
Kelips : Building an Efficient and Stable P2P DHT

Through Increased Memory and Background Overhead ∗

Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, Robbert van Renesse

Cornell University, Ithaca, NY, USA

{gupta, ken, linga, ademers, rvr}@cs.cornell.edu

Abstract

A peer-to-peer (p2p) distributed hash table (DHT)
system allows hosts to join and fail silently (or leave),
as well as to insert and retrieve files (objects). This
paper explores a new point in design space in which
increased memory usage and constant background
communication overheads are tolerated to reduce file
lookup times and increase stability to failures and
churn. Our system, called Kelips, uses peer-to-peer
gossip to partially replicate file index information.
In Kelips, (a) under normal conditions, file lookups
are resolved with O(1) time and message complex-
ity (i.e., independent of system size), and (b) mem-
bership changes (e.g., even when a large number
of nodes fail) are detected and disseminated to the
system quickly. Per-node memory requirements are
small in medium-sized systems. When there are fail-
ures, lookup success is ensured through query rerout-
ing. Kelips achieves load balancing comparable to
existing systems. Locality is supported by using spa-
tial gossip mechanisms. Initial results of an ongoing
experimental study are also discussed.

1 Introduction
A peer-to-peer (p2p) distributed hash table (DHT)
implements operations allowing hosts or processes
(nodes) to join the system, and fail silently (or leave
the system), as well as to insert and retrieve files
with known names. Several DHTs are in deploy-
ment, e.g. Gnutella and Kazaa, while many others
are a focus of academic research, e.g., Chord [3], Pas-
try [6], Tapestry, etc. [8].

All p2p systems make tradeoffs between the
amount of storage overhead at each node, the

∗System name derived from kelip-kelip, Malay name for
the self-synchronizing fireflies that accumulate after dusk on
branches of mangrove trees in Selangor, Malaysia [10]. Our
system similarly organizes into affinity groups, and nodes in a
group “synchronize” to store information for the same set of
file indices.

communication costs incurred while running, and
the costs of file retrieval. With the exception of
Gnutella, the work just cited has focused on a de-
sign point in which storage costs are logarithmic
in system size and hence small, and lookup costs
are also logarithmic (unless cache hits shortcut the
search). But there are other potentially interesting
design points.

One could vary the soft state memory usage and
background network communication overhead at a
node in order to realize O(1) lookup costs. For exam-
ple, complete replication of soft state achieves this,
but this approach has prohibitive memory and band-
width requirements.

The Kelips system uses O(
√

n) space per node,
where n is the number of nodes in the system. This
soft state suffices to resolve lookups with O(1) time
and message complexity. The constant cost contin-
uous background overhead is used to maintain the
index structure with high quality, as well as guaran-
tee quick convergence after membership changes. In
contrast, many classical p2p designs suffer because
large numbers of nodes are found to be inaccessi-
ble when an access is attempted. The

√
n design

point is of interest because, within Kelips, both the
storage overhead associated with the membership
data structure and that associated with replication
of file-index (henceforth called filetuple) data impose
the same O(

√
n) asymptotic cost. Kelips uses query

rerouting to ensure lookup success in spite of failures.
The mechanism also allows us to use an idea from
the widely cited “small worlds” algorithms when se-
lecting peers for each node.

Memory usage is small for systems with moderate
sizes - if 10 million files are inserted into a 100,000-
node system, Kelips uses only 1.93 MB of memory at
each node. The system exhibits stability in the face
of node failures and packet losses, and hence would
be expected to ride out “churn” arising in wide-area

1



settings as well as rapid arrival and failure of nodes.
This resilience arises from the use of a lightweight
Epidemic multicast protocol for replication of sys-
tem membership data and file indexing data [1, 4].
We note that whereas many DHT systems treat file
replication as well as lookup, our work focuses only
on the lookup problem, leaving replication to the
application. For reasons of brevity, this paper also
omits any discussion of privacy and security consid-
erations.

