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Abstract

Methods for lexical semantic-change detection
quantify changes in the meaning of words over
time. Prior methods have excelled on estab-
lished benchmarks consisting of pre-selected
target words, chosen ahead of time due to
the prohibitive cost of manually annotating all
words. However, performance measured on
small curated wordsets cannot reveal how well
these methods perform at discovering seman-
tic changes among the full corpus vocabulary,
which is the actual end goal for many applica-
tions.

In this paper, we implement a top-k setup
to evaluate semantic-change discovery despite
lacking complete annotations. (At the same
time, we also extend the annotations in the
commonly used LiverpoolFC and SemEval-EN
benchmarks by 85% and 90%, respectively).
We deploy our evaluation setup on a battery
of semantic-change detection methods under
multiple variations.

We find that when presented with a natural
distribution of instances, all the methods strug-
gle at ranking known large changes higher than
other words in the vocabulary. Furthermore, we
manually verify that the majority of words with
high detected-change scores in LiverpoolFC do
not actually experience meaning changes. In
fact, for most of the methods, less than half of
the highest-ranked changes were determined
to have changed in meaning. Given the large
performance discrepancies between existing-
benchmark results and discovery “in the wild”,
we recommend that researchers direct more
attention to semantic-change discovery and
include it in their suite of evaluations. Our
annotations and code for running evaluations
are available at https://github.com/khonzoda/
semantic-change-discovery-emnlp2025.

1 Introduction

Semantic change is the phenomenon of change in
meaning of words over time. In recent years, es-

pecially in the light of the emergence of modern
contextualized representations for language and
meaning, there has been revitalized interest in lexi-
cal semantic-change detection methods (Periti and
Montanelli, 2024). These typically aim to iden-
tify if or by how much words have shifted mean-
ing between two or more consecutive time peri-
ods (Schlechtweg et al., 2020).

Prior work has established benchmarks for
evaluating methods that detect lexical semantic
change (Del Tredici et al., 2019; Schlechtweg et al.,
2020). Most commonly, a benchmark consists
of sub-corpora from different time periods and
a set of target words, T , manually annotated for
presence/absence/level of semantic change. Per-
formance is measured by the degree to which a
method’s semantic-change judgments align with
human judgments for words in T . With recent
advances in language modeling, researchers have
developed methods that excel at these benchmarks
(Periti and Tahmasebi, 2024).

However, performance measured on a small cu-
rated set of words doesn’t necessarily predict how
well these methods would perform “in the wild.” In-
stead, in this paper, we consider semantic-change
discovery (SCDisc). In this setting, researchers
would apply discovery methods to organically iden-
tify and extract potential meaning changes from
corpora, perhaps passing the detected words on
for further inspection by domain experts such as
cultural historians or literary theorists employing
distant reading (Kim et al., 2014; Hamilton et al.,
2016a).

Evaluating semantic-change discovery is quite
challenging because, to our knowledge, there are
no existing non-curated corpora in which all or a
sufficiently large sample of words have been sys-
tematically annotated for degree of change. Our
proposal does make use of the annotated vocabu-
lary subsets attached to existing benchmarks: we
first measure how highly the words in T that were
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manually annotated as having changed the most —
call these T ∗ ⊂ T — are ranked in relation to the
rest of the full corpus vocabulary, V . Across mul-
tiple methods, this evaluation shows that a large
number of words from V \ T outrank the words
in T ∗. Moreover, in one dataset, for the majority
of the methods, none of the 15 top-scoring words
are from T ∗; in another dataset, across all methods
at most two T ∗ words appear in the top-scoring
100.

It seems unlikely that all or most of the highly-
ranked non-target words in fact underwent greater
change than the annotated words (i.e., that these are
all true but un-annotated positives). Nonetheless,
we address this counter-explanation for the poor
results of existing methods by further undertaking
the task of manually annotating the top-k results of
a suite of methods on a frequently-used benchmark
(Del Tredici et al., 2019). By suitably adapting
the labeling protocol of Del Tredici et al. (2019),
we obtain human annotations where (a) judgments
about semantic change are done in consideration of
a group of sentences from each time period, as op-
posed to pairwise judgments as in the Schlechtweg
et al. (2020) annotation scheme; and (b) annota-
tor time is used more efficiently when no semantic
change occurs.

The prior work closest to ours, Kurtyigit et al.
(2021), applies top-k evaluation to two discov-
ery methods on the SemEval2020 German cor-
pus (Schlechtweg et al., 2020), wherein the rel-
ative distribution of changed vs. (assumed to) not-
have-changed words is controlled. Since subse-
quent contextualized-representation-based meth-
ods achieve state-of-the-art performance on lex-
ical semantic-change benchmarks (Periti and Tah-
masebi, 2024), we extend our evaluation to a
broader range of recent semantic-change detection
methods. In our investigation, we work with two
corpora. SemEval-EN (Schlechtweg et al., 2020)
is in English, but, like the German SemEval cor-
pus mentioned above, is curated to sample hypoth-
esized changes while balancing them with back-
ground terms. LiverpoolFC (Del Tredici et al.,
2019), in contrast, is unfiltered, consisting of all
comments and submissions on a sub-reddit of the
same name that fall within specified time periods.

