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An ALGOL compiler has been written by the ALCOR group
for the 1BM 7090. Some little known but significant techniques
in compiler writing, together with organizational details of this
compiler, are described. Timing estimates and an indication of
compiler requirements are also given.

1. Introduction

1.1. The project. ALCOR ILLINOIS is an ALGoL com-
piler written for the IBM 7080. Work on the compiler was
begun at the Digital Computer Laboratory, University of
Illinois, in June 1962 as a joint project by this University,
the Mainz Institute for Applied Mathematics, and the
Rechenzentrum, Munich Institute of Technology. The
directors of these institutes felt a responsibility to make
AvgoL available as a practical language to their students
and to a wider public and, therefore, initiated the task
since, at that time, the manufacturer was not going to pro-
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vide an ArLgoL compiler for the 7090. In January 1963 the
work was partly transferred to the Rechenzentrum, Mu-
nich Institute of Technology, and by May 1963 the main
parts of the compiler had been programmed and checked.
The field test phase was entered in November 1963, and in
July 1964 the compiler was given a final release.

The language of the ALCOR ILLINOIS 7090 is ALcoL
with the exception of own. Input and output are
temporarily controlled by standard input and output pro-
cedures under a Forrran-like format, deseribed in
[5]. As an introduction to ArcoL (with the exception of
input-output) and as a manual, [11] ecan be used.

1.2. Historical background. The ALCOR (meaning
ALgol COnverteR) group, formed in 1958, is a cooperative
group of computing centers and computing manufacturers,
interested in automatic translating. From its beginning, it
has based its language decoding (text analysis) on a sequen-
tial translation technique using the well-known cellar
principle and state transition matrix developed by Bauer
and Samelson [4], and has based its run-time organization
on principles of dynamic storage allocation and subroutine
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linkage introduced mainly by Rutishauser [10]. This group
has built over 10 ALGoL compilers, the ALCOR ILLINOIS
7090 being one of the latest and most modern ones. This
group is continually doing research in improving and de-
veloping techniques for formal language translation and
in the development of programming languages.

1.3. Aims. In contrast to the other compilers built by
the ALCOR group, this was to be the first one built for a
very fast machine with a big and homogeneous storage.
The authors could therefore concentrate on refinements of
the translation techniques used. Restrictions on the lan-
guage earlier imposed by slow, small machines were no
longer necessary, and methods were developed to imple-
ment all features. There was no limitation on the size of the
compiler itself. Other problems, however, presented them-
sclves, one being the necessity for a compiler which could
easily be imbedded in the numerous 7090 operating sys-
tems.

Basically, the successful techniques developed by the
ALCOR group, which emphasize a fast object program, a
good syntax checker and a short translation time, are
used.

L4, Organization of the compiler. Text analysis is pref-
erably performed using the cellar principle and a state-
transition automata with a one-sided tape (the cellar). A
complete syntax check can be accomplished through the
use of a complete transition matrix, including the neces-
sary means for synchronization in case of syntactical
crrors. On the other hand, a system of priorities of the
states and incoming symbols (2, 9] is simpler and more
lueid. However, it requires a correct program. The solution
is as follows:

Pass 1 performs the usual mapping of the source program
symbols into an internal representation and generates a few
lists needed by the syntax checker.

Pass 2, using a complete transition matrix, performs a
complete syntax check without actually translating. How-
ever, it creates lists of all necessary information needed for
the actual translation, and transfers control to the next
pass only if the source program is correct.

Pass 3, the actual translator, working only on correct
programs and using the lists already produced, can usc the
priority method and devote much space and effort to pro-
duce efficient object programs.

Pass 4 does final address calculation and relocation.

L5. Use of storage space. One of the ways in which
translation time can be held down is to keep tape move-
ment to a minimum. Since the source program must be
read, processed, and modified by each pass, it should be
kept in memory as much as possible. With program buffers
of 1000 words (each word containing 5 ALcoL symbols), a
program of 130 to 200 cards needs no intermediary tape;
while compiling a program of 500 cards, at most 5 or 6
records are written and read.

One problem with a compiler is the number of lists to be
stored. In order to minimize translation time, these lists
must be kept in memory, even if this limits the size of pro-
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grams which can be translated. This is no real restriction
since a program can be split up into ecode procedures.
With an available storage of 32K words, the ALCOR
ILLINOIS 7090 limits the number of different identifiers
within an ALGoL program to 3000, for loops to 400, blocks
to 500, and the number of constants to 700. These limits
are large enough to accomodate most programs and small
enough so that no list (except the ArLcorn program itself)
has to be put on tape. Many lists become obsolete from
pass to pass and the space is then used for other purposes.
Due to this, the final objeet program buffer has 4000 words.
The compiler itself has a total of 26,000 instructions and
uses 70,0005 locations in memory.

