“\E‘:&‘C}‘{-‘.}:?})Jgih" f"“ g
5 - S

LA N
“‘_i"l, g \5’ “

8 |
Ffawd qir G S R G

The ALCOR Illinois 7090/7094
Post Mortem Dump

R. BAYER
Boeing Scientific Research Laboralories, Seallle, Washington

D. Gries
Stanford University, Stanford, California

M. PauL
University of Illinots, Urbana, Illinots

H. R. WignLE .
Telefunken, Konstanz, Germany

A dump technique for programs written in ALGOL 60 is de-
scribed. This technique provides an intelligible analysis of on
unsuccessful computation process in terms of the original source
program.

Introduction

Much effort has been expended in recent years to pro-
vide powerful programming languages and sophisticated
compilers in order to make communication between man
and computer as easy as possible. This development, how-
ever, has completely bypassed one area where communica-
tion is particularly difficult, namely, post mortem dumps.
Their purpose is to provide some information about what
happened in the computation process if a program does
not terminate successfully after it had started to execute.
We will eall such a situation from now on a Failure.

The techniques still widely used today in even the most
modern and advanced third generation computers are
obsolete and produce very inconvenient dumps. Such a
dump consists typically of one cryptic message like “AC
OVERFLOW AT LOC...” or “AIEMORY PROTECT
VIOLATION AT LOC...,” and an octal or hexadecimal
listing of certain storage areas containing the object code,
library routines, and data. To analyze such a dump one
must go through a cascade of decodings, know the main
characteristics of a particular machine, its internal lan-
guage, the operating (supervisory) system, and the object

This project was supported in part by the Deutsche Forschungs-
gemeinschaft, in part by the Mathematisches Institut der Tech-
nischen ITochschule Miinchen, and in part by the Department of
Computer Science of the University of 1llinois

804 Communications of the ACM

"?;f;'l;‘?ii’?s@g amzz‘ang@@é’ﬁ

g "}k‘f\ "‘.A""{\d"‘:@"" A ’f’*‘J'A“'"‘"l‘—' X )

i 5
B

m@;eg@g |

Jige 4‘*%: J

M D. McILROY, Editor

code corresponding to a program written in the source
language, i.e., the mapping from the source language into
the machine language performed by the compiler. This,
however, is exactly the bulk of highly specialized knowl-
edge that advanced programming languages and compilers
are supposed to make superfluous. But even granted this
knowledge, there still remains the difficult and tedious
task of extracting from the mess of mainly superfluous
information contained in a ‘“dump” those clues which
might contribute to a successful analysis of a Failure. It
should be obvious by now that a better solution for the
dump problem is most desirable.

Many solutions with various compromises between the
completeness of the analysis and the cost in computer
time and programming effort are conceivable; one solution
which has been successfully implemented in connection
with the ALcor Illinois 7090 ALcoL-60 Translator is the
subject of discussion in this paper. Since this dump rou-
tine has been designed for a specific language (ALcoL 60)
and a particular class of machines (IBM 7090/94) and
operating systems, some of the ideas deseribed here have
to be slightly modified for other configurations, but
certainly the basic principles involved are almost uni-
versally applicable.

Objcctives and Overall Organization

The following main goals had to be met in the design of
the Arcor Illinois 7090/94 Post Mortem Dump (PM-
Dump):

1. Exccution of an ALGoL program must not be slowed
down if the program runs successfully. .

2. Understanding the analysis given by PM-Dump
must not require any specialized knowledge beyond what
is necessary to write the ALGoL program.

3. The analysis should be dynamic as far as possible;

' l.e., events happening before the Failure with a possible

influence on its cause should be recorded in the dump.

4. All information irrelevant to the determination of the
cause of the Failure should be avoided.

5. Information referring to specific machine char-
acteristics should be minimized.

PM-Dump is not a single piece of program, but splits
naturally into several subproblems (see Figure 1) which
are best dealt with at various stages (translation, loading,
exccution) of the complex process of running a program.

At translation time the compiler generates certain
information, called Dump Information, which relates the

Yolume 10 / Number 12 / December, 1967




B AN LB ML

2

T W e W W -

14

-

-

object code generated by the compiler to the original
source program. The Dump Information is saved on some
secondary storage medium like magnetic tape or disk and
will be used at dump time by the routine PN DUMP,

It is useful, but not necessary, to provide a Loading Map
containing, e.g., the name or the entry points, the total
length, and the loading address (address of first instruc-
tion loaded in memory) of each routine in a job (consisting
of the main program, code procedures, library routines,
ete.).

