
EPOCHS Instruction Manual

Kenneth M. Hopkinson
Copyright © 2003 Cornell University

July 9, 2003

Overview

EPOCHS, the Electric Power and Communication Synchronizing Simulator combines
UC Berkeley’s Network Simulator 2 (NS2) with GE’s PSLF electromechanical transient
simulation system and HVDC Manitoba’s PSCAD electromechanical simulator together
into one federated simulation environment. This is a powerful environment allowing the
power and communication communities to examine how interdependencies between
communication and power equipment interact under complex scenarios. This guide is
designed to give an overview of the use of the EPOCHS environment. The power and
communication environment has been created as research software. Every effort has
been made to make a bug-free and user-friendly environment, but the emphasis of our
small development team is on functionality that can be used for quick development that
leads to definite research results. Undoubtedly, there are bugs and non-intuitive steps
that have crept in along the way. We hope that this is useful for you and would like to
hear from you if you have any questions, comments, or would like to add to our
development effort. For more information about the structure of EPOCHS itself is the
Winter Simulation Conference paper listed in [1]. This is also a good paper to cite when
describing work that makes use of the EPOCHS environment in research papers.

Installation

Required Software
• Microsoft Visual C++ 6.0: We are using the native compile method for NS2. This

option uses Visual C++ to create a binary file that can run directly on the Windows
operating system. Visual C++ 7.0, aka Visual C++ .NET, restructures a number of
compile switches and directory contents. EPOCHS should be able to compile with
some modification with Visual C++ 7.0, but we have not attempted to do so.

• PSLF: EPOCHS makes use of PSLF for electromechanical transient situations. PSLF
is not required for electromagnetic transient scenarios.

• PSCAD/EMTDC: EPOCHS makes use of PSCAD/EMTDC for electromagnetic
transient situations. PSLF is not required for electromechanical transient scenarios. If
you are using PSCAD/EMTDC then you should also have the g++ distribution
available from their web site installed on your system.

External Software Included in the EPOCHS Distribution
• NS2: EPOCHS depends on NS2 for simulated network communication. EPOCHS

currently requires NS2 version 2.1b9a. The agentsimv9a directory is a modified
version of the distribution that has been augmented with the requisite EPOCHS code.
You can acquire the original NS2 source code from http://www.isi.edu/nsnam/ns/.

• SCTP: We have patched the NS2 distribution to add SCTP support using version 3.2

of the University of Delaware’s SCTP module. The SCTP module has been modified
to run on the Windows operating system and to work with NS2 version 2.1b9a. You
can download the original SCTP patch from http://pel.cis.udel.edu/.

Installing EPOCHS
The EPOCHS distribution is designed to be unzipped into the root directory of your C
drive. It will create a directory entitled agentsimv9a containing the NS2 distribution
modified to include the SCTP 3.2 release and the EPOCHS system. A directory called
“epc” is also created. It contains EPOCHS-specific code in the “code” subdirectory and
executables in the “swap” subdirectory. You will also find the instructions that you are
reading now as well as the distribution’s license agreement. If Visual C++ is installed in a
different location than the one specified in the NS2 makefiles then you will need to make
the appropriate modifications. If you wish to move the location for your EPOCHS
compilation execution then you can do so at this time by making changes as described in
the “Changing EPOCHS Options” section.

Changing EPOCHS Options
EPOCHS has a number of compile options that are located in epochs_conf.h. These
#defines are off when they are preceded by a “//” C++ comment and otherwise are on.
They are:
• Windows: Almost all EPOCHS code is written in ANSI C++, but there are a few

operating system-specific functions that differ between Windows and Unix. If this
option is on then the code will compile for the Windows OS. If it is off then Unix is
assumed.

• PSCAD: Turn this on to compile for PSCAD operation. Please note that only one of
the two power simulators can be turned on at once in the current EPOCHS system.

• PSLF: Turn this on for PSLF operation. Please note that only one of the two power
simulators can be turned on at once in the current EPOCHS system.

• TRACK_AGENT_INTERACTIONS: A record of the power and communication
messages is kept if this flag is turned on.

• WRITE_CHECKPOINTS: This is reserved for future use. It should be turned off in
the current release.

• READ_CHECKPOINTS: This is reserved for future use. It should be turned off in
the current release.

• TEMP_PATH: This is the directory where EPOCHS simulations will be executed.

• CHOOSINGHQ: The name of the file to use for the agenthq’s choosing file. This file
is used to ensure that only one program writes to a log file at a time.

• CHOOSINGPWR: The name of the file to use for the power simulator’s choosing
file. This file is used to ensure that only one program writes to a log file at a time.

• NUMBERHQ: The name of the file to use for the agenthq’s number file. This file is
used to ensure that only one program writes to a log file at a time.

