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Abstract. Safe language technology can be used for protection within
a single address space. This protection is enforced by the language’s type
system, which ensures that references to objects cannot be forged. A safe
language alone, however, lacks many features taken for granted in more
traditional operating systems, such as rights revocation, thread protec-
tion, resource management, and support for domain termination. This
paper describes the J-Kernel, a portable Java-based protection system
that addresses these issues. J-Kernel protection domains can commu-
nicate through revocable capabilities, but are prevented from directly
sharing unrevocable object references. A number of micro-benchmarks
characterize the costs of language-based protection, and an extensible
web and telephony server based on the J-Kernel demonstrates the use of
language-based protection in a large application.

1 Introduction

The notion of moving code across the network to the most appropriate host for
execution has become commonplace. Most often code is moved for efficiency, but
sometimes it is for privacy, for fault-tolerance, or simply for convenience. The
major concern when moving code is security: the integrity of the host to which
it is moved is at risk, as well as the integrity of the computation performed by
the moved code itself.

A number of techniques have been used to place protection boundaries be-
tween so-called “untrusted code” moved to a host and the remainder of the
software running on that host. Traditional operating systems use virtual mem-
ory to enforce protection between processes. A process cannot directly read and
write other processes’ memory, and communication between processes requires
traps to the kernel. By limiting the traps an untrusted process can invoke, it
can be isolated to varying degrees from other processes on the host. However,
there’s little point in sending a computation to a host if it cannot interact with
other computations there; inter-process communication must be possible.

The major problems encountered when using traditional operating system
facilities to isolate untrusted code are deciding whether a specific kernel trap is
permissible or not and overcoming the cost of inter-process communication. The



semantic level of kernel traps does not generally match the level at which protec-
tion policies are specified when hosting untrusted code. In addition, the objects
on which the traps act are the ones managed by the kernel and not the ones
provided by the hosting environment. Regarding performance, despite a decade
of research leading to a large number of fast inter-process communication mech-
anisms [4,9,24], the cost of passing through the kernel and of switching address
spaces remains orders of magnitude larger than that of calling a procedure.

In the context of mobile code, language-based protection is an attractive
alternative to traditional operating system protection mechanisms. Language-
based protection rests on the safety of a language’s type system, which ensures
that the abstractions provided by the language’s types are enforced. A type
system acts as a simple access control mechanism: it limits the objects that a
computation can access (there is no way to “forge a pointer” to an object), and
it limits the operations that code can perform on accessible objects.

The attraction of language-based protection is twofold: precision of protec-
tion and performance of communication across protection boundaries. Language-
based protection mechanisms allow access rights to be specified with more preci-
sion than traditional virtual-memory based mechanisms: the data items to which
access is permitted as well as the types of accesses permitted can be specified
more finely. For example, in Java, access can be granted precisely to individual
objects and even only to certain object fields using the public qualifier. In ad-
dition, with language-based protection, calls across protection boundaries could
potentially be as cheap as simple function calls, enabling as much communication
between components as desired without performance drawbacks.

But language-based protection alone does not make an operating system.
Several projects [1,2,3,8,11,14,35] have recently described how to build protection
domains around components in a safe language environment. The central idea
is to use object references (i.e., pointers to objects) as capabilities for cross-
domain communication. Object references in safe languages are unforgeable and
can thus be used to confer certain rights to the holder(s). In an object-oriented
language, the methods applicable to an object are in essence call gates. However,
this approach, while both flexible and fast, suffers from two limitations: there
is no way to revoke access to object references, and there is no way to track
which domain owns which objects. This leads to severe problems with domain
termination and resource accounting.

The J-Kernel [16] is an operating system layered on top of a Java Virtual Ma-
chine (JVM) that introduces additional mechanisms borrowed from traditional
operating systems to provide the features missing at the language level. The goal
of the J-Kernel is to define clear boundaries between protection domains, which
are called tasks in the J-Kernel. This makes resource management and task ter-
mination tractable, and simplifies the analysis of inter-task communication. The
boundaries are established by limiting the types of objects that can be shared
between tasks. In the J-Kernel, only special objects called capabilities may be
shared; all other objects are confined to single tasks. This allows the J-Kernel to



equip capabilities with features like revocation, without adding any overheads
to ordinary, non-capability objects.

The main benefits of the J-Kernel are a highly flexible protection model, low
overheads for communication between software components, and operating sys-
tem independence. The current J-Kernel implementation is written entirely in
Java [13] and runs on standard Java Virtual Machines (JVMs). This implementa-
tion was chosen for practical reasons—Java is emerging as the most widely used
general-purpose safe language, and dependable virtual machines are widespread
and easy to work with. While Java in itself does allow for multiple protection
domains within a single JVMs using the sandbox model for applets, that model
is currently very restrictive. It lacks many of the characteristics that are taken
for granted in more traditional systems and, in particular, does not provide a
clear way for different protection domains to communicate with each other.

The J-Kernel also offers a simple form of resource management based on
the JRes interface [7]. The interface allows accounting for resource consumption
on per-thread and per-task basis. The resources accounted for are CPU time,
heap memory, and network traffic. The implementation of JRes contains a small
native component for interfacing to the threads package but is mostly based on
Java bytecode rewriting.

Language-based protection does have drawbacks. First, code written in a
safe language tends to run more slowly than code written in C or assembly
language, and thus the improvement in cross-domain communication may be
offset by an overall slowdown. Much of this slowdown is due to current Java
just-in-time compilers optimized for fast compile times at the expense of run-
time performance. However, even with sophisticated optimization it seems likely
that Java programs will not run as fast as C programs. Second, all current
language-based protection systems are designed around a single language, which
limits developers and doesn’t handle legacy code. Software fault isolation [34] and
verification of assembly language [26, 27, 28, 32] may someday offer solutions,
but are still an active area of research.

2 Language-Based Protection Background

In an unsafe language, any code running in an address space can potentially
modify any memory location in that address space. While, in theory, it is possible
to prove that certain pieces of code only modify a restricted set of memory
locations, in practice this is very difficult for languages like C and arbitrary
assembly language [5, 27], and cannot be fully automated. In contrast, the type
system and the linker in a safe language restrict what operations a particular
piece of code is allowed to perform on which memory locations.

