
Bootstrapping Lexical Choice via Multiple-Sequence Alignment

Regina Barzilay

Department of Computer Science

Columbia University

New York, NY 10027 USA

regina@cs.columbia.edu

Lillian Lee

Department of Computer Science

Cornell University

Ithaca, NY 14853 USA

llee@cs.cornell.edu

Abstract

An important component of any generation
system is the mapping dictionary, a lexicon
of elementary semantic expressions and cor-
responding natural language realizations.
Typically, labor-intensive knowledge-based
methods are used to construct the dictio-
nary. We instead propose to acquire it
automatically via a novel multiple-pass al-
gorithm employing multiple-sequence align-
ment, a technique commonly used in bioin-
formatics. Crucially, our method lever-
ages latent information contained in multi-
parallel corpora — datasets that supply
several verbalizations of the corresponding
semantics rather than just one.

We used our techniques to generate natural
language versions of computer-generated
mathematical proofs, with good results on
both a per-component and overall-output
basis. For example, in evaluations involv-
ing a dozen human judges, our system pro-
duced output whose readability and faith-
fulness to the semantic input rivaled that of
a traditional generation system.

Publication info: Proceedings of EMNLP
2002, pp. 164–171.

1 Introduction

One or two homologous sequences whisper . . . a full
multiple alignment shouts out loud (Hubbard et al.,
1996).

Today’s natural language generation systems
typically employ a lexical chooser that translates
complex semantic concepts into words. The lex-
ical chooser relies on a mapping dictionary that
lists possible realizations of elementary seman-
tic concepts; sample entries might be [Parent

[sex:female]] → mother or love(x,y)→
{x loves y, x is in love with y}.1

To date, creating these dictionaries has involved
human analysis of a domain-relevant corpus com-
prised of semantic representations and correspond-
ing human verbalizations (Reiter and Dale, 2000).
The corpus analysis and knowledge engineering work
required in such an approach is substantial, pro-
hibitively so in large domains. But, since corpus data
is already used in building lexical choosers by hand,
an appealing alternative is to have the system learn a
mapping dictionary directly from the data. Clearly,
this would greatly reduce the human effort involved
and ease porting the system to new domains. Hence,
we address the following problem: given a parallel
(but unaligned) corpus consisting of both complex
semantic input and corresponding natural language
verbalizations, learn a semantics-to-words mapping
dictionary automatically.

Now, we could simply apply standard statistical
machine translation methods, treating verbalizations
as “translations” of the semantics. These meth-
ods typically rely on one-parallel corpora consist-
ing of text pairs, one in each “language” (but cf.
Simard (1999); see Section 5). However, learning the
kind of semantics-to-words mapping that we desire
from one-parallel data alone is difficult even for hu-
mans. First, given the same semantic input, differ-
ent authors may (and do) delete or insert informa-
tion (see Figure 1); hence, direct comparison between
a semantic text and a single verbalization may not
provide enough information regarding their underly-
ing correspondences. Second, a single verbalization
certainly fails to convey the variety of potential lin-
guistic realizations of the concept that an expressive
lexical chooser would ideally have access to.

The multiple-sequence idea Our approach is
motivated by an analogous situation that arises in

1Throughout, fonts denote a mapping dictionary’s two
information types: semantics and realizations.

Suppose
Given

Assume
that

product
their

=

and

that
 0 end

also

Prove

start

some "sausages"

0

as in the theorem
 statement

a

 =
zero

b

a * b

is
=

zero
 0

are equal to

Figure 2: Computed lattice for verbalizations from Figure 1. Note how the three indicated “sausages”
roughly correspond to the three arguments of show-from(a=0,b=0,a∗b=0). (The phrases “as in the theorem

statement” and “their product” correspond to chains of nodes, but are drawn as single nodes for clarity. Shading

indicates argument-value matches (Section 3.1). All lattice figures omit punctuation nodes for clarity.)

(1) Given a and b as in the theorem statement,
prove that a∗b=0.
(2) Suppose that a and b are equal to zero.
Prove that their product is also zero.
(3) Assume that a=0 and b=0.

