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Computer security seems like an oxymoron 
these days, with the Internet providing an easy 

way to attack computers anywhere in the world. 
Moreover, virtually all software is designed to be 
extensible, so you are only a mouse click away from 
downloading the latest software upgrade or virus 
—and sometimes it is hard to tell the difference.

The computer security problem has changed dra-
matically in 40 years. The building-block security 
properties (confi dentiality, integrity, and avail-
ability) remain a fundamental part of any solution. 
The assurance issue also remains crucial —not only 
must a system be secure, there must be some basis 
to believe it to be so. But the solution space has 
decidedly changed due to revolutions in two fi elds: 
cryptography and programming languages. Leverag-
ing these developments and further advancing them 
is the subject of intense activity at Cornell, which 
has become a leader in a research area that has come 
to be called “language-based security”.

Forty years ago, the design of programming lan-
guages was informed largely by aesthetics and need. 
A new language design was explored by writing 
programs for a standard set of problems and writing 
a compiler so people could use the language. Today, 
research is focused on program analysis and syn-
thesis agendas, which are applicable to programs in 
machine-language as well as high-level languages.

Program analysis methods provide mechanical 
means to determine whether a program’s execu-
tion will satisfy certain properties. The properties 
might be relative to annotations the programmer 
provides, as in type checking.

Program synthesis methods provide mechanical 
means to ensure that execution will satisfy certain 
properties, by rewriting a program to capture ad-
ditional state and add additional checks.

Policy enforcement is an obvious target of oppor-
tunity. (An example of a policy one might want to 
enforce is to limit the number of open windows in 
a GUI, thereby preventing denial-of-service attacks 
that succeed by opening countless windows.) Prior 
to executing a machine language program, analysis 
and synthesis methods can be used to ensure that 
the program will not violate its policy. CS profes-

sor Fred Schneider’s work, with 
student Ulfar Erlingsson, on 
“in-lined reference monitors” pio-
neered the idea of using program 
synthesis to add runtime checks 
that block execution if a program 
is about to violate a security 
policy. Program analysis is then 
used to delete unnecessary checks 
prior to execution.

As another example, CS professor Andrew My-
ers work on enforcing confi dentiality and integrity 
policies employs a mix of synthesis and analysis. 
Prototyped as an extension of Java, Myers has 
created an infrastructure that lets programmers 
use types for defi ning what hosts in the system are 
trusted to manipulate the different kinds of data. His 
system automatically partitions distributed programs 
into pieces that can safely be executed on each host 
and generates protocols to coordinate host commu-
nication in a way that is consistent with the specifi ed 
confi dentiality and integrity policy.

More surprising than its use in policy enforce-
ment is a role that program analysis and synthesis 
techniques can play in redefi ning what constitutes 
the trusted computing base (TCB) for a system. The 
smaller the TCB the better, since assurance ultimate-
ly comes from people understanding program code, 
and larger programs are harder to understand. The 
use of analysis and synthesis techniques in imple-
menting security seemingly adds to the TCB size, 
but this size increase can be reversed as follows.

An implementation of analysis or synthesis can be 
instrumented so that it outputs as a formal proof 
the justifi cation for what that implementation did 
on a given input program. The formal proof can 
be bound cryptographically to the input program, 
resulting in “proof carrying code”. The analyzer or 
synthesizer in a TCB can then be replaced with a 
proof checker. Proof checking can be implemented 
by a small, easy-to-understand piece of code. Thus, 
the replacement reduces the size of the TCB by re-
placing a relatively large component by a small one. 
Questions of effi ciency —the size of the proof and 
the cost of checking— and expressiveness remain 
active areas of investigation; CS professor Dexter 
Kozen has been exploring these.

The assurance question is being addressed head-on 
by CS professor Tim Teitelbaum, whose company 
GrammaTech (founded with former PhD student 
Thomas Reps) has developed and successfully mar-
keted a collection of tools to help programmers fi nd 
vulnerabilities and track the fl ow of information in C, 
Ada, and C++ programs.  These tools are based on 
static analysis and other program analysis techniques. 

New security defenses lead to new kinds of attacks. 
Developing specifi c defenses is important, but keep-
ing ahead of attackers can be unsatisfying because 
the job is never done. More satisfying is the discov-
ery of general principles about defense mechanisms, 
and recently this has been aided by applying insights 
from programming languages. Schneider, for ex-
ample, has used results from concurrent program-
ming semantics to characterize the class of security 
policies that can be enforced by in-lined reference 
monitors. This result not only answered the obvious 
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CS professor Fred Schneider’s work, with student Ulfar Erlingsson, on “in-lined 
reference monitors” pioneered the idea of using program synthesis to add runtime 
checks that block execution if a program is about to violate a security policy. 
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Tom Reps receives the ACM Doctoral Dissertation 
Award for his PhD thesis, Generating Language-
Based Environments (MIT Press). Reps, whose 
advisor was Tim Teitelbaum, is now a Professor at 
Wisconsin, Madison.

Gianfranco Bilardi, Alexandru Nicolau, John 
Solworth, Vijay Vazirani join.

The Synthesizer Generator is distributed 
to over 330 institutions. Developed by Tim 
Teitelbaum and student Tom Reps, this 
tool for automating the construction of 
interactive language-based environments is 
based on Reps’s 1983 thesis prototype. The 
Synthesizer Generator was subsequently 
commercialized and is still in use.

