
In Proceedings of the 1998 ACM European Workshop, Sintra, Portugal, September 1998.

Security versus Performance Tradeoffs in RPC Implementations for
Safe Language Systems

Chi-Chao Chang, Grzegorz Czajkowski,
Chris Hawblitzel, Deyu Hu, and Thorsten von Eicken

 Department of Computer Science, Cornell University, Ithaca NY 14853 USA

(Position Paper)

1 Introduction

In current distributed systems, the performance of
remote procedure calls (RPCs) is determined primarily
by the performance of the underlying network transport.
While the overheads of the RPC system itself are
secondary, two ongoing developments are likely to
change this and will cause the current RPC systems to
become the bottleneck in communication: user-level
network interfaces and safe languages. User-level
network interfaces such as VIA [2], U-Net [10], Fast
Messages [8], NoW Active Messages [1], or Shrimp
VMMC [3] are removing the operating system from the
critical communication path by allowing applications to
access the network interface directly. As a result, the
overhead of the network transport underlying RPC
decreases by almost an order of magnitude. At the same
time, the increasing adoption of Java as the “internet
programming language” places a heavier burden on the
RPC system because communication among Java
programs must satisfy the type safety properties
assumed by the language run-time (this is a general
issue with safe languages). Typically enforcing this
type safety requires additional operations (e.g. checks)
in the critical RPC path.

Designing an RPC system for a safe language requires
carefully trading off security and performance.
Depending on the degree of trust between the
communicating parties, different sets of optimizations
can be considered. If the run-time systems at the two
ends trust each other and if the integrity of the channel
between them can be guaranteed, then the marshalling
of objects, their type checking at the receiving end, and
the message dispatch on arrival can be optimized. In
addition, when using user-level network interfaces, the
buffer management can be coordinated to avoid copies
at both ends. However, if the two run-time systems do
not trust each other, then a severe penalty must be paid
to enforce the integrity of the safe language
environment at the receiving end. In addition,

cryptographic techniques may be necessary to protect
critical data as well as to guard against eavesdroppers if
an untrusted data channel is used. Despite the fact that
these techniques incur significant overheads in RPC,
offsetting some performance gains obtained through
run-time optimizations, many applications seem to be
willing to pay for it.

This paper discusses the tradeoffs between security and
performance in RPC in the context of the J-Kernel, a
Java-based system that enables multiple protection
domains to co-exist in a single virtual machine and that
addresses many protection issues not dealt by Java
itself. In the J-Kernel, domains have separate
namespaces and communication occurs through method
invocation on capabilities, which are unforgeable
references onto resources and services offered by other
domains. These capabilities can be freely passed among
protection domains and are represented by regular Java
objects. The RPC system described in this paper
extends this cross-domain method invocation across the
network: capabilities can be passed to protection
domains on remote nodes and invocations of capability
methods result in RPCs. In effect, the RPC system
transparently distributes the J-Kernel from single VMs
into multiple VMs running on separate machines. The
driving application for a single J-Kernel is an extensible
HTTP server where users can dynamically extend the
server’s functionality by uploading servlets that can
communicate with one another using capabilities. The
current J-Kernel prototype is written entirely in Java
and runs on standard Java VMs.

The main motivation for supporting distributed
components using the J-Kernel stems from the fact that
an HTTP client/server application itself is distributed in
nature. Java applets running on browsers often interact
with the server from which they originated using I/O
streams on top of HTTP and TCP sockets. Using the
distributed J-Kernel, applets and servlets can be written
using the same abstraction for communication (namely
capabilities) while running in domains that reside on
different machines. Another motivation is to support

extensible clusters of servers for better scalability.
Communication between servlets can be based on the
same abstraction, independent of their physical
location. The various uses for RPC lead to different
security requirements that motivate the exploration of
the implementation space and the security versus
performance tradeoffs that it offers. For example, in a
server cluster, the server can use a more secure RPC
channel when listening and handling RPC requests
coming from client applets, but may choose a faster,
less secure channel to communicate with servlets in the
cluster that it trusts.