Figure 1: Three different human verbalizations of
show-from(a=0,b=0,a∗b=0).

computational biology. In brief, an important bioin-
formatics problem — Gusfield (1997) refers to it as
“The Holy Grail” — is to determine commonalities
within a collection of biological sequences such as
proteins or genes. Because of mutations within indi-
vidual sequences, such as changes, insertions, or dele-
tions, pair-wise comparison of sequences can fail to
reveal which features are conserved across the entire
group. Hence, biologists compare multiple sequences
simultaneously to reveal hidden structure character-
istic to the group as a whole.

Our work applies multiple-sequence alignment
techniques to the mapping-dictionary acquisition
problem. The main idea is that using a multi-parallel
corpus — one that supplies several alternative ver-
balizations for each semantic expression — can en-
hance both the accuracy and the expressiveness of
the resulting dictionary. In particular, matching a
semantic expression against a composite of the com-
mon structural features of a set of verbalizations
ameliorates the effect of “mutations” within indi-
vidual verbalizations. Furthermore, the existence of
multiple verbalizations helps the system learn several
ways to express concepts.

To illustrate, consider a sample semantic expres-
sion from the mathematical theorem-proving do-
main. The expression show-from(a=0,b=0,a∗b=0)
means “assuming the two premises a = 0 and b = 0,
show that the goal a ∗ b = 0 holds”. Figure 1 shows
three human verbalizations of this expression. Even

for so formal a domain as mathematics, the verbal-
izations vary considerably, and none directly matches
the entire semantic input. For instance, it is not ob-
vious without domain knowledge that “Given a and
b as in the theorem statement” matches “a=0” and
“b=0”, nor that “their product” and “a∗b” are equiv-
alent. Moreover, sentence (3) omits the goal argu-
ment entirely. However, as Figure 2 shows, the com-
bination of these verbalizations, as computed by our
multiple-sequence alignment method, exhibits high
structural similarity to the semantic input: the indi-
cated “sausage” structures correspond closely to the
three arguments of show-from.

2 Multiple-sequence alignment

This section describes general multiple-sequence
alignment; we discuss its application to learning
mapping dictionaries in the next section.

A multiple-sequence alignment algorithm takes as
input n strings and outputs an n-row correspondence
table, or multiple-sequence alignment (MSA). (We
explain how the correspondences are actually com-
puted below.) The MSA’s rows correspond to se-
quences, and each column indicates which elements
of which strings are considered to correspond at that
point; non-correspondences, or “gaps”, are repre-
sented by underscores (). See Figure 3(i).

a b a d
a _ _ c d

b a _ d
a d e d

a _ _ c _ endstart

_

_
_

(ii)(i)

d

a

b/d a/e

c

Figure 3: (i) An MSA of five sequences (the first is
“abad”); (ii) The corresponding lattice.

From an MSA, we can compute a lattice . Each

lattice node, except for “start” and “end”, corre-
sponds to an MSA column. The edges are induced
by traversing each of the MSA’s rows from left to
right. See Figure 3(ii).

Alignment computation The sum-of-pairs dy-
namic programming algorithm and pairwise iterative
alignment algorithm sketched here are described in
full in Gusfield (1997) and Durbin et al. (1998).

Let Σ be the set of elements making up the se-
quences to be aligned, and let sim(x, y), x and y ∈
Σ∪{ }, be a domain-specific similarity function that
assigns a score to every possible pair of alignment el-
ements, including gaps. Intuitively, we prefer MSAs
in which many high-similarity elements are aligned.

In principle, we can use dynamic programming
over alignments of sequence prefixes to compute the
highest-scoring MSA, where the sum-of-pairs score
for an MSA is computed by summing sim(x, y) over
each pair of entries in each column. Unfortunately,
these computations are exponential in n, the number
of sequences. (In fact, finding the optimal MSA when
n is a variable is NP-complete (Wang and Jiang,
1994).) Therefore, we use iterative pairwise align-
ment, a commonly-used polynomial-time approxi-
mation procedure, instead. This algorithm greedily
merges pairs of MSAs of (increasingly larger) subsets
of the n sequences; which pair to merge is determined
by the average score of all pairwise alignments of se-
quences from the two MSAs.