• NUMBERPWR: The name of the file to use for the power simulator’s number file.
This file is used to ensure that only one program writes to a log file at a time.

• ASCII_TRUE: This is the ASCII string used to represent “true”.
• ASCII_FALSE: This is the ASCII string used to represent “false”.
• LOG_FILE: The file used to log power and communication messages.
• MSG_IN_FILE: The input power system exchange file suffix.
• MSG_OUT_FILE: The output power system exchange file suffix.
• CONTROL_LOG: Reserved for future use. This should be turned off in the current

release.

Running Cases
The EPOCHS distribution comes with a number of sample cases. Running a case
involves starting both the power simulator and network communication simulator inside
the EPOCHS’ swap directory.

Starting a PSCAD/EMTDC scenario involves loading the case library, such as
backup3.psl, followed by loading and then running the PSCAD/EMTDC case, such as
backup_agent_0314exp1.psc.

To begin a PSLF case, open its .sav load flow component using getf followed by getting
its .dyd dynamic data file in the psds PSLF section. There are a number of values that
must be set when running the dynamic case:
• Next Pause Time: Set to the simulation end time
• Steps/plot (file): Set to 1 to ensure that PSLF will keep its timing steady
• Steps/display: Set to 1 to ensure that PSLF will keep its timing steady
• Maximum Time: Should equal the “Next Pause Time” value
• Step width, sec: Time in seconds between EPOCHS rounds. This must equal the time

set in the NS case script.
• Unsteady rate tol: Set to 0.0000 to ensure that PSLF will keep its timing steady

The network simulator should be run in the swap directory using “ns script.tcl” where
script is the name of the case script. Each EPOCHS case has a subdirectory where its
script generator is located. PSLF generators are compiled using Visual C++.
Background traffic settings and case input files are found in ieee_driver.cpp. All other
settings are found in the “generate” function inside convert_ieee.cpp. PSCAD/EMTDC
generators are compiled using g++. Simulation variables are set inside generator.cc. The
cases are:

PSCAD Test
This is a PSCAD-based case is centered on the use of backup protection agents that use
communication to augment their capabilities.

SPS
This PSLF-based case is a simplified version of the SPS Communication case. The case
makes use of a special protection system that uses information from the system
generators to detect pending transient instability and uses load shedding and generator
rejection to maintain the system. This SPS has been designed to protect a modified
version of the IEEE 50 generator system. No information is ever transmitted over the
communication network here. The SPS can magically detect the instantaneous state of
any bus in the system.

SPS Communication
This PSLF-based case is an advanced version of the SPS case. The case makes use of a
special protection system that uses information from the system generators to detect
pending transient instability and uses load shedding and generator rejection to maintain
the system. This SPS has been designed to protect a modified version of the IEEE 50
generator system. Information is transmitted over the communication network here and
both losses and long transmission delays can occur. The SPS can only directly detect the
state of its own bus in this system.

Bilateral
This PSLF-based case centers on simulated load-following (aka load frequency
regulation) using bilateral contracts. That is, variable-power contracts between
generators and loads in different control areas.

Directional Relaying
Power system engineers sometimes run scenarios to see which relays will trip in a given
situation. The goal of these particular tests is to see which relays trip rather than when
they trip or the resulting dynamics in the power system. This PSLF-based case allows a
user to take any power system in the IEEE Common Data Format and create a scenario
using directional relays. No dynamic data is required in this case. Directional relays are
created at each bus in the system. It is assumed that each relay can detect a fault up to N
lines away from it. N has a default value of 3, but can be set as desired. Blocking signals
are sent from one side of a line to the other as long as a fault is not detected. The
background traffic module can be used with this case to get a sense of how varying levels
of background traffic affect the proper operation of the relays in the system.

Creating New Cases
The EPOCHS system has a well-defined procedure for adding new simulation cases.
• Add a new entries into the epochs_agent.h agenthq_agent_types enumeration. You

should add one new entry per added agent type. The position in the list yields the
identification number for a given agent type. For example, the BILATERAL agent
type is the fourth entry in the agenthq_agent_types enumeration so its EPOCHS id is
3. The id is not 4 because enumerations begin count at 0 by default.

• Create a new agent class for each new agent type. You should add a new entry into
the create_epochs_entry section of each new agent specifying its corresponding class.

• EPOCHS agents are children of the EPOCHSAgent class. Agents should have a
“request” method where power system information is requested at the beginning of
each round. The “action” method is where the actual power
system/communication/computation takes place each round. Agent communication is
received in the “recv_comm_msg” method. Power system communication is
similarly received in the “recv_power_msg” method. The agent can be structured as
desired given these restrictions. You can use the agents provided as templates for
your own work.