1.6. Remarks. Since the main compiling techniques of
the ALCOR group have become well known and widely
used, this discussion is limited to a few significant, but
little known, points. Questions of run time organization
are mentioned in connection with Pass 3 (the object pro-
gram generator), the most important being the use of linear
address incrementing, whenever possible, in for loops.

2. Pass 1

The first pass has two main objectives. The first is to
change all ALcoL symbols into a 7-bit representation while
discarding blanks and comments (except in strings). The
other is to produce a list, called the ID-list, of all formal
parameters, labels and variables. This list is necessary for a
good, fast syntax check. It. must be in a form which is easy
to search, since (1) every identifier can occur before it is
declared, and (2) for cach occurrence of an identifier the
syntax checker must find it in the ID-list and check it. At
the end of pass 2 this list will contain all information about
each identifier (e.g., type, kind, number of subscripts, for-
mal parameter or not). In order to prevent duplication of
effort between pass 1 and pass 2, pass 1 inserts into the
ID-list only the name and, implicitly, the block number.
This has the additional advantage that the pass 1 state-
transition matrix is very small, since only block structure
and declarations must be analyzed. For instance, expres-
sions may be entirely skipped; no states are necessary for
“47, “x” and so on.

Experience has shown that a very efficient way to or-
ganize the ID-list is by “block number,” where a block has
block number # if it is the nth block to be statically opened.
For reasons explained later, each for loop and each pro-
cedure is also technically counted as a block (with the
formal parameters being the only identifiers belonging to
the artificially created procedure block). Two lists are
actually produced. The first, called the block list, contains
in the 7th location (corresponding to block ©) the triple
(surrounding block number, address of ID-list for block 7,
number of identifiers in block 7).

In addition, blocks 0 and —1 exist and surround all
blocks. Block 0 contains all standard procedures, with com-
plete information about them. The compiler can be
changed easily to add or delete standard procedures by
changing this list in pass 1. Block —1 is empty and will be
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used by pass 2 for a list of all undeelared identifiers, to aid
in continuing after errors. The second list, the ID-list
itself, contains for each block the identifiers and labels de-
clared in that block. Figure 1 illustrates the formation of
the lists for the following program.

begin integer procedure B(C);

integer C; B := C+4;

integer A, C, D;

A =0 =2

for D := 1 step 1 until C do LABE:
begin integer E;

E := B(D) + 4;

end;

for D := 1 step 1 until C do print (D, A+D);

A= E;

end

Block list ID list
412, I, O LO: n standard functions
01, 0, n L2: C(formal par)
1o, u, &

L4 E
2], L2

L3: LABE
31, 31
a3 w1 L5U: B,ACD
5/1, LS, O 1L

Fic. 1

Notice that the identifier list is not ordered by block num-
ber, but by the order in which the blocks are closed. This
makes no difference to pass 2 and is easier to generale,

3. Pass 2

Pass 2 performs a complete syntax check. The method
(state transition matrix with one stack as in pass 1) is not
discussed here. Practical and theoretical explanations ean
be found in [1] and [4].

There are some jobs which pass 2 can easily do in order
to simplify pass 3 and help optimize the object program.

3.1. ID and block lists. One important job is to replace
each identifier in the program by the entry number of the
identifier in the ID-list. (The nth identifier in the list has
entry number n). Pass 3 uses this number directly in order
to find an identifier in the list; no search of the list is re-
quired. The identifier list can then be shortened at the end
of pass 2 by deleting the name of each identifier, leaving
more room in memory for other lists (especially the object
program to be produced). Another operation easily per-
formed is the ealculation of addresses of varinbles for the
object program. Since all information for each identifier
will then be in the ID-list, pass 2 deletes all specifications
and all declarations except procedures, switch and array
declarations from the source program.

Returning to the discussion of the ID-list, one sees that
its form allows efficient searching. The subroutine LUIL
(Look Up in ID-List), given in Figure 2 with the identifier
498
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and block number B as parameters, performs this search.
This one subroutine can be used for all occurrences of
identifiers except in declarations and specifications. It also
automatically tests for jumps into a for loop from outside.
Such a use of a label causes it to be undefined since a for
loop is technically treated as a block. Declarations and
specifications ean be handled by the addition of another
entry point, LUIL 1, which searches only in block number
B, due o the treatment of procedure declarations as blocks.
The only other problem is the checking of variables oc-
curring in expressions, I, , of an array declaration

array A[E:E:, -+, Eapny:Ex).

These variables must be declared in surrounding blocks.
This cheek is acecomplished by the following:

(a) When [ of an array declaration is pushed into the
cellar: (1) the current block number is saved in an auxiliary
location; (2) the surrounding block number is put into the
current block number location.

