EDUCATING THE PROGRAMMER:

NOTATION, PROOFS AND THE DEVELOPMENT OF PROGRAMS+
David Gries

TR 80-41L

Department of Computer Science
Cornell University
Ithaca, New York 14853

+Work supported by NSF grant MCS76-22360.

Educating the Programmer:
Notation, Proofs and the Development of Programs+

David Cries
Computer Science, Cornell University
Ithaca, New York, USA

The current state of affairs in programming is discussed., The opinion is expressed that
effective programming requires more "mathematical maturity" than most programmers have.
Further, education in formal logic, which is used (often informally) to reason about pro-
grams and specifications, and in a theory of programming could do much to increase the
programmer's competence. Such education could lead to programming becoming more of a sci-
ence than just an art., Examples are given throughout to support the opinions presented.

1. INTRODUCTION: VIEWS OF THE 70's’’

The 1970's saw what might scem a remarkable
increase in our knowledge of programming. It
was just in 1968 that a NATO conference on
"software engineering®™ was convened [1], in
vhich academicians and industrialists discussed
the software crisis and admitted that how to
program -- and how to teach it -- was really a
mystery. Recognition of this crisis stimulated
much research. Consequently, the 1970's saw
the emergence of Mstructured programming”,
which most people profess to practice, of the
idea of program correctness and how correctness
might be proven, of management techniques such
as the "chief programmer team", of documenta-
tion aids and devices that attempt to force the
programmer to document well (e.g. structured
flaw charts, HIPO diagrams), and of new pro-
gramming notations (e.g. Pascal and, of late,
the U.S. Department of Defense notation Ada).

Today, people in industry tell me that young
programmers are much better trained than their
counterparts of ten years ago, and that their
programs are in general much more readable
(chiefly because they are no longer piles of
spaghettil). This has made people generally
happier with the state of affairs than they
were 10 years ago.

But there is also a pessimistic side of the
coin. In general, the field still lacks "pro-
fessionalisu"; programming is still too much of
a sloppy art instead of a science, and rela-
tively few programmers seem interested in
understanding programming enough to really

+Work supported by NSF grant MCS76-22360.

study it. This saddens me somewhat, for I
think that enough theoretical foundations have
been laid in the past ten years to have made
programming more of an orderly, professional
process.

Let me explain a bit more why I feel this way.
Many years ago, Tony Hoare called structured
programming the task of organizing one's
thoughts in a way that leads, in a reasonable
amount of time, to an understandable expression
of a computing task. While this definition
gives no insight into how structured program-
ming can be performed, it does succinctly state
what we should expect from it, and thus allows
us to determine whether programmers practice
it. The answer is no, for three reasons.
First, the task is still not completed in a
reasonable amount of time, in spite of all our
advances, as is evidenced by the frequent cost
overruns and missed deadlines. Secondly, the
final program is rarely as readable and under-
standable as it could be (although progress has
been made). Thirdly, programs rarely satisfy
their specifications; they are replete with
errors, some of which are not found for years

(if ever).

Perhaps this is why over 70 of all programming
is now maintenance of old programs (which means
that only 30% is devoted to developing new
ones), and why each year the percentage
increases: we don't know what we are doing.

Here is a specific example to illustrate the
general lack of proficiency. In 1976 I had to
write an algorithm to "right-justify"™ a line of

++The words he, his and him are used to denote someone of either sex.

text -- to insert blanks in a given manner
between words so that the last word would end
in a certain column. I applied what I thought
were effective techniques (using correctness-
proof ideas, etc.). The result was nice enough
for me to consider writing it for others to
read, and referees thought enough of it to
honor it with publication [2].

As an experiment, I asked 40-50 graduate stu-
dents, faculty members and programmers from
industry to solve the problem. They were
explicitly told that this was an experiment,
that the first concern was gorrectness and
clarity, and that the second concern was effi-
ciency. Nevertheless, over half of them wrote
incorrect programs! Moreover, my program was
slightly more efficient than all the others;
due to the style of programming, I had
developed a different solution., The errors in
many of the programs were minor, but of such a
nature that testing would probably not uncover
them. I also took no longer to create my
correct program than they did to create their
incorrect ones, although it did take me a long
time to describe the development in a technical

report.

It is this general lack of proficiency at writ-
ing even small programs that causes me concern.