Contrary to SCDisc performance in SemEval-
EN, where over half of the top-ranked terms were
verified via annotation to have in fact undergone
semantic change, in LiverpoolFC these methods
often struggle at discovering true semantic changes:

less than half and in many instances less than a
third of the top-ranked words in LiverpoolFC are
genuine semantic changes.

Contributions summary [i] First, we propose
a top-k evaluation paradigm and apply it to quan-
tify the discovery performance of a broad range of
(contextualized language model × lexical semantic-
change detection method × secondary adjust-
ment/filtering technique) combinations depicted
in Figure 1. [ii] We find that the performance
of these methods varies significantly by evalua-
tion criterion1 and dataset. When it comes to
ranking all already-known high changes (i.e., T ∗)
well, semantic-change detection methods flounder
in both datasets, more so in SemEval-EN than in
LiverpoolFC. On the other hand, when it comes
to finding new un-annotated semantic-change in-
stances, they do well in SemEval-EN but struggle
on LiverpoolFC. [iii] As a by-product, we extend
both SemEval-EN and LiverpoolFC with additional
annotations created with a somewhat novel annota-
tion procedure.

2 Preliminary Notation

Existing benchmarks (Schlechtweg et al., 2018;
Del Tredici et al., 2019; Schlechtweg et al., 2020;
Kutuzov and Pivovarova, 2021) consist of (i) a cor-
pusC, over some vocabulary V , that is divided into
temporally distinct sub-corpora, C = C1, C2, . . .
and (ii) a (relatively small) vocabulary subset T ⊂
V where for each t ∈ T , a label ℓ(t;C) ∈ [0, 1]
has been derived by a team of human annotators.
Often, T is constructed initially from words hypoth-
esized to have changed in meaning, and then fur-
ther balanced with a set of control words (i.e., dis-
tractors). The performance of a semantic-change
scorer f̂ , which is a function of any vocabulary
item v ∈ V and the temporally-divided corpus
C, is evaluated by the difference between f̂(t;C)
and ℓ(t;C) for t ∈ T .2 However, such evaluation
does not illustrate how semantic-change methods
perform on words outside of T .

3 Related Work

With the goal of simulating “discovery”-like eval-
uation, Zamora-Reina et al. (2022) introduced an
SCDisc benchmark where methods need to rank

1See more details about our evaluation criteria in §4.1 and
§4.2

2For brevity’s sake, we will typically omit explicit indica-
tion of the dependence of f̂(·) and ℓ(·) on C.



changes for a large slice of V that has the anno-
tated set T hidden within it. However, the final
evaluation is still based on the curated set T .

Some researchers do inspect and validate se-
lected words with the best f̂ scores, rather than
only focus on T (Kim et al., 2014; Hamilton
et al., 2016b; Kutuzov et al., 2022). Kutuzov et al.
(2022) find that the highest-f̂ words according to
contextualized-embeddings-based methods often
still contain words that, according to post-hoc in-
spection, did not actually exhibit meaning change.
They identify as culprits such phenomena as words
that experience high variance in usage context, a
“data burst” of one specific usage context in one
time bin, and syntactic changes.
Kurtyigit et al. (2021): Semantic-Change Dis-
covery

In an approach similar to ours, Kurtyigit et al.
(2021) evaluate the discovery capabilities of meth-
ods based on static (SGNS (Mikolov et al., 2013))
and contextualized (BERT (Devlin et al., 2019))
embeddings. From there, they select the 30 highest-
f̂ words from each of the two methods (at the
best parameter settings) and annotate them sim-
ilarly to how Schlechtweg et al. (2020) do. The
annotations reveal that 67% and 57% of the dis-
covered words indeed undergo semantic change.
Building upon Kurtyigit et al. (2021), we consider
a variety of contextualized language models be-
yond BERT, such as XLM-R (Conneau et al., 2020)
and XL-LEXEME (Cassotti et al., 2023). We fur-
ther expand our evaluations to a broader range of
contextualized-representation-based methods. In
addition, we complement these methods with sec-
ondary techniques (such as permutation tests and
scaled change metrics) that aid semantic-change
detection to see if these techniques also aid SCDisc.

In our approach we evaluate SCDisc on two
(quite distinct) datasets, not just one. The first,
SemEval-EN (Schlechtweg et al., 2020), is a bench-
mark similar to that used by Kurtyigit et al. (2021).
The other is LiverpoolFC (Del Tredici et al., 2019),
where the subcorpora consist of all social-media
posts and comments (i.e., no filtering) for a given
subreddit during certain time periods. While Kur-
tyigit et al. (2021) discover new changes among
a subset of 500 words from the vocabulary, we
consider a much larger subset of the vocabulary to
better capture the difficulty of the SCDisc task.

