.util.*;
public class StringIterator implements Iterator {

String s; // The String to be enumerated
int k= 0; // s[k] is next char to be enumerated

// Constructor: an instance to enumerate sp
public StringIterator(String sp) {

s= sp;
}

// = "there are more elements to enumerate"
public boolean hasNext()

{ return k != s.length(); }

// = The next element to enumerate
public Object next() {

if (!hasNext()) {
throw new NoSuchElementException(

"no more characters");
}
k= k+1;
return new Character(s.charAt(k-1));

}

// Remove --not implemented
public void remove() {

throw new UnsupportedOperationException();
}

}



110 Chapter 12. Interfaces