In my country, the USA, we now have over
105 000 undergraduates between the ages of 18
and 21 studying computer science as a major
topic. That is an enormous number -- what a
chance to make a lasting impression, to produce
young people who will enter industry and effect
a change! Unfortunately, while most get some
introduction to the use of simple control
structures, too many are having their first
algorithmic thoughts polluted by BASIC and FOR-
TRAN, and too few are being exposed to the
solid theoretical background that I feel is so
important,

Even at the graduate level the wrong viewpoint
is often taught. I recently talked with a
young Ph.D. who had just finished a thesis in
program verification. I asked how many stu-
dents majored in that area in his department.
He replied that very few did, because it was so
hard. One had to attach assertions to flaw
charts, with no insight into how or why it was
done, one had to study esoteric kinds of logic,
with emphasis on models and consistency, and so
forth, and it was just too difficult. I asked
whether in any course the idea of producing a
program and its correctness-proof hand-in-hand,
with the latter actually leading the way, was
taught. No, it wasn't, and the idea had not

even occurred to him! And he was intrigued at
some of the program developments 1 showed him.

Here was a computer scientist who had spent 3
or 4 years studying verification and had not
even heard of some important reasons for and
principles behind his work. I view a proof of
correctness as my obligation when developing a
program, and as something to guide me in the
development, but certainly not something to be
studied in and for itself., I agree with DeM-
illo, Lipton and Perlis in their article Social
processes and proofs of theorems and programs
[3], if they are talking about mindless verifi-
cation.

But enough! I have been talking about what is
wrong with the field in order to make clear to
you that all is not as it should be. It is
time to stop complaining and begin talking
about how it could be.

2, CAN PROGRAMMING BECOME A PROFESSION?

To me, programming is a difficult intellectual
challenge, which requires a good deal of
mathematical maturity. As with mathematical
theorems, it is the programmer's duty to prove
his program correct. A theorem, or a program,
is a tool for others to use, but in order to
use it one must be assured of its correctness.

Perhaps I should explain what I mean by a
proof, for some people are frightened by the
word, According to Webster's Third New Inter-
national Dictionary, a proof is "the cogency of
evidence that compels acceptance by the mind of
a truth or a fact". Thus a proof is an argu-
ment that convinces the reader of the truth of
a statement, The definition says nothing about
the language in which the proof is written or
about how formal it must be.

In this sense, every programmer tries to
"prove" his program correct, for he tries to
come up with arguments that convince himself of
its correctness. That he is often not up to
the task is evident from the fact that his pro-
grams are replete with errors even after much

testing.

Ten years ago, we did not yet have the techni-
cal understanding to know what a proof of pro-
gram correctness should entail; we were just
groping our way towards that understanding. So
to require proofs of any kind at that time
would have been silly.

We have, however, come a long way since then;
we have established much of the necessary

theoretical foundations, Hence, I am actually
optimistic about the future. We are reaching a
stage where we can begin to talk of the sci-
ence, rather than the art of programming, where
these two terms are used in the sense given in
Fowler and Gowers's Dictionary of Modern
English Usage:

the term science is extended to denote a
department of practical work that depends
on the knowledge and conscious application
of principles; an art, on the other hand,
being understood to require merely
knowledge of traditional rules and skill
acquired by habit. '

This does not mean that programming will become
a sterile, simple task. There will always be
creativity and excitement in it, and it will
always require skill and intellectual effort.
But the emergence of principles based on
theoretical foundations means that we can do a
better job on the programming task and, more
importantly, we can teach others how to do it
better.

In this talk I am arguing for better under-
standing and education in what has been called
programming "in-the-small", as opposed to pro-
gramming "in-the-large™, a term coined by Frank
DeRemer and Hans Kron in 1975. One reason for
this is that I do think the methods will "scale
up" to large systems of programs, but there is
another reason., To put it quite simply, I
believe that one cannot, simply cannot expect
to develop iarge programs or systems of pro-
grams effectively until one can develop small
programs effectively.

This argument was put forward by Edsger W.
Dijkstra in an extremely convincing manner:
Suppose a program consists of n small com-
ponents, each with a probability p of being
correct. Then the probability P that the whole
program is correct certainly satisfies P < pn.
Since n is large in any good-sized program, to
have any hope that the program 1is correct
requires p to be very, very close to 1.

Please stop for a moment and read that argument
again, It has convinced me to spend a good
deal of time in the past ten years studying
programming in-the-small. Others seem capable
of brushing the implications of this argument
aside, but I can't.

0f course, other kinds of education and
research are ncecessary as well, 1 can think of
a number of areas in which research and educa-

tion would help, eoge

(1) Programming notations, or languages (e.g.
Ada),

(2) Mechanical aids, e.g. debugging tools,
verifiers,

(3) Management techniques.