Gene Golub and Charlie Van Loan publish 
Matrix Computation (Johns Hopkins Press).

The CS computing facility serves as the 
gateway for the entire university to Arpanet 
and CSnet. CS is instrumental in the 
university’s Project Ezra to increase the use 
of computers on campus, with a 5-year, $8 
million grant from IBM.

Prakash Panangaden, 
Dexter Kozen join.

The Cornell Theory Center, founded in 1984, 
becomes one of four NSF supercomputer 
centers. IBM provides an additional $30 million 
in hardware, software, and staff.

Ken Birman develops the fi rst version of 
Isis, the fi rst system for fault-tolerance in 
distributed systems. Isis has impacted the 
theory and practice of distributed computing. 
Two years later, the virtual synchrony model 
is defi ned and incorporated.

CS receives its second 5-year NSF CER 
(Coordinated Experimental Computing) grant.

David Gries receives the AFIPS Education 
Award for his contributions to computer 
science education.

Keith Marzullo, Alberto Segre, 
Keshav Pingali join.

The Nuprl work reaches a milestone: 
Bob Constable and his students publish 
Implementing Mathematics with the Nuprl 
Proof Development System (Prentice Hall).

John Hopcroft shares the ACM Turing 
Prize with Bob Tarjan, “For fundamental 
achievements in the design and analysis of 
algorithms and data structures”. The work was 
Bob Tarjan’s PhD thesis at Stanford, advised 
by Hopcroft. Their major achievement was 
a linear algorithm for graph planarity testing, 
but many more ideas on algorithm design and 
data structures came out of their collaboration.

question about the new security mechanism but 
defi ned a research agenda: characterizing what poli-
cies can be enforced by various mechanisms. Other 
mechanisms have since succumbed: static checkers, 
program rewriters, and so on. 

For those who know CS at Cornell, the style of 
security work reported here will not be surprising. 
Our systems work is often tied to principles and 
often addresses problems that transcend technology 
or specifi c engineering issues. “Think fi rst, build 
second” is a succinct characterization of our primary 
modus operandi, and it continues to serve, as exem-
plifi ed by the impact the security group is having.
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Programming methodology and program correctness 

Tim Teitelbaum (left), David Gries (center), and Andrew 
Myers are part of the Languages and Compilers Group in 
the department.

The 1968 Nato Software Engineering Conference 
was a wake-up call for the programming world. 
For the fi rst time, academicians and industrialists 
spoke honestly and openly about the software 
crisis —caused by missed deadlines, massive 
budget overruns, and software riddled with errors. 
Everyone admitted they did not know how to 
program and develop software. The conference 
inspired research in a number of areas, among 
them, the correctness of programs.

Tony Hoare’s 1969 paper on an axiomatic basis 
for computer programming provided a foundation 
for work on correctness by giving a new way to 
defi ne a programming language —in terms of 
how to prove a program correct (with respect to a 
specifi cation) instead of how to execute it.

Cornell got into this fi eld, in terms of education 
and research, early. The 1973 text Introduction 
to Programming, by CS faculty Dick Conway and 
David Gries, was the fi rst programming text to take 
correctness issues seriously, and discussions at 
Cornell inspired CS professor Bob Constable to 
begin working on automated proof checking (see 
p. 36).

Cornell played a signifi cant role in developing 
approaches to concurrent-program correctness. 
In 1975, Susan Owicki’s PhD thesis, supervised 
by Gries, provided the fundamental concept of 
interference freedom; a follow-up paper by Owicki 
and Gries received the ACM 1977 Programming 
Systems and Languages Award. Gries used 
the theory to give one of the fi rst interesting 
formal proofs, of an on-the-fl y garbage collector. 
CS professor Fred Schneider, Gries, and PhD 

student Rick Schlichting developed algorithms for 
fault-tolerant broadcasts, while Schneider, with 
PhD student Bowen Alpern, developed rigorous 
defi nitions of liveness and safety properties and 
proved that any specifi cation can be decomposed 
into a safety and a liveness property. Schneider’s 
text On Concurrent Programming (1997) provides 
a comprehensive and rigorous discussion of formal 
methods for proving concurrent programs correct.

At Cornell, one goal of the work on axiomatic 
semantics was to learn how a theory of program 
correctness could infl uence the programming 
process —and thus the teaching of programming. 
Edsger W. Dijkstra, in his monograph A Discipline 
of Programming (1976), gave basic principles 
and strategies for this. Gries’s text The Science 
of Programming (1981) amplifi ed and brought 
the ideas down to the undergraduate level. There 
followed a period of intense activity in honing the 
principles and strategies for developing programs 
and in developing and presenting algorithms.

Today, correctness issues have not been integrated 
into the undergraduate computer science 
curriculum as much as some had hoped. However, 
these ideas are receiving renewed attention as 
trustworthy computing initiatives in industry and 
government turn the spotlight on questions of 
assurance (see e.g. pp.13-14). Further, formal 
program development techniques are more and 
more used routinely in companies concerned with 
building high-assurance systems. With a formal 
verifi cation group and all this interest in security, 
Cornell’s faculty will undoubtedly remain leading 
players in this area.