The term namespace can be used to express this restriction: a namespace is
a partial function mapping names of operations to the actions taken when the
operations are executed. For example, the operation “read the field out from the
class System” may perform different actions depending on what class the name
System refers to.



Protection domains around software components can be constructed in a
safe language system by providing a separate namespace for each component.
Communication between components can then be enabled by introducing shar-
ing among namespaces. Java provides three basic mechanisms for controlling
namespaces: selective sharing of object references, static access controls, and
selective class sharing.

Selective Sharing of Object References Two domains can selectively share
references to objects by simply passing each other these references. In the ex-
ample below, methodl of class A creates two objects of type A, and passes a
reference to the first object to method2 of class B. Since method2 acquires a
reference to al, it can perform operations on it, such as incrementing the field
j. However, method2 was not given a reference to a2 and thus has no way of
performing any operations on it. Java’s safety prevents method?2 from forging a
reference to a2, e.g., by casting an integer holding a2’s address to a pointer.

class A {
private int 1i;
public int j;
public static void method1() {
A al = new AQ);
A a2 = new AQ);
B.method2(al);

}
}
class B {
public static void method2(A arg) {
arg.j++;
}
}

Static Access Control The preceding example demonstrated a very dynamic
form of protection—methods can only perform operations on objects to which
they have been given a reference. Java also provides static protection mechanisms
that limit what operations a method can perform on an object once the method
has acquired a reference to that object. A small set of modifiers can change
the scope of fields and methods of an object. The two most common modifiers,
private and public, respectively limit access to methods in the same class or
allow access to methods in any class. In the classes shown above, method2 can
access the public field j of the object a1, but not the private field i.

Selective Class Sharing Domains can also protect themselves through control
of their class namespace. To understand this, we need to look at Java’s class
loading mechanisms. To allow dynamic code loading, Java supports user-defined



class loaders which load new classes into the virtual machine at run-time. A class
loader fetches Java bytecode from some location, such as a file system or a URL,
and submits the bytecode to the virtual machine. The virtual machine performs
a verification check to make sure that the bytecode is legal, and then integrates
the new class into the machine execution. If the bytecode contains references to
other classes, the class loader is invoked recursively in order to load those classes
as well.

Class loaders can enforce protection by making some classes visible to a
domain, while hiding others. For instance, the example above assumed that
classes A and B were visible to each other. However, if class A were hidden from
class B (i.e. it did not appear in B’s class namespace), then even if B obtains a
reference to an object of type A, it will not be able to access the fields i and j,
despite the fact that j is public.

2.1 Straight-Forward Protection Domains: The Share Anything
Approach

The simple controls over the namespace provided in Java can be used to construct
software components that communicate with each other but are still protected
from one another. In essence, each component is launched in its own namespace,
and can then share any class and any object with other components using the
mechanisms described above. While we will continue to use the term protection
domain informally to refer to these protected components, we will argue that it
is impossible to precisely define protection domains when using this approach.

The example below shows a hypothetical file system component that gives
objects of type FileSystemInterface to its clients to give them access to files.
Client domains make cross-domain invocations on the file system by invoking the
open method of a FileSystemInterface object. By specifying different values
for accessRights and rootDirectory in different objects, the file system can
enforce different protection policies for different clients. Static access control en-
sures that clients cannot modify the accessRights and rootDirectory fields di-
rectly, and one client cannot forge a reference to another client’s FileSystemInterface
object.

class FileSystemInterface {
private int accessRights;
private Directory rootDirectory;
public File open(String fileName) {3}

The filesystem example illustrates an approach to protection in Java that re-
sembles a capability system. Several things should be noted about this approach.
First, this approach does not require any extensions to the Java language—all
the necessary mechanisms already exist. Second, there is very little overhead
involved in making a call from one protection domain to another, since a cross-
domain call is simply a method invocation, and large arguments can be passed



by reference, rather than by copy. Third, references to any object may be shared
between domains since the Java language has no way of restricting which ref-
erences can be passed through a cross-domain method invocation and which
cannot.

When we first began to explore protection in Java, this share anything ap-
proach seemed the natural basis for a protection system, and we began develop-
ing on this foundation. However, as we worked with this approach a number of
problems became apparent.

Revocation The first problem is that access to an object reference cannot be
revoked. Once a domain has a reference to an object, it can hold on to it forever.
Revocation is important in enforcing the principle of least privilege: without
revocation, a domain can hold onto a resource for much longer than it actually
needs it.

The most straightforward implementation of revocation uses extra indirec-
tion. The example below shows how a revocable version of the earlier class A
can be created. Each object of A is wrapped with an object of AWrapper, which
permits access to the wrapped object only until the revoked flag is set.

class A {
public int methl(int al, int a2) {}
}

class AWrapper {

private A a;

private boolean revoked;

public int methl(int al, int a2) {
if ('revoked) return a.methl(al, a2);
else throw new RevokedException();

}

public void revoke() { revoked=true; }

public AWrapper(A reald) {
a = realld; revoked = false; }

In principle, this solves the revocation problem and is efficient enough for
most purposes. However, our experience shows that programmers often forget to
wrap an object when passing it to another domain. In particular, while it is easy
to remember to wrap objects passed as arguments, it is common to forget to wrap
other objects to which the first one points. In effect, the default programming
model ends up being an unsafe model where objects cannot be revoked. This
is the opposite of the desired model: safe by default and unsafe only in special
cases.

Inter-domain Dependencies and Side Effects As more and more object
references are shared between domains, the structure of the protection domains



is blurred, because it is unclear from which domains a shared object can be
accessed. For the programmer, it becomes difficult to track which objects are
shared between protection domains and which are not, and the Java language
provides no help as it makes no distinction between the two. Yet, the distinction
is critical for reasoning about the behavior of a program running in a domain.
Mutable shared objects can be modified at any time in by other domains that
have access to the object, and a programmer needs to be aware of this possible
activity. For example, a malicious user might try to pass a byte array holding
legal bytecode to a class loader (byte arrays, like other objects, are passed by
reference to method invocations), wait for the class loader to verify that the
bytecode is legal, and then overwrite the legal bytecode with illegal bytecode
which would subsequently be executed. The only way the class loader can protect
itself from such an attack is to make its own private copy of the bytecode, which
is not shared with the user and is therefore safe from malicious modification.