But the general lack of programming proficiency
(in myself as well as others) forces me to con-
clude that the best way to make significant
progress 1is to increase technical competence,
and at first "in-the-small". Note that items
(1)-(3) yield only supplemental tools, which
aid in the use of the mental tools of the pro-
grammer, and no supplemental tool can make up
entirely for lack of mental skill.

Another way to state the case is to say that
increasing technical competence is preventive
medicine for reducing the number of unhealthy
programs. The cause of errors in programs is,
to some extent, incompetence, and increasing
competence should help prevent errors. Tools
such as debugging aids, on the other hand, are
aimed at curing sickness after it has spread.
While both prevention and cure are necessary,
in the long run prevention is better.

I have thus far given you my vague opinion on
what is needed: more and better education to
increase technical competence. Let me now be
more specific. In the succeeding sections, I
will discuss the following, in turn.

(1) Predicate calculus

(2) A theory of programming
(3) Searching for simplicity
(4) Using suitable notatioms

3. TEACHING THE PREDICATE CALCULUS

Programmers constantly deal with propositional
statements about program variables. They must
see logical connections, must deduce conclu-
sions from hypotheses, and so on. Yet, rarely
are they taught the fundamentals of such rea-
soning; they are not given the necessary mental
tools. They usually learn about Boolean
expressions, but they don't learn how to reason
about them.

Every programmer needs a basic course in formal
logic (in the propositional calculus and predi-
cate calculus), for these form the foundations
for our reasoning, be it formal or informal.

Unfortunately, logic is often taught from the
logician's point of view, and not the
programmer's. The logicisn is more interested

in logic for its own sake, while the programmer

is interested only in using logic as a practi-
cal, everyday tool, For example, he nceds to
understand how a specification can describe a
set of states; he must have facility at
translating (usually ambiguous) descriptions of
what a program is to do into a formal specifi-
cation written in the predicate calculus; he
should be an expert at manipulating logical
formulae to prove conclusions from hypotheses.
One doesn't nced much deep logic; one needs to
learn some basic material extremely well,

A sound knowledge of predicate calculus is
necessary especially in order to understand the
theoretical foundations to be explained later.
For example, a basic idea in one approach to
programming is that of a "weakest precondition"
wp(S, R) for a statement S with respect to
predicate R: a predicate describing the larg-
est set of states such that execution of §
begun in any one of those states is guaranteed
to terminate in a state satisfying R. To
fully understand wp requires knowledge of how
predicates describe sets of states. For exam-
ple, using this idea the assignment statement
is defined as

wp(x:= e, R) = R:

wvhere the predicate to the right of = is
derived by replacing all free occurrences of x
in R by e. For example, wp("x:=x+1",x>0)
= x+1>0. This rule yields a mathematical
understanding of assignment and g¢an be practi-
cally applied. But wunless one thoroughly
understands textual substitution and the rela-
tion between a predicate and the set of states
it represents, this simple proof rule cannot be
fully appreciated or used.

Here is an example of the kind of reasoning
that programmers should be able to perform
easily., It is not taken from a programming
domain, but from the game WEF'N PROQOF -- the
game of MODERN LOGIC.

Ihe tardy bus problem. Suppose the following

three statements are given:

(1) If Bill takes the bus, then Bill misses
his appointment, if the bus is late.

(2) Bill shouldn't go home, if (a) Bill
misses his appointment, and (b) Bill feels
downcast.,

(3) If Bill doesn't get the job, then (a)
Bill feels downcast, and (b) Bill should go
home.

Assuming these statements are true, which of
the statements are valid? (Give proofs of the

valid ones and counterexamples for the invalid
ones.)

(1) If the bus is late, then (a) Bill
doesn't take the bus, or Bill doesn't miss
his appointment, if (b) Bill doesn't get the
job.

(2) 1f Bill does get the job, then (a) Bill
doesn't feel downcast, or (b) Bill shouldn't
go home,

(3) 1f (a) Bill should go home, and Bill
takes the bus, then (b) Bill doesn't feel
downcast, if the bus is late.

Part of the difficulty in solving such puzzles
is the English: it is difficult to parse some
of the sentences. Programmers have the same
problem in understanding English specifications
and translating them into a more formal form.
Moreover, once understood, one needs to know
how to effectively reason about the specifica-
tion -- how to prove conclusions from
hypotheses.

Unfortunately, the computer science "Curriculum
78" [4] does not include a course on logic,
although 7 other courses in mathematics are
included because of their "relevance" to com-
puter science. I would hope that the next
revision would be more up to date.