At the very beginning of the execution of a job a short
routine PREPM1 communicates with the operating
system, indicating where control should be transferred in
case of an unsuccessful termination. ‘

After a Failure the operating system transfers control
to a connecting routine PREM2 which saves the relevant
content of the memory, i.c., mainly the object code and
the vorking storage of the programs in a job. PREP)M2
then calls the dump routine proper, PMIDUMP.

. PMDUMP uses the information saved by the preceding
routines to determine the cause of the Failure, to give an
analysis of what happened before it, and to print the
names and the values of the variables defined at the time
of the Failure. . ‘

It should be noticed that except for one call of PREPM1
the object code or the execution time of a program are not
affected by PM-Dump. All preparations for a possible
dump are made during compilation and an analysis of the
computation process is carried out only after a Failure has
occurred. In particular. no extra bookkeeping or tracing
of the program control flow is involved at execution time.

Dump Information

The Dump Information is the crucial basis for the
analysis of a Failure. It relates source program and object
code. Since it is only available at translation time, it is
saved by the compiler for PNIDUMP. Ve will not de-
scribe here how a compiler should be organized to save the
Dump Information. This problem is easy if kept in mind

from the design stage on; it may be very difficult and -

tedious if an already existing compiler must be modified to
generate the Dump Information. Here we will describe
only what this information can typically consist of:

1. The PM-ID-list: 2 modified version of the ID-list, in
which the entries for labels and name call formal param-
eters are deleted. (The ID-list contains, ordered accord-
ing to program blocks, all identifiers in the program and
necessary information about them, e.g., type, kind, num-
ber of subseripts, formal parameter or not, storage ad-
dress [4].) '

2. The PM-block-list: a version of the block-list modi-
fied to be compatible with the PM-ID-list. (The block-list
contains in the ith location the triple (number of the block
surrounding block ¢, pointer to that part of the ID-list
corresponding to block #, number of identifiers in block 1)
{4))

3. Localization-list (L-list): information about the

VYolume 10 / Number 12 / December, 1967

object code, with one entry corresponding to each gener-
ated machine instruction. The L-list indicates which part
of the source program the machine instruction corresponds
to and what purpose it serves. In more detail this informa-
tion consists of the following:
a. Number of the card in the source deck.
b. Block number in the ALGoL source program.
¢. Field information, i.e., what type or part of a state-
ment the instruction corresponds to:
(i) procedure or function call,
(ii) IF—THEN test,
(iti) computation of an actual parameter,
(iv) assignment statement,
(v) array subscript caleulation,
(vi) array declaration,
(vii) FOR statement.

Dump
Compil Informatios --l
]
|
Load
Loader Map -J
PREPML

Executton of
Object Program

«0,
e
o

Operating System

in case of | a Failure

_— e e e e e e

Object —
Code
PREPM2
Working ¥
Storage
PMDUMP J

Operating System

Exit

Fia. 1. Programs contributing to the ALCOR Dlinois 7000/94
Post Mortem Dump

Communications of the ACM 805

e e e dr———




d. Operator information: the operator appearing last

in the ALGOL source program.

e. Operand information: the type of operands (integer,

Boolean, real) used with the last operator.

f. Failure point is or is not inside of a procedure or a

special input-output procedure. )

This information in the L-list about the Failure point
will be printed out at dump time. Its purpose is to help
the programmer pinpoint exactly how far the execution of
the program had proceeded.

4. Information Record: It is convenient to generate
this special piece of information containing a core load
identification in the case of multiple core load jobs, the
way in which the PM-ID-list, the PM-block-list and the
L-list are stored in secondary memory, e.g., how many
records or files exist on a magnetic tape. The main purpose
of the Information Record is to allow efficient program-
ming of PMDUNMP. The details are not interesting for the
purpose of a general description and are omitted here.

@
. o | try to find valid
YES / valid Inst. NO
Loc. Countet * Inst. Loc. Counter
1 YES

Dump Inf, for
this routine
available?

get calling
point of this
subrouline

get calling
point this
routine

0

get proper
L-list clement

1

print local
information

get calling
point of THUNK

in THUNK?

S

access PM-Ulock-list,
PM.ID-1ist, working
storage, and print
inform. of all levels
of this hierarchy

get calling
point this
hierarchy

Fi1G. 2. Simplified flowchart of PAIDUMP

806 Communications of the ACM

Loading Map

The Loading Map is useful for finding out in which
program (main program, code procedure, library sub-
routines) the Failure occurred, and how to get access to the
proper Dump Information for this particular program.
But there are other obvious solutions to this problem and
we will not discuss it further.