The final distinction of our approach from that
of Kurtyigit et al. (2021) lies in how we gather an-
notations that would be used to verified discovered

changes. Kurtyigit et al. (2021) follow the anno-
tation procedure introduced by Schlechtweg et al.
(2020) as part of SemEval-2020 Task 1. In contrast,
we adapt a variant of the procedure by Del Tredici
et al. (2019), which we discuss in more detail in
§4.2.

4 Evaluation Metrics

In this section, we describe our SCDisc evaluation
framework. Recall that the primary obstacle to mea-
suring either the precision or recall of an SCDisc
method f̂ is that obtaining gold-standard labels for
the entire vocabulary with respect to the collection
of possibly large benchmark sub-corpora is infea-
sible; what is available is only a (relatively small)
vocabulary subset T ⊂ V where for each t ∈ T ,
a label ℓ(t) ∈ [0, 1] has been derived by a team of
human annotators. We start by ranking words in
T ∗ relative to those in V \ T ∗ (§4.1). Next, we
verify whether the top-k highest-f̂ -scoring items
are in fact true instances of semantic change or not
via post-hoc human annotation to fill in missing
labels. (§4.2).

4.1 Ranking Changes for Discovery

In this subsection, we give the details of our rank-
ing approach; the next subsection addresses the
potential pitfalls of using ranking alone to approxi-
mate SCDisc performance.

Existing benchmarks provide an annotated set
T . It is natural to highlight within T the subset
with the largest human-label values: T ∗ = {t ∈
T | ℓ(t) > β} for threshold parameter β. For exam-
ple, one might choose β = 0, making T ∗ precisely
the set of words in T that exhibit any positive de-
gree of semantic change; alternately, one could
require greater annotator “confidence” by setting
a higher threshold.3 Previous work then evaluates
the ranking induced by a scorer on T , essentially
checking whether the f̂ -induced positions of the
words in T ∗ are higher (better) than the positions
of the terms in T \ T ∗. We instead, as described
in the Introduction, consider measuring how well
a method f̂ ranks the words in T ∗ against all of
V \ T ∗.

An important complication to note is the role
of frequency effects. We observed, as have others
(Dubossarsky et al., 2017; Noble et al., 2021; Kur-
tyigit et al., 2021; Card, 2023), that words of very

3In our experiments, we choose β values that result in
|T ∗| = 15: 0.59 for LiverpoolFC, 0.4 for SemEval-EN.



high and/or very low frequencies are particularly
difficult for semantic-change detection methods:

1. A low-frequency word, by definition, occurs
rarely, so there is less opportunity in a given
time period to observe it in all its possible con-
texts. Consequently, in a later time period, the
word may appear in new contexts — thus ap-
pearing to have changed semantically — even
though the contexts in the second time period
are novel only because we didn’t have enough
samples from the earlier time period.4

2. Counter-intuitively, high-frequency words
such as function words also exhibit a type
of confounding variance. We don’t think of
function words as semantically changing. But,
because they appear in a huge variety of con-
texts across different time periods, they often
receive high f̂ scores, as shown by Noble et al.
(2021).

For these reasons, we follow peer researchers in ex-
plicitly excluding high- and low-frequency words
from V (Kurtyigit et al., 2021; Card, 2023, inter
alia).5

We run each semantic-change scorer f̂ on the
frequency-filtered version of V plus the terms in
T ∗, and sort the terms into list Wf̂ by their
semantic-change scores, most-changed first. We
then compute f̂ ’s discovery rate@r as the recall of
T ∗ among the top-r words of Wf̂ :

ϕf̂ (r) =
|{w ∈Wf̂ [: r]} ∩ T

∗|
n

. (1)

(For brevity’s sake, we henceforth omit explicitly
indicating the dependence on f̂ .)

As r ≤ |W | increases, the value of ϕ(r) ap-
proaches 1. We can say that a method performs
poorly at discovery if ϕ(r) lies significantly below
the y = r

n line . . . under the assumption that all or
most of the words in W [: r] \ T ∗ are not instances

4A concrete example: Suppose word w has two equally
likely senses and appears only once in sub-corpus C1 and once
in C2. Then there is a 50% likelihood that w has a different
sense in the two time periods. On the other hand, suppose
word w′ likewise has two equiprobable senses s1 and s2, but
appears 1000 times in each of the periods. Then the likelihood
that w′ has only s1 in one period and only s2 in the other is
minimal.

5For the LiverpoolFC dataset, we only allow words with
frequencies in the range [12, 2700]; for SemEval-EN the
corresponding range is [20, 14000]. These intervals represent[
1
2
min frT , 2max frT

]
, where min frT and max frT are the

smallest and largest word frequencies in T , respectively.

of genuine semantic change. But does this assump-
tion actually hold? The next subsection addresses
this question.

4.2 Human Annotation of the Top-k Changes

In practice, in the absence of annotation of the full
V , we don’t know whether words in V \ T exhibit
semantic change or not. Hence, we complement
ϕ(r) with an alternative metric, ψ(k), that quanti-
fies SCDisc performance as the percentage of the
top-k highest-f̂ -scoring words that are verified by
(potentially post-hoc) human annotation to have
actually semantically changed.