2 Core Design

Kelips consists of k virtual affinity groups, numbered
0 through (k−1). Each node lies in an affinity group
determined by using a consistent hashing function
to map the node’s identifier (IP address and port
number) into the integer interval [0, k − 1]. Let n be
the number of nodes currently in the system. The
use of a cryptographic hash function such as SHA-
1 ensures that with high probability, each affinity
group contains close to n

k
nodes.

Node soft state consists of the following entries:
• Affinity Group View: A (partial) set of other nodes
lying in the same affinity group. Each entry carries
additional fields such as round-trip time estimate,
heartbeat count, etc. for the other node.
• Contacts: For each of the other affinity groups
in the system, a small (constant-sized) set of nodes
lying in the foreign affinity group. Entries contain
the same additional fields as in the affinity group
view.
• Filetuples: A (partial) set of tuples, each detailing
a file name and host IP address of the node storing
the file (called the file’s homenode). A node stores a
filetuple only if the file’s homenode lies in this node’s
affinity group. Filetuples are also associated with
heartbeat counts.

Figure 1 illustrates an example. Entries are stored
in AVL trees to support efficient operations.

Memory Usage at a node The total storage re-
quirements for a Kelips node are S(k, n) = n

k
+ c ×

(k − 1) + F

k
entries (c is the number of contacts per

foreign affinity group and F the total number of files
present in the system). For fixed n, S(k, n) is min-

imized at k =
√

n+F

c
. Assuming the total number

of files is proportional to n, and that c is fixed, k

then varies as O(
√

n). The minimum S(k, n) varies
as O(

√
n). This is larger than Chord or Pastry, but

reasonable for most medium-sized p2p systems.

Consider a medium-sized system of n = 100, 000
nodes over k = d√ne = 317 affinity groups. Our

432,...

hello.c

30 1490 23ms

.
.
.

.
.
.

2

.
.
.

1602057 79ms

160,...

Group #
Affinity

0         1         2                   9

30

110

160

432

...

Node 110

id rtthbeat

filename homenode

contactnodesgroup

Affinity Group View

Contacts

Filetuples

Figure 1: Soft State at a Node: A Kelips system with
nodes distributed across 10 affinity groups, and soft state at a
hypothetical node.

current implementation uses 60 B filetuple entries
and 40 B membership entries, and maintains 2 con-
tacts per foreign affinity group. Inserting a total
of 10 million files into the system thus entails 1.93
MB of node soft state. With such memory require-
ments, file lookup queries return the location of the
file within O(1) time and message complexity (i.e.,
these costs are invariant with system size n).

2.1 Background Overhead

Given a system of n nodes across k affinity groups,
view, contact and filetuple entries are refreshed pe-
riodically within and across groups. This occurs
through a heartbeating mechanism. Each view, con-
tact or filetuple entry stored at a node is associated
with an integer heartbeat count. If the heartbeat
count for an entry is not updated over a pre-specified
time-out period, the entry is deleted. Heartbeat up-
dates originate at the responsible node (for filetuples,
this is the homenode) and are disseminated through
a peer-to-peer Epidemic protocol [7].

We briefly describe epidemic-style dissemination
within an affinity group. Then we generalize to mul-
tiple affinity groups.

An epidemic (or gossip-based) protocol dissemi-
nates a piece of information (e.g., a heartbeat up-
date for a filetuple) in the following manner. Once
a node receives the piece of information to be mul-
ticast (either from some other node or from the ap-
plication), the node gossips about this information
for a number of rounds, where a round is a fixed lo-
cal time interval at the node. During each round,
the node selects a small constant-sized set of target

2



nodes from the group membership, and sends each
of these nodes a copy of the information. With high
probability, the protocol transmits the multicast to
all nodes. The latency varies with the logarithm of
affinity group size. Gossip messages are transmitted
via a lightweight unreliable protocol such as UDP.
Gossip target nodes are selected through a weighted
scheme based on round-trip time estimates, prefer-
ring nodes that are topologically closer in the net-
work. Kelips uses the spatially weighted gossip pro-
posed in [5] towards this. A node with round-trip
time estimate rtt is selected as gossip target with
probability proportional to 1

rttr
. As suggested in [5],

we use a value of r = 2, where the latency is poly-
logarithmic (O(log2(n)).