4. TEACHING A THEORY OF PROGRAMMING

When it comes to the programming activity
itself, I believe the emphasis should be on
constructing programs that, with a very high
degree of probability, are correct. I think
this can be done, if we excuse the typical
kinds of syntactic errors we tend to make --
after all, we are only human. But it requires
knowledge of and experience with principles of
program development that are based on develop-
ing a program and its proof hand-in-hand. This
requires more mathematical maturity than many
programmers currently possess.

My own tastes run to Edsger W. Dijkstra's way
of thinking of programming, and in my opinion
his book [5] represents a significant advance
in our understanding of programming. I will
try to illustrate two of his major points here,
in the hope that you will be convinced that
there is something to this "disciplined"
approach to programming. But please remember
that I can only illustrate a few basic points,
using very small examples., Many people, when
seeing similar introductions, are skeptical and
say, "I see how it works on that example, but
does it generalize?" Or they question whether

the material is too difficult for the "average
programmer" to learn.

To the first question, I must reply yes. More
to the point, study and practice of the method
yields a new outlook on the programming pro-
cess, which increases understanding and profi-
ciency in ways that cannot be quantified. My
teaching has also been influenced; I feel I
have a better grasp of fundamentals, and the
theory gives me reasons for introducing certain
concepts and ideas, even though I do not (yet)
teach all the formalism in an introductory
course.

To the second question, I must answer that my
job is to investigate the process of program-
ming, and if my investigations point to the
fact that certain technical material is neces-
sary, that programming is inherently difficult,
I am forced to tell you that. You may decide
to reject my technical ideas based on political
or social considerations, but please be sure
that you realize the nature of your considera-
tions,

4.1 "Weakest preconditions and thinking back-
wards"

As mentioned earlier, one of the key points in
Dijkstra's work is the notion of a weakest
precondition wp(S, R). Previously, the nota-
tion {P} S {R} had been used as a specifica-
tion for program S, with the meaning: if exe-
cution of § begins in a state satisfying
predicate P, then execution will terminate in
a state satisfying R. We see now that this
notation is equivalent to P = wp(S, R).

Given a specification {P} S {R} and asked to
develop S, the definition of wp influences
us to attempt to develop S based mainly on
R, and at the same time to develop wp(S,R);
when finished, we have to prove that
P = wp(S,R).

At first, this seems backward; our operational
habits make us think we should develop a pro-
gram based on the precondition, because the
program is executed from beginning to end. But
programming is a "goal-oriented" activity, with
much more emphasis on the postcondition R
than the precondition ©P. An example will
illustrate this.

Consider writing a program (segment) to store
the maximum of two variables x and y in a
variable z. Thus, we want to write a program
S satisfying {P: true} S {R: z=max(x,y)}.
The postcondition can be put in the form

Rt z2x A z2y A (z=xV z=y),

We attempt to derive S solely from R: how
can we assign to z to establish R? We can
establish the part z=x of R by executing
z:=x, but this will establish R only under
certain conditions. To determine those condi-
tions we derive

wp(Mz:=x", R) = R:

X2Xx Ax2y A (x=x V x=y)

X2y,

Hence execution of 2z:=x establishes R if
and only if initially x2y. Similarly, we see
that execution of z:=y establishes R if
and only if y2x. This leads us to construct
the following alternative statement in
Dijkstra's notation:

if x2y + z:=x
0Oy2x > az:=y
fi

Both formal and informal reasoning allows us to
conclude that execution will always establish
R, so that the precondition is the desired
one: true.

Given R, we developed a statement S, and
then found that the desired precondition true
was satisfactory. The reader is now invited to
do the opposite:

Develop S from the precondition P (=
true) only;

When finished, prove that execution of §
with P true establishes R.

The possibility of arriving at a correct state-
ment S in this manner is obviously remote.

This idea that programming is a goal-oriented
activity needs much more explanation than I can
give in this short talk, but I hope that I have
convinced you that there is something to it.

4.2 Loop invariants

Another key point in this discipline of pro-
gramming concerns invariants of loops. (The
notion of an invariant was also crucial in ear-
lier ground-breaking work by Bob Floyd in 1967
and Tony Hoare in 1969.)

Let us consider a loop do B + S od. I am
using Dijkstra's notation, because, at this
point, it seems to me to be the most simple,
concise and flexible. This loop is equivalent
to the PL/I loop DO WHILE (B); S END;. The
following theorem has been proved about this

loop.