Annotation based on group majority sense
For the annotation, we start with the setup of
Del Tredici et al. (2019): for a given word (type),
annotators are presented with two groups, one from
each time period (sub-corpus), of 5 sentences each
(or as many as possible in the case that fewer than 5
are available), all of which contain the given type.

Our procedure differs from that of Del Tredici
et al. (2019) in the following two respects. First,
to cover a larger part of the corpus, the sentence
groups for the two periods are resampled for each
annotator. Second, instead of asking whether the
meaning of the given word in group 1 is different
from the meaning in group 2, we break the question
up into several parts (details in Appendix A):

(a) Does group 1 have a majority sense? Group 2?

(b) Is the majority sense in group 1 different from
that in group 2?

(c) Are you confident about the difference or lack
thereof in the majority senses?

(d) What are the sentences whose senses appear in
group 1 but not in group 2 (and vice versa)?

We aggregate the semantic change score per
word, w, across all annotators by computing the av-
erage of labels for (b), and extend the label function
by defining ℓ(w) as this average. In cases where
there isn’t a majority sense in either group 1 or
group 2, we automatically re-assign the label for
(b) to be 1 if there is at least one sentence listed
under (d) and 0 otherwise.

This annotation setup is different from that of
SemEval (Schlechtweg et al., 2020), where annota-
tions are provided for individual pairs of use cases
of the given word. We choose the Del Tredici et al.



(2019) setup for two reasons. First, annotating se-
mantic change via group-based comparisons is a
more efficient use of annotator time. Second, af-
ter conducting pilot runs of both the SemEval and
Del Tredici et al. (2019)’s annotation schemes, we
found that group vs. group allowed our annotators
to better capture semantic change relative to the
range of meanings of the word within time periods:
by comparing groups of sentences, the annotators
can decide if the variation in meaning is due to a
different sense being introduced or due to general
non-diachronic polysemy of the word. In contrast,
sentence vs. sentence requires the annotators to
make a large number of pairwise comparisons, and
due to the linear manner of viewing new contexts,
the annotators would not get the same perception
of holistic change.

Special case: proper names We looked at the
top-ranked terms produced by semantic-change de-
tection methods and found that many of them corre-
spond to names/nicknames for people, brands, and
companies. The context changes for such words
are often due to real-world events or changes in
situations surrounding the person/entity associated
with the word.

Consider the example of the former football
player Fernando Torres, who belonged to the Liver-
pool Football Club between 2007-2011 before leav-
ing to join Chelsea Football Club and then Atlético
Madrid in 2016. Further, different events surround-
ing Torres’ career also influence the usage context
of the term “Torres”. Yet, the sense, or grounding,
of “Torres” remains unchanged, namely, the per-
son Fernando Torres. Hence, like Kurtyigit et al.
(2021), we exclude proper names from the annota-
tions list and computation of ψ(k).

Annotations-based discovery performance Af-
ter filtering out proper names from f̂ -sorted list6

W , we consider the top-k remaining terms: W ′[:
k]. In our experiments, we select k=15 as a reason-
able number of top-ranked changes in a scenario
where a researcher uses top-ranked changes as can-
didates for further investigation. As before, we ex-
tend the label function ℓ(·) to W ′[: k] by using av-
erage human-annotation scores. We then binarize
ℓ(w) to indicate whether a word changed in mean-
ing or not, using a threshold parameter θ. To set the
value of θ, we additionally gather annotations for

6Based on preliminary experiments we select BERT and
one method from each representation type to get lists for
annotations; details about methods are in §5.3.

the 5 most changed and 5 least changed words in T ,
and set θ to the value that best separates these two
groups. Altogether, our annotations-based metric
for SCDisc becomes

ψ(k) =
|{w ∈W ′[: k] | ℓ(w) ≥ θ}|

k
(2)

(dependencies on f̂ omitted for brevity).

Annotators We recruit English speakers as an-
notators from a pool of volunteers that includes in-
dividuals with a university-level education as well
as university students interested in research. Eight
annotators followed our annotation procedure to la-
bel 76 words (types) from the SemEval-EN dataset,
such that each type has at least three annotations.
Similarly, ten annotators provide annotations for
83 types from the LiverpoolFC dataset.

Our annotations are available
at https://github.com/khonzoda/
semantic-change-discovery-emnlp2025.

5 Experimental Setup

5.1 Data

SemEval-EN is the largest English-language
benchmark dataset for semantic-change detection
(Schlechtweg et al., 2020). Its two subcorpora are
from the 19th century (6.5M tokens) and the 20th
century (6.7M tokens). For the 37 target lemmas
provided, we select graded semantic-change anno-
tations. We extract 82 distinct word types associ-
ated with these 37 lemmas and choose the highest-
ℓ(·)-valued 15 to be our T ∗.

LiverpoolFC is a dataset constructed by
Del Tredici et al. (2019) from submissions and
comments from the r/Liverpool subreddit, sepa-
rated into two periods spanning 2011-2013 (8.5M
tokens) and 2017 (11.9M tokens). The dataset pro-
vides graded semantic-change values from human
annotations for |T | = 97 words. From these we set
T ∗ to be the n = 15 types with highest ℓ(·) values.