• Create a script generation directory similar to those corresponding the sample
EPOCHS cases. Variables specific to individual agents should be placed in the NS2
tcl script generated.

• Create the power system portion of your test case. You can use the sample test cases
as a template for this part of agent creation process.

o PSCAD/EMTDC: PSCAD test cases require that you use the
control.h/control.c and pscadtcp.h/pscadtcp.c files in order to interface with
the EPOCHS system. You should customize these files to your system’s
structure and to reflect the information that should be passed between PSCAD
and the EPOCHS agents.

o PSLF: PSLF cases do not need to be customized to each individual scenario as
is the case with PSCAD. You should ensure that the EPCL test23_debug.p
file includes the power system commands that you wish to use, though.

• Finally, place the case files in your swap directory. You should be ready to run and
debug your cases at this time.

Using the Background Traffic Module
The background traffic module generates communication traffic that is likely to appear in
a real Utility Intranet. Each traffic component can be set to whatever frequency is
desired. The components descriptions and suggested traffic frequencies consist of:

• Supervisory Control and Data Acquisition (SCADA) Data
 (Suggest One Complete Area Scan / Second)

o Injections (MW, MVAR)
o Flows (Real, Reactive)
o Voltage
o Breaker Status (In or Out of Service)

• Power Quality Data
(Suggest One Reading From Each Industrial and Some Commercial Centers Per
Second)

• Power Trading Traffic
Customers can choose to buy their power under current market conditions that will be
updated (suggest every 5 minutes) based on the current nodal market price of power.
All nodal pricing will need to be available together in one place for some market
places. Most locations will require selective data only.

• Routine Internal Traffic
Design/Blueprint information, e-mail, and other routine exchanges will likely occur
on the intranet. These files could be reasonably large, but these transfers will occur
much less frequently than occurs on the Internet since it is strictly on an internal
basis. Exchanges are likely to occur between engineering offices and power plants,
power plants to other power plants, ISO’s to engineering offices, etc.
(Suggest 100,000 byte transfer size with a probability of 0.002 per area per round, but
this is highly dependent on your expected network characteristics).

• Office Substation Traffic
Signals from from offices to substations

o ISO Control Center to Substations: Typically consists of supervisory control
signals telling buses to take actions

o Engineering Office to Substations: Typically asking to change settings from
one value to another

Note that Routine Internal Traffic and Office substation traffic are unlikely to take
place at the same time.
(Suggested packet size of 20 bytes and probability of 0.002 per bus per round. Your
actual values will depend on your expected power system operating characteristics.)

• Event Notification Traffic
When an event occurs, data will be sent from event/fault recorders. An event might
be a lightning strike followed by a set of circuit breaker trips in response. Sampled
waveforms of voltages and currents at 5 KHz per second are possible. This data can
be quite large when compared with many of the other types of information that are
passed around the system. These files will be sent after the fault has occurred
meaning that they do not interfere with the current situation. However, if a fault
occurs and then another follows it then interference could occur. Similarly, if a line is
faulted and then an auto-recloser attempts to reconnect then this could cause a second
fault.
(This event only occurs when explicitly triggered. A representative transfer size
would be 5,000 Hz * 1 16-bit Word/Cycle * 20 Seconds * 12 Channels = 2.3 MB of
data)

Each EPOCHS scenario has the option of using the background traffic module. This is
typically done by checking the backgroundTraffic flag at time the system is initialized. A
value of 1 indicates that the module should be used and a 0 indicates that it should not.
The background object should be activated once per round in the action phase. Each of

the sample cases incorporated in the EPOCHS distribution allow the user to make use of
background traffic. You may view their source code for more information.

Conclusion
This guide is a short reference describing how to get up and running with the EPOCHS
system. We hope that you have found it helpful. If you have any questions or comments
then please send a message to Ken Hopkinson hopkik@cs.cornell.edu, Renan Giovanini
rg228@cornell.edu, or Xiaoru Wang xw44@cornell.edu and we will do our best to help.

References
[1] Hopkinson, K.M.; Giovanini, R.; Wang, X.; Birman, K.P.; Thorp, J.S.; Coury, D.V.,
EPOCHS: Integrated Commercial Off-the-Shelf Software for Agent-based Electric Power
and Communication Simulation. 2003 Winter Simulation Conference. 7-10 of December
2003, New Orleans, USA.

	EPOCHS Instruction Manual
	Overview
	Installation
	Required Software
	External Software Included in the EPOCHS Distribution
	Installing EPOCHS
	Changing EPOCHS Options

	Running Cases
	PSCAD Test
	SPS
	SPS Communication
	Bilateral
	Directional Relaying

	Creating New Cases
	Using the Background Traffic Module
	Conclusion
	References