Aligning lattices We can apply the above se-
quence alignment algorithm to lattices as well as
sequences, as is indeed required by pairwise itera-
tive alignment. We simply treat each lattice as a
sequence whose ith symbol corresponds to the set of
nodes at distance i from the start node. We mod-
ify the similarity function accordingly: any two new
symbols are equivalent to subsets S1 and S2 of Σ,
so we define the similarity of these two symbols as
max(x,y)∈S1×S2

sim(x, y).

3 Dictionary Induction

Our goal is to produce a semantics-to-words map-
ping dictionary by comparing semantic sequences
to MSAs of multiple verbalizations. We assume
only that the semantic representation uses predicate-
argument structure, so the elementary semantic
units are either terms (e.g., 0), or predicates taking
arguments (e.g., show-from(prem1, prem2, goal),
whose arguments are two premises and a goal). Note
that both types of units can be verbalized by multi-
word sequences.

Now, semantic units can occur several times in
the corpus. In the case of predicates, we would

like to combine information about a given pred-
icate from all its appearances, because doing so
would yield more data for us to learn how to ex-
press it. On the other hand, correlating verbaliza-
tions across instances instantiated with different ar-
gument values (e.g., show-from(a=0,b=0,a*b=0)

vs. show-from(c>0,d>0,c/d>0)) makes alignment
harder, since there are fewer obvious matches (e.g.,
“a∗b=0” does not greatly resemble “c/d>0”); this
seems to discourage aligning cross-instance verbal-
izations.

We resolve this apparent paradox by a novel three-
phase approach:

• In the per-instance alignment phase (Section
3.1), we handle each separate instance of a se-
mantic predicate individually. First, we com-
pute a separate MSA for each instance’s ver-
balizations. Then, we abstract away from the
particular argument values of each instance by
replacing lattice portions corresponding to ar-
gument values with argument slots, thereby cre-
ating a slotted lattice.

• In the cross-instance alignment phase (Section
3.2), for each predicate we align together all the
slotted lattices from all of its instances.

• In the template induction phase (Section 3.3),
we convert the aligned slotted lattices into tem-
plates — sequences of words and argument po-
sitions — by tracing slotted lattice paths.

Finally, we enter the templates into the mapping dic-
tionary.

3.1 Per-instance alignment

As mentioned above, the first job of the per-instance
alignment phase is to separately compute for each in-
stance of a semantic unit an MSA of all its verbaliza-
tions. To do so, we need to supply a scoring function
capturing the similarity in meaning between words.
Since such similarity can be domain-dependent, we
use the data to induce — again via sequence align-
ment — a paraphrase thesaurus T that lists linguis-
tic items with similar meanings. (This process is
described later in section 3.1.1.) We then set

sim(x, y) =











1 x = y, x ∈ Σ;
0.5 x ≈ y;
−0.01 exactly one of x, y is ;
−0.5 otherwise (mismatch)

where Σ is the vocabulary and x ≈ y denotes that T

lists x and y as paraphrases.2 Figure 2 shows the lat-
tice computed for the verbalizations of the instance

2These values were hand-tuned on a held-out develop-
ment corpus, described later. Because we use progressive

show-from(a=0,b=0,a∗b=0) listed in Figure 1. The
structure of the lattice reveals why we informally re-
fer to lattices as “sausage graphs”.

Next, we transform the lattices into slotted lat-
tices. We use a simple matching process that finds,
for each argument value in the semantic expression,
a sequence of lattice nodes such that each node con-
tains a word identical to or a paraphrase of (accord-
ing to the paraphrase thesaurus) a symbol in the
argument value (these nodes are shaded in Figure
2). The sequences so identified are replaced with a
“slot” marked with the argument variable (see Fig-
ure 4).3 Notice that by replacing the argument val-
ues with variable labels, we make the commonalities
between slotted lattices for different instances more
clear, which is useful for the cross-instance alignment
step.

and thatSuppose
Given

Assume

start

that

Prove

slots

end

goalprem1 prem2

Figure 4: Slotted lattice, computed from the lattice
in Figure 2, for show-from(prem1, prem2, goal).