2 RPC in the J-Kernel

Within a single J-Kernel, a domain can create a
capability to an object representing a service, which is
an automatically generated stub class that wraps the
object and inherits its “exported” methods. Invoking a
method of a capability obtained from some other
domain causes a local cross-domain call. The generated
stub is responsible for safely switching between the
caller and the callee domain, protecting the caller
thread, implementing capability revocation, and
applying a special calling convention that enforces
domain boundaries: arguments and return values are
passed by copy unless they are capabilities, in which
case they are passed by reference. In effect, only
capabilities are shared between domains. A domain can
make a capability available to other domains, either by
storing it in a public repository under a certain name, or
by passing it as an argument in local cross-domain
calls.

A distributed J-Kernel is composed of multiple J-
Kernels residing on separate machines. J-Kernel’s RPC
enables communication between remote domains and
uses the same abstraction, namely the capability, as in
the local case. A domain can make a service available
to remote domains by exporting it under a certain name;
similarly, it can import and use a service previously
exported by a remote domain. When a domain exports a
service, it obtains a capability that allows it to modify
some service parameters and to revoke the service as
well. When a domain imports a service, it obtains a
reference to a proxy object that issues RPC calls to the
actual service. The domain can create a capability to the
proxy object and pass it to other domains (whether they
are local or remote).

RPC in the J-Kernel is implemented by a trusted
subsystem which runs on a separate protection domain
and handles RPC binding, unbinding, and calls. When a
service is exported/imported by a domain, a
callee/caller proxy object is created in that domain.
These proxy objects handle argument marshalling and
unmarshalling and make cross-domain calls into the

subsystem to issue RPC requests and replies. Likewise,
the subsystem makes cross-domain upcalls to deliver
RPC requests and replies. Passing a capability via RPC
causes a proxy object to be created in the callee domain
(if the capability is an argument) or in the caller domain
(if the capability is a return value). To protect the
capability from being forged, each proxy object
digitally signs RPC requests with a large random
number that is shared between the stub object and the
RPC subsystem of the J-Kernel in which the service
resides. The RPC runtime system resides in a separate
protection domain because the J-Kernel does not allow
arbitrary domains to access system services such as the
network, and because it facilitates the management of
resources such as send and receive buffers.

This design is similar in many ways to capability-based
systems such as Amoeba [7] and to RPC systems based
on safe languages such as Java's Remote Method
Invocation [5] and Modula-3's Secure Network Objects
[9]. In particular, the J-Kernel design borrows the Java
RMI's usage of Remote interfaces to serve as compile-
time annotations of objects that implement remote
services, and can use Java Object Serialization [5] for
data marshalling. An important difference is that the
distributed J-Kernel uses the capability abstraction to
represent a remote service regardless of its location.

3 Tradeoffs in Performance and
Security

State-of-the-art user-level network interfaces (UNI)
have enabled a process to directly access the network
without the aid of a centralized kernel path. While this
eliminates a significant portion of the software
overhead in the critical path of an RPC in traditional
operating systems, there are a number of hurdles that
need to be overcome in order to deliver close-to-raw
RPC performance in the distributed J-Kernel. This
section describes the design tradeoffs by considering
whether the J-Kernels are trusted and whether the data
channels are trusted. By a trusted J-Kernel we mean one
that issues RPCs with a type-safe data stream and
unforged capabilities. By a trusted data channel we
mean one that has no eavesdroppers. In all cases, the
RPC semantics discussed in the previous section hold at
all times. We assume that data channels are reliable
(e.g. using TCP) and the OS/hardware is as trusted as
the J-Kernels.

3.1 Performance Issues with Type-Safety
and User-Level Network Interfaces

Marshalling is one of the remaining performance
bottlenecks in network software. Protocol header
marshalling consists of converting the RPC header

between the end machines’ format and the network
representation specified in the protocol specification.
Argument marshalling includes code to copy the data
objects into a send buffer and later from a receive
buffer. For cyclic or directed graph structures, this
process may require tracking the objects that are being
copied in order to avoid duplicate copies. The
marshalling performance depends on whether the object
formats (determined by class objects in Java) are
assumed compatible or not. The J-Kernels can avoiding
sending objects format information if they can agree on
common object formats. Moreover, if the J-Kernels
trust each other, they can copy the data out of the
receive buffer without having to perform type and
pointer validity checking: the receiver trusts the data it
got from the sender. However, all these checks must be
performed if the J-Kernels don’t trust each other. Type
checking requires fetching the argument’s type field
from the stream and comparing it to the expected type,
which requires a table lookup. Pointer validity checking
is usually less expensive since pointers refer to objects
in the stream and can be represented as indices or
offsets in the stream. When receiving a capability as an
argument or return value of an RPC between trusted J-
Kernels, an optimized implementation can pre-allocate
the proxy object during service import-time. In this
case, the wire representation will contain a pointer to
the existing proxy object, and this pointer will have to
be checked for validity if the J-Kernels are untrusted.