Domain Termination The problems associated with shared object references
come to a head when we consider what happens when a domain must be ter-
minated. Should all the objects that the domain allocated be released, so that
the domain’s memory is freed up? Or should objects allocated by the domain
be kept alive as long as other domains still hold references to them? From a
traditional operating systems perspective, it seems natural that when a process
terminates all of its objects disappear, because the address space holding those
objects ceases to exist. On the other hand, from a Java perspective, objects can
only be deallocated when there are no more reachable references to them.

Either solution to domain termination leads to problems. Deallocating ob-
jects when the domain terminates can be extremely disruptive if objects are
shared at a fine-grained level and there is no explicit distinction between shared
and non-shared objects. For example, consider a Java String object, which
holds an internal reference to a character array object. Suppose domain 2 holds
a String object whose internal character array belongs to domain 1. If domain
1 dies, then the String will suddenly stop working, and it may be beyond the
programmer’s ability to deal with disruptions at this level.

On the other hand, if a domain’s objects do not disappear when the domain
terminates, other problems can arise. First, if a server domain fails, its clients
may continue to hold on to the server’s objects and attempt to continue using
them. In effect, the server’s failure is not propagated correctly to the clients.
Second, if a client domain holds on to a server’s objects, it may indirectly also
hold on to other resources, such as open network connections and files. A careful
server implementation could explicitly relinquish important resources before ex-
iting, but in the case of unexpected termination this may be impossible. Third,
if one domain holds on to another domain’s objects after the latter exits, then
any memory leaks in the terminated domain may be unintentionally transferred
to the remaining one. It is easy to imagine scenarios where recovery from this
sort of shared memory leak requires a shutdown of the entire VM.



Threads By simply using method invocation for cross-domain calls, the caller
and callee both execute in the same thread, which creates several potential haz-
ards. First, the caller must block until the callee returns—there is no way for the
caller to gracefully back out of the call without disrupting the callee’s execution.
Second, Java threads support methods such as stop, suspend, and setPriority
that modify the state of a thread. A malicious domain could call another do-
main and then suspend the thread so that the callee’s execution gets blocked,
perhaps while holding a critical lock or other resource. Conversely, a malicious
callee could hold on to a Thread object and modify the state of the thread after
execution returns to the caller.

Resource Accounting A final problem with the simple protection domains
is that object sharing makes it difficult to hold domains accountable for the
resources that they use, such as processor time and memory. In particular, it is
not clear how to define a domain’s memory usage when domains share objects.
One definition is that a domain is held accountable for all of the objects that it
allocates, for as long as those objects remain alive. However, if shared objects
aren’t deallocated when the domain exits, a domain might continue to be charged
for shared objects that it allocated, long after it has exited. Perhaps the cost of
shared objects should be split between all the domains that have references to
the object. However, because objects can contain references to other objects, a
malicious domain could share an object that looks small, but actually contains
pointers to other large objects, so that other domains end up being charged for
most of the resources consumed by the malicious domain.

Summary The simple approach to protection in Java outlined in this section is
both fast and flexible, but it runs into trouble because of its lack of structure. In
particular, it fails to clearly distinguish between the ordinary, non-shared object
references that constitute a domain’s internal state, and the shared object refer-
ences that are used for cross-domain communication. Nevertheless, this approach
is useful to examine, because it illustrates how much protection is possible with
the mechanisms provided by the Java language itself. It suggests that the most
natural approach to building a protection system in Java is to make good use
of the language’s inherent protection mechanisms, but to introduce additional
structure to fix the problems. The next section presents a system that retains
the flavor of the simple approach, but makes a stronger distinction between
non-shared and shared objects.

3 The J-Kernel

The J-Kernel is a capability-based system that supports multiple, cooperating
protection domains, called tasks, which run inside a single Java virtual machine.
Capabilities were chosen because they have several advantages over access control
lists: (i) they can be implemented naturally in a safe language, (ii) they can



enforce the principle of least privilege more easily, and (iii) by avoiding access
list lookups, operations on capabilities can execute quickly.
The primary goals of the J-Kernel are:

— a precise definition of tasks, with a clear distinction between objects local to
a task and capability objects that can be shared between tasks,

— well defined, flexible communication channels between tasks based on capa-
bilities,

— support for revocation for all capabilities, and

— clean semantics of task termination.

To achieve these goals, we were willing to accept higher cross-task commu-
nication overheads when compared to the share anything approach. In order to
ensure portability, the J-Kernel is implemented entirely as a Java library and
requires no native code or modifications to the virtual machine. To accomplish
this, the J-Kernel defines a class loader that examines and in some cases modifies
user-submitted bytecode before passing it on to the virtual machine. This class
loader also generates bytecode at run-time for stub classes used for cross-task
communication. Finally, the J-Kernel’s class loader substitutes safe versions for
some problematic standard classes. With these implementation techniques, the
J-Kernel builds a protection architecture that is radically different from the se-
curity manager based protection architecture that is the default model on most
Java virtual machines.

Protection in the J-Kernel is based on three core concepts—capabilities,
tasks, and cross-task calls:

— Capabilities are implemented as objects of the class Capability and repre-
sent handles onto resources in other tasks. A capability can be revoked at
any time by the task that created it. All uses of a revoked capability throw
an exception, ensuring the correct propagation of failure.

— Tasks are represented by the Java class Task. Each task has a namespace
that it controls as well as a set of threads. When a task terminates, all of
the capabilities that it created are revoked, so that all of its memory may be
freed, thus avoiding the task termination problems that plagued the share
anything approach.

— Cross-task calls are performed by invoking methods of capabilities obtained
from other tasks. The J-Kernel’s class loader interposes a special calling con-
vention ! for these calls: arguments and return values are passed by reference
if they are also capabilities, but they are passed by copy if they are primitive
types or non-capability objects. When an object is copied, these rules are
applied recursively to the data in the object’s fields, so that a deep copy of
the object is made. The effect is that only capabilities can be shared between
tasks and references to regular objects are confined to single tasks.

! The standard Java calling convention passes primitive data types (int, float, etc.) by
copy and object data types by reference.