3.1.1 Paraphrase thesaurus creation

Recall that the paraphrase thesaurus plays
a role both in aligning verbalizations and in
matching lattice nodes to semantic argument
values. The main idea behind our para-
phrase thesaurus induction method, motivated
by Barzilay and McKeown (2001), is that paths
through lattice “sausages” often correspond to al-
ternate verbalizations of the same concept, since
the sausage endpoints are contexts common to all
the sausage-interior paths. Hence, to extract para-
phrases, we first compute all pairwise alignments of
parallel verbalizations, discarding those of score less
than four in order to eliminate spurious matches.4

Parallel sausage-interior paths that appear in sev-
eral alignments are recorded as paraphrases. Then,
we iterate, realigning each pair of sentences, but with
previously-recognized paraphrases treated as identi-
cal, until no new paraphrases are discovered. While
the majority of the derived paraphrases are single

alignment, the case x = y = does not occur.
3This may further change the topology by forcing

other nodes to be removed as well. For example, the
slotted lattice in Figure 4 doesn’t contain the node se-
quence “their product”.

4Pairwise alignments yield fewer candidate alignments
from which to select paraphrases, allowing simple scoring
functions to produce decent results.

words, the algorithm also produces several multi-
word paraphrases, such as “are equal to” for “=”.
To simplify subsequent comparisons, these phrases
(e.g., “are equal to”) are treated as single tokens.
Here are four paraphrase pairs we extracted from
the mathematical-proof domain:

(conclusion, result) (0, zero)
(applying, by) (expanding, unfolding)

(See Section 4.2 for a formal evaluation of the para-
phrases.) We treat thesaurus entries as degenerate
slotted lattices containing no slots; hence, terms and
predicates are represented in the same way.

3.2 Cross-instance alignment

Figure 4 is an example where the verbalizations for
a single instance yield good information as to how to
realize a predicate. (For example, “Assume [prem1]
and [prem2], prove [goal]”, where the brackets en-
close arguments marked with their type.) Some-
times, though, the situation is more complicated.
Figure 5 shows two slotted lattices for different in-
stances of rewrite(lemma, goal) (meaning, rewrite
goal by applying lemma); the first slotted lattice is
problematic because it contains context-dependent
information (see caption). Hence, we engage in cross-
instance alignment to merge information about the
predicate. That is, we align the slotted lattices for
all instances of the predicate (see Figure 6); the re-
sultant unified slotted lattice reveals linguistic ex-
pressions common to verbalizations of different in-
stances. Notice that the argument-matching process
in the per-instance alignment phase helps make these
commonalities more evident by abstracting over dif-
ferent values of the same argument (e.g., lemma100
and lemma104 are both relabeled “lemma”).

3.3 Template induction

Finally, it remains to create the mapping dictionary
from unified slotted lattices. While several strate-
gies are possible, we chose a simple consensus se-
quence method. Define the node weight of a given
slotted lattice node as the number of verbalization
paths passing through it (downweighted if it contains
punctuation or the words “the”, “a”, “to”, “and”, or
“of”). The path weight of a slotted lattice path is a
length-normalized sum of the weights of its nodes.5

We produce as a template the words from the consen-
sus sequence, defined as the maximum-weight path,
which is easily computed via dynamic programming.
For example, the template we derive from Figure 6’s
slotted lattice is We use lemma [lemma] to get

[goal].

5Shorter paths are preferred, but we discard sequences
shorter than six words as potentially spurious.

Then we can use lemma lemma a

n
= −a

−n
and get goal

start end

Now the fact about division to the goal

we can use
apply

lemma lemma to get goal

start end

then the left-hand side

Figure 5: Slotted lattices for the predicate rewrite(lemma,goal) derived from two instances:
(instance I) rewrite(lemma100,a-n*((-a)/(-n))=-(-a-(-n)*((-a)/(-n)))), and
(instance II) rewrite(lemma104,A-(-(A/(-N)))*N = A-(A/(-N))*(-N));

each instance had two verbalizations. In instance (I), both verbalizations contain the context-dependent in-
formation “ a

n
= −a

−n
” (the statement of lemma100); also, argument-matching failed on the context-dependent

phrase “the fact about division”.