If the J-Kernels do not assume object format
compatibility, they need to resort to more sophisticated
stream protocols such as Java Object Serialization or
the ASN.1 protocols, which substantially degrades the
end-to-end RPC performance especially when large
objects are passed as arguments. For example, the
performance of the local RPC in the J-Kernel can be
improved by more than one order of magnitude when
using a fast copying mechanism instead of Java object
serialization.

The RPC implementation uses custom I/O to interface
to the network (using Java I/O would be exceedingly
slow). Tight integration of the VM and the underlying
UNI minimizes the amount of data copying in the
critical path. A copy can be eliminated on the receiving
end by pre-allocating the objects in a contiguous block
of memory and informing the sender of its location, but
this requires that the J-Kernels trust each other. In the
sending side, zero-copy can only be easily achieved for
shallow data structures (e.g. a Java array). Even with
compile-time annotations, zero-copy of arbitrary data
structures is difficult because the structure of the data
cannot be determined ahead of time (e.g. during object
allocation).

One final issue is efficient message dispatch, which
includes efficient support for interrupt-driven message
delivery and lightweight thread switching and
scheduling. Most operating systems have elaborate
software interrupt mechanisms with high overheads.
Some UNI implementations depend on the OS for
message arrival notification. Busy polling is an
alternative that may be acceptable but may consume a
great deal of CPU cycles. While a local cross-domain
call abides by the blocking RPC semantics without
requiring thread switches, a remote cross-domain call
will certainly involve at least two thread switches in the
critical path. This underscores the need for a
lightweight threads implementation. Threads in the
current prototype are built on top of kernel threads for
portability reasons -- a user-level implementation of
threads will require modifications to the virtual
machine.

3.2 Impact of Untrusted Data Channels
on Performance

When the data channel is untrusted, the RPC system
must provide two security guarantees: integrity and
secrecy. Integrity ensures that the callee receives an
RPC request, it knows that this request has been issued
by a trusted caller and hasn’t been altered in transit, and
the RPC reply received by the caller hasn’t been altered
in transit and is the response to that same request sent
by the caller. Secrecy ensures that an eavesdropper can
not obtain any information regarding the RPC request
and reply.

The integrity requirement is enforced by authenticating
the J-Kernels using digital signatures, and digitally
signing all the handshaking communication between
RPC subsystems with point-to-point keys assigned by a
reliable, centralized key-distribution service. When an
RPC point-to-point channel is established between two
J-Kernels, the subsystems agree on a secret suffix for
the channel. Besides the additional system complexity,
this introduces four digital signature (e.g. MD5)
computations on the RPC header and data as well as
two byte-array comparisons in the RPC critical path.
The RPC subsystems can further encrypt entire
outgoing byte-streams to attain complete secrecy using
DES.

4 Applications

The following is a brief description of applications we
are currently developing using the RPC system in the
distributed J-Kernel.

Extensible HTTP Browser: We are currently
integrating the J-Kernel technology into Amaya [11], a
Java-based web browser developed by W3C

Consortium. Java applets running on browsers often
interact with the server from which it originated using
standard I/O streams based on HTTP and TCP
protocols. In the distributed J-Kernel environment,
applets and servlets will use the same abstraction for
communication (namely capabilities), allowing
functionality to be moved transparently between server
and client. In this application, the server and the client
do not trust each other and the most conservative
implementation of RPC must be used.