3.1 J-Kernel Implementation

The J-Kernel’s implementation of capabilities and cross-task calls relies heavily
on Java’s interface classes. An interface class defines a set of method signa-
tures without providing their implementation. Other classes that provide cor-
responding implementations can then be declared to implement the interface.
Normally interface classes are used to provide a limited form of multiple in-
heritance (properly called interface inheritance) in that a class can implement
multiple interfaces. In addition, Sun’s remote method invocation (RMI) speci-
fication [19] “pioneered” the use of interfaces as compiler annotations. Instead
of using a separate interface definition language (IDL), the RMI specification
simply uses interface classes that are flagged to the RMI system in that they
extend the class Remote. Extending Remote has no effect other than directing
the RMI system to generate appropriate stubs and marshalling code.

Because of the similarity of the J-Kernel’s cross-task calls to remote method
invocations, we have integrated much of Sun’s RMI specification into the capa-
bility interface. The example below shows a simple remote interface and a class
that implements this remote interface, both written in accordance with Sun’s
RMI specification.

// interface class shared with other tasks
interface ReadFile extends Remote {
byte readByte() throws RemoteException;
byte[] readBytes(int nBytes)
throws RemoteException;

}

// implementation hidden from other tasks
class ReadFileImpl implements ReadFile {
public byte readByte() {...}
public byte[] readBytes(int nBytes) {...}

To create a capability in the J-Kernel, a task calls the create method of the
class Capability, passing as an argument a target object that implements one
or more remote interfaces. The create method returns a new capability, which
extends the class Capability and implements all of the remote interfaces that
the target object implements. The capability can then be passed to other tasks,
which can cast it to one of its remote interfaces, and invoke the methods this
interface declares. In the example below task 1 creates a capability and adds it
to the system-wide repository (the repository is a name service allowing tasks
to publish capabilities). Task 2 retrieves the capability from the repository, and
makes a cross-task invocation on it.



// Task 1:
// instantiate new ReadFileImpl object
ReadFileImpl target = new ReadFileImpl();
// create a capability for the new object
Capability c = Capability.create(target);
// add it to repository under some name
Task.getRepository() .bind(
"TaskilReadFile", c);

// Task 2:

// extract capability

Capability c = Task.getRepository()
.lookup("TasklReadFile");

// cast it to ReadFile, and invoke remote method

byte b = ((ReadFile) c).readByte();

Essentially, a capability object is a wrapper object around the original target
object. The code for each method in the wrapper switches to the task that
created the capability, makes copies of all non-capability arguments according
to the special calling convention, and then invokes the corresponding method
in the target object. When the target object’s method returns, the wrapper
switches back to the caller task, makes a copy of the return value if it is not a
capability, and returns.

Local-RMI Stubs The simple looking call to Capability.create in fact hides
most of the complexity of traditional RPC systems. Internally, create automat-
ically generates a stub class at run-time for each target class. This avoids off-line
stub generators and IDL files, and it allows the J-Kernel to specialize the stubs
to invoke the target methods with minimal overhead. Besides switching tasks,
stubs have three roles: copying arguments, supporting revocation, and protecting
threads.

By default, the J-Kernel uses Java’s built-in serialization features [19] to
copy an argument: the J-Kernel serializes an argument into an array of bytes,
and then deserializes the byte array to produce a fresh copy of the argument.
While this is convenient because many built-in Java classes are serializable, it
involves a substantial overhead. Therefore, the J-Kernel also provides a fast copy
mechanism, which makes direct copies of objects and their fields without using an
intermediate byte array. The fast copy implementation automatically generates
specialized copy code for each class that the user declares to be a fast copy class.
For cyclic or directed graph data structures, a user can request that the fast
copy code use a hash table to track object copying, so that objects in the data
structure are not copied more than once (this slows down copying, though, so
by default the copy code does not use a hash table).

Each generated stub contains a revoke method that sets the internal pointer
to the target object to null. Thus all capabilities can be revoked and doing so
makes the target object eligible for garbage collection, regardless of how many



other tasks hold a reference to the capability. This prevents tasks from holding
on to garbage in other tasks.

In order to protect the caller’s and callee’s threads from each other, the
generated stubs provide the illusion of switching threads. Because most virtual
machines map Java threads directly onto kernel threads it is not practical to
actually switch threads: as shown in the next subsection this would slow down
cross-task calls substantially. A fast user-level threads package might solve this
problem, but would require modifications to the virtual machine, and would thus
limit the J-Kernel’s portability. The compromise struck in the current implemen-
tation uses a single Java thread for both the caller and callee but prevents direct
access to that thread to avoid security problems.

Conceptually, the J-Kernel divides each Java thread into multiple segments,
one for each side of a cross-task call. The J-Kernel class loader then hides the
system Thread class that manipulates Java threads, and interposes its own with
an identical interface but an implementation that only acts on the local thread
segment. Thread modification methods such as stop and suspend act on thread
segments rather than Java threads, which prevents the caller from modifying
the callee’s thread segment and vice-versa. This provides the illusion of thread-
switching cross-task calls, without the overhead for actually switching threads.
The illusion is not totally convincing, however—cross-task calls really do block,
so there is no way for the caller to gracefully back out of one if the callee doesn’t
return.

Class Name Resolvers In the standard Java applet architecture, applets have
very little access to Java’s class loading facilities. In contrast, J-Kernel tasks are
given considerable control over their own class loading. Each task has its own
class namespace that maps names to classes. Classes may be local to a task, in
which case they are only visible in that task’s namespace or they may be shared
between multiple tasks, in which case they are visible in many namespaces. A
task’s namespace is controlled by a user-defined resolver, which is queried by the
J-Kernel whenever a new class name is encountered. A task can use a resolver to
load new bytecode into the system, or it can make use of existing shared classes.
After a task has loaded new classes into the system, it can share these classes
with other tasks if it wants, by making a SharedClass capability available to
other tasks 2.

Shared classes are the basis for cross-task communication: tasks must share
remote interfaces and fast copy classes to establish common methods and argu-
ment types for cross-task calls. Allowing user-defined shared classes makes the
cross-task communication architecture extensible; standard Java security archi-
tectures only allow pre-defined “system classes” to be shared between tasks, and
thus limit the expressiveness of cross-task communication.

2 Shared classes (and, transitively, the classes that shared classes refer to) are not
allowed to have static fields, to prevent sharing of non-capability objects through
static fields. In addition, to ensure consistency between domains, two domains that
share a class must also share other classes referenced by that class.