Now the fact about division a

n
= −a

−n
and the goal

start we can use
apply

lemma lemma to get goal end

Then the left-hand side

Figure 6: Unified slotted lattice computed by cross-instance alignment of Figure 5’s slotted lattices. The
consensus sequence is shown in bold (recall that node weight roughly corresponds to in-degree).

While this method is quite efficient, it does not
fully exploit the expressive power of the lattice,
which may encapsulate several valid realizations. We
leave to future work experimenting with alternative
template-induction techniques; see Section 5.

4 Evaluation

We implemented our system on formal mathemati-
cal proofs created by the Nuprl system, which has
been used to create thousands of proofs in many
mathematical fields (Constable et al., 1986). Gen-
erating natural-language versions of proofs was first
addressed several decades ago (Chester, 1976). But
now, large formal-mathematics libraries are available
on-line.6 Unfortunately, they are usually encoded in
highly technical languages (see Figure 7(i)). Natural-
language versions of these proofs would make them
more widely accessible, both to users lacking famil-
iarity with a specific prover’s language, and to search
engines which at present cannot search the symbolic
language of formal proofs.

Besides these practical benefits, the formal math-
ematics domain has the further advantage of being
particularly suitable for applying statistical genera-
tion techniques. Training data is available because

6See http://www.cs.cornell.edu/Info/Projects/-
NuPrl/ or http://www.mizar.org, for example.

theorem-prover developers frequently provide verbal-
izations of system outputs for explanatory purposes.
In our case, a multi-parallel corpus of Nuprl proof
verbalizations already exists (Holland-Minkley et al.,
1999) and forms the core of our training corpus.
Also, from a research point of view, the examples
from Figure 1 show that there is a surprising variety
in the data, making the problem quite challenging.

All evaluations reported here involved judgments
from graduate students and researchers in computer
science. We authors were not among the judges.

4.1 Corpus

Our training corpus consists of 30 Nuprl proofs and
83 verbalizations. On average, each proof consists of
5.08 proof steps, which are the basic semantic unit in
Nuprl; Figure 7(i) shows an example of three Nuprl
steps. An additional five proofs, disjoint from the
test data, were used as a development set for setting
the values of all parameters.7

Pre-processing First, we need to divide the ver-
balization texts into portions corresponding to in-
dividual proof steps, since per-instance alignment
handles verbalizations for only one semantic unit at
a time. Fortunately, Holland-Minkley et al. (1999)

7See http://www.cs.cornell.edu/Info/Projects/
NuPrl/html/nlp for all our data.

(i) (ii) (iii)

UnivCD(∀ i:N.|i| = |-i|, i:N, |i| = |-i|)

BackThruLemma(|i| = |-i|, i= ± i,absval eq)

Unfold(i= ± i, (), pm equal)

Assume that i is an integer,

we need to show |i| = | − i|.

From absval eq lemma,

|i| = | − i| reduces to

i = ±i. By the definition of

pm equal, i = ±i is proved.

Assume i is an integer. By

the absval eq lemma, the

goal becomes |i| = | − i|.

Now, the original expression

can be rewritten as i = ±i.

Figure 7: (i) Nuprl proof (test lemma “h” in Figure 8). (ii) Verbalization produced by our system. (iii)
Verbalization produced by traditional generation system; note that the initial goal is never specified, which
means that in the phrase “the goal becomes”, we don’t know what the goal is.

showed that for Nuprl, one proof step roughly corre-
sponds to one sentence in a natural language verbal-
ization. So, we align Nuprl steps with verbalization
sentences using dynamic programming based on the
number of symbols common to both the step and
the verbalization. This produced 382 pairs of Nuprl
steps and corresponding verbalizations. We also did
some manual cleaning on the training data to reduce
noise for subsequent stages.8

4.2 Per-component evaluation

We first evaluated three individual components
of our system: paraphrase thesaurus induction,
argument-value selection in slotted lattice induction,
and template induction. We also validated the utility
of multi-parallel, as opposed to one-parallel, data.