5.2 Models

We select four models commonly used in prior
work: BERT and mBERT (Devlin et al., 2019),
XLM-R (Conneau et al., 2020), and XL-LEXEME
(Cassotti et al., 2023)7. These were also the basis
for Periti et al.’s (2024) systematic comparison of

7With the exception of XL-LEXEME, we fine-tune models
for 5 epochs on each dataset.
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Figure 1: We conducted a wide range of experiments spanning various combinations of datasets, models, word
representation types, change metrics, scaling, and statistical significance tests.

semantic-change methods based on contextualized
representations.

5.3 Methods

Next, we outline our selection of methods for
graded semantic change detection from three cat-
egories: embedding-, substitutes-, and sense-
clusters-based representations. We describe each
method in terms of how word usage instances are
represented; how a word’s representations within a
time period are aggregated; and finally, how assess-
ment metrics quantify semantic change between
time periods (Periti and Montanelli, 2024).

Embeddings-based methods (Emb). In this
widely used (Liu et al., 2021; Periti and Montanelli,
2024, inter alia) family of approaches, word usage
is first captured by a contextualized embedding vec-
tor. From there, a word’s representations from all
sentences within one time period are aggregated
into a prototype vector (PRT); change is computed
as the distance between two prototype representa-
tions (Martinc et al., 2020). Alternatively, change
can be computed as the average pairwise distance
between embedding vectors from different time
periods (APD) (Kutuzov and Giulianelli, 2020).

Sense/Cluster-based methods (Clstr). In an-
other common type of semantic-change detection
method (Martinc et al., 2020; Montariol et al., 2021,
inter alia), the contextualized embeddings for dif-
ferent occurrences of the same word are grouped
into clusters that are further refined to represent
different senses of the word in the period. We use
Affinity Propagation (AP) and K-means clustering
(K5). Period representations are obtained as the dis-
tribution of word uses across these sense clusters,
and semantic change is quantified as the Wasser-
stein distance (Solomon, 2018) between two period
distributions.

Substitutes-based methods (Subst). Intro-

duced by Card (2023), this method represents word
usage instances as the top-5 lexical-substitute can-
didates obtained from a masked-token prediction
task. Representations are then aggregated as the
distribution over all possible substitutes, and se-
mantic change is quantified as the Jensen–Shannon
divergence score between two period distributions.
Similarly, Periti et al. (2024) use substitution to ex-
amine how language models contextualize words
in different usage contexts.

5.4 Secondary Techniques

Further, we also evaluate techniques for improving
semantic-change detection by incorporating addi-
tional control measures. Because, at its core, intro-
duction of control measures helps distinguish gen-
uine changes from erroneous ones due to noise in
the data, we expect these techniques to aid SCDisc.

Permutation Tests. (PT) Some previous re-
search turned to statistical tests to improve the
performance of semantic-change quantification
methods (Kulkarni et al., 2015; Liu et al., 2021).
These tests determine whether shifts captured by
semantic-change detection methods are statistically
significant or not, essentially identifying false posi-
tives among the detected changes. Hence, applying
them to filter through f̂ -sorted list is expected to
aid the SCDisc setting, too.

For our experiments, we select the statistical
tests introduced by Liu et al. (2021). Here, we
obtain the distribution of possible change scores by
shuffling use cases of the word w between two time
periods and then determining whether the detected
semantic change δw is statistically significant. Like
the authors, we also complement permutation tests
with a False-Discovery-Rate (PT + FDR) control
technique (Benjamini and Hochberg, 1995).

We apply permutation tests to results from our
embeddings- and substitutes-based methods; we



could not afford the computational cost of running
permutation tests in combination with Montariol
et al. (2021) clustering.

Scaled Change Metrics. Previous research
has observed that change scores may be biased to-
wards high vs. low frequency words (Card, 2023)
or words that appear in more variable contexts (No-
ble et al., 2021). Therefore, these researchers de-
fine adjusted metrics to control for such biases and
improve semantic-change detection.

In our experiments, we start with frequency-
based scaling (FS) (Card, 2023). For each word,
the scaled metric represents how much it has
changed compared to other words in the same fre-
quency range. For a word w ∈ V consider a set of
terms “comparable“ to w in terms of frequency8:
Sw = {x ∈ V | freq(w)/F ≤ freq(x) ≤
freq(w) ∗ F} for some predetermined constant
F . Then, the scaled change score is computed
as µ(Ix[δw ≥ δx]), where µ is the mean, and δw
and δx are raw semantic-change scores for w and
x ∈ Sw, respectively. We further extend this scal-
ing technique to also control-match for part-of-
speech information between w and x ∈ Sw (FS
+ PM).