Ironically, the J-Kernel needs to prevent the sharing of some system classes.
For example, the file system and thread classes present security problems. Others
contain resources that need to be defined on a per-task basis: the class System,
for example, contains static fields holding the standard input/output streams.
In other words, the “one size fits all” approach to class sharing in most Java
security models is simply not adequate, and a more flexible model is essential to
make the J-Kernel safe, extensible, and fast.

In general, the J-Kernel tries to minimize the number of system classes visible
to tasks. Classes that would normally be loaded as system classes (such as classes
containing native code) are usually loaded into a privileged task in the J-Kernel,
and are accessed through cross-task communication, rather than through direct
calls to system classes. For instance, we have developed a task for file system
access that is called using cross-task communication. To keep compatibility with
the standard Java file API, we have also written alternate versions of Java’s
standard file classes, which are just stubs that make the necessary cross-task
calls. (This is similar to the interposition proposed by [35]).

The J-Kernel moves functionality out of the system classes and into tasks
for the same reasons that micro-kernels move functionality out of the operating
system kernel. It makes the system as a whole extensible, i.e., it is easy for any
task to provide alternate implementations of most classes that would normally
be system classes (such as file, network, and thread classes). It also means that
each such service can implement its own security policy. In general, it leads to a
cleaner overall system structure, by enforcing a clear separation between differ-
ent modules. Java libraries installed as system classes often have undocumented
and unpredictable dependencies on one another 3. Richard Rashid warned that
the UNIX kernel had “become a ‘dumping ground’ for every new feature or fa-
cility”[30]; it seems that the Java system classes are becoming a similar dumping
ground.

3.2 J-Kernel Micro-Benchmarks

To evaluate the performance of the J-Kernel mechanisms we measured a number
of micro-benchmarks on the J-Kernel as well as on a number of reference systems.
Unless otherwise indicated, all micro-benchmarks were run on 200Mhz Pentium-
Pro systems running Windows NT 4.0 and the Java virtual machines used were
Microsoft’s VM (MS-VM) and Sun’s VM with Symantec’s JIT compiler (Sun-
VM). All numbers are averaged over a large number of iterations.

Null LRMI Table 1 dissects the cost of a null cross-task call (null LRMI)
and compares it to the cost of a regular method invocation, which takes a few
tens of nanoseconds. The J-Kernel null LRMI takes 60x to 180x longer than

3 For instance, Microsoft’s implementation of java.io.File depends on
java.io.DatalnputStream, which depends on com.ms.lang.SystemX, which de-
pends on classes in the abstract windowing toolkit. Similarly, java.lang.Object
depends transitively on almost every standard library class in the system.



a regular method invocation. With MS-VM, a significant fraction of the cost
lies in the interface method invocation necessary to enter the stub. Additional
overheads include the synchronization cost when changing thread segments (two
lock acquire/release pairs per call) and the overhead of looking up the current
thread. Overall, these three operations account for about 70% of the cross-task
call on MS-VM and about 80% on Sun-VM. Given that the implementations of
the three operations are independent, we expect better performance in a system
that includes the best of both VMs.

Operation MS-VM|[Sun-VM
Regular Method invocation | 0.04us| 0.03us
Interface method invocation| 0.54us| 0.05us

Thread info lookup 0.55us|  0.29us
Acquire/release lock 0.20pus| 1.91us
J-Kernel LRMI 2.22pus| 5.41us

Table 1. Cost of null method invocations

To provide a comparison of the J-Kernel LRMI to traditional OS cross-task
calls, Table 2 shows the cost of several forms of local RPC available on NT.
NT-RPC'is the standard, user-level RPC facility. COM out-of-proc is the cost of
a null interface invocation to a COM component located in a separate process on
the same machine. The communication between two fully protected components
is at least a factor of 3000 from a regular C++ invocation (shown as COM
in-proc). For a comparison to the local RPC performance of research operating
systems see the Related Work section.

Form of RPC Time
NT-RPC 109us
COM out-of-proc| 99us
COM in-proc 0.03us
Table 2. Local RPC costs using NT mechanisms

Threads Table 3 shows the cost of switching back and forth between two Java
threads in MS-VM and Sun-VM. The base cost of two context switches between
NT kernel threads (NT-base) is 8.6us, and Java introduces an additional 1-2us
of overhead. This confirms that switching Java threads during cross-task calls
would add a significant cost to J-Kernel LRMI.

Argument Copying Table 4 compares the cost of copying arguments during
a J-Kernel LRMI using Java serialization and using the J-Kernel’s fast-copy



NT-base|MS-VM|Sun-VM
8.6us|  9.8us| 10.2us
Table 3. Cost of a double thread switch using regular Java threads

mechanism. By making direct copies of the objects and their fields without
using an intermediate Java byte-array, the fast-copy mechanism improves the
performance of LRMI substantially—more than an order of magnitude for large
arguments. The performance difference between the second and third rows (both
copy the same number of bytes) is due to the cost of object allocation and
invocations of the copying routine for every object.

Number of objects MS-VM Sun-VM |
and size Serializ. |Fast-copy|Serializ.|Fast-Copy
1 x 10 bytes 104us 4.8us| 331us 13.7us
1 x 100 bytes 158us 7. 7us|  509us 18.5us
10 x 10 bytes 193 us 23.3us|  H21us 79.3us
1 x 1000 bytes 633 us 19.2us| 2105us 66.7us

Table 4. Cost of Argument Copying during LRMI

In summary, the micro-benchmark results are encouraging in that the cost of
a cross-task call is 50x lower in the J-Kernel than in NT. However, the J-Kernel
cross-task call still incurs a stiff penalty over a plain method invocation.

Inspection of the critical code paths shows that in the call path itself, the
acquisition of a lock and the management of the thread state contribute most to
the cost. While aggressive inlining could reduce that by perhaps a factor of 2x,
the high cost of lock operations in modern processors will keep the cost signif-
icant. The largest cost of most cross-task calls is likely to be in the copying of
the arguments. For small objects the allocation (and eventual garbage collection)
dominates the cost and appears difficult to optimize by more than a small factor.
A more promising avenue would be to optimize the passing of arrays of primitive
(i.e., non-pointer) types by simply sharing the array. This clearly changes the
semantics, but does not compromise the integrity of the J-Kernel.

4 An Extensible Web and Telephony Server

One of the driving applications for the J-Kernel is an extensible web and tele-
phony server. The goal is to allow users to dynamically extend the functionality
of the server by uploading Java programs, called servlets [21], that customize the
processing of HTTP requests and telephone calls. Applications that integrate the
two forms of communication are of particular interest.