PREPM1

This is the only routine which slows down execution if a
dump is requested. But PREPM1 is a very short routine
executing a few machine instructions (not more than 100),
such as setting switches in the operating system, or
initializing a few error returns. The loss of machine time
due to PREPM1 is negligible.

PREPM2

Since PNIDUMP is a relatively long program (approxi-
mately 3600 machine instructions), it should be loaded
into the main memory of the computer only if needed.
Thus a connecting routine, PREPM?2, is used, to which
the operating system transfers control in the case of a job
which does not terminate successfully. PREPM2 saves
the relevant content of the main memory, namely, the
program and working storage areas for PMDUMP and
passes certain information, e.g., the type of the Failure and
the content of the Instruction Location Counter to
PMDUNMP. Then control is transferred to PMMDUMP.

PMDUMP

A simplified flowchart of PAIDUMP is given in Figure
2. Its main task is to use all the information made avail-

.able to it by previous routines (see Figure 1), to co-

ordinate it, and to present to the programmer as complete
an analysis as possible of the state of the program and of
its history at the time of the Failure. From this informa-
tion the programmer should be able to derive very quickly
and conveniently the reason why his program failed to
execute properly.

Before we deseribe how PMDUMP accomplishes its
analysis, one word of caution is in order: since the pro-
gram being analyzed did not terminate successfully, some-
thing in the computation process must have gone wrong.
Thus there is a possibility that the information passed on
to PMDUMP is incorrect or misleading. This makes it

" necessary to check very carefully all the information com-

ing from the main memory of the computer (object code
and working storage) before using it. To give an example,
suppose PNIDUMP needs the address a of some transfer
instruction of the form TRA «. Before using « a check

- must be made to determine whether the memory location
in question really contains a transfer instruction and

whether a is a legal -address (e.g., does not refer to a
protected area of memory).

PMDUMP provides the programmer with the following
information:
. (i) It prints local information about the Failure point

Yolume 10 / Number 12 / December, 1967

" m

o el bty M Bt SN N ™ e e N e e . N

= od =

-t



QO ke s O W I e e

-
).
e
f
1.

y

0-

m

n-
(1
le,
er
ck

on
nd

ng

nt

in the ArLgoL program. This information is essen-
tially contained in the L-list.

(ii) If the Failure point is not in hierarchy 0 (the
hierarchy number is defined as the level of nesting
of procedures starting with 0 for the main program
[4]), PMDUMP prints the name of the procedure
in which it is contained.

(iii) Starting with the innermost block containing the
Failure point and proceeding to surrounding blocks,
both the names and the present valuest of the vari-
ables defined in these blocks are printed out. This
process is continued until all the blocks in some
given hicrarchy have been dealt with. If the hier-
archy is 0, PMDUMP terminates; otherwise it
determines the point from which the procedure was
called; this calling point is then considered as the
new Failure point, and steps (i), (ii), and (iii) are
reiterated.

We now describe in more detail the blocks of the flow-
chart in Figure 2 and how steps (i), (i), and (iii) are ac-
complished.

(1) It is assumed that PREPM?2 or the operating system
delivers to PMDUMP the Instruction Location Counter
indicating where the computation was terminated. One
must check whether the Instruction Location Counter is
valid (e.g., points to a location in the object code area of
the memory).

(2) Using the Loading Map the routine in which the
breakdown occurred, say R, is determined.

(3) If the compiler has generated any Dump Informa-
tion for R we use the 1-1 correspondence between the
object code of R and the L-list for R to find the entry of
the L-list corresponding to the Failure point, and

(4) Decode and print out the local information con-
tained in it. ‘

(5) A THUNK is a piece of code which is used to
compute an actual parameter [2). If the Failure point is in
& THUNK, then we must find the calling point of the
THUNK, i.e., the point where the actual parameter
being computed by the THUNK is used. This calling
point lies always deeper in the nested structure of an
AvrcoL program than the THUNK itself. Notice that in
this case we have to reiterate step (i) instead of proceeding
to step (iii). Finding the calling point of a THUNK re-
quires a tricky and detailed analysis of the object code
corresponding to it. Since this problem is highly dependent
on ALgoL and a specific implementation of it by a com-
piler, we will not pursue the matter any further except to
mention that the difficulty in THUNK analysis is the
following: Generally in the analysis of an ALgoL program
We proceed from the inner parts of the nested structure to
the outer parts; if we analyze a THUNK, however, we
. YAt a slight cost in execution time the working storage can be
}nitialized with an “illegal’’ number, e.g., an unnormalized float-
ing-point number. Variables which have not yet been assigned a

Value at the time of the Failure can then be printed out as ““unde-
fined” (see Figure 3).