Iheorem. Let P be a predicate that satisfies
P = wp(S, P).
Let t be an integer function of the pro-
gram variables that satisfies
(PAB) = t>0 and
(P A B) = wp("T:=t; S", t<T)
where T is a new program variable. Then
P = wp("do B + S od", P A 4B).

The first hypothesis, P = wp(S,P), states
that execution of the loop body leaves P
invariantly true. Hence P is called an
invariant relation of the loop. The second two
hypotheses define properties of an integer
function t, which can be viewed as an upper
bound on the number of iterations still to be
performed. Thus these indicate that execution
of the loop will terminate. One of these says
that as long as another iteration is necessary
the bound on the number of iterations still to
be performed is greater than zero; the other
says that execution of the loop body decreases
the bound by at least 1.

Does this seem difficult? It may, at first.
Nevertheless, it is one of the most exciting
developments in programming, for it has taught
us how to understand loops, which are one of
the most difficult parts of programming. More-
over, it has provided a way to teach others to
understand loops. The effect of such formal
developments can not be overestimated!

To use the theroem, one must have a suitable
loop invariant, Furthermore, it is wise to
develop the invariant before writing the loop
(or in parallel with writing the loop, through
a trial and error process), as the following
example shows,

4.3 An example of the development of a loop

Consider the problem of reversing a linked
list. Two arrays V[1:100] (for Yalue) and
L[1:100] (for Link) and a variable p are
used to implement a linked list of wvalues
(vl, ..., vn) for some n, 0<n<100:

vl =V[p], v2=V[L[p]],
v3 = VLLIL[p]]] = vIL2[p1]s ...,
vo=V[L" '[p]], L"[pl=0.

In pictures, we have

(1) »p Vi VL

Vi

It is desired to reverse the linked list, so
that p represents the 1list (vn, ..., vl).
Thus, upon termination, we should have

(2) »p VL VL

VL%
k VI, N1 NN e

No other arrays may be used. Array V should
not be changed; only array L and variable p
may be changed.

It looks like a loop is necessary, since there
is no limit on the length of the list. Furth-
ermore, it seems reasonable to have a loop that
at each iteration changes one of the L
fields. Initially, the invariant must ™look
like" the initial conditions, and upon termina-
tion it must look like the final result. Thus,
we seek an invariant of which both the initial
condition and result are instances., With this
in mind, it is fairly easy to represent the
invariant by an informal picture:

p VL Vi VL
W\ k|, |
t VL

VL VL%
LT[-k [3> .]

Thus, p represents the part of the list that
has been reversed; t the part that has not.
It is then easy to write down the algorithm:

(3)

t:=p; p:=0; {Invariant has been esta-
blished}

do t#0 > p, t, L[t]:=¢t, L[t], p od

The termination fuction t of the theorem is
the number of elements on the list represented
by variable t.

Isn't that a neat little program? I have seen
programmers slave over this small, trivial
problem for over a half hour, and still not
know whether their result was correct. Writing
down an invariant first, in order to crystalize
the idea behind the loop, leads almost immedi-
ately to the program.

I must confess to two errors concerning the
development of this algorithm. First, most
languages do not have the multiple assignment
statement used above. Hence, I must "sequen-
tialize™ -- write the multiple assignment as a
sequence of simple assignments -- and, invari-
ably, I make a mistake when doing this. The
multiple assignment is so basic to my way of
thinking -- it represents a simple change of

state by changing a set of variables rather
than just one -- that I think it should be
included in all programming languages. If not
included, it should at least be taught as a
concept in programming courses.

Secondly, the use of pictures, as above, is
nice, because it lets us see what the idea is
more quickly than a complicated predicate cal-
culus statement would. But it can fgo easily
lead to errors or inefficiencies, for it is
just too difficult to convey everything in a
Picture because it looks like a single example.
To illustrate, my first attempt at writing the

loop from the picture was

if p% 0+ t:=L[pl; L[pl:=0;

do t#0 -+ p, t, L[pl:=t, L[t], p od
0 p=0 -+ skip
fi

This was because the picture of the invariant
lent no clue as to the case p=0 =-- when p
represents an empty list -- and I was led to
think that p should have at least one element
in it. Gary Levin, a graduate student at Cor-
nell, showed me my error. Let t-+ represent
the list of values in a linked list whose head
pointer is t, and let t+ represent the same
list of values but reversed. Then the input
specification can be written as pr =
(vl, ..., vn) and the desired result can be
written as p+ = (vl, ...,vn). It is then
fairly easy to see that a good invariant is

prot+ = (vl, ..., vn).

where o denotes concatenation of lists. From
this it is easy to see that Mt:=p; p:=0" is
a valid initialization, and that the case p=0
does not have to be handled separately.