The extensible web and telephony server is made possible by the ongoing
merger of networking and telephony. The resulting new wave of commodity tele-



phony equipment is designed to be controlled by a standard workstation. Exam-
ples are telephone interface cards with 2 to 24 analog telephone lines and the
DSPs to handle real-time tasks, and full telephone switches (PBXs) that can
be controlled over a LAN. On the software side, standard telephony APIs (e.g.,
Windows’ TAPI or Java’s JTAPI) allow programs to control the equipment in a
relatively portable way.

The upshot of these developments is that today a single commodity PC
can provide integrated communication services that use both the Internet and
the telephone system. This section describes a prototype integrated web and
telephony server called the J-Server, which uses the J-Kernel to support the
extensibility necessary in this setting. The J-Server core manages a hierarchical
namespace of resources where each resource can correspond either to a URL or
to a telephone number. Users of the system can upload programs (called servlets)
to the J-Server and attach each servlet to one or more resources. The servlets can
then handle all HTTP requests and telephone calls that are sent to the resources.
Furthermore, servlets may communicate with one another, so that one servlet
may provide a service to another servlet. For example, a servlet that uses speech
recognition to determine the nature of a call might need to dispatch the call to
another servlet once it is clear whom the call is for.

In general, our experience with using these servers has shown that they place
high demands on the extension mechanism:

— Protection is important because multiple users create their own independent
webs.

— Failure isolation is important because webs are continuously expanded and
new features must not disrupt old ones.

— Clean servlet termination is essential.

— Extensions must be able to call other extensions, and these cross-task calls
should be cheap so that they can occur frequently.

Resource management and accounting are necessary.

Our J-Server setup uses two off-the-shelf products: Lucent Technologies DEFIN-
ITY Enterprise Communications Server and the Dialogic Dialog/4 voice inter-
face. At the core, the DEFINITY server is a Private Branch Exchange (PBX),
i.e. a telephone switch, augmented by an Ethernet-based network controller. The
network controller in this PBX allows the routing of telephone calls to be moni-
tored and controlled from a PC over the LAN. Lucent provides a Java interface
allowing the J-Server to communicate with the PBX using the Java Telephony
APT (JTAPI) [18].

The Dialog/4 Voice Processing Board, from Dialogic Corporation, provides
four half-duplex, analog telephone interfaces and includes a digital signal proces-
sor (DSP) to play and record audio, and to detect and transmit DTMF (dual-
tone multi-frequency) signals. Using two Dialog/4 boards, the J-Server is able to
make eight simultaneous half-duplex voice connections to the telephone network.



4.1 Extensible Server Architecture

Each servlet in the J-Server runs as a separate task to isolate it from the J-
Server core as well as from other servlets. This setup allows new servlets to be
introduced into the system or crashed ones to be reloaded without disturbing the
server operation. The J-Server core is also divided into several tasks. One task
dispatches incoming HTTP requests to servlets. Three tasks handle telephony:
the first is responsible for communicating with the PBX via JTAPI, the second
deals with the Dialogic voice processing boards, and the third is in charge of
dispatching telephony events to the appropriate servlets.

During operation, the J-Server performs a large number of cross-task calls to
pass events and data around. This is best illustrated by looking at the handling
of a telephone call by a simple voice-mail servlet. When a telephone call reaches
the PBX, an event is sent to the J-Server via JTAPI and is handled by the
task in charge of PBX events. This task then sends the event information to the
telephony dispatch task, which in turn passes the information to the appropriate
servlet. The servlet instructs the J-Server to route the call to one of the telephone
lines connected to the Dialogic card. At this point, the voice processing task
begins generating events, starting with a “ringing” event. These events are passed
to the dispatching task, and then on to the appropriate servlet. The servlet
proceeds to take the telephone off hook, and to start playing audio data. In
this application, the data is passed from the servlet task to the dispatch task
and then on to the voice task in one large chunk. When the voice channel has
finished playing the audio sample, it alerts the servlet, which, in turn, responds
by creating an appropriate response object. When the calling party hangs up,
the servlet instructs the voice channel to stop recording. The servlet waits for
all recorded data and then saves the sample as a Microsoft WAVE file for later
playback.

4.2 Performance

We conducted a set of experiments on the J-Server to evaluate the performance
of the J-Kernel in an application setting. The experiments were carried out on a
300MHz Pentium II, running Windows NT 4.0. The Java virtual machine used
was Microsoft’s VM version 1.1, with SDK 2.01.

Two tests measure the costs of cross-task calls and the frequency of such
calls in the J-Server. The first test, Half-Duplex Conversation, mimics a 40-
second telephone conversation between two people, each of whom is simulated
by a servlet. The call initiator “speaks” for two seconds, then “listens” for two
seconds, then “speaks” again, while the receiver is doing the opposite. “Speak-
ing” involves sending uncompressed audio data in one kilobyte segments (which
is equivalent to 1/8sec of conversation) to the voice processing task, where they
are presented to the Dialogic driver, which plays the data over the phone line.
“Listening” consists of recording data (in 512byte segments), collecting the data
to accumulate two seconds worth of audio (16Kbytes) and writing it out to the
disk in a standard, uncompressed WAVE file format.



The second test, VoiceBox Listing, measures the performance of the HTTP
component of J-Server. Using a web browser, a user makes a request to the
servlet, which displays the contents of a voice box directory, formatted as an
HTML page. Cross-task calls are made from the HTTP dispatching task to the
servlet task. In addition, a simple authentication servlet is used to verify the
user’s password, resulting in another cross-task call.

Table 5 summarizes the results. The Initiator and Responder columns cor-
respond to two parties involved in HalfDuplex Conversation, while the Listing
column corresponds to the servlet fetching and formatting information about
voice messages. The first five rows present the actual measurement values; the
remaining rows contain derived information.