Volume 10 / Number 12 / December, 1967

have to reverse this direction momentarily to get deeper
into the program and then to come back out again.

(6) The block number found in the L-list entry in (3)
and (4) and the PM-block-list determine that part of the
PM-ID-list which contains the names and addresses of the
variables declared in the present block. We use the address
to retricve the present value of the variable from the
working storage saved by PREPM2 and print it out to-
gether with the name. After the block is exhausted and if
the surrounding block is in the same hicrarchy, we re-
iterate (6) for the surrounding block.

(7) If the surrounding block is in a lower hierarchy than
the present block, then we must be inside of a procedure.
Each procedure has associated with each (possibly recur-
sive) call a relocatable working storage (called FFS in 2]
and [4]) which is dynamically allocated at run time. The
relocation amount of the I'T'S is called the Stack Reference
[4]. The FFS contains the calling point of the procedure
and the Stack Reference of the calling hierarchy [2]. We
retricve both of them; the calling point becomes the new
Instruction Location Counter, and the Stack Reference is
used to access the FFS of the calling hierarchy in the next
reiteration of (3). For reasons mentioned earlier again a
detailed analysis (as in (9)) of the FFS of both hierarchies
is necessary to establish confidence in the retrieved in-
formation.

(8) If the analysis of the present routine is completed
and this routine was the MAIN program (which can be
found out, e.g., from the Loading Map or by looking at the
object code), then PAIDUMP has accomplished its task.
Otherwise we have been analyzing some subroutine. We
then find the calling point and the corresponding Stack
Reference similarly as in (7) and reiterate PMDUMP it-
self.

(9) If we do not find a valid Instruction Location
Counter in (1), we may still try to continue the analysis,
One possibility is to use the Stack Reference delivered to
PMDUMP and to interpret the corresponding FFS,
which should have a well-determined structure, e.g., it
should contain a Stack Reference, a calling point, and
certain standard sequences of instructions. If this is not the
case, then only the outermost block of the program can be
analyzed; otherwise it is quite plausible that we have found
an FFS corresponding to a procedure call in some historic
moment of the program, and although we have no local
information, we can still attempt to give a partial analysis
of this procedure. Then we certainly can find the calling
point of the procedure and continue the analysis from
there.

(10) It can happen, of course, that a breakdown oceurs
in a routine for which no Dump Information is available,
e.g., for a library subroutine or a procedure coded in some
language other than ArcoL. The possibilities of analyzing
such a case depend mainly on how the rest of the operating
system is designed. It is optional to skip the dump of that
routine entirely and to continue the analysis from the
calling point of the routine, or to give an octal dump of the
routine and its associated working storage.