Remote Debugging of Extensible HTTP
Servers: We have built an extensible HTTP server by
integrating the J-Kernel into Microsoft’s web server
(IIS v3.0). The J-Kernel runs within the same process
as IIS (as an in-proc ISAPI extension) and includes a
system servlet with access to native methods to receive
HTTP requests from IIS and return corresponding
replies. This HTTP system servlet forwards each
request to the appropriate user servlet, each of which
runs in its own J-Kernel domain. This allows arbitrary
users to upload custom servlets onto the web server.
While this setting is convenient in many ways, it makes
debugging servlets difficult. We are using the J-
Kernel’s RPC system to enable remote debugging: the
developer launches a Java VM running J-Kernel on its
own machine and the IIS server forwards the HTTP
requests through RPC. For this setting, we assume that
the communication channels are trusted but not the J-
Kernel’s.

Scalable HTTP Server: To scale the above HTTP
server to a cluster of machines we offload the execution
of compute-intensive servlets to J-Kernels running on
separate machines. Servlets that perform compute-
intensive tasks can be installed on those J-Kernels, and
the HTTP server can issue RPC to those servlets. In this
scenario, the server can use a more secure RPC channel
when listening and handling RPC requests coming from
client applets, but may choose a faster, less secure
channel to communicate with the compute-servlets
which run on trusted J-Kernels in the cluster server.

5 Summary

This paper discusses the design tradeoffs related to two
main issues in modern RPC systems: performance and
security. In a highly trusted environment, it is possible
to perform aggressive optimizations to achieve a base-
line RPC performance that substantially closes the
performance gap between the raw network performance
and the RPC performance. But in an untrusted scenario,
the cost of providing security guarantees may be
prohibitively high, offsetting any substantial gains in
software communication overhead. Still it is interesting
to see how the base-line RPC performance varies when

security guarantees are introduced one by one and the
role a safe language plays during this process. This
generates a spectrum of design points that can help
application programmers to decide the level of security
and performance that is more suitable.

Acknowledgments

This research is funded by DARPA ITO contract ONR-
N00014-92-J-1866, NSF contract CDA-9024600, a
Sloan Foundation fellowship, and Intel Corp. hardware
donations. Chi-Chao Chang is supported in part by a
doctoral fellowship (200812/94-7) from CNPq/Brazil.

6 References

[1] B. Chun, A. Mainwaring, D. Culler. Virtual Network
Transport Protocols for Myrinet. Hot Interconnects V,
Stanford, CA, Aug 1997.

[2] Compaq Computer Corp., Intel Corporation, Microsoft
Corporation. Virtual Interface Architecture Specification,
Version 1.0. http://www.viarch.org/. December 16, 1997.

[3] Dubnicki, C., A. Bilas, Y. Chen, S. Damianakis, and K.
Li. VMMC-2: Efficient Support for Reliable, Connection-
Oriented Communication. Hot Interconnects V, Stanford, CA,
Aug 1997.

[4] C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu, and T.
von Eicken. Implementing Multiple Protection Domains in
Java. To appear in Proceedings of 1998 USENIX Annual
Technical Conference, June 1998.

[5] JavaSoft. Remote Method Invocation and Object
Serialization Specification. Available at http://java.sun.com.

[6] B. Lampson, M. Abadi, M. Burrows, and E.Wobber.
Authentication in distributed systems: Theory and Practice.
ACM Transactions on Computer Systems, 10(4):265-310,
Nov. 1992.

[7] S. J. Mullender, A. S. Tanenbaum, and R. van Renesse.
Using sparse capabilities in a distributed operating system.
In Proceedings of the 6th IEEE conference on Distributed
Computing Systems, June 1986.

[8] Pakin, S., M. Lauria, and A. Chien. High Performance
Messaging on Workstations: Illinois Fast Messages (FM) for
Myrinet. In Proceedings of Supercomputing ’95, San Diego,
California, 1995.

[9] L. van Doorn, M. Abadi, M. Burrows, and E. Wobber.
Secure Network Objects. In Proceedings of the IEEE Security
and Privacy Conference, IEEE, Oakland, CA, V.S., 1996.

[10] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-
Net: User-Level Network Interface for Parallel and
Distributed Computing. In Proceedings of the 15th Annual
Symposium on Operating System Principles, p.40-53, Copper
Mountain Resort, Colorado, Dec. 1995.

[11] W3C Consortium at http://www.w3.org.