Paraphrase thesaurus We presented two judges
with all 71 paraphrase pairs produced by our system.
They identified 87% and 82%, respectively, as being
plausible substitutes within a mathematical context.

Argument-value selection We next measured
how well our system matches semantic argument val-
ues with lattice node sequences. We randomly se-
lected 20 Nuprl steps and their corresponding verbal-
izations. From this sample, a Nuprl expert identified
the argument values that appeared in at least one
corresponding verbalization; of the 46 such values,
our system correctly matched lattice node sequences
to 91%. To study the relative effectiveness of using
multi-parallel rather than one-parallel data, we also
implemented a baseline system that used only one
(randomly-selected) verbalization among the multi-
ple possibilities. This single-verbalization baseline
matched only 44% of the values correctly, indicating
the value of a multi-parallel-corpus approach.

Templates Thirdly, we randomly selected 20 in-
duced templates; of these, a Nuprl expert determined

8We employed pattern-matching tools to fix incorrect
sentence boundaries, converted non-ascii symbols to a
human-readable format, and discarded a few verbaliza-
tions which were unrelated to the underlying proof.

that 85% were plausible verbalizations of the corre-
sponding Nuprl. This was a very large improvement
over the single-verbalization baseline’s 30%, again
validating the multi-parallel-corpus approach.

4.3 Evaluation of the generated texts

Finally, we evaluated the quality of the text our
system generates by comparing its output against
the system of Holland-Minkley et al. (1999), which
produces accurate and readable Nuprl proof verbal-
izations. Their system has a hand-crafted lexical
chooser derived via manual analysis of the same cor-
pus that our system was trained on. To run the ex-
periments, we replaced Holland-Minkley et. al’s lexi-
cal chooser with the mapping dictionary we induced.
(An alternative evaluation would have been to com-
pare our output with human-authored texts. But
this wouldn’t have allowed us to evaluate the perfor-
mance of the lexical chooser alone, as human proof
generation may differ in aspects other than lexical
choice.) The test set serving as input to the two sys-
tems consisted of 20 held-out proofs, unseen through-
out the entirety of our algorithm development work.
We evaluated the texts on two dimensions: readabil-
ity and fidelity to the mathematical semantics.

Readability We asked 11 judges to compare the
readability of the texts produced from the same
Nuprl proof input: Figure 7(ii) and (iii) show an
example text pair.9 (The judges were not given the
original Nuprl proofs.) Figure 8 shows the results.
Good entries are those that are not preferences for
the traditional system, since our goal, after all, is to
show that MSA-based techniques can produce out-
put as good or better than a hand-crafted system.
We see that for every lemma and for every judge,
our system performed quite well. Furthermore, for
more than half of the lemmas, more than half the

9To prevent judges from identifying the system pro-
ducing the text, the order of presentation of the two sys-
tems’ output was randomly chosen anew for each proof.

Lemma % good
Judge a b c d e f g h i j k l m n o p q r s t
A � 100
B � 75
C � 70
D � 70
E � 70
F � 85
G � 85
H � 100
I � 60
J � 85
K � 65
% good 55 82 91 73 91 82 73 82 82 64 73 82 82 82 82 91 64 82 73 91
> 50% �? X X X X X X X X X X X X X

Figure 8: Readability results. �: preference for our system. �: preference for hand-crafted system. �: no
preference. X: > 50% of the judges preferred the statistical system’s output.

judges found our system’s output to be distinctly
better than the traditional system’s.

Fidelity We asked a Nuprl-familiar expert in formal
logic to determine, given the Nuprl proofs and output
texts, whether the texts preserved the main ideas of
the formal proofs without introducing ambiguities.
All 20 of our system’s proofs were judged correct,
while only 17 of the traditional system’s proofs were
judged to be correct.