4.4 A second example

Let us consider another example, which shows
nicely how research in programming has taught
us to reason about iterative processes. Con-
sider an urn filled with a number of black
balls and white balls. There are also enough
balls outside the urn to play the following
game. We want to reduce the number of balls in
the urn to 1 by repeating the following process
a8 often as necessary.

Pick any two balls in the urn. If both are
the same color then throw them away, but put
another black ball into the urn; if they are
different colors then return the white one
to the urn and throw the black one away.

Each "execution" of the above process reduces
the number of balls in the urn by 1; when only
one ball is left, the game is over. Now, what,
if anything, can be said about the color of the
final ball in the urn in relation to the origi-
nal number of black balls and white balls?

Right now, you are probably thinking about the
problem in terms of test cases: what happens if
initially there are two white balls? Two black
balls? One and one? Two and one? Note that
such thinking is akin to programming by test
cases: based on some test cases write a pro-
gram; look for more test cases and revise the
program, etc. Experience has shown that this
process simply doesn't work well. First, one
soon generates so0 many cases that confusion
results. Secondly, continually patching a pro-
gram to handle new cases results in a mess.,

Let us try to be more effective in finding a
solution to this. Note that the game is an
iterative process, and there should be some
property that holds about the balls in the urn
before and after each iteration -- the loop
invariant, if you wish., After termination of
the process, the invariant together with the
fact that one ball is in the urn should tell us
the color of that ball. Since there is finally
one ball, and one is an odd number, we are led
to consider whether the parity of the number of
black (say) balls remains invariant; after all,
parity is a simple property, and simplicity is
what we should always strive for. A look at
the process indicates that the parity of the
black balls is not an invariant. But a look
also convinces us that the parity of the white
balls is invariant: the number of white balls
is reduced by 2 or not at all. Hence the final
ball is white if and only if initially there is
an odd number of white balls,

This little problem was solved by myself and
others in under 10 minutes. I have, however,
watched others struggle for over a half hour or
more, until a hint was given to look for an
invariant, at which point the answer came in 5
more minutes. Clearly, the idea of invariants,
of 1looking for properties that remain true
throughout a process, is extremely important to
have in our bag of tools! But it is only
effective if omne has practiced using it and
consciously attempts to apply it.

It is often claimed that an invariant is too
difficult to derive, especially before having
written a loop. At the beginning this is cer-
tainly true, but as one gains expericnce it
becomes easier and easier and, finally, becomes
a habit. One can introducc the concept to new

programmers very ecarly, but without any formal-
ism, as follows. I tell my students to group
variable declarations by logical relationship
(instead of by type). Secondly, I tell them to
define their wvariables before writing any
statements that use them, where by "define" I
mean '"describe their logical relationship".
For example, if an array T 1is to contain a
list of numbers representing temperatures, and
K is a "counter" (such vague words should be
struck from our vocabulary, for they only
encourage imprecision) for the list, then they
should first write down the sentence "T[1:K]
is the list of temperatures created thus far."
Once this has been written down, one sees
immediately that the initialization =0 is
called for, and whenever one has to write a
program statement dealing with T or K one
can refer to this definition. The theory has
really helped me here, for I view this defini-
tion as nothing more than an invariant that
must hold at (almost) all places in the pro-
gram. This shows clearly how the theory can
lend insight and can be put into practice in an
informal manner.

5. SEARCHING FOR SIMPLICITY

Mathematicians and computer scientists often
have the problem of presenting their work in
such a way that others can understand, but with
enough formality so that one can see that the
work is complete and correct. The.mathemati-
cian has to find the right balance between for-
mality and detail on the one hand and intuition
on the other; he has to find the simplest way
to express exactly what is necessary to convey
understanding. The programmer has an even
harder problem in this regard, because of the
overwhelming mass of detail that programs
entail. Hence it is even more important for
the programmer to search for just the right
kind and amount of detail -- no more, no less
-- 8o that a rcader (and the programmer him-
self) can understand and appreciate as quickly
and easily as possible. The programmer tries
to find notation and organization in order to
make complexity tractable -- or even to make
sure complexity never arises.

This is so important that I like to call the
field of programming computational simplicity,
as opposed to the already-existing field in
computer science, computational complexity.