6 Results

6.1 Ranking Evaluation Results

Base-methods. When the methods are run with-
out secondary techniques, the average rank induced
on the items in T ∗ is disappointingly low. Consult
the rows in Table 2 without a

↰

in the label:9 while
the perfect value for either corpus would be 15/2
(since |T ∗| = 15), we see T ∗’s average rank be-
ing at best 351 (LiverpoolFC) and 3405 (SemEval-
EN): hundreds of terms from V receive better f̂
scores than some of the terms in T ∗. Besides the
aggregated T ∗ described above, we also show with
the empty-icon lines in Figure 2 “when” in a base
method’s ranking a new T ∗ word is discovered, i.e.,
how ϕ(r) varies with r: they are all unfortunately
mostly distant from the ideal y = x line.

Scaled Change Metrics. Across practically all
model & base-method combinations and both cor-
pora, scaling f̂ improves the induced average rank
of T ∗. This is depicted in Figure 3 by arrows lead-
ing from an empty icon (base method) to a shaded

8The frequency bounds were selected based on the best
semantic-change detection performance on T .

9Also visualized after |V |-normalization as the empty
icons in Figure 3.

icon (+FS version) and then to a darker-shaded icon
(+FS+PM version). The first “hop” is generally to-
wards the optimal result (yellow star, top-right),
more so along the LiverpoolFC axis. One can con-
sult Figure 5 for a zoomed-in visualization (where
it is apparent that FS outperforms FS+PM), but
Figure 3 clearly shows that the improvements de-
livered by scaling still do not produce reasonable
ranking results for all of T ∗.

It is true, as shown by comparing the filled-
vs. open-icon lines in our plots of ϕ(r) (Figure 2),
that some T ∗ words are better-placed by FS — in-
deed, in Figure 2b, XLM-R Subst (JSD) + FS ini-
tially traces the y = x ideal line. But, recall that
T ∗ consists of the very top 15 highest-ℓ(·) words
with respect to the original benchmark annotations,
and thus all should receive relatively good ranks.
Unfortunately, we see that roughly a third of T ∗ get
placed at ranks ≈ 100 or worse, sometimes even in
the ten-thousands.

Permutation tests. We see mixed results with
both permutation tests and the added false-
discovery-rate correction (

↰

PT and

↰

PT+FDR lines
in Table 2). When things go well, they do move
T ∗ upward in the rankings. However, sometimes
they may also mark some words in T ∗ as having no
statistically significant change, bounding ϕ(r) < 1
for all r. For instance, in LiverpoolFC with BERT
Emb (PRT) + PT, four words in T ∗ didn’t pass
the statistical significance test, dropping the aver-
age rank to 3396 from the original 547 with BERT
Emb (PRT). Generally, we see permutation tests do
worse in LiverpoolFC than in SemEval-EN.

6.2 Discovery Validation via Human
Annotations

As noted in the Introduction, we do need to check
whether the words in V \ T — which initially
lack labels — that receive better f̂ -induced ranks
than words in T ∗ might actually be true semantic
changes. We therefore apply additional human an-
notations and ψ(k) to gain further understanding
of SCDisc performance than what is possible with
ϕ(r).

For SemEval-EN, despite generally poor ranking
performance, human annotations show that the ma-
jority of W ′[: 15] across all annotated methods are
in fact semantic changes (see Table 1). This cor-
roborates observations by Kurtyigit et al. (2021)
for semantic-change discovery in a comparable
German SemEval dataset. BERT Emb (PRT) and



(a) LiverpoolFC: best avg rank

(b) LiverpoolFC: best first rank

(c) SemEval-EN: best avg rank

(d) SemEval-EN: best first rank

Figure 2: Discovery performance in LiverpoolFC and SemEval-EN: ϕf̂ (r) ∗ |T ∗| with respect to log(r) on the
x-axis across different methods, in their base implementation and with frequency-based scaling. For each of the
three representation types, we select model & base-method combinations according to either the average rank of T ∗

(a & c) or the rank of the first discovered element of T ∗ (b & d) achieved with the base-method. The y = x line
indicates the “ideal” performance where the top changes are exactly T ∗.

Figure 3: Average normalized rank for T ∗ in the SemEval-EN/LiverpoolFC performance plane across 16 model-
representation combinations. Arrows indicate how performance changes as we apply secondary techniques. The
yellow star indicates the optimal location (top-right corner); all the methods are quite distant from that point.

BERT Clstr (AP) (as base-methods) yield best re-
sults. Overall, secondary techniques don’t improve
ψ(k) in SemEval-EN.

By contrast, in LiverpoolFC, for most methods,
less than a half of W ′[15] are annotated as changed

in meaning. Although as a base-method Emb (PRT)
produced best ϕf̂ (r) results, through the lens of hu-
man annotations, it performs worst among other
representation types: only three words with seman-
tic change are found inW ′[15]. Surprisingly (given



SemE. (↑) Liverp. (↑)
Embeddings-based 93.3 20.0↰

+ FS 93.3 40.0↰

+ FS + PM 86.7 26.7↰

+ PT 73.3 53.3↰

+ PT + FDR 86.7 40.0
Clusters-based 93.3 53.3↰

+ FS 93.3 46.7↰

+ FS + PM 80.0 53.3
Substitutes-based 80.0 40.0↰

+ FS 80.0 20.0↰

+ FS + PM 80.0 26.7

Table 1: ψ(k) (%) with k = 15 across different semantic
change quantification methods: percentage of words
among W ′[: k] that were verified to have changed in
meaning by human annotation. We report for three
types of methods [BERT Emb (PRT), BERT Clstr
(AP), BERT Subst] and various add-ons.

the poor PT numbers in Table 2), permutation tests
on Emb (PRT) reduce false positives in W ′[15].