5 Related Work

Nuprl creates proofs at a higher level of abstrac-
tion than other provers do, so we were able to learn
verbalizations directly from the Nuprl proofs them-
selves. In other natural-language proof generation
systems (Huang and Fiedler, 1997; Siekmann et al.,
1999) and other generation applications, the seman-
tic expressions to be realized are the product of the
system’s content planning component, not the proof
or data. But our techniques can still be incorporated
into such systems, because we can map verbalizations
to the content planner’s output. Hence, we believe
our approach generalizes to other settings.

Previous research on statistical generation has ad-
dressed different problems. Some systems learn
from verbalizations annotated with semantic con-
cepts (Ratnaparkhi, 2000; Oh and Rudnicky, 2000);
in contrast, we use un-annotated corpora. Other
work focuses on surface realization — choosing
among different lexical and syntactic options sup-
plied by the lexical chooser and sentence planner
— rather than on creating the mapping dictionary;
although such work also uses lattices as input to
the stochastic realizer, the lattices themselves are
constructed by traditional knowledge-based means
(Langkilde and Knight, 1998; Bangalore and Ram-
bow, 2000). An exciting direction for future research

is to apply these statistical surface realization meth-
ods to the lattices our method produces.

Word lattices are commonly used in speech recog-
nition to represent different transcription hypothe-
ses. Mangu et al. (2000) compress these lattices into
confusion networks with structure reminiscent of our
“sausage graphs”, utilizing alignment criteria based
on word identity and external information such as
phonetic similarity.

Using alignment for grammar and lexicon in-
duction has been an active area of research, both
in monolingual settings (van Zaanen, 2000) and
in machine translation (MT) (Brown et al., 1993;
Melamed, 2000; Och and Ney, 2000) — interestingly,
statistical MT techniques have been used to derive
lexico-semantic mappings in the “reverse” direction
of language understanding rather than generation
(Papineni et al., 1997; Macherey et al., 2001). In
a preliminary study, applying IBM-style alignment
models in a black-box manner (i.e., without modifi-
cation) to our setting did not yield promising results
(Chong, 2002). On the other hand, MT systems can
often model crossing alignment situations; these are
rare in our data, but we hope to account for them in
future work.

While recent proposals for evaluation of MT sys-
tems have involved multi-parallel corpora (Thomp-
son and Brew, 1996; Papineni et al., 2002), statis-
tical MT algorithms typically only use one-parallel
data. Simard’s (1999) trilingual (rather than multi-
parallel) corpus method, which also computes MSAs,
is a notable exception, but he reports mixed exper-
imental results. In contrast, we have shown that
through application of a novel composition of align-
ment steps, we can leverage multi-parallel corpora to
create high-quality mapping dictionaries supporting
effective text generation.

Acknowledgments

We thank Stuart Allen, Eli Barzilay, Stephen Chong,
Michael Collins, Bob Constable, Jon Kleinberg, John
Lafferty, Kathy McKeown, Dan Melamed, Golan Yona,
the Columbia NLP group, and the anonymous reviewers
for many helpful comments. Thanks also to the Cor-
nell Nuprl and Columbia NLP groups, Hubie Chen, and
Juanita Heyerman for participating in our evaluation,
and the Nuprl group for generating verbalizations. We
are grateful to Amanda Holland-Minkley for help run-
ning the comparison experiments. Portions of this work
were done while the first author was visiting Cornell Uni-
versity. This paper is based upon work supported in
part by the National Science Foundation under ITR/IM
grant IIS-0081334 and a Louis Morin scholarship. Any
opinions, findings, and conclusions or recommendations
expressed above are those of the authors and do not nec-
essarily reflect the views of the National Science Founda-
tion.

References

Srinivas Bangalore and Owen Rambow. 2000. Exploiting
a probabilistic hierarchical model for generation. In
Proc. of COLING.

Regina Barzilay and Kathleen McKeown. 2001. Extract-
ing paraphrases from a parallel corpus. In Proc. of the
ACL/EACL, pages 50–57.