Analysis and experimental studies have revealed
that epidemic style dissemination protocols are ro-
bust to network packet losses, as well as to transient
and permanent node failures. They maintain stable
multicast throughput to the affinity group even in
the presence of such failures. See references [1, 2, 4].

Information such as heartbeats also need to prop-
agate across affinity groups (e.g., to keep contact
entries for this affinity group from expiring). This
is achieved by selecting a few of the contacts as gos-
sip targets in each gossip round. Such cross-group
dissemination implies a two-level gossiping scheme
[7]. With a uniform selection of cross-group gossip
targets, latency is more than that of single group
gossip by a multiplicative factor of O(log(k)) (same
as O(log(n))).

Gossip messages in Kelips carry not just a sin-
gle entry, but several filetuple and membership en-
tries. This includes entries that are new, were re-
cently deleted, or with an updated heartbeat. Since
Kelips limits bandwidth use at each node, not all
the soft state can be packed into a gossip message.
Maximum rations are imposed on each of the number
of view entries, contact entries and filetuple entries
that a gossip message may contain. For each entry
type, the ration subdivides equally for fresh entries
(ones that have so far been included in fewer than a
threshold number of gossip messages sent out from
this node) and for older entries. Entries are chosen
uniformly at random, and unused rations (e.g., from
few fresh entries) are filled with older entries.

Ration sizes do not vary with n. With k =
√

n,
this increases dissemination latencies a factor of
O(

√
n) above that of the Epidemic protocol (since

soft state is O(
√

n)). Heartbeat timeouts thus need
to vary as O(

√
n × log2(n)) for view and filetuple

entries, and O(
√

n × log3(n)) for contact entries.
These numbers thus are the convergence times for

the system after membership changes. Such low con-
vergence times are achieved through only the gossip
messages sent and received at a node (henceforth
called the gossip stream). This imposes a constant
per-node background overhead. The gossip stream
keeps heartbeats flowing in spite of node and packet
delivery failures, thus allowing lookups to succeed.

2.2 File Lookup and Insertion

Lookup: Consider a node (querying node) that de-
sires to fetch a given file. The querying node maps
the file name to the appropriate affinity group by us-
ing the same consistent hashing used to decide node
affinity groups. It then sends a lookup request to
the topologically closest contact among those known
for that affinity group. A lookup request is resolved
by searching among the filetuples maintained at the
node, and returning to the querying node the ad-
dress of the homenode storing the file. This scheme
returns the homenode address to a querying node
in O(1) time and with O(1) message complexity.
The querying node fetches the file directly from the
homenode.
Insertion: A node (origin node) that wants to in-
sert a given file f , maps the file name to the appropri-
ate affinity group, and sends an insert request to the
topologically closest known contact for that affinity
group. This contact picks a node h from its affinity
group, uniformly at random, and forwards the in-
sert request to it. The node h is now the homenode
of the file. The file is transferred from the origin
node to the homenode. A new filetuple is created
listing the file f as being stored at the homenode h,
and is inserted into the gossip stream. Thus, inser-
tion also occurs in O(1) time and with O(1) message
complexity. The origin node periodically refreshes
the filetuple entry at homenode h in order to keep it
from expiring.

Clearly, factors such as empty contact sets or in-
complete filetuple replication might cause such one-
hop lookup or insertion to fail. Biased partial mem-
bership information might cause uneven load bal-
ancing. This is addressed by the general multi-hop
multi-try query routing scheme of Section 3.

3 Auxiliary Protocols and Algo-

rithms

We outline Kelips’ protocols for node arrival, mem-
bership and contact maintenance, topological con-
siderations and multi-hop query routing.

3



1

10

100

1000

0 1 2 3 4 5 6 7 8

N
u
m

b
e
r 

o
f 
M

e
m

b
e
rs

 w
ith

 x
 F

ile
s

x = Number of Files

  840 files
 1200 files
 1900 files

Figure 2: Load Balancing I: Number of nodes (y-axis)
storing given number of files (x-axis), in a Kelips system with
1500 nodes (38 affinity groups).

