
14

Language-based
security
Language-based
security

Computer security seems like an oxymoron
these days, with the Internet providing an easy

way to attack computers anywhere in the world.
Moreover, virtually all software is designed to be
extensible, so you are only a mouse click away from
downloading the latest software upgrade or virus
—and sometimes it is hard to tell the difference.

The computer security problem has changed dra-
matically in 40 years. The building-block security
properties (confi dentiality, integrity, and avail-
ability) remain a fundamental part of any solution.
The assurance issue also remains crucial —not only
must a system be secure, there must be some basis
to believe it to be so. But the solution space has
decidedly changed due to revolutions in two fi elds:
cryptography and programming languages. Leverag-
ing these developments and further advancing them
is the subject of intense activity at Cornell, which
has become a leader in a research area that has come
to be called “language-based security”.

Forty years ago, the design of programming lan-
guages was informed largely by aesthetics and need.
A new language design was explored by writing
programs for a standard set of problems and writing
a compiler so people could use the language. Today,
research is focused on program analysis and syn-
thesis agendas, which are applicable to programs in
machine-language as well as high-level languages.

Program analysis methods provide mechanical
means to determine whether a program’s execu-
tion will satisfy certain properties. The properties
might be relative to annotations the programmer
provides, as in type checking.

Program synthesis methods provide mechanical
means to ensure that execution will satisfy certain
properties, by rewriting a program to capture ad-
ditional state and add additional checks.

Policy enforcement is an obvious target of oppor-
tunity. (An example of a policy one might want to
enforce is to limit the number of open windows in
a GUI, thereby preventing denial-of-service attacks
that succeed by opening countless windows.) Prior
to executing a machine language program, analysis
and synthesis methods can be used to ensure that
the program will not violate its policy. CS profes-

sor Fred Schneider’s work, with
student Ulfar Erlingsson, on
“in-lined reference monitors” pio-
neered the idea of using program
synthesis to add runtime checks
that block execution if a program
is about to violate a security
policy. Program analysis is then
used to delete unnecessary checks
prior to execution.

As another example, CS professor Andrew My-
ers work on enforcing confi dentiality and integrity
policies employs a mix of synthesis and analysis.
Prototyped as an extension of Java, Myers has
created an infrastructure that lets programmers
use types for defi ning what hosts in the system are
trusted to manipulate the different kinds of data. His
system automatically partitions distributed programs
into pieces that can safely be executed on each host
and generates protocols to coordinate host commu-
nication in a way that is consistent with the specifi ed
confi dentiality and integrity policy.

More surprising than its use in policy enforce-
ment is a role that program analysis and synthesis
techniques can play in redefi ning what constitutes
the trusted computing base (TCB) for a system. The
smaller the TCB the better, since assurance ultimate-
ly comes from people understanding program code,
and larger programs are harder to understand. The
use of analysis and synthesis techniques in imple-
menting security seemingly adds to the TCB size,
but this size increase can be reversed as follows.

An implementation of analysis or synthesis can be
instrumented so that it outputs as a formal proof
the justifi cation for what that implementation did
on a given input program. The formal proof can
be bound cryptographically to the input program,
resulting in “proof carrying code”. The analyzer or
synthesizer in a TCB can then be replaced with a
proof checker. Proof checking can be implemented
by a small, easy-to-understand piece of code. Thus,
the replacement reduces the size of the TCB by re-
placing a relatively large component by a small one.
Questions of effi ciency —the size of the proof and
the cost of checking— and expressiveness remain
active areas of investigation; CS professor Dexter
Kozen has been exploring these.

The assurance question is being addressed head-on
by CS professor Tim Teitelbaum, whose company
GrammaTech (founded with former PhD student
Thomas Reps) has developed and successfully mar-
keted a collection of tools to help programmers fi nd
vulnerabilities and track the fl ow of information in C,
Ada, and C++ programs. These tools are based on
static analysis and other program analysis techniques.

New security defenses lead to new kinds of attacks.
Developing specifi c defenses is important, but keep-
ing ahead of attackers can be unsatisfying because
the job is never done. More satisfying is the discov-
ery of general principles about defense mechanisms,
and recently this has been aided by applying insights
from programming languages. Schneider, for ex-
ample, has used results from concurrent program-
ming semantics to characterize the class of security
policies that can be enforced by in-lined reference
monitors. This result not only answered the obvious

•

•

Cornell has
become a leader in a

research area that has
come to be called

language-based
security.

CS professor Fred Schneider’s work, with student Ulfar Erlingsson, on “in-lined
reference monitors” pioneered the idea of using program synthesis to add runtime
checks that block execution if a program is about to violate a security policy.

Ph
oto

: J
on

 R
eis

15

Tom Reps receives the ACM Doctoral Dissertation
Award for his PhD thesis, Generating Language-
Based Environments (MIT Press). Reps, whose
advisor was Tim Teitelbaum, is now a Professor at
Wisconsin, Madison.

Gianfranco Bilardi, Alexandru Nicolau, John
Solworth, Vijay Vazirani join.