(b) At the end of the array declaration (] encounters the
[ in cellar): (1) the current block number is restored in the
current block number location.

The need for counters and pointers to indicate which
variables have been used in which blocks as array limits
has been eliminated.

Another consequence of the block structured ID-list is
the simplicity of the “block entry” and “block close” sub-
routines. They consist merely of pushing the actual block
number into the cellar and inserting the new one, and re-
storing the old block number respectively. This method is
simpler than those used by some other authors {3}.

3.2. Linear address incrementing. linear address in-
crementing is a term used for a special type of optimiza-
tion of array clement address ealculation in for loops.

Let a loop be

for I := El step E2 until E3 do %

and A[F] be an array element occurring in the statement
=. If I is linear in the loop variable /, then A[E] can be

Entry— Bl~—B (block no.)
is identifier in YES |compute entry rum
block B1? berand return

NO

surrounding block number

of Bl into B
B1e.27 errormessage | |insert identifier,
) ['ident notdecla in block -1
L___INo
Fic. 2. Subroutine LUIL
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reloeatable since the storage space is dynamically allo-
cated. If a procedure call takes place in block b, (DFSLs)
are given as a parameter to the procedure. The procedure,
having m locations in its FFS, takes locations (DFSLs) to
(DFSLyy + m — 1 for its FFS, and inserts the value
{(DFSLs) + m in its own DFSL location. Every variable
and location in the FFS of a hierarchy is then defined by
the pair (A, STR), where A is its absolute position in the
FFS, and STR (stack reference) is the relocatable begin-
ning of the FFS. Upon entry to a procedure from block b,
STR is clearly equal to (DFSLs).

It is obvious that all procedures can be made recursive
if every piece of information which depends upon the call
is saved in the FFS. Each time the procedure is entered,
space is again reserved for the FFS of the procedure.

We do not wish to go into details of just which informa-
tion must be saved. In order to indicate how to make this
as cfficient as possible, we give a few practical techniques.
When in a certain procedure, an index register can be used
to contain its stack reference. The relocation is performed
once and for all at the beginning of the procedure by load-
ing the index register with the stack reference, and using
this index register as a tag to each instruction referencing
the FFS. Hierarchy 0—the main program—ecannot be re-
cursive and must always be in memory. It is therefore given
absolute locations for its FFS. A detailed description can
be found in [7].

5. Pass 4

This pass does final relocation and puts the program onto
a tape in the equivalent form of relocatable binary cards.
It also does final address caleulation, in order to handle
forward references to labels, switches and procedures.
Error messages are also printed by this pass, from a list
containing all necessary information (card number, error
number, state of the matrix when the error occurred, ctc.)
made up by pass 2.

6. Parameterization of the Compiler

The existence of numerous systems used on the IBM
7030 made it worthwhile o parameterize the ALCOR

ALCOR ILLNGIS 7080  FORTRANT SHARE 2080 ALGOL

A B
Compiation time _
plusioading time (se) | 37 37 260 330
Factor {using ALCOR
LLNOIS as 1) ! ! 70 89
oweadtion tme (secy | 320 | 420 190 630
Factor 1 13 59 1.9
total time (sec) 357 457 450 960
Factor 1 14 14 27

A with linear address incrementing
B without linear address incrementing

Fiec. 4
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ILLINOIS 7090. The compiler has about 30 parameters,
representing most connections between the compiler and a
system. Examples are: tape numbers, locations to be used
by the compiler, and positioning of the system tape after
compilation. An installation fills in the list of parameters
according to its needs [6], punches them on cards, and in-
serts them in the front of each pass. The passes are then
assembled, producing absolute binary cards ready for use.

7. Concluding Remarks

As of this date, the ALCOR ILLINOIS 7080 has been
distributed to over 10 installations and imbedded in 3
different systems. Wider use is expected. A confirmation of
the efficiency of the techniques used is the speed of trans-
Iation. A program of 20-50 cards compiles in less than 10
seconds (including the 2.7 scconds overhead to read the
compiler from tape). One program of 2700 cards, produced
by duplicating a single program many times and surround-
ing the result by a begin and end, took 75 seconds to
compile. In the few tests made, object programs were 1.2
to 2.2 times slower than a corresponding IFORTRAN pro-
gram, the higher of the factors resulting from a program
in which mostly integers were used, the lower in the caleu-
lation of the determinant of a 50X 50 matrix. Barth, Insti-
tute of Technology Darmstadt, programmed and tested a
mathematical algorithm in ForTraN and Arcor. The pro-
gram was about 530 cards long. Results are listed in Fig-
ure 4.

Receivep FeEBruary, 1965
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written as Ala/+b) where a and b ave (integer) expressions
which do not ehange in the loop, and

address  (Ala(J+E2)+b]) = address  (Afa(I)+b)) + a+E2.