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

S
to

re
d
 P

e
r 

M
e
m

b
e
r

Normalized Time (2 file ins per sec)

File Tuples
Files On Disk * 30

Figure 3: Load Balancing II: Files are inserted into a 1000
node system (30 affinity groups), 2 insertions per sec between
t=0 and t=500. Plot shows variation, over time, of number
of files and filetuples at a node (average and one standard de-
viation).

Joining protocol: Like in several existing p2p
systems, a node joins the Kelips system by contact-
ing a well-known introducer node (or group), e.g.,
a well-known http URL could be used. The joiner
view returned by the introducer is used by the new
node to warm up its soft state and allow it to start
gossiping and populating its view, contact and file-
tuple set. News about the new node spreads quickly
through the system.

Spatial Considerations: Each node periodically
pings a small set of other nodes it knows about. Re-
sponse times are included in round-trip time esti-
mates used in spatial gossip.

Contact maintenance: The maximum number
of contacts is fixed, yet the gossip stream constantly
supplies potential contacts. Contact replacement
policy can affect lookup/insert performance and sys-
tem partitionability, and could be either proactive
or reactive. Currently, we use a proactive policy
with the farthest contact chosen as victim for re-
placement.

Multi-hop Query routing: When a file lookup
or insert query fails, the querying node retries the
query. Query (re-) tries may occur along several

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450 500

T
im

e
 (

ro
u
n
d
 t
ri
p
 t
im

e
s)

Normalized Time (2 file ins per sec)

1st try
2nd try
3rd try
4th try
Failure

Figure 4: File Insertion: Turnaround times (in round-trip
time units) for file insertion in a 1000-node Kelips system (30
affinity groups).

axes: a) the querying node could ask multiple con-
tacts, b) contacts could be asked to forward the
query within their affinity group (up to a specified
TTL), c) the querying node could request the query
to be executed at another node in its own affin-
ity group (if this is different from the file’s affin-
ity group). Query routing occurs as a random walk
within the file affinity group in (b), and within the
querying node’s affinity group in (c). TTL values on
multi-hop routed queries and the maximum numbers
of tries define a tradeoff between lookup query suc-
cess rate and maximum processing time. The normal
case lookup processing time and message complexity
stay O(1).

File insertion occurs through a similar multi-hop
multi-try scheme, except the file is inserted ex-
actly at the node where the TTL expires. This
helps achieve good load balancing, although it in-
creases the normal case insertion time to grow as
O(log(

√
n)). However, this is competitive with ex-

isting systems.

4 Experimental Results
We are evaluating a C WinAPI prototype implemen-
tation of Kelips. This section reveals preliminary
numbers from the system. Multiple nodes were run
on a single host (1 GHz CPU, 1GB RAM, Win2K)
with an emulated network topology layer. Unfor-
tunately, limitations on resources and memory re-
quirements have restricted currently simulated sys-
tem sizes to thousands of nodes.

Background overhead in the current configuration
consists of each node gossiping once every 2 (normal-
ized) seconds. Rations limit gossip message size to
272 B. 6 gossip targets are chosen, 3 of them among
contacts.
Load Balancing: Files are inserted into a stable
Kelips system. The file name distribution used is
a set of anonymized web URLs obtained from the
Berkeley Home IP traces at [9]. The load balanc-

4



1

2

3

1000 1100 1200 1300 1400 1500

L
o
o
ku

p
 R

e
su

lt 
C

o
d
e

Normalized Time (2 file lookups per sec)

Failure (file on healthy node) [3]
Failure (file on failed node) [2]

Success [1]

Figure 5: Fault Tolerance of Lookups I: In a 1000 node
(30 affinity groups) system, lookups are generated 2 per sec. At
time t = 1300, 500 nodes are selected at random and caused
to fail. This plot shows for each lookup if it was successful
[y − axis = 1], or if it failed because the homenode failed [2],
or if it failed in spite of the homenode being alive [3].

ing characteristics are better than exponential (Fig-
ure 2). File and filetuple distribution as files are in-
serted (2 insertions per normalized second of time)
is shown in Figure 3; the plot shows that filetuple
distribution has small deviation around the mean.