Half-duplex conversation HTTP
Initiator Responder Listing

Total CPU time 1503 ms 1062 ms 18.5 ms
Total number of cross-task calls 3085 2671 8
Total cross-task data transfer 962304 bytes |984068 bytes | 3596 bytes
Total cross-task call overhead 9.37 ms 8.7l ms |0.037 ms
Total cross-task data copy time 2.91 ms 2.58 ms 0.01 ms
Average CPU time/cross-task call 3.0 ps 3.3 us 4.6 ps
Average bytes/call 312 bytes 368 bytes | 450 bytes
Average copy overhead/call 31 % 30 % 27 %
Average copy bandwidth 331 MB/s| 381 MB/s| 360 MB/s
Relative cross-task call overhead 0.62 % 0.82 % 0.20 %

Table 5. Selected performance measurements of HalfDupler Conversation and Voice-
Bozx Listing.

In all cases the overheads of crossing tasks (which include the cost of copying
arguments and then return values) are below 1% of the total consumed CPU
time. On the average, crossing tasks costs between 3us-4.6us and an average
call transfers between 312 (Initiator) to 450 (Listing) bytes. The cost of copying
data accounts for 27%-31% of an average cross-task call. This suggests that
overheads of crossing tasks in real applications when no data transfer is involved
are between 2.1us-3.3us. This is in contrast to the cost of a null cross-task call,
measured in an isolated tight loop: 1.35us.

The achieved bandwidth of copying data across tasks is sufficient for this ap-
plication. About 85% of the data transferred across tasks in the two experiments
is stored in byte arrays of 0.5Kbytes and 1Kbytes; the remaining data are either
references to capabilities, primitive data types or data inside objects of the type
java.lang.String. The average copying bandwidth is 330-380Mbytes/s, which
is over 50% of the peak data copying bandwidth of 630Mbytes/s achieved in
Java with a tight loop of calls to System.arraycopy().

With respect to scalability, our current hardware configuration supports at
most eight simultaneous half-duplex connections. Every connection results in an



additional 1.7%-2.3% increase in the CPU load. From this we estimate that,
given enough physical lines, our system could support about 50 simultaneous
half-duplex connections before reaching full CPU utilization. Since the J-Server
demands modest amounts of physical memory, permanent storage and network
resources, CPU is the bottleneck from the perspective of scaling the system,
so the range of 50 simultaneous half-duplex connections is very likely to be
achievable in practice.

While analyzing the performance, it is important to note that Java introduces
non-obvious overheads. For instance, in the Listing experiment, a large part of
the 18.5ms of CPU time can be accounted for as follows. About seven millisec-
onds are spent in the network and file system Java classes and native protocol
stacks. Roughly eight milliseconds are spent performing string concatenations
in one particular part of the VoiceBoz Listing servlet (Java string processing is
very slow under MS JVM). These overheads, which are introduced by Java and
not easy to avoid, dwarf the relative costs of crossing task boundaries and lead to
conclusions that may be not true if the JVM performance improves dramatically.

One conclusion, based on the current performance numbers, is that in large
applications similar to J-Server, the task boundaries crossing overheads are
very small relative to the total execution time and further optimizing them
will bring barely noticeable performance improvements. Second, in applications
where crossing tasks is frequent and optimizing cross-task calls actually matters,
on the average 30% of task crossing overheads can be removed by wrapping data
structures and arrays in capabilities. This avoids copying data between tasks but
comes at the expense of increased programming effort. It is important to stress
that the conclusions are drawn from observing several experiments based on a
single, although complex and realistic, application. More study is needed to fully
understand application behavior on top of Java in general and the J-Kernel in
particular.

5 Related Work

The Alta and GVM systems [1] developed at the University of Utah are closely
related to the J-Kernel. The motivation is to implement a process model in
Java, which provides memory protection, control over scheduling, and resource
management. Both systems are implemented by modifying a JVM (the free
Kaffe JVM is used). In GVM each Java process receives separate threads, heap,
and classes. Sharing is only allowed between a process and a special system
heap. This invariant is enforced using a write barrier. Each heap is garbage
collected separately and a simple reference counting mechanism is used for cross-
heap references. Alta implements the nested process model used in the Fluke
microkernel [10]. Child processes of the same parent process can share data
structures directly: the resources used are attributed to the parent. While the
inter-process communication costs of Alta and GVM are higher than in the J-
Kernel (see [1]), the custom JVM modifications allow both GVM and Alta to
take control of thread scheduling and to be more precise in resource management.



Several major vendors have proposed extensions to the basic Java sandbox se-
curity model for applets [20, 25, 29]. For instance, Sun’s JDK 1.1 added a notion
of authentication, based on code signing, while the JDK 1.2 adds a richer struc-
ture for authorization, including classes that represent permissions and methods
that perform access control checks based on stack introspection [12]. JDK 1.2
“protection domains” are implicitly created based on the origin of the code, and
on its signature. This definition of a protection domain is closer to a user in
Unix, while the J-Kernel’s task is more like a process in Unix. Balfanz et al. [2]
define an extension to the JDK which associates domains with users running
particular code, so that a domain becomes more like a process. However, if do-
mains are able to share objects directly, revocation, resource management, and
domain termination still need to be addressed in the JDK.

JDK 1.2 system classes are still lumped into a monolithic “system domain”,
but a new classpath facilitates loading local applications with class loaders rather
than as system classes. However, only system classes may be shared between
domains that have different class loaders, which limits the expressiveness of
communication between domains. In contrast, the J-Kernel allows tasks to share
classes without requiring these tasks to use the same class loader. In the future
work section, Gong et al. [12] mentions separating current system classes (such as
file classes) into separate tasks, in accordance with the principle of least privilege.
The J-Kernel already moves facilities for files and networking out of the system
classes and into separate tasks.

A number of related safe-language systems are based on the idea of using
object references as capabilities. Wallach et. al. [35] describe three models of
Java security: type hiding (making use of dynamic class loading to control a
domain’s namespace), stack introspection, and capabilities. They recommended
a mix of these three techniques. The E language from Electric Communities [8]
is an extension of Java targeted towards distributed systems. E’s security archi-
tecture is capability based; programmers are encouraged to use object references
as the fundamental building block for protection. Odyssey [11] is a system that
supports mobile agents written in Java; agents may share Java objects directly.
Hagimont et al. [14] describe a system to support capabilities defined with spe-
cial IDL files. All three of these systems allow non-capability objects to be passed
directly between domains, and generally correspond to the share anything ap-
proach described in Section 2. They do not address the issues of revocation,
domain termination, thread protection, or resource accounting.

The SPIN project [3] allows safe Modula-3 code to be downloaded into the
operating system kernel to extend the kernel’s functionality. SPIN has a par-
ticularly nice model of dynamic linking to control the namespace of different
extensions. Since it uses Modula-3 pointers directly as capabilities, the limita-
tions of the share anything approach apply to it.