The Synthesizer Generator is distributed
to over 330 institutions. Developed by Tim
Teitelbaum and student Tom Reps, this
tool for automating the construction of
interactive language-based environments is
based on Reps’s 1983 thesis prototype. The
Synthesizer Generator was subsequently
commercialized and is still in use.

Gene Golub and Charlie Van Loan publish
Matrix Computation (Johns Hopkins Press).

The CS computing facility serves as the
gateway for the entire university to Arpanet
and CSnet. CS is instrumental in the
university’s Project Ezra to increase the use
of computers on campus, with a 5-year, $8
million grant from IBM.

Prakash Panangaden,
Dexter Kozen join.

The Cornell Theory Center, founded in 1984,
becomes one of four NSF supercomputer
centers. IBM provides an additional $30 million
in hardware, software, and staff.

Ken Birman develops the fi rst version of
Isis, the fi rst system for fault-tolerance in
distributed systems. Isis has impacted the
theory and practice of distributed computing.
Two years later, the virtual synchrony model
is defi ned and incorporated.

CS receives its second 5-year NSF CER
(Coordinated Experimental Computing) grant.

David Gries receives the AFIPS Education
Award for his contributions to computer
science education.

Keith Marzullo, Alberto Segre,
Keshav Pingali join.

The Nuprl work reaches a milestone:
Bob Constable and his students publish
Implementing Mathematics with the Nuprl
Proof Development System (Prentice Hall).

John Hopcroft shares the ACM Turing
Prize with Bob Tarjan, “For fundamental
achievements in the design and analysis of
algorithms and data structures”. The work was
Bob Tarjan’s PhD thesis at Stanford, advised
by Hopcroft. Their major achievement was
a linear algorithm for graph planarity testing,
but many more ideas on algorithm design and
data structures came out of their collaboration.

question about the new security mechanism but
defi ned a research agenda: characterizing what poli-
cies can be enforced by various mechanisms. Other
mechanisms have since succumbed: static checkers,
program rewriters, and so on.

For those who know CS at Cornell, the style of
security work reported here will not be surprising.
Our systems work is often tied to principles and
often addresses problems that transcend technology
or specifi c engineering issues. “Think fi rst, build
second” is a succinct characterization of our primary
modus operandi, and it continues to serve, as exem-
plifi ed by the impact the security group is having.

1985

1986

1984

Programming methodology and program correctness

Tim Teitelbaum (left), David Gries (center), and Andrew
Myers are part of the Languages and Compilers Group in
the department.

The 1968 Nato Software Engineering Conference
was a wake-up call for the programming world.
For the fi rst time, academicians and industrialists
spoke honestly and openly about the software
crisis —caused by missed deadlines, massive
budget overruns, and software riddled with errors.
Everyone admitted they did not know how to
program and develop software. The conference
inspired research in a number of areas, among
them, the correctness of programs.

Tony Hoare’s 1969 paper on an axiomatic basis
for computer programming provided a foundation
for work on correctness by giving a new way to
defi ne a programming language —in terms of
how to prove a program correct (with respect to a
specifi cation) instead of how to execute it.

Cornell got into this fi eld, in terms of education
and research, early. The 1973 text Introduction
to Programming, by CS faculty Dick Conway and
David Gries, was the fi rst programming text to take
correctness issues seriously, and discussions at
Cornell inspired CS professor Bob Constable to
begin working on automated proof checking (see
p. 36).

Cornell played a signifi cant role in developing
approaches to concurrent-program correctness.
In 1975, Susan Owicki’s PhD thesis, supervised
by Gries, provided the fundamental concept of
interference freedom; a follow-up paper by Owicki
and Gries received the ACM 1977 Programming
Systems and Languages Award. Gries used
the theory to give one of the fi rst interesting
formal proofs, of an on-the-fl y garbage collector.
CS professor Fred Schneider, Gries, and PhD

student Rick Schlichting developed algorithms for
fault-tolerant broadcasts, while Schneider, with
PhD student Bowen Alpern, developed rigorous
defi nitions of liveness and safety properties and
proved that any specifi cation can be decomposed
into a safety and a liveness property. Schneider’s
text On Concurrent Programming (1997) provides
a comprehensive and rigorous discussion of formal
methods for proving concurrent programs correct.

At Cornell, one goal of the work on axiomatic
semantics was to learn how a theory of program
correctness could infl uence the programming
process —and thus the teaching of programming.
Edsger W. Dijkstra, in his monograph A Discipline
of Programming (1976), gave basic principles
and strategies for this. Gries’s text The Science
of Programming (1981) amplifi ed and brought
the ideas down to the undergraduate level. There
followed a period of intense activity in honing the
principles and strategies for developing programs
and in developing and presenting algorithms.

Today, correctness issues have not been integrated
into the undergraduate computer science
curriculum as much as some had hoped. However,
these ideas are receiving renewed attention as
trustworthy computing initiatives in industry and
government turn the spotlight on questions of
assurance (see e.g. pp.13-14). Further, formal
program development techniques are more and
more used routinely in companies concerned with
building high-assurance systems. With a formal
verifi cation group and all this interest in security,
Cornell’s faculty will undoubtedly remain leading
players in this area.