File Insertion: This occurs through a multi-try
(4 tries) and multi-hop scheme (TTL set to 3 ∗ logN

virtual hops). Figure 4 shows the turnaround times
for insertion of 1000 different files. 66.2% complete
in 1 try, 33% take 2 tries, and 8% take 3 tries. None
fail or require more than 3 tries. Views were found
to be fully replicated in this instance. In a dif-
ferent experiment with 1500 nodes and views only
55.8% of the maximum size, 47.2% inserts required
1 try, 47.04% required 2 tries, 3.76% required 3 tries,
0.96% needed 4 tries, and 1.04% failed. Multi-hop
routing thus provides fault-tolerance to incomplete-
ness replication of soft state.

Fault-tolerance: Figures 5 and 6 show the fault-
tolerance achieved through the use of background
overhead (gossip stream). Lookups were initiated
at a constant rate and were found to fail only if the
homenode had also failed (Figure 5). In other words,
multi-hop rerouting and redundant membership in-
formation ensures successful lookups despite failures.
Responsiveness to failures is good, and membership
and filetuple entry information stabilize quickly after
a membership change (Figure 6).

5 Conclusions
We are investigating a new design point for DHT
systems, based on increased memory usage (for repli-
cation of filetuple and membership information) and
a constant and low background overhead at a node,
in order to enable O(1) file lookup operations and
stability despite high failure and churn rates. Per-
node memory requirements are small in medium-

0

5

10

15

20

25

30

35

1000 1100 1200 1300 1400 1500

A
ve

ra
g
e
 A

ff
in

ity
 G

ro
u
p
 V

ie
w

 S
iz

e

Normalized Time
Figure 6: Fault Tolerance of Lookups II: At time
t=1300, 500 out of 1000 nodes in a 30 affinity group system
fail. This plot shows that failure detection and view (and hence
filetuple) stabilization occurs by time t=1380.

sized systems (less than 2 MB with 10 million files
in a 100,000 node system). Multi-hop (and multi-
try) query routing enables file lookup and insertion
to succeed even when bandwidth limitations or net-
work disconnectivity lead to only partial replication
of soft state. We observe satisfactory load balancing.

References

[1] N.T.J. Bailey, “Epidemic Theory of Infectious Dis-
eases and its Applications”, Hafner Press, Second
Edition, 1975.

[2] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, Y. Minsky, “Bimodal Multicast”, ACM
Trans. Comp. Syst., 17:2, pp. 41-88, May 1999.

[3] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger,
“Building peer-to-peer systems with Chord, a dis-
tributed lookup service”, Proc. 8th Wshop. Hot Top-
ics in Operating Syst., (HOTOS-VIII), May 2001.

[4] A. Demers, D.H. Greene, J. Hauser, W. Irish, J. Lar-
son, “Epidemic algorithms for replicated database
maintenance”, Proc. 6th ACM Symp. Principles of
Distributed Computing (PODC), pp. 1-12, 1987.

[5] D. Kempe, J. Kleinberg, A. Demers. “Spatial gossip
and resource location protocols”, Proc. 33rd ACM
Symp. Theory of Computing (STOC), pp. 163-172,
2001.

[6] A. Rowstron, P. Druschel, “Pastry: scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems”, Proc. IFIP/ACM Middle-
ware, 2001.

[7] R. van Renesse, Y. Minsky, M. Hayden, “A gossip-
style failure detection service”, Proc. IFIP Middle-
ware, 1998.

[8] Proc. 1st Intnl. Wshop. Peer-to-Peer Systems
(IPTPS), LNCS 2429, Springer-Verlag, 2002.

[9] Internet Traffic Archive, http://ita.ee.lbl.gov

[10] Fireflies of Selangor River, Malaysia,
http://www.firefly-selangor-msia.com/fabout.htm

5