Upon entering the loop, address (A[as/14b]) and the
value a=£2 are calculated and stored. Then each time the
loop is repeated, a+FE2 is added to the address.

Due to a questionable generality in Aracon 60, the pro-
gram must be checked thoroughly to make sure that 7 and
2 do not change during execution of the loop and to de-
termine just which array elements are linear in the loop
variable. IFurther time and storage space in the object
program can be saved by making identity checks of array
clements (e.g., with respect o equal initial addresses and
address increments) in pass 2. More information is con-
{ained in [4, 8]. For an exact description of its use in the
ALCOR 1LLINOIS 7090, see [3, 7].

In order that pass 3 can perform this optimization in the
object program, pass 2 must produce a list of for loops in
which linear address incrementing is used and must test
wch array element for linearity in the loop variable. This
an complieate pass 2 if incorporated direetly into it, since,
at ceach step of analyzation of an expression, a test must be
made to see if it is in a subscript. expression, and if so, a
jump to a subroutine which tests for linearity must be exe-
cuted.

It would therefore seem logical 1o have an extra pass
(linearity checker) to check for linear address increment-
ing, but this would inerease the translation time, since the
source program would be read and processed again.

The solution to the problem is to run both parts—the
syntax checker and the linearity checker—separately, but
simultaneously. Each one has its own set of subroutines and
can be programmed separately, but they use common lists
and locations. The syntax checker processes a source pro-
gram symbol and passes it on to the linecarity checker.
When it is finished with one symbol it reads the next sym-
bol and jumps to the syntax checker. This technique could
be used to run any number of separate passes which can
run parallel. What is saved is the bookkeeping which must
accompany each pass, and the corresponding time in-
volved.

Figure 3 gives a simplified flowchart for running three
passes together.

PASS F23 PASS ko PASS 2
road ”T‘ | Process Process Process
Symbo symbal symbol symbol
Fia. 3

In order to save time, the linearity checker is in action
only when necessary. This requires connections between
the two parts at the following points:

(1) for is the symbol just read
) qf (beginning of an array element)
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3) a( (procedure or function call)
(4) a := (where a is of type integer)
(5) end of a for loop

4. Pass 3

Pass 3, operating only with correct programs, uses a list
of priorities assigned to the Arcow symbols, together with
2 cellars. This method, described in [2, 9], is not discussed
here. The optimization through the use of linear address
incrementing also needs no further discussion, although it
is the most effective type of optimization [4, 5, 7, 8]. In-
stead, we discuss the use of dynamie storage allocation
during exccution and its relation to recursive procedures.

4.1. Storage for blocks and arrays. In ALGoL, arrays
must be handled dynamically since the bounds of an array
may only be determined at run time. Thercfore, the pro-
gram must have a mechanism for reserving and releasing
storage. The usual method is to think of free storage us a
stack. There exists one location, DFSL (Dynamic Free
Storage Location), which always contains the address of
the first (lowesl) free location. When a new block is en-
tered, the block saves the contents of DFSL in an auxiliary
location. An array declaration needing n locations causes
loeations (DFSL) through (DFSL)Y 4+ n — 1 to be reserved
for it and (DFSL) to be changed to (DFSL) + n.
({A) means contents of location ). The problem is that
at every exit from the block, the old value of DFSL which
was saved upon entry must be restored in order to save
storage space, since the arrays deelared in the block are no
longer needed. This causes complieations in the compiler
and in the object program, especially if an exit leaves more
than one block at a time.

A simple device, introduced by K. Samelson, eliminates
the need for any reinitialization when leaving a block. De-
fine the outermost block o be block number 0. An inner
block has block number n if the immediately surrounding
block has block number n—1. The block number is then
the level of nesting within other blocks. To each block
number b there exists a loeation DFSL, .

Upon entering a block with number b, the instructions
(DFSLy-) — DFSI, are exccuted. An array declaration
declared in bloek b, needing n locations, causes the locations
(DFSLy) to {DFSLy) + n — 1 o be reserved, and (DFSLy)
to be increased by n. It is obvious that no extra work is
required when leaving a block, since each block with num-
ber b uses only DFSL; to indicate storage reserved for it,
and not a universal DFSL.

4.2, Procedures. Let the main program be called hier-
archy 0, and each procedure hierarchy n+1, if it is de-
clared in a hierarchy of order n. The hierarchy number is
then the level of nesting of procedures. Each procedure
has a fixed number of locations (called FFS, for free fixed
storage) associated with it—simple variables declared in it,
formal parameters, auxiliary locations, ete.

In order to save space, il is desirable that locations for
an FFS be reserved only when the procedure is being exe-
cuted. This means, however, that the variables be casily
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