Peter Brown, Stephen Della Pietra, Vincent Della Pietra,
and Robert Mercer. 1993. The mathematics of sta-
tistical machine translation: Parameter estimation.
Computational Linguistics, 19(2):263–311.

Daniel Chester. 1976. The translation of formal proofs
into English. Artificial Intelligence, 7:261–278.

Stephen Chong. 2002. Word alignment of proof verbal-
izations using generative statistical models. Technical
Report TR2002-1864, Cornell Computer Science.

R. Constable, S. Allen, H. Bromley, W. Cleaveland,
J. Cremer, R. Harper, D. Howe, T. Knoblock,
N. Mendler, P. Panangaden, J. Sasaki, and S. Smith.
1986. Implementing Mathematics with the Nuprl De-
velopment System. Prentice-Hall.

Richard Durbin, Sean Eddy, Anders Krogh, and Graeme
Mitchison. 1998. Biological Sequence Analysis. Cam-
bridge University Press.

Dan Gusfield. 1997. Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Bi-
ology. Cambridge University Press.

Amanda M. Holland-Minkley, Regina Barzilay, and
Robert L. Constable. 1999. Verbalization of high-level
formal proofs. In Proc. of AAAI, pages 277–284.

Xiaorong Huang and Armin Fiedler. 1997. Proof verbal-
ization as an application of NLG. In Proc. of IJCAI.

Tim J. P. Hubbard, Arthur M. Lesk, and Anna Tramon-
tano. 1996. Gathering them in to the fold. Nature
Structural Biology, 3(4):313, April.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proc. of ACL/COLING, pages 704–710.

Klaus Macherey, Franz Josef Och, and Hermann Ney.
2001. Natural language understanding using statistical
machine translation. In Proc. of EUROSPEECH.

Lidia Mangu, Eric Brill, and Andreas Stolcke. 2000.
Finding consensus in speech recognition: Word error
minimization and other applications of confusion net-
works. Computer, Speech and Language, 14(4):373–
400.

I. Dan Melamed. 2000. Models of translational equiv-
alence among words. Computational Linguistics,
26(2):221–249.

Franz Josef Och and Hermann Ney. 2000. Improved sta-
tistical alignment models. In Proc. of the ACL, pages
440–447.

Alice Oh and Alexander Rudnicky. 2000. Stochastic lan-
guage generatation for spoken dialogue systems. In
Proc. of the ANLP/NAACL 2000 Workshop on Con-
versational Systems, pages 27–32.

Kishore A. Papineni, Salim Roukos, and R. Todd Ward.
1997. Feature-based language understanding. In Proc.
of EUROSPEECH, volume 3, pages 1435 – 1438.

Kishore A. Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. In Proc. of the
ACL.

Adwait Ratnaparkhi. 2000. Trainable methods for sur-
face natural language generation. In Proc. of the
NAACL, pages 194–201.

Ehud Reiter and Robert Dale. 2000. Building Natural
Language Generation System. Cambridge University
Press.

Jörg H. Siekmann, Stephan M. Hess, Christoph
Benzmüller, Lassaad Cheikhrouhou, Armin Fiedler,
Helmut Horacek, Michael Kohlhase, Karsten Konrad,
Andreas Meier, Erica Melis, Martin Pollet, and Volker
Sorge. 1999. LΩUI: Lovely ΩMEGA user interface.
Formal Aspects of Computing, 11(3).

Michel Simard. 1999. Text-translation alignment:
Three languages are better than two. In Proc. of
EMNLP/VLC, pages 2–11.

Henry S. Thompson and Chris Brew. 1996.
Automatic evaluation of computer generated
text: Final report on the TextEval project.
http://www.cogsci.ed.ac.uk/∼chrisbr/papers/mt-
eval-final/mt-eval-final.html.

Menno van Zaanen. 2000. Bootstrapping syntax and
recursion using alignment-based learning. In Proc. of
ICML, pages 1063–1070.

Lusheng Wang and Tao Jiang. 1994. On the complexity
of multiple sequence alignment. Journal of Computa-
tional Biology, 1(4):337–348.