807

Communications of the ACM




¢ 5D

. P
s ALGCL, GO, PHCUMP, CLEANUP
ALCGR= TLLINCIS 7090 ALGOL COMPILER
1 TBEGIN®  SCOMEENTY  EXAMPLL OF AN ANALYSIS DY THE ALCOR ILLINOIS JoB ONE
2 7060794 POST MCRTEP DUMP .,
3 CREALY A, SINTEGER® B.y¢ *BOCLEAN® C.y "ARRAY® NATRIX(/1eeT7/)er
&4 SREAL**PRCGCEDUNE® REALPIX,Y).y 'REALY Xoy 'INTCGLR'PROCEDURL* Y.
5 REALP .=Xe3eYIX).,
6 *INTECERY *PRCCCLURE® EXTERN (X).y, TREAL' X.y 'CODE'.,
1 MATRIX{/3/) -a2.7., A .=1000., C .=*TRUE'.,
8 S1F* A *GREATER' RCALP(AsA,EXTERN} "THEN® B =REALPIASA,EXTERN) 4y
s SEND' *FINIS®
1 aLa0L
ALCOR- ILLINOIS 7090 ALGCL COMPILER
1 VINTEGER® *PROCEDUREY EXTERN(X)ay 'REAL® X. JOB ONE
2 SREGIN® *INTEGER® ., 'REAL' R.y R o554 .
2 CFOR* 1 .=1 SSTEP® 1| TUNTIL® Re3eX *DO* R .*ReX., EXTERN o®R.,
4 YENG® Y FINIS®
ALCOR-1LLINCIS=7C90 POST NORTEM DUMP
PP-CUMP CALLCD RECAUSE OF FLOATING POINT YRSP
HANCUF CCCURREC IN ROUTINE  EXTERN,CURE LOAD JOB ONE
INSICE OF PROCECURE  EXTERN
CARD NUMBER 15 3 IN BLUCK NUMBER 3
PRCCHAM WAS INSICE CF
5 FCR STATEMENT
THE LAST EXECUTED CFERATCR WAS oo o
THE FIRST OPCRAKD wAS CF TYPE *REAL®.  THE SCCOND OPERAND HAS OF TYPE TREAL®.
DUMF BLOCK NC. 3
1 = 7 R s .49599959E 37
DUMP ELCCK NC. 2 °
EXTERN = UANDEFINED
CALL CAPE FRGH  {MAIN)
INSICE CF PROCECLRE  REALP
CARC AUMBER S 5 1N BLOCK NUFBER 2
PRCCREP WAS INSIDE OF
& PROCECURE OR FUNCTION CALL
AN ASSIGNPENT STATEMENT
THE LAST EXECUTED OPERATCR WAS .. o
THE FLRST OPERAND W8S CF TYPE 'REAL®.  THE SECOND OPLRAND KAS OF TYPE * INTEGER®.
DUMF BLCCK NC. 2
REALP =  UNDLFINEC
CALL CAME FRCM  [MAIN)
CARD AUMBER [5 8 IN BLOCK NUMBER 1
PRCCRAM wAS INSIDE CF
5 PROCECURC OR FUNCTICM CALL
BN IF - THEN TEST
THE LAST EXECUTED DFERATCR WAS ., o
THE FIRST CPERAND WAS UF TYPE *REAL'.  THE SECCAD OPERANC WAS OF TYPE RCAL®.
OUME BLCCK AC. 1
¢ = ,09959527E 04 B = UNDEFINED c s ¢TRUEY
IN ARRAY PRINTOUTS SULSCUIPTS DEGIN AT THMEIR LOWER BOUNBS. THE N'TH SUBSCRIPT KRUNS THROUGH ALL PERMISSIBLE
VELUES BEFCRE IT 1S RESET TO ITS LOWEK POUNC ANC THE N-1°TH SUBSCRIPT INCREPENTED.
BRRAY MATR:X
UNDEF | NED UNDEF IMED +370C3096€ 01 UNDEF [NED UNDEF INED
UNCE FINED UNDEF INEC
F16. 3. Post mortem analysis of an ALgoL program
Conclusion . REFERENCES
Figure 3 is a typical example of an unsuccessfully 1. Backus, J. W., ET AL. Revised report on the algorithmic
executing ALGoL program analyzed by the Avrcor Illinois language ALGOL-60. Comm. ACM 6 (Jan. 1963), 1-17.
7090/94 Post Mortem Dump. The transparency of the 2. BayER, R., MurrHREE, E., Jr., AND Gries, D. User’s manual
analysis should make any further explanation redundant. for the ALCOR ILLINOIS 7090 ALGOL-60 Translator.
We leave it to the reader to compare it with octal or even 2nd Ed., Dept. of Comput. Sci., U. of Illinois, Urbana, IIL.,
hexadecimal listings of the contents of computer memories Sept. 1964.

3. Baver, R., Couex, J., axp Pexga, R. The ALCOR Illinois
7090 Post Mortem Dump, deseription and imbedding in-

and to draw his own conclusions,

Acknowledgment. The authors wish to thank J. Cohen structions. Rep. No. 198, Dept. of Comput. Sci., U. of
and R. Penka from the University of Illinois for their Mlinois, Urbana, Ill., Feb. 1066.
most valuable contributions in the planning and pro- 4. Grigs, D., Pavy, M., axp WienLg, H. R. Some techniques
gramming of the Arcor Illinois 7090/94 Post Mortem used in the ALCOR Illinois 7080. Comm. ACM 8 (Aug. 1963),
Dump, which has proven that the implementation of the 496-500.
ideas presented in this paper is feasible, cconomical, and ~ 5- —— ——, axp ——. ALCOR Illinois 7030. An ALGOL com-
useful. piler for the IBM 7080. Rep. No. 6415, Rechenzentrum der

Technischen Hochschule Miinchen, Germany, 1964,
REecEIvED MarcH 1967; REVISED AvcusT 1967

308 Communications of the ACQM Yolume 10 / Number 12 / Deccmber, 1967