In LiverpoolFC, as in SemEval-EN, FS and
FS+PM do not generally lead to much improve-
ment in discovery performance, with the one ex-
ception of Emb (PRT).

Finally, human annotations show that 8 out of
15 words highly ranked by Clstr (AP) have in
fact changed in meaning, which is the best ψ(k)
achieved by a base-method in LiverpoolFC.

7 Discussion and Conclusion

7.1 LiverpoolFC vs. SemEval-EN

SCDisc performance varies greatly between
SemEval-EN and LiverpoolFC. We hypothesize
that this discrepancy is rooted in the properties of
their corpora.

Despite their poor ranking performance in
SemEval-EN, semantic-change detection methods
do great when evaluated using ψ(k). This means
that there are quite a few words in V that change in
meaning by just as much (if not more) than words
in T ∗. This is partially possible due to time peri-
ods in SemEval-EN being far apart, thus allowing
greater room for change. At the same time, we
only considered ψ(k) at k = 15, and one may
still be skeptical of whether thousands of words
ranked above T ∗ in SemEval-EN are indeed gen-
uine changes.

On the other hand, semantic-change detection
methods on LiverpoolFC perform slightly better

at ranking T ∗, but struggle with false positives at
the top of the f̂ -sorted lists. False positives may
be a result of variations in usage contexts of words
and sensitivity of methods to them. It is possible
that for some words in V , a time-slice sub-corpus
Ci has a limited number of examples where these
words appear in varied contexts but carry the same
meaning. Thus, observed variation in context (even
without underlying meaning change) could falsely
be equated to semantic change. This is in some
way similar to what happens with “data bursts” in
Kutuzov et al. (2022). Perhaps therefore, with more
sensitive Emb (PRT) representations, frequency
scaling (FS) stabilizes semantic-change scores by
comparing words similar in frequency and in the
process improves both ϕ(r) and ψ(k) (Table 2).

At the same time, variations in usage context
are sometimes indicative of changing trends in
the world and within the community, adoption
of a meme, or emergence of expressions reflect-
ing some shared in-group understanding — and
these are instances of semantic change (Del Tredici
et al., 2019). So, slightly better ϕ(r) (compared
to SemEval-EN) may be attributed to such con-
text variability patterns in T ∗ itself. Although
short-term semantic change is different from its
traditional long-term counterpart, methods should
excel both at quantifying and at discovering new
instances of such change.

7.2 Recall vs. Precision

We investigate two approaches for evaluating
semantic-change detection methods on SCDisc:
ranking-based ϕ(r) and annotations-based ψ(k).
One may view the former as Recall: ϕ(r) measures
how well semantic-change detection methods iden-
tify (via ranking up to r) known highest changes.
Similarly, the latter corresponds to Precision: ψ(k)
measures how many of identified changes (within
W ′[: k]) are true positives. Good semantic-change
detection methods should do well at both Precision
and Recall of the SCDisc task. Hence, it is impor-
tant that researchers introducing new methods also
evaluate them for SCDisc by [i] considering their
rankings of T ∗ and [ii] annotating according to a
top-k approach on data with a natural distribution
of changed vs. non-changed words.

8 Limitations

We evaluate SCDisc on two datasets: SemEval-
EN is a carefully curated benchmark of historical



semantic changes, while LiverpoolFC presents a
unique dataset of short-term semantic changes in
the wild. We draw observations about the SCDisc
performance of semantic-change detection meth-
ods only by contrasting results observed in these
two contexts. Hence, for a more comprehensive
view of semantic-change discovery future research
should evaluate SCDisc in more datasets. These
should be both semantic-change detection bench-
marks and other (perhaps previously unannotated)
corpora. In addition to long-term semantic change,
it is also important to consider more corpora where
one can observe instances of short-term semantic
change.

Due to limited ability to collect annotations in
other languages, we only evaluate SCDisc on En-
glish corpora. Hence, future research should ex-
amine capabilities of semantic-change detection
methods at semantic-change discovery in other lan-
guages.

Although we design our annotation task to be
similar to Del Tredici et al. (2019), due to factors
such as time passed since the benchmark publica-
tion, a selection of a different set of annotators, and
variations in phrasing of the task and instructions,
it is possible that our annotations are different from
the original ones. We try to mitigate this effect by
also annotating the 5 highest-change words and 5
non-changes in T , and comparing our annotations
for them. Generally, our non-change annotations
match; we miss one of the highest-change words.
However, beyond this limited control set, we are un-
able to make judgments of closeness between our
annotations and those by Del Tredici et al. (2019).