Several recent software-based protection techniques do not rely on a partic-
ular high level language like Java or Modula-3. Typed assembly language [26]
pushes type safety down to the assembly language level, so that code written at
the assembly language level can be statically type checked and verified as safe.



Software fault isolation [34] inserts run-time “sandboxing” checks into binary
executables to restrict the range of memory that is accessible to the code. With
suitable optimizations, sandboxed code can run nearly as fast as the original
binary on RISC architectures. However, it is not clear how to extend optimized
sandboxing techniques to CISC architectures, and sandboxing cannot enforce
protection at as fine a granularity as a type system. Proof carrying code [27, 28]
generalizes many different approaches to software protection—arbitrary binary
code can be executed as long as it comes with a proof that it is safe. While
this can potentially lead to safety without overhead, generating the proofs for a
language as complex as Java is still a research topic.

The J-Kernel enforces a structure that is similar to traditional capability sys-
tems [22, 23]. Both the J-Kernel and traditional capability systems are founded
on the notion of unforgeable capabilities. In both, capabilities name objects in a
context-independent manner, so that capabilities can be passed from one domain
to another. The main difference is that traditional capability systems used virtual
memory or specialized hardware support to implement capabilities, while the J-
Kernel uses language safety. The use of virtual memory or specialized hardware
led either to slow cross-domain calls, to high hardware costs, or to portability
limitations. Using Java as the basis for the J-Kernel simplifies many of the is-
sues that plagued traditional capability systems. First, unlike systems based on
capability lists, the J-Kernel can store capabilities in data structures, because
capabilities are implemented as Java objects. Second, rights amplification [22]
is implicit in the object-oriented nature of Java: invocations are made on meth-
ods, rather than functions, and methods automatically acquire rights to their
self parameter. In addition, selective class sharing can be used to amplify other
parameters. Although many capability systems did not support revocation, the
idea of using indirection to implement revocation goes back to Redell [31]. The
problems with resource accounting were also on the minds of implementers of
capability systems—Wulf et. al. [36] point out that “No one ‘owns’ an object in
the Hydra scheme of things; thus it’s very hard to know to whom the cost of
maintaining it should be charged”.

Single-address operating systems, like Opal [6] and Mungi [17], remove the
address space borders, allowing for cheaper and easy sharing of data between
processes. Opal and Mungi were implemented on architectures offering large
address spaces (64-bit) and used password capabilities as the protection mech-
anism. Password capabilities are protected from forgery by a combination of
encryption and sparsity.

Several research operating systems support very fast inter-process commu-
nication. Recent projects, like L4, Exokernel, and Eros, provide fine-tuned im-
plementations of selected IPC mechanisms, yielding an order of magnitude im-
provement over traditional operating systems. The systems are carefully tuned
and aggressively exploit features of the underlying hardware.

The L4 p-kernel [15] rigorously aims for minimality and is designed from
scratch, unlike first-generation p-kernels, which evolved from monolithic OS
kernels. The system was successful at dispelling some common misconceptions



about p-kernel performance limitations. Exokernel [9] shares L4’s goal of being
an ultra-fast “minimalist” kernel, but is also concerned with untrusted loadable
modules (similar to the SPIN project). Untrusted code is given efficient control
over hardware resources by separating management from protection. The focus
of the EROS [33] project is to support orthogonal persistence and real-time com-
putations. Despite quite different objectives, all three systems manage to provide
very fast implementations of IPC with comparable performance, as shown in Ta-
ble 6. A short explanation of the ‘operation’ column is needed. Round-trip IPC
is the time taken for a call transferring one byte from one process to another and
returning to the caller; Exokernel’s protected control transfer installs the callee’s
processor context and starts execution at a specified location in the callee.

System |Operation Platform | Time

L4 Round-trip IPC P5-133 1.82us

Exokernel|Protected control transfer (r/t)|{DEC-5000{2.40us

Eros Round-trip IPC P5-120 4.90us

J-Kernel |Method invocation with 3 args [P5-133 3.77us
Table 6. Comparison with selected kernels.

The results are contrasted with a 3-argument method invocation in the J-
Kernel. The J-Kernel’s performance is comparable with the three very fast sys-
tems. It is important to note that L4, Exokernel and Eros are implemented as
a mix of C and assembly language code, while J-Kernel consists of Java classes
without native code support. Improved implementations of JVMs and JITs are
likely to enhance the performance of the J-Kernel.

6 Conclusion

The J-Kernel project explores the use of safe language technology to construct
robust protection domains. The advantages of using language-based protection
are portability and good cross-domain performance. The most straightforward
implementation of protection in a safe language environment is to use object ref-
erences directly as capabilities. However, problems of revocation, domain termi-
nation, thread protection, and resource accounting arise when non-shared object
references are not clearly distinguished from shared capabilities. We argue that
a more structured approach is needed to solve these problems: only capabilities
can be shared, and non-capability objects are confined to single domains.

We developed the J-Kernel system, which demonstrates how the issues of
object sharing, class sharing, thread protection, and resource management can
be addressed. As far as we know, the J-Kernel is the first Java-based system
that integrates solutions to these issues into a single, coherent protection system.
Our experience using the J-Kernel to extend the Microsoft IIS web server and
to implement an extensible web and telephony server leads us to believe that a
safe language system can achieve both robustness and high performance.



Because of its portability and flexibility, language-based protection is a natu-
ral choice for a variety of extensible applications and component-based systems.
From a performance point of view, safe language techniques are competitive
with fast microkernel systems, but do not yet achieve their promise of making
cross-domain calls as cheap as function calls. Implementing a stronger model
of protection than the straightforward share anything approach leads to thread
management costs and copying costs, which increase the overhead to much more
than a function call. Fortunately, there clearly is room for improvement. We
found that many small operations in Java, such as allocating an object, invoking
an interface method, and manipulating a lock were slower than necessary on
current virtual machines. Java just-in-time compiler technology is still evolving.
We expect that as virtual machine performance improves, the J-Kernel’s cross-
domain performance will also improve. In the meantime, we will continue to
explore optimizations possible on top of current off-the-shelf virtual machines,
as well as to examine the performance benefits that customizing the virtual
machine could bring.
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