This need for a balance and simplicity is
rarely taught, and some would argue that it
can't be; a person either learns it through
experience and interaction with others or

doesn't. Nevertheless, it should be stressed
again and again to the student and illustrated
by example. The student can benefit from
detailed feedback on programs, in the way of
comments explaining how a slightly different
technique, or a more precise comment, or a more
suitable notation would have helped. This
takes time and effort on the part of the
teacher; it cannot be done with an automatic
program grader (these things I would throw
out). But it is worth it., The problem is, of
course, that not all programming teachers
understand this need for continually searching
for simplicity.

5.1 An example: exponentiation

Consider the well-worn problem of calculating
b for b,c20 (with 0°=1). A programmer who
understands exponmentiation and binary arith-
metic might note that

bl3 =b8b4b1p
and that 13 =(1101)2. He could then arrive at
a formula for b based on the binary
representation for «c:

= (eq1m €12
n-1
c

b = I (if ¢, =1 then b
. i
1=0

B 1se 1)

where 2%*i means 2° and each c. is 0 or

1. It seems plausible, therefore, to think of

using a loop with a "counter" k running from 0

to n; initially z=1, and at each itera-
. th . 2%xk

tion the k factor (if ¢, then b else

1) is "multiplied into" z.

For reasons of efficiency, a vari%hki x is
introduced to contain the value b and a
variable y is introduced to contain that part
of the binary representation of y still to be
"processed". This leads to the following loop
invariant P:

P: 0sk<n,
k-1 .
z= I (if ci=l then bz**l else 1)
i=0
y:(cn_l.-.ck)z
2%%k
x=b

Now one can develop the following loop:

Xs Y 2y k2=b,c, 1, 03
do k#n +

if even(y) -+ skip

0 odd(y) =+ z:=z*x

£i;

K, x, y:=k+l, x*x, floor(y/2)
od

But let us step back for a minute and see
whether everything is as clear as it could be.
Note that we are forced to refer to the number
of bits of c. Moreover, the invariant
includes a complicated product of terms, which
might be a major stumbling block. Is it neces-
sary? Can we simplify?

In a sense, 2z contains part of the final
answer: z*2=b° for some 2, and Z is the
product of the terms (if c. =1 then b L oelse
1), for i between k and n-1. Some simple
formula manipulation leads us to the neat fact
that

Z=x

c . .
Hence, z4x’ = b » and the invariant P can be
written -- without referring to n or k --
as

Pl: y20 A z#x) =b°,

Redevelopment of the algorithm using Pl as
the invariant leads to

Z, Xs y:=1, b, c;

do yz0 + if even(y) =+ y, x:=y/2, x*x
0 odd(y) =+ y,z:=y-1,z*x
fi

od

This is the well-known logarithmic (in ¢) algo-
rithm that is usually presented. Rearrangement
can make it slightly more efficient by reducing
unnecessary tests. What I have attempted to
show is that a typical programmmer could have
developed it as a matter of course, if he
understood the use of invariants and formal
correctness ideas, and if he relentlessly pur-
sued simplicity and a good balance between for-
malism and common sense. To understand the
final algorithm, a reader must also understand
correctness ideas.

Note that the algorithm has not been proved
formally correct in all details; to do this
would just lead to obscurity. Rather, only
that part of the formalism necessary to promote
understanding -- especially the loop invariant
-- has been given, while other parts deemed to
be obvious enough or easy enough have been left
to the reader.

This search for simplicity, the right amount of
detail, for the balance between formalism and
intuition, must be relentlessly pursued. At
each step, the programmer must ask himself:
have I found the right way to express things?
Along with this goes the need for style and
elegance -- something else that is rarely even
talked about. Elegance does matter; only if we
continually try to find the neatest, simplest
argument or notation can we hope to begin to
program well. Examples of elegant programs and
arguments must be continually pointed out to
the student.

6. USING SUITABLE NOTATIONS

In my introduction, I made a rather caustic
remark about BASIC and FORTRAN. Let me temper
that remark somewhat with an explanation. We
have been struggling for 30 years to find the
right notations to express algorithms. This
struggle has been intensified by the fact that
we want our programs to be executed on comput-
ers, which means the notation must be imple-
mented. Much effort goes into implementing a
notation, and, when a new, perhaps better,
notation arises, we resist, simply because of
inertia. Not only is it difficult to change
our thinking habits, but all our old programs
have to be changed too. I can therefore
(almost) understand the resistance to change.

Throughout history, there has been a continual
battle over notation, and the present is no
different in this regard than the past. For
example, in the 1600s and 1700s the following
signs were used for equality:

= » |l 212)= [.