On the other hand, for SemEval-EN our annota-
tion procedure is substantially different from the
one used by Schlechtweg et al. (2020). When veri-
fying our annotations using the 5 highest-change
words and 5 non-changes from T , we do slightly
worse than we did in LiverpoolFC: we miss one
non-change and one highest-change word. Again,
beyond these ten control terms we don’t evaluate
how comparable our annotations are to others in T .

Furthermore, for consistency with LiverpoolFC,
in data processing, obtaining contextualized model
representations, and quantifying change across
all methods, we use “token” format of available
SemEval-EN data. Next, to run ranking evalu-
ations, we convert T of SemEval-EN from lem-
mas into words (types) by running a sentence-level
matching algorithm and finding all words that map
to each lemma in the original T . We observe that

some words, which mapped to these lemmas, have
few appearances in C, and hence may show lit-
tle variance in their contextualized representations
across time periods. This, in addition to the fact
that the original ℓ(t) were provided for lemmas,
could be a contributor to poor performance of meth-
ods when ranking T ∗. Therefore, future research
should explore semantic-change discovery at the
lemma-level in SemEval-EN or other datasets.
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A Human Annotations

Prior to the task the annotators were presented
with the following instructions: Semantic
change occurs when the meaning of
words change over time. In this
annotation task we are going to
provide a set of words and ask
to annotate for changes in their
meaning. For each word, you will
be presented with two groups of
sentences, in which the word

occurs, and asked to indicate
whether or not there is change in
meaning of the highlighted word
between sentences in Group 1 and
Group 2. We are interested in
human perceptions of language
change, so we ask not to use
generative AI assistants when
making your judgments.

Annotators were supplied with a .xlsx document,
where they would provide annotations. Each sheet
in the document would correspond to one word.
Each word was accompanied with 7 questions,
which we list below ("****" marks the word that
is being annotated).

Q1 Is there a primary meaning (i.e., majority
sense) for "****" in Group 1? (YES/NO)

Q2 Is there a primary meaning (i.e., majority
sense) for "****" in Group 2? (YES/NO)

Q3 Is there a difference in the majority sense of
"****" in Group 1 and the majroity sense of
"****" in Group 2? (YES/NO). Mark N/A if
answered NO to Q1 or Q2.

Q4 Was it difficult to answer Q3? (YES/NO).
Mark N/A if answered NO to Q1 or Q2.

Q5 Please provide sentence #s if change in mean-
ing is present. If no change was detected,
mark N/A.

Q6 Is there a sense/meaning of "****" in Group
1 that is not present in Group 2? If YES, indi-
cate sentence #. If NO, mark as N/A.

Q7 Is there a sense/meaning of "****" in Group
2 that is not present in Group 1? If YES,
indicate sentence #. If NO, mark as N/A.

B Additional Ranking Results
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Figure 4: The screenshot of the annotation spreadsheet for a sample word "accomplish". Red circle marks the area
for providing annotations.

Figure 5: Zoomed-in version of Figure 3 (average normalized rank for T ∗ in the SemEval-EN/LiverpoolFC
performance plane): the optimal location is now off the figure beyond the top-right corner.



SemEval-EN LiverpoolFC
avg rank (↓) avg rank (↓)

BERT mBERT XLM-R XL-
LEXEME BERT mBERT XLM-R XL-

LEXEME

Emb (PRT) 4412 5698 7824 4308 547 351 914 1125

↰

+ FS 3459 4327 4833 2813 144 113 145 254↰

+ FS + PM 3981 4835 5429 3089 183 137 196 265↰

+ PT 617 613 1765 1695 3396 1772 3370 4960

↰

+ PT + FDR 497 1697 1476 2692 5701 6489 7275 8878
Emb (APD) 3405 3667 4926 5302 4391 4008 5240 5315↰

+ FS 3539 4215 5691 5888 4252 4004 5184 5310

↰

+ FS + PM 3808 4080 5389 5995 4200 3896 5406 5478↰

+ PT 3988 4086 3928 8830 5703 7368 8886 10484↰

+ PT + FDR 3978 4077 3920 10054 5703 8143 9678 10484
Clustr (AP) 5500 6026 9302 4476 2046 1033 2121 2276

↰

+ FS 4707 4937 5564 3222 1332 793 949 1704↰

+ FS + PM 4156 3894 5965 3833 112 127 129 261
Clustr (K5) 4913 7182 10150 5566 1551 1603 1896 2469

↰

+ FS 3312 4569 5812 4209 427 495 508 1706↰

+ FS + PM 4998 5254 5980 3376 1477 886 1221 1798
Subst (JSD) 7798 7409 9588 8259 916 935 1211 1602

↰

+ FS 4150 3487 4774 4302 100 120 80 215↰

+ FS + PM 3718 5078 6479 4356 500 505 745 1894

↰

+ PT 661 1840 2953 1692 5672 4159 3344 5771↰

+ PT + FDR 1610 1579 2683 1471 5672 6482 4861 5679

Table 2: Average rank of T ∗ in W of SemEval-EN and LiverpoolFC, datasets, presented for various combinations
of models, methods, and secondary techniques. The best value per dataset per row is in bold; a box indicates the
best result per “rectangle” = fixed method, fixed corpus, various models. .
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