And in the early 18th century there was a long,
drawn-out battle between the semi-finalists,

Robert Recorde's = and Ren& Descartes's 1,
with = finally emerging victorious. From
this standpoint, it is too bad that the
universally-adopted sign = 1is used for other

purposes in some languages, viz. assignment.
(In his book on the history of notation [6],
Cajori mentions that X is probably the symbol
for Taurus on its side. Secondly, after hear-
ing me talk on this subject, Wlad Turski con-
jectured that = came from the astronomical
sign & for the equinox (when night and day
are of equal length). Since at one time the
sun was in Taurus during the vernal equinox,
both = and » could have the same origin!)

One also remembers the struggle in the 1600s
betwcen two notations for the derivative:

Newton's y and Leibnitz's dy/dx, with

Leibnitz'z superior notation winning.

Finally, mathematics had its Ken Iverson in
those days, in the person of William Oughtred,
who used over 150 mathematical symbols, while
at the same time Robert Simon still clung to
using only natural language for proofs and
expositions, using not one mathematical symbol

in his 1756 edition of Euclid.

In his book, Cajori concludes that the whole
fight over symbolism or notation is a good
object-lesson to mathematicians, and that noth-
ing is all good or bad. Used in moderation and

at the right time, symbolism is at its best.

This is precisely what we were talking about in
balance 1is

the previous section: a proper
needed.,
Hence, I don't get too upset when people use

FORTRAN or BASIC; I just feel sorry for them.

But what does upset me is to hear of program-
mers that know only FORTRAN or BASIC. Language
shapes the thought said Benjamin
Whorf, and programming languages (notations) do
the same. One who knows only FORTRAN or BASIC
is severely hindered in his thinking about pro-
gramming, because he must place all his algo-
rithmic thoughts and in an
inadequate one at that,

and wmind,

in one notation,

It has been shown that some programs simply
cannot be written with the FORTRAN do-loop, and
hence people who know only that one notation
for looping are severely handicapped. One per-
son recently told me that he likened a person
who has been forced into knowing only FORTRAN
to a child having been shut up in a dark closet

for most of his life.

that some notations are

some express our inten-

It is also obvious
clumsier than others,
tions better than others,
error-prone than others.

and some are more

It therefore behooves the professional to learn
several notations, and to choose which one(s)
he wants to work with based on technical con-
siderations, and not just on familiarity. A
programmer may be forced to use a certain nota-
but that does not mean he must
one

tion at times,
think in it.
programs into a language, not in it.

As I said many years ago,

10

7. SUMMARY

This completes the major part of my talk; I
would now like to summarize. I have discussed
two major technical areas in which a programmer
should be competent: logic and a theory of pro-
gramming., And I have discussed some more
elusive ideas that should take root: the need
for simplicity, the need for elegance, the
for balance between formalism and intuition,
the need for a continual search for the right
While I cannot guarantee it, my
opinion is that a programmer who takes my
advice seriously will increase his programming
effectivity.

need

notation.

But I add a caveat to my remarks; learning pro-
gramming is hard work. No one-day course on
the subject can hope to accomplish much. It
takes study and practice. Our old habits,
developed through years of purely operational
thinking due to our computers, have to some
extent to be overcome. Moreover, it is not
enough just to know the technical material, one
must consciously attempt to apply it. Much of
the material seems quite simple after a while,
but it cannot be applied until one ftries to
apply it. 1In this regard, I like the following
saying -- I don't know to whom I should attri-
bute it:

Never dismiss as obvious any fundamental
principle, for it is only through conscious
application of such principles that success
will be achieved,

But, in the long run, I think the work one must

put in to learn such material 1is eminently
worth it.
ACKNOWLEDGEMENT

I wish to thank Fred Schneider, of Cornell, and
Peter Deussen, of Karlsruhe, for many excel-
lent, constructive criticisms of drafts of this
manuscript.

REFERENCES

[{1] Buxton, J.N. et al (eds.) Software Engineer-
ing. Petrocelli,]975. (Report on two NATO Conf.)
{2] Gries, D. An illustration of current ideas
on the derivation of correct programs. IEEE
Trans. Soft. Eng. 2 (Dec 1976),238-244.

[3] DeMillo, R.A., R.J. Lipton, A.J. Perlis.
Social processes and proofs of theorems and
progrms. CACM 22 (Mar 1979), 271-280.
[4] Austing, R.H. et al. Curriculum '78.
22 (Mar 1979), 147-166.

[5) Dijkstra, E.W. A Discipline of programming.
Prentice Hall, 1976.

[6) Cajori, F. A History of Mathematical Nota-
tion. Open Court. Publ. Co. LaSalle, 1974.

CACM

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif

