
INTER-DOCUMENT SIMILARITIES, LANGUAGE

MODELS, AND AD HOC INFORMATION RETRIEVAL

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Oren Kurland

August 2006

c© 2006 Oren Kurland
ALL RIGHTS RESERVED

INTER-DOCUMENT SIMILARITIES, LANGUAGE MODELS, AND AD HOC
INFORMATION RETRIEVAL

Oren Kurland, Ph.D.
Cornell University 2006

Search engines have become a crucial tool for finding information in repositories
containing large amounts of textual data in unstructured form (e.g., the Web).
However, the task of ad hoc information retrieval, that is, finding documents within
a corpus that are relevant to an information need specified using a query, remains
a hard challenge.

The language modeling approach to information retrieval provides an effective
framework for approaching various problems and has yielded impressive empiri-
cal performance. However, most previous work on language models for informa-
tion retrieval focuses on document-specific characteristics to estimate documents’
language models, and therefore does not take into account the structure of the
surrounding corpus, a potentially rich source of additional information.

We present a novel perspective for approaching the task of ad hoc retrieval:
information provided by document-based language models can be enhanced by the
incorporation of information drawn from clusters of similar documents that are
created offline. We present several retrieval algorithms that are natural instantia-
tions of this idea and that post performance that is substantially better than that
of the standard language modeling approach. We also show that the best perform-
ing of these algorithms posts state-of-the-art performance for structural re-ranking,
wherein an initially retrieved subset of the documents is re-ranked to obtain high
precision specifically among the first few documents, using inter-document simi-
larities within the list as an extra information source.

As further exploration of the re-ranking approach just described, and inspired
by the PageRank and HITS (hubs and authorities) algorithms for Web search,
we propose a graph-based framework that applies to document collections lack-
ing hyperlink information. Specifically, centrality induced over graphs wherein
links represent asymmetric language-model-based inter-document similarities con-
stitutes the basis of effective re-ranking algorithms. Combining our two paradigms
for similarity representation — i.e., clusters of documents and links representing
language-model-based inter-item similarities — helps to improve the effectiveness
of centrality-based approaches. For example, document “authoritativeness” as in-
duced by the HITS algorithm over cluster-document graphs is a highly effective
re-ranking criterion. Furthermore, “authoritative” clusters are shown to contain a
high percentage of relevant documents.

BIOGRAPHICAL SKETCH

Oren Kurland holds a B.Sc. in Mathematics and Computer Science and an M.B.A.
from Tel Aviv University in Israel. In August 2002, Oren joined the Ph.D. program
in the Department of Computer Science at Cornell University.

iii

To Ehud, Ilana and Sharon

In memory of Shlomo and Gita Kurland and Izack and Haya Diukman

iv

ACKNOWLEDGEMENTS

I had the good fortune to have Lillian Lee as my advisor. Her thoughtful guidance
helped shape me as a researcher. As both a scientist and an advisor, Lillian has
been a wonderful role model from whom I draw inspiration. I will always be
thankful for that.

I thank my committee members, Shimon Edelman, Johannes Gehrke, and
Thorsten Joachims for helpful comments on the work presented in this thesis.
I am also thankful to the following people for comments and discussions on parts
of the work on which this thesis is based: James Allan, Eric Breck, Jamie Callan,
Claire Cardie, Yejin Choi, William Cohen, Bruce Croft, Oren Etzioni, Jon Klein-
berg, Art Munson, Fernando Pereira, Filip Radlinski, Ves Stoyanov, and Justin
Wick.

I thank ChengXiang Zhai and Victor Lavrenko for answering questions about
their work, and Andrés Corrada-Emmanuel and David Fisher for technical assis-
tance with the Lemur toolkit. I also thank the anonymous reviewers of Kurland
and Lee (2004), Kurland and Lee (2005), Kurland et al. (2005) and Kurland and
Lee (2006) for valuable comments on work that appeared in these papers and
that serves as the basis of many chapters of this thesis. In addition, I thank the
anonymous reviewers of the ACM Transactions on Information Systems (TOIS)
journal for comments on an extended version of Kurland and Lee (2004) and the
anonymous reviewers of the Journal of Artificial Intelligence Research (JAIR) for
comments on an extended version of Kurland and Lee (2005).

I also want to thank Rimon Barr, Siggi Cherem, Kevyn Collins-Thompson,
Carmel Domshlak, Leonid Kontorovitch, Ashwin Machanavajjhala, Bo Pang, Liviu
Popsecu, Cindy Robinson and Vivek Vishnumurthy — people, who in their own
way, have had a considerable impact on my professional life during the last few
years.

I also thank the Computer Science Department at Carnegie Mellon University
for its hospitality during the 2004-2005 academic year.

This thesis is based upon work supported in part by the National Science Foun-
dation (NSF) under grants ITR/IM IIS-0081334, IIS-0329064 and CCR-0122581;
SRI International under subcontract no. 03-000211 on their project funded by the
Department of the Interior’s National Business Center; and by an Alfred P. Sloan
Research Fellowship. Any opinions, findings, and conclusions or recommendations
expressed are those of the authors and do not necessarily reflect the views or of-
ficial policies, either expressed or implied, of any sponsoring institutions, the U.S.
government, or any other entity.

Last but not least, I thank my parents, Ehud and Ilana, and my sister, Sharon,
for their constant support before and during my years at Cornell.

v

TABLE OF CONTENTS

1 Introduction 1
1.1 Thesis outline . 3
1.2 Evaluation methodology (design choices) 4

2 The language modeling approach to information retrieval 8
2.1 Language models . 8
2.2 Using language models for ad hoc information retrieval 9
2.3 Language-model-based similarity induction: length, entropy and nu-

merical effects . 13
2.3.1 Estimation details . 14

3 Exploiting corpus-structure analysis for ad hoc retrieval 18
3.1 How can clustering help ad hoc retrieval ? 18
3.2 Ad hoc IR using clusters created offline 20

3.2.1 Soft clustering . 21
3.3 Combining clusters and language models in ad hoc retrieval 23

4 Ad hoc retrieval using language models of clusters created offline 25
4.1 Notational conventions . 26
4.2 Retrieval framework . 26
4.3 Retrieval algorithms . 28
4.4 Evaluation . 32

4.4.1 Language model induction 33
4.4.2 Experimental setup . 33
4.4.3 Primary evaluations . 38
4.4.4 Comparison to pseudo-feedback methods 46
4.4.5 Cluster composition: alternatives and analysis 50
4.4.6 The role of language models 54

5 Structural re-ranking utilizing query-dependent cluster-based lan-
guage models 57
5.1 Structural re-ranking . 57
5.2 Retrieval framework . 59
5.3 Evaluation . 60

5.3.1 Language model induction 60
5.3.2 Experimental setup . 61
5.3.3 Primary evaluations . 62
5.3.4 Cluster-document relationship 64
5.3.5 Alternative clustering schemes 65
5.3.6 Clusters-mediated similarity vs. distinct document similarity 70

vi

6 Language-model-based graph framework for structural re-ranking 72
6.1 Centrality and relevance . 73
6.2 Retrieval framework . 74

6.2.1 Relevance-flow graphs . 74
6.2.2 Computing graph centrality 77
6.2.3 Incorporating initial scores 78

6.3 Evaluation . 78
6.3.1 Language model induction 79
6.3.2 Experimental setting . 79
6.3.3 Primary evaluations . 81
6.3.4 Centrality and relevance . 85
6.3.5 Non-structural re-ranking 89
6.3.6 Information representation and similarity measures 90
6.3.7 Inducing centrality with the HITS algorithm 93
6.3.8 Seeking generators versus seeking offspring 98
6.3.9 The initial set size (|Dinit|) 101

6.4 Related work . 101

7 Bipartite cluster-document relevance-flow graphs 104
7.1 Re-consideration of HITS . 104
7.2 Re-ranking algorithms . 105

7.2.1 Graph schemata: incorporating clusters 106
7.2.2 Scoring by (recursive) influx 108
7.2.3 Algorithms based on centrality scores 110

7.3 Evaluation framework . 111
7.3.1 Graph construction . 111
7.3.2 Experimental setup . 112

7.4 Experimental results . 113
7.4.1 Re-ranking by document centrality 113
7.4.2 Re-ranking by cluster centrality 117
7.4.3 Further analysis . 118

7.5 Related work . 121

8 Structural re-ranking: performance-comparison summary 123

9 Summary and Future Work 127

vii

LIST OF TABLES

4.1 Algorithm specifications. (“Top” stands for TopClustersq(m).) . . . 28
4.2 Version of the comparison results in Figure 4.2 in which stemming

and removal of stopwords was applied to the corpora first. Thus,
the number of clusters for the selection algorithms was chosen to op-
timize average precision at N , but for the aspect and interpolation-t
algorithms, all clusters were used. Italics indicate results superior
to those of the baseline language model; b’s and i’s mark results
that differ to a statistically significant degree from the baseline or
the interpolation algorithm, respectively; and bold indicates the
best results for a given experimental setting (column). 39

4.3 Comparison between bag-select and simply counting the overlap
between top clusters, optimizing the parameter m (the number of
top clusters retrieved) for average precision. A “b” marks a statis-
tically significant difference from the baseline. Bold highlights the
best performance for a given experimental setting (column). 39

4.4 Comparison of the interpolation-t algorithm with Rocchio’s method,
the relevance model and the clippedrelevance model. (Boldface:
best result in column.) Statistically significant differences with the
three methods are marked with η, R, and c respectively. No stem-
ming or stopword removal have been applied. 50

4.5 Average precision of the interpolation-t algorithm using non-overlapping
k-means clusters (cosine similarity metric) versus overlapping nearest-
neighbor clusters (KL divergence-based similarity metric). Bold in-
dicates the best performance for a given experimental setting (col-
umn). Stars (*) indicate statistically significant differences with
respect to the baseline. 51

4.6 Effect of applying the h-basis and h-all heuristics on the interpolation-
t algorithm’s performance. No stemming or stopword removal have
been applied. “h-x(n1, n2, n3)” indicates the (rounded average)
number of clusters for AP89, AP88+89 and LA+FR respectively
that results from applying the “h-x” heuristic. “original” denotes
that no heuristic has been applied (i.e., the original set of clusters
C l(C) was used.) Boldface: best result in column. 53

4.7 Results using tf.idf to measure similarity instead of probabilities
assigned by induced language models. Italics indicate results supe-
rior to those of the baseline tf.idf-based ranking. A “b” marks a
statistically significant difference from the baseline. Bold highlights
the best performance for a given experimental setting (column). No
stemming or stop-word removal was applied. 56

5.1 Re-ranking algorithms. 60

viii

5.2 Experimental results, showing algorithm performance with respect
to our 9 evaluation settings (3 performance metrics × 3 corpora).
For each evaluation setting, improvements over the optimized base-
lines are given in italics; statistically significant differences between
the structural re-ranking algorithms and the initial ranking and
optimized baselines are indicated by i and o respectively; bold
highlights the best results over all algorithms. 62

5.3 Comparison between the “truncated” (-t) and “full” (-f) versions
of the aspect and interpolation algorithms. Underline: best result
in a “block” (corpus × algorithm × evaluation measure). Boldface:
best result per column. Statistically significant differences with the
initial ranking and optimized baselines are marked with i and o
respectively. 64

5.4 Comparison of the interpolation-t (T) algorithm with the interpolation-
f (F) algorithm, utilizing different clustering methods. Each entry
depicts in non-ascending order of performance the algorithms that
post a 2.5% (or more) relative performance improvement over the
initial ranking (a hat (“̂ ”) indicates that the improvement is sig-
nificant). Bold highlights the best performing algorithm per entry. 70

5.5 Comparison of the aspect-f and interpolation-f algorithms perfor-
mance with nearest-neighbors (in LM space) clusters (“nn-LM”)
vs. singleton (“single”) clusters (i.e., each document serves as a
cluster). Underline: best performance within a block (algorithm ×
corpus × evaluation metric). Boldface: best performance per col-
umn; i, o: statistically significant difference with the initial ranking
and optimized baseline respectively. 71

6.1 Primary experimental results, showing algorithm performance with
respect to our 9 evaluation settings (3 performance metrics × 3 cor-
pora). For each evaluation setting, improvements over the optimized
baselines are given in italics; statistically significant differences be-
tween our structural re-ranking algorithms and the initial ranking
and optimized baselines are indicated by i and o respectively; bold
highlights the best results over all ten algorithms. 80

6.2 Comparison between our use of language-model-based structural-
centrality scores in Equation 6.3 vs. non-structural re-ranking
heuristics. For each evaluation setting, italics mark improvements
over the default baseline of uniform centrality scores, stars (*) in-
dicate statistically significant differences with this default baseline,
and bold highlights the best results over all eight algorithms. . . . 90

ix

6.3 Comparing the HITS-based algorithms. For each of the four algo-
rithms, we evaluate using either authority (A) or hub-ness (H) as
centrality score. An entry depicts those centrality scores, if any,
that lead to performance superior to that of the initial ranking.
The left-to-right ordering within an entry reflects descending per-
formance; the more effective centrality score is boldfaced. A hat
(“̂ ”) marks instances in which the improvement over the initial
ranking is to a statistical significant degree. 94

6.4 Performance comparison of the HITS-based algorithms, utilizing
authority scores, as implemented on unsmoothed and smoothed
(S) graphs with the recursive influx algorithms. Underline: best
performance per block (3 algorithms × evaluation measure). Bold-
face: best result per column. 95

6.5 Comparison of our algorithms’ performance when implemented over
graphs utilizing the estimate from Equation 6.4 (marked by the
prefix [off]) — thereby based on the “seek for central offspring” ap-
proach — with that of their implementation on the original graphs
from Section 6.2 (representing the “seek for central generators” ap-
proach.). Underline: best result per block. Boldface: best result
per column. 97

7.1 Graph-based algorithms for structural re-ranking. 113
7.2 Main comparison: HITS or Recursive Influx on document-only

graphs versus HITS on cluster-to-document graphs. Bold: best
results per column. Symbols “r” and “a”: doc-WAuth[c→d] result
differs significantly from that of doc-RWI[d↔d] or doc-WAuth[d↔d],
respectively. (For algorithms’ names in the table, “doc-” is abbre-
viated as “d-”.) . 116

7.3 Re-Ranking algorithms, as applied to either d↔d graphs or c→d
graphs. Underline: best results for a given algorithm when the un-
derlying graph is varied. Boldface: best results per column. Sym-
bols “i” and “o”: results differ significantly from the initial ranking
or the optimized baseline, respectively. (For algorithms’ names in
the table, “doc-” is abbreviated as “d-”.) 116

7.4 Cluster-based re-ranking. Bold: best results per column. Symbols
i, o, c: results differ significantly from the initial ranking, optimized
baseline, or (for the re-ranking algorithms) clust-pc(q) (Liu and
Croft, 2004), respectively. (For algorithms’ names in the table,
“c-” stands for “clust-”.) . 117

7.5 Average relevant-document percentage within the top-ranked clus-
ter. Optimal cluster: cluster with highest percentage. k: cluster
size. Bold: best result obtained by the three different cluster-
ranking approaches. c: result (of one of our algorithms) differs
significantly from that of clust-pc(q), used in Liu and Croft (2004). 119

x

7.6 Comparison of performance results for the doc-WAuth[d↔d] and
doc-WAuth[c→d] algorithms when run on graphs with (S) and
without (U) edge-weight smoothing. For each algorithm, corpus,
and evaluation measure, underline indicates which of (S) and (U)
results in a better performance. Boldface marks the best perfor-
mance for an evaluation setting (corpus × evaluation measure). . . 120

7.7 Performance results for using centrality as a sole criterion for rank-
ing (doc-RWI[d↔d] and doc-WAuth[c→d]), or as a “bias” on query
likelihood using Equation 6.3 (doc-RWI[d↔d]+LM and doc-WAuth[c→d]+LM).
Bold: best result per column. 120

8.1 Performance results of structural re-ranking algorithms from Chap-
ters 5, 6 and 7 compared to those of Rocchio’s method and the rele-
vance model. Bold: best performance per column; “i”: performance
significantly better than that of the initial ranking. (The prefix
“doc-” was omitted from the graph-based algorithms’ names (doc-
RWI[d↔d], doc-WAuth[c→d], doc-RWI[d↔d]+LM, doc-WAuth[c→d]+LM)
due to formatting considerations.) 124

8.2 Performance results of our most effective structural re-ranking al-
gorithms, doc-WAuth[c→d]+LM (the prefix “doc-” was omitted
from the corresponding table entry) and interpolation-f, compared
to those of versions of Rocchio’s method and the relevance model
wherein only Dinit is ranked, instead of the entire corpus. Bold:
best performance per column; “i”: performance significantly better
than that of the initial ranking. 125

xi

LIST OF FIGURES

4.1 Algorithm template. 28
4.2 Comparison of algorithms under the following conditions: (1) the

number of clusters for the selection algorithms was chosen to op-
timize average precision at N = 1000, but for the aspect and
interpolation-t algorithms, all clusters were used; and (2) no stem-
ming or stopword removal was applied. 35

4.3 The effect of varying the number of top-retrieved clusters: m =
50, 100, 500, 1K, 5K, 10K, 50K, all. (x-axis: recall, y-axis: pre-
cision.) All curves move either roughly clockwise or diagonally
upward as m increases. As before, triangles indicate selection al-
gorithms, quadrilaterals represent aspect algorithms, and the circle
indicates the hybrid interpolation-t algorithm. The axes for plots
on the same corpus are to the same scale; thus, the baseline indi-
cator is in the same spot in each pair of plots. No stemming or
stopword removal was applied. 41

4.4 Performance of the interpolation-t algorithm as λ takes values in
{0, 0.1, 0.2, . . . , 0.9, 1} while m is held fixed at its maximum value.
(x-axis: recall, y-axis: precision.) Note that λ = 0 (arrow tail) cor-
responds to a version of the aspect-t algorithm without re-ranking,
and that λ = 1 (arrow head) is equivalent to the baseline language
model. The results of some other methods, copied over from Figure
4.2, are also depicted for reference. 44

4.5 Effect on average precision of re-ranking the interpolation-t algo-
rithm’s retrieval results by pd(q), shown as a function of the inter-
polation parameter λ. When the function is positive, it is better
to re-rank. The number of top clusters retrieved was fixed at its
maximum value. 47

4.6 Average percentage of relevant documents per top-retrieved cluster
as the number of clusters retrieved grows. 54

4.7 For each number x, the percentage of relevant documents r such
that at least x of the 10 nearest-neighbors documents to r (not
including r itself, and where similarity is calculated based on the
documents’ induced language models) are relevant. 55

5.1 Algorithm template for re-ranking an initially retrieved list of docu-
ments (Dinit). This template is an adaptation of the template from
Figure 4.1 to the re-ranking setting. 59

xii

5.2 Performance numbers for the “truncated” (-t) and “full” (-f) ver-
sions of the interpolation algorithm (interpolation-t and interpolation-
f respectively), utilizing different clustering methods. Boldface:
best result per column; i, o: significant difference with the initial
ranking and optimized baseline respectively; italics: improvements
over the optimized baselines. 68

6.1 Intuition behind using language models to induce link informa-
tion. Assuming unsmoothed unigram language models, pd1(d2) =
pd1(“Salvador”)3 = (1/3)3, which is larger than pd2(d1) = 0 (due
to “Sheffield” and “Toronto” not appearing in d2). Therefore, the
“support” for centrality being transferred from d2 to d1 given that
d2 is relevant (thick arrow) is much stronger than the “support”
transferred from d1 to d2 (thin arrow) given that d1 is relevant. . . 75

6.2 Centrality and relevance: the effect of varying the percentage of
relevant documents in Dinit on the performance (prec@5) of the
Weighted Influx and Recursive Weighted Influx algorithms. 83

6.3 The percentage of generation weight on edges between a (non) rel-
evant document and its 5 top generators that are (non) relevant
(wR2R (wN2N)), with respect to the total generation weight on
the document’s outgoing edges (percentages are averaged over doc-
uments) as a function of the percentage of relevant documents in
Dinit. 86

6.4 Comparison of different methods for defining relevance-
flow graphs. 92

6.5 The effect of varying the number of documents in Dinit on the
performance of the Weighted Influx, Recursive Weighted Influx,
Weighted Influx+LM and Recursive Weighted Influx+LM algo-
rithms performance (prec@5). 99

7.1 A one-way bipartite graph. We only show positive-weight edges
(omitting weight values). According to HITS, the left-hand nodes
are (pure) hubs; the right-hand ones are (pure) authorities. 107

7.2 Centrality and relevance: the effect of varying the percentage of
relevant documents in Dinit on the performance (prec@5) of the
doc-RWI[d↔d] and doc-WAuth[c→d] algorithms. 114

xiii

Chapter 1
Introduction
One of the major goals for the field of artificial intelligence is to support people’s
decision making processes. To that end, the ability to obtain information relevant
to the task at hand is of utmost importance. The abundance of information (in
digital form) available in on-line repositories can be highly beneficial for both hu-
mans and automated computer systems that seek information, yet poses extremely
difficult challenges due to the variety and amount of data available.

It is therefore not a surprise that in the Web setting — perhaps the best example
of an abundance of accessible information — search engines have become a crucial
tool upon which millions of users are dependent for finding desired information.

One of the core problems that search engines face in order to satisfy users’
information needs is “judging” whether a piece of (textual) information is relevant
to a given information need as specified by a text query. This research problem
has attracted attention for almost forty years by now (Salton, 1968), and is still
far from being completely solved.

Indeed, there are various challenges involved in estimating the relevance of a
text span to an information need underlying a query. For example, users often
use queries that contain very few terms to describe their information needs (Spink
and Jensen, 2004), and such queries are in many cases ambiguous. Furthermore,
resolving ambiguity of terms in documents might itself be important for handling
short queries (Krovetz and Croft, 1992; Sanderson, 1994). Another example of
a challenge underlying the task of relevance estimation, just mentioned, is the
word mismatch problem (Xu and Croft, 1999): relevant pieces of text might not
contain (some of) the query terms, but might still discuss the same topic as that
of the query. For example, the text span “freight truck” is potentially relevant to
the query “shipment vehicles”, although there are no terms appearing in both of
them.

The work in this thesis establishes new approaches and modeling techniques
for approaching the problem of “judging” the relevance of a text document to a
text query — the basis of the ad hoc information retrieval task:

Given a textual query comprised of several terms and a static repository
(corpus) of documents, rank the documents in the repository by their esti-
mated relevance to the query.

There is a long history of research on devising effective retrieval algorithms that
can find (many) relevant documents in response to a query and position them at
high ranks within the returned list of results. Books such as van Rijsbergen (1979),
Grossman and Frieder (1998) and Baeza-Yates and Ribeiro-Neto (1999) discuss
various retrieval models and provide many references to pertinent literature.

Among the well known paradigms for ad hoc retrieval are the vector-space
model (Salton, 1968; Salton et al., 1975), wherein both the query and the docu-
ments are represented as vectors in a vector space and ranking is based on similarity

1

2

in this space; probabilistic approaches (Maron and Kuhns, 1960; Robertson and
Sparck Jones, 1976; Croft and Harper, 1979; Sparck Jones et al., 2000) that esti-
mate the probability that a document is relevant to a query; the inference network
model (Turtle and Croft, 1990), which is based on a Bayesian network model, and
logic-based approaches (van Rijsbergen, 1986).

In 1998, Ponte and Croft (1998) proposed a new retrieval paradigm based on
(statistical) language models (LMs). (See Rosenfeld (2000) for survey of language
models). The basic retrieval method proposed in Ponte and Croft’s paper is to
rank documents in a corpus by the probability that their induced language models
generate the query terms, where a language model is a probability distribution
defined over a fixed vocabulary. Among the advantages stated by Ponte and Croft
in using LMs for ad hoc retrieval are the ability to exploit models developed in
other realms in which language models have been used (e.g., speech recognition)
and impressive empirical performance (Ponte and Croft, 1998). Indeed, Ponte
and Croft’s paper ignited a new line of research in information retrieval utilizing
language models. (In Section 2 we survey work on using language models for ad hoc
information retrieval, and present some of the connections of the language-model
approach to previously proposed retrieval models.)

However, most of the existing work on utilizing language models for ad hoc
retrieval has focused on document-specific characteristics for estimating document
language models and ignored a potentially rich source of helpful information — the
corpus structure. In this thesis we show that incorporating corpus-structure infor-
mation — modeled using clusters of similar documents — into the language mod-
eling framework for information retrieval can result in highly effective retrieval al-
gorithms that substantially outperform the standard language modeling approach.

In a conceptually similar vein, we show that modeling the structure of an ini-
tially retrieved (short) list of documents as manifested in inter-document similari-
ties within the list can lead to the design of highly effective re-ranking algorithms;
such algorithms re-order the documents in the list to obtain high precision at top
ranks. Specifically, we present two approaches for this re-ranking setting: one
adapts the algorithms mentioned above (originally designed for ranking all doc-
uments in a corpus), and the other utilizes a graph representation of inter-item
similarities. Language models play an important role in both approaches — they
serve as a means for inducing similarity between spans of texts.

Thus, the work presented in this thesis encompasses several novel contribu-
tions for approaching the ad hoc retrieval task. The first is a novel perspective:
information provided by document-based language models can be enhanced by the
incorporation of corpus-structure information manifested in clusters of similar doc-
uments. We make a distinction between two roles that clusters can play: selecting
relevant documents and smoothing document language models, and show that the
combination of the two yields very effective retrieval algorithms. Furthermore,
we show that overlap of clusters is highly important for effectively exploiting cor-
pus structure using our retrieval algorithms. Additionally, we show that our best
performing algorithm yields state-of-the-art performance not only for ranking all

3

documents in a corpus, but also for re-ranking an initially retrieved (short) list,
using clusters created from documents in this list — i.e., query-dependent clusters.

Another contribution is a graph-based framework for the re-ranking setting
just mentioned, which is based on centrality induction over graphs wherein links
are induced by asymmetric language-model-based inter-document similarities. We
show that centrality of documents in the initial list and relevance are connected,
and that using centrality as a document “bias” in the language-model framework
for retrieval results in highly effective re-ranking algorithms.

Combining our two paradigms for similarity representation — i.e., clusters of
similar documents and links representing language-model-based inter-item simi-
larities — helps to improve the effectiveness of centrality-based approaches for
re-ranking. For example, document “authoritativeness” as induced by the HITS
(hubs and authorities) algorithm (Kleinberg, 1998) over cluster-document graphs
is a highly effective re-ranking criterion. Furthermore, “authoritative” clusters are
shown to contain a high percentage of relevant documents.

1.1 Thesis outline

We begin in Chapter 2 by reviewing previous work on utilizing language models
for ad hoc retrieval and introducing notation that is used throughout the thesis.
We conclude Chapter 2 with the observation that for deriving document language
models within the language-model framework for ad hoc retrieval, the focus of
most existing work has been on document-specific characteristics rather than on
combining this information with information about the “context” of the documents
with respect to the corpus in which they reside. We then proceed to Chapter 3
wherein we survey past work in ad hoc retrieval that utilizes corpus-structure-
information induced in a query-independent fashion.

In Chapter 4 we present an algorithmic framework for ad hoc retrieval that
utilizes language models built from clusters created offline. Several retrieval al-
gorithms that are instantiations of this framework are shown to be highly effec-
tive. Our best performing algorithm posts significant improvements over the basic
LM approach and is competitive with highly optimized state-of-the-art pseudo-
feedback-based methods.

While in Chapter 4 our retrieval algorithms rank all documents in a corpus in
response to a query, in Chapter 5 we focus on a structural re-ranking approach
to the ad hoc retrieval task: an initially retrieved (short) list of documents is
re-ranked to obtain high precision at top ranks, using inter-document similarities
within the list. Adaptations of algorithms from Chapter 4 to this setting yield
very good performance results.

We conclude Chapter 5 by showing that pairwise inter-document similarities
constitute a useful source of information for re-ranking an initial list. We further
pursue this idea in Chapter 6, in which we present a graph-based framework for
structural re-ranking, wherein language-model-based asymmetric inter-document

4

similarities are used to induce links between documents. Retrieval algorithms
based on centrality induction over our constructed graphs — using graph-based
methods adopted from Web retrieval such as PageRank (Brin and Page, 1998)
— post substantial improvements over the initial ranking of the list upon which
re-ranking is performed.

In Chapter 7 we incorporate cluster-based information into the graph-based
framework from Chapter 6, which utilizes document-only graphs. We show that
document authority scores as induced by the HITS algorithm (Kleinberg, 1998) over
cluster-document bipartite graphs constitute a highly effective re-ranking criterion.
Furthermore, “authoritative” clusters are shown to contain a high percentage of
relevant documents.

In Chapter 8 we compare the performance of our various structural re-ranking
algorithms (from Chapters 5, 6 and 7), and show that two of our best performing
algorithms outperform state-of-the-art pseudo-feedback models.

Finally, we summarize our contributions and present future directions in Chap-
ter 9.

1.2 Evaluation methodology (design choices)

Throughout this thesis we use TREC data (e.g., Voorhees and Harman (2000))
to evaluate our algorithms’ performance, since this data provides document col-
lections, queries and (partial) relevance judgments, as is standard in information
retrieval research. However, there are some (arguable) choices that we have made
with regard to evaluation that are worth commenting on in some detail.

Measures While there is a wide variety of evaluation measures for estimating
the effectiveness of retrieval algorithms, one should choose those pertaining to the
specific goal of the retrieval system (Buckley and Voorhees, 2000). In Chapter
4, wherein our algorithms rank all documents in a corpus in response to a query,
we use MAP (mean average non-interpolated precision) at 1000 to evaluate the
ranking quality of the different algorithms (Harman and Voorhees, 1998). This
standard TREC-evaluation metric measures both the percentage of relevant doc-
uments (with respect to the total number of relevant documents) that are among
the 1000 highest-ranked retrieved results and their positioning. Specifically, to
calculate average non-interpolated precision for a single query, we traverse the list
of retrieved documents (from the highest ranked document to the document at
rank 1000), and average the precision at ranks at which relevant documents are
located with respect to the total number of relevant documents; the mean of these
single-query values is the MAP value (Harman and Voorhees, 1998). Although
MAP is connected with recall, we also present performance results for the latter
(at 1000). We believe that an IR system that is able to “collect” many of the
relevant documents in the corpus within a relatively short list (with respect to the
number of documents in the ambient corpus) can be of a great value in interactive

5

retrieval settings, for example. In such settings, effective tools for visualization
of retrieved results can help users to quickly detect relevant documents in the
retrieved list (Hearst and Pedersen, 1996; Leuski, 2001). Furthermore, systems ca-
pable of obtaining high recall can serve as a first step of a retrieval process wherein
the second step is to (automatically) re-rank the initial list to obtain high preci-
sion at top ranks. The re-ranking algorithms presented in Chapters 5, 6 and 7 are
designed to attain this goal.

Chapters 5, 6 and 7 focus on the re-ranking approach, as just mentioned, and
therefore the natural evaluation measures to use in them are those evaluating the
precision of the very few most highly-ranked returned results. Therefore, we use
the precision at the top 5 and 10 documents (henceforth prec@5 and prec@10,
respectively) and the mean reciprocal rank (MRR) of the first relevant document
(Shah and Croft, 2004) as evaluation measures in these chapters.

Parameter tuning The retrieval algorithms presented throughout this thesis
(whether ours or the reference comparisons we use) incorporate some free param-
eters. The performance numbers correspond to choosing parameter values that
result in optimized performance with respect to a single evaluation measure. (We
discuss below what data this optimization is performed on.) This approach rep-
resents our belief that performance numbers presented for an algorithm should
represent a single instance of parameter values rather than multiple instantiations
(e.g., presenting prec@5 and prec@10 results for two different parameter settings,
each chosen to optimize one of the two measures). We believe that such an ap-
proach provides a more realistic picture of the expected performance patterns of
an algorithm. The latter observation is obvious in a setting wherein one employs
two “competing” measures (e.g., recall and absolute precision), since optimizing
performance for one of the two measures can result in very low performance num-
bers for the other measure; however, we found that the observation also holds if
two seemingly correlated measures are employed (e.g., prec@5 and prec@10).

To choose the evaluation measure for which performance is optimized, we con-
sider the main criterion by which we would like to evaluate the retrieval algorithm.
In Chapter 4, wherein our algorithms rank all documents in the corpus, we are in-
terested in the general quality of the ranking induced by the different methods and
thus the natural evaluation measure to optimize performance for is MAP (Buckley
and Voorhees, 2000). On the other hand, in Chapters 5, 6 and 7 we use prec@5 as
the evaluation measure for which performance is optimized, as we are interested
in the precision at top ranks of the list; alternatively, prec@10 can be used. (See
Harman and Voorhees (1998) for a discussion of potential issues with MRR.)

To optimize parameter values, one can use a training set of documents with a
set of queries for which relevance judgments are available, and then use a different
set of queries (perhaps with a different set of documents) for testing the retrieval
performance (Joachims, 2002; Nallapati, 2004; Metzler, 2005; Metzler and Croft,
2005).(For examples in language-model-based systems see e.g., Gao et al. (2004)

6

and Liu and Croft (2004).) We, however, optimize parameter values for the same
queries we present results for. (Refer to Mitra et al. (1998), Lafferty and Zhai
(2001) and Zhai and Lafferty (2001a) for examples of this parameter tuning ap-
proach. The latter two focus on language-model-based retrieval approaches.).

Thus, we focus on the merits of incorporating inter-document similarity in-
formation into the retrieval framework rather than on exploring the question of
whether the parameter values estimated using one corpus and set of queries can
be effective for other choices of queries/corpora as well. Indeed, the question
of whether the retrieval performance patterns observed in one benchmark are
expected to generalize to other benchmarks is a subject of ongoing inquiry in
the information retrieval community (Zobel, 1998; Buckley and Voorhees, 2000;
Voorhees, 2000; Sanderson and Zobel, 2005). We hasten to point out, however,
that we test our algorithms with a variety of corpora and queries to ensure that
the merits of our methods are not specific to a certain choice of corpus and/or set
of queries (Buckley and Voorhees, 2000). Furthermore, the performance results
we present are averages over sets of queries, and thus the single parameter-values
instance for which performance is presented represents an optimal choice with re-
spect to the average performance over the set of tested queries rather than single
queries. In addition, to examine whether the performance numbers presented in-
deed represent consistent improvements (or lack thereof) over the chosen baselines
for the entire set of queries at hand, and not improvements over very few queries
(Zobel, 1998; Sanderson and Zobel, 2005), we present the statistical significance (or
lack thereof) of the performance differences between our algorithms’ performance
and that of the tested baselines.

Aside: On (not) generalizing over queries. The question of whether parameter
values estimated using a held-out set (of documents/queries) can be useful for other
benchmarks is an important research question by itself — although not tackled in
this thesis — and depends on various factors, such as the characteristics of the
document collection, query characteristics, and more.

The variability of query characteristics (and the characteristics of the informa-
tion needs they represent), for example, is a highly important factor affecting the
performance patterns of a retrieval technique that employs the same parameter
values for different queries, even if the queries are run with the same corpus. In
the language-modeling approach, for example, query length has a considerable im-
pact on the desired smoothing approach employed to estimate document language
models (Zhai and Lafferty, 2001b). (See Section 2 for details.) Furthermore, in-
trinsic query characteristics (e.g., level of ambiguity, vocabulary (or word form)
mismatch between the query and documents in the corpus) might affect the inter
(and intra) class structure of relevant and non-relevant documents. For example,
assuming a vector-space representation for documents (Salton et al., 1975), while
for one query the classes of relevant and non-relevant documents might be “linearly
separable” (i.e., there is an hyperplane separating the space into two sub-spaces,
each containing documents from only one class), for other queries this might not
be the case and relevant and non-relevant documents might form tight clusters

7

that are scattered in different portions of the space. Thus, completely different
parameter values might be needed to appropriately tackle these differences if one
applies the same retrieval approach for all queries; perhaps even different retrieval
approaches are called for to handle such cases.

Recent research in ad hoc retrieval addresses the issue of query-characteristic
variability just mentioned (Cronen-Townsend et al., 2002, 2004; Yom-Tov et al.,
2005), and evaluation paradigms have also been designed to tackle related issues —
e.g., the Robust Retrieval Track of TREC (Voorhees, 2005). We believe that this
constitutes an important direction towards designing retrieval systems that iden-
tify some query characteristics (with respect to a given document collection) and
classify the queries into some pre-defined classes of queries with similar character-
istics, along the spirit of recent suggestions (Voorhees, 2005) and ideas employed
for question answering (Voorhees, 2002); such retrieval systems, then, could auto-
matically choose methods and parameter values appropriate for the specific class
of each query, as learned before hand1. In this spirit, Cronen-Townsend et al.
(2004), for example, try to predict what queries will benefit from query expansion
and what queries should be used directly without any expansion. However, design-
ing mechanisms for analyzing the “class” of a specific query, along with choosing
appropriate retrieval approaches and parameter values given the presumed class,
is out of the scope of this thesis.

1We point out that a different conceptual approach, which is based on devising
retrieval functions that rise from a proposed axiomatic system, has recently been
shown to help to ameliorate the problem of performance robustness with respect
to parameter values (Fang and Zhai, 2005).

Chapter 2
The language modeling approach to
information retrieval
In this chapter we present the concept of statistical language models which has
been extensively used in various applications such as machine translation, text
categorization and character recognition. We then provide an overview of the
development of the language modeling (LM) approach to ad hoc retrieval; the
overview is concluded with the observation that most work on inducing document
language models has not exploited a potentially rich source of information —
corpus structure. In Section 2.3 we present the language-model-based estimates
used throughout this thesis for inducing similarities between spans of text, taking
care of length-bias and numerical problems.

2.1 Language models

The term (statistical) “language model” (LM) refers to a function defined over
sequences of terms drawn from a fixed vocabulary, utilizing (occurrence) statistics
associated with the sequences. (See Rosenfeld (2000) for a survey of language
models). Usually, the function values represent probabilities derived using some
modeling assumptions. By now, statistical language models have been used for
more than twenty years in numerous applications such as speech recognition, ma-
chine translation, character recognition, text classification, and more (Rosenfeld,
2000).

A commonly used language model is the n-gram language model, which is based
on the assumption that the probability of observing term ti, which appears at
position i of the text, depends (only) on the n−1 preceding terms ti−n+1, . . . , ti−1.
A bigram language model, for example, is an n-gram language model with n = 2,
i.e., the probability of observing a term at a given position in the text depends
only on the preceding term. Setting n = 1 we get the unigram language model,
which encodes a term independence assumption (a.k.a. bag of words assumption).

Estimation of n-gram language model probabilities from text is based on oc-
currence frequencies. Specifically, we can estimate the language model probability
p(ti|ti−n+1, . . . , ti−1) from text span x using the so-called maximum likelihood esti-
mate (MLE):

p̃MLE
x (ti|ti−n+1, . . . , ti−1)

def
=

tf (ti−n+1, . . . , ti ∈ x)

tf (ti−n+1, . . . , ti−1 ∈ x)
, (2.1)

where tf(y ∈ x) denotes the number of times the term sequence y occurs in x. A
common practice for extending the term-based distribution p̃ MLE

x (ti|ti−n+1, . . . , ti−1)
to a distribution over sequences is to multiply the individual probabilities:

pMLE
x (t1, . . . , tm)

def
=

m∏

i=i

p(ti|ti−n+1, . . . , ti−1). (2.2)

8

9

(For early positions in the text, we back off to a lower-order n-gram model. That
is, for the first term t1 in the text we use the unigram language model probability
p̃MLE

x (t1) = tf(t1∈x)
|x|

, for the second term t2 we use the bigram language model

probability p̃MLE
x (t2|t1), and so forth.)

Using the maximum-likelihood-based estimate just described (Equation 2.2)
for assigning an n-gram language model probability to a text span that contains a
term sequence of length n that does not appear in the text used for language model
estimation will result in an assigned probability of zero. This is naturally a problem
(known as the zero probability problem) since the fact that a text used for estimation
does not contain a certain term sequence does not imply that the probability that
this sequence occurs in another text is zero; however, the (maximum likelihood)
estimates involved will be zero. One approach often employed for handling this
problem (also termed the sparse data problem) is smoothing — assigning non-zero
probabilities to term sequences not observed in the text used for language model
estimation. In Section 2.3 we present the Dirichlet smoothing technique, which
was shown to be quite effective for the ad hoc retrieval task (Zhai and Lafferty,
2001b). A good survey of smoothing techniques for language models can be found
in Chen and Goodman (1998).

A detailed description of our language model induction technique and some
estimates appears in Section 2.3.

2.2 Using language models for ad hoc information retrieval

Ponte and Croft (1998) were the first to employ language models for the task of
ad hoc information retrieval, using the following ranking principle:

The query likelihood ranking principle: rank documents by the probability of
their language models generating the query terms.

(When we say that a language model “generates” a term (sequence), we (roughly)
mean that the term (sequence) is thought of as a sample from the vocabulary ac-
cording to the distribution defined by the language model.)

One potential intepretation of this ranking principle is that a query could be
viewed as a sample of terms from the language model induced from a relevant
document, and documents are ranked by the probability that their language mod-
els represent a “relevance” distribution. Sparck Jones et al. (2003), for example,
raise an objection with respect to the theoretical validity of the LM-based ranking
principle just mentioned, on the grounds that relevance is not modeled explic-
itly and that the approach implies that there exists a single relevant document.
Work on relevance language models (Lavrenko and Croft, 2001) (see details below)
addresses this issue.

While the basic language modeling approach and the classic vector-space model
(Salton, 1968) seem to represent two completely different paradigms (at first sight

10

at least), as the information representation methods and therefore the document-
query similarity notions are quite different, some work (Hiemstra and Kraaij, 1999;
Zhai and Lafferty, 2001b) connects the two paradigms by reasoning about the
tf.idf weighting scheme, used in vector-space models, from an LM perspective
(Hiemstra and Kraaij, 1999), and explaining some of the roles of smoothing in the
LM approach using a vector-space perspective (Zhai and Lafferty, 2001b).

To connect the language-modeling approach to probabilistic retrieval (see Fuhr
(1992) and Cresanti et al. (1998) for surveys of probabilistic approaches to IR, and
Sparck Jones et al. (2000) for a more recent study of a probabilistic approach),
Lafferty and Zhai (2003) use the work of Sparck Jones et al. (2000) as a repre-
sentative for probabilistic approaches. They start from the basic question that
Sparck Jones et al. post: “What is the probability that this document is rele-
vant to this query?”, and develop a mathematical derivation (using Robertson’s
probability ranking principle (Robertson, 1977)) that under different independence
assumptions results either in a language-model-based retrieval criterion or in the
probabilistic model of Sparck Jones et al. (2000). An important observation
raised by Lafferty and Zhai is that the two models (language-model and proba-
bilistic model) have complementary strengths with regard to estimation, due to the
different independence assumptions underlying the models. Case in point: in the
language-model approach one estimates the “generation” of a (short) query by a
(long) document, while in the probabilistic model the “generation” is supposedly in
the reverse direction, making the former estimation task “easier” (from a statistics
point of view) than the latter, because documents are much longer than queries
and therefore provide more data. On the other hand, exploitation of user feedback
is much easier in the probabilistic model than in the language-model framework.

Other work on language models for ad hoc IR suggested alternative derivations
(and motivation) for using LMs in the ad hoc retrieval setting (see Hiemstra (2001)
for elaborated discussion), but the resultant ranking criteria were very similar
(and in many cases equivalent) to that of the query likelihood model. The hidden
Markov model presented by Miller et al. (1999), for example, assumes that a term
in a query is either generated by the (unsmoothed) unigram document language
model or by a background language model (i.e., the corpus language model). The
resultant relevance scoring method (in its simplest form) is therefore based on
the probability that the query is generated by the smoothed document language
model, where smoothing is essentially a linear interpolation of the document and
background language models.

The risk minimization framework of Lafferty and Zhai (2001) associates a “loss”
with the act of selecting a document in response to a query. Such a loss can be
measured in several ways, one of which is by the “difference” (distance) between
the query language model and the document language model. One way to estimate
this difference is by measuring the Kullback-Leibler (KL) divergence (Cover and
Thomas, 1991) between the document and query language models; the resultant
retrieval paradigm is therefore known in the literature as the KL divergence re-
trieval framework. An important observation made by Lafferty and Zhai (2001)

11

is that for ranking purposes this approach is equivalent to the query likelihood
model if unigram language models are used. We further discuss this equivalence
in Section 2.3.

The sparse data problem mentioned above — a challenge for the estimation
of document language models — has drawn quite a lot of attention and several
smoothing methods have been studied in the IR literature (Song and Croft, 1999;
Zhai and Lafferty, 2001b, 2002; Zaragoza et al., 2003), most of which exploit corpus
statistics regarding term occurrences. Furthermore, smoothing in the language-
model framework was used as a means for explaining the importance of terms and
their weights in different scoring functions (Zhai and Lafferty, 2001b; Hiemstra,
2002).

While most work on language models for ad hoc IR utilizes unigram language
models, several researchers explored the use of language models that capture higher
order dependencies between terms (Song and Croft, 1999; Nallapati and Allan,
2002; Gao et al., 2004; Srikanth and Srihari, 2004; Gao et al., 2005). Some of
these models were shown to post moderate improvements over a unigram-language-
model-based approach in terms of resultant retrieval performance. It is important
to observe here that while one could expect improvements when moving away from
the (unrealistic) term-independence assumption, it is not, however, the case that
a “better” language model — in terms of predicting term sequences in a new text
— necessarily results in a better retrieval performance (Azzopardi et al., 2003;
Morgan et al., 2004). Indeed, recent work suggests that the objective function for
tuning language-model (or more generally retrieval-function) parameters should
be the evaluation metric used to measure retrieval performance (Morgan et al.,
2004; Metzler, 2005; Metzler and Croft, 2005), and not the predictive power of the
language model.

Another challenge addressed by work on language models (and other retrieval
models for this matter) for ad hoc retrieval is the word mismatch problem (Xu
and Croft, 1996): relevant documents might contain terms that discuss the same
topic as that of the query, but might not necessarily contain the query terms
themselves. One solution employed by language-model approaches (and retrieval
approaches in general) is query expansion: “augmenting” the original unsmoothed
query language model with terms considered to be related to the query terms.
Query expansion could be viewed as helping with both the synonomy problem —
two different terms having the same meaning, and the polysemy problem — one
term having two different meanings.

Very few methods that model general corpus-based term relationships have
been explored in the language-model framework (Berger and Lafferty, 1999; Laf-
ferty and Zhai, 2001). On the other hand, pseudo-feedback-based methods (e.g.,
(Ponte, 1998; Lavrenko and Croft, 2001; Lafferty and Zhai, 2001; Zhai and Laf-
ferty, 2001a; Tao and Zhai, 2004)), that is, methods that use the most highly ranked
documents from an initial search to define a new “query model”, have become the
main tool for performing query expansion. The basic concept underlying pseudo-
feedback-based approaches to query expansion in the language modeling frame-

12

work is that terms that are assigned high probability by (many) language models
induced from the top retrieved documents with respect to the initial search should
be used to augment the original (unsmoothed) query language model. Moreover,
such terms should be assigned high probabilities by the expanded model. Under
some models, the newly defined language model assigns probabilities to the original
query terms that are different than those assigned by the original query language
model (Zhai and Lafferty, 2001a).

Another stream of research that led to models that could be considered (in
implementation) as query expansion techniques is the work on relevance models
(Lavrenko and Croft, 2001, 2003; Lavrenko, 2004). The assumption is that there
exists a language model — termed relevance model — that generates terms both
in the query and in the relevant documents. The different methods for estimating
such a relevance model are usually based on a pseudo-feedback approach, and the
resultant language model is then used for ranking documents (Lavrenko and Croft,
2003). A (conceptually) similar approach (though different in implementation)
that also uses the set of most highly ranked documents to define a “relevance”
probability distribution over all terms in a vocabulary is presented by Zhai and
Lafferty (2001a). In a similar conceptual vein, following Sparck Jones et al. (2003),
Hiemstra et al. (2004) use mixture models to define parsimonious language models
that help to model the discriminative nature of terms with respect to the classes
of relevant and non-relevant documents.

It is important to note that the above mentioned pseudo-feedback methods
could be viewed as exploiting corpus structure via a query-biased sampling ap-
proach. For example, terms that co-occur with query terms in the highest ranked
documents with respect to an initial search — i.e., documents that exhibit a high
surface similarity to the query — might be considered as related to the query topic,
thus helping to cope with the synonomy problem, for example. Furthermore, if
many of the highest ranked documents from the initial search “discuss” the same
topic, and if this topic is the same as that underlying the query, then query expan-
sion performed using these documents could potentially ameliorate the polysemy
problem.

But, one main drawback of most pseudo-feedback-based approaches is sensitiv-
ity to the quality of the initial ranking as is often manifested in sensitivity to the
number of top retrieved documents utilized (Tao and Zhai, 2004). One obvious
explanation for this sensitivity is that not all top retrieved documents from the
initial search are relevant to the query — in fact many of them are not — and
therefore the language model defined from these documents might be biased by
term distributions of non-relevant documents that exhibit high surface similarity
to the query. Furthermore, recent analysis (Buckley, 2004; Harman and Buckley,
2004) implies that the highest ranked documents in the initially retrieved list often
do not exhibit one of the query aspects. Therefore, a language model defined us-
ing these documents might not reflect all query aspects. (We hasten to point out,
however, that this drawback is common to many retrieval approaches (Buckley,
2004).)

13

While there has been a lot of focus in the language modeling framework on
“improving” the original query model by using “corpus context” as manifested in
the most highly ranked documents with respect to an initial search (as described
above), the document language models themselves are induced based on document-
specific characteristics, and a potentially rich source of information — the structure
of the surrounding corpus as manifested in inter-document similarities — has not
been accounted for (e.g., for modeling document context in a query-independent
fashion). Such information can help ameliorate the problems of synonomy and
polysemy as terms appearing in similar documents could be considered (under some
modeling assumptions) somewhat related. Moreover, exploiting this information
might also help with the sparse data problem. In Chapter 3 we present an example
of a scenario wherein a document does not contain any of the query terms, but
can be still retrieved (with high score) if associated with similar documents that
contain query terms. In fact, in this particular example a pseudo-feedback method
for query expansion is not guaranteed to be effective, because the initially retrieved
list of documents exhibits two different aspects (topics), one of which is not related
to the query but can still significantly affect the way the original query is expanded.

As a last note for this short overview on the use of language models for ad
hoc retrieval, we emphasize that language models have been used for other infor-
mation retrieval tasks (and in different settings of the ad hoc retrieval task) as
well. Examples include information filtering (Zhang et al., 2002), text classifica-
tion (Yang and Liu, 1999; Teahan and Harper, 2003), topic detection and tracking
(Spitters and Kraaij, 2001; Lavrenko et al., 2002a; Kraaij and Spitters, 2003), cross
lingual retrieval (Hiemstra and Kraaij, 1999; Lavrenko et al., 2002b), distributed
retrieval (Xu and Croft, 1999; Si et al., 2002), entry-page search (in Web retrieval)
(Kraaij et al., 2002), and the ad hoc retrieval task with queries that contain opera-
tors (Hiemstra, 2001), and documents that are marked with structure information
(Ogilvie and Callan, 2003).

2.3 Language-model-based similarity induction: length, en-
tropy and numerical effects1

In this section we describe our methods for inducing language models and estimat-
ing the probabilities they assign to text sequences — probabilities that serve to
estimate the strength of association (similarity) between texts of varying lengths.

For language model estimation we treat queries and documents as term se-
quences. In this section we use the term cluster to refer to the “big document”
that results from concatenating the cluster’s constituent documents; the order of

1The work presented in this section is based on two papers written with Lillian
Lee (Kurland and Lee, 2004, 2005) that appeared in the proceedings of SIGIR 2004
and SIGIR 2005 respectively, and on a paper written with Lillian Lee and Carmel
Domshlak (Kurland et al., 2005) that appeared in the proceedings of SIGIR 2005.

14

concatenation has no effect since we are only going to define unigram language
models that embed a term independence assumption. We hasten to point out,
though, that our retrieval algorithms, presented throughout the following chap-
ters, do not depend on a term independence assumption. In fact, any language-
model-based similarity induction method that copes with the issues we elaborate
below could be used for our algorithms. Our choice of utilizing unigram language
models mainly stems from simplicity of estimation, and the ability to compare
performance results to those of state-of-the-art methods in the language modeling
framework that in most of the cases utilize unigram language models.

2.3.1 Estimation details

Let tf(t ∈ x) denote the number of times the term t occurs in the text or text
collection x. What is often called the maximum-likelihood estimate (MLE) of t
with respect to x is defined as

p̃MLE
x (t)

def
=

tf(t ∈ x)∑
t′ tf(t′ ∈ x)

.

Prior work in language-model-based retrieval (Zhai and Lafferty, 2001b) advocates
the use of a Dirichlet-smoothed estimate:

p̃ [µ]
x (t)

def
=

tf(t ∈ x) + µ · p̃MLE
C (t)∑

t′ tf(t′ ∈ x) + µ
,

where C is the corpus; the smoothing parameter µ controls the degree of reliance
on relative frequencies in the corpus rather than on the counts in x. As mentioned
above, smoothing helps to avoid the zero probability problem, namely, the assign-
ment of zero probability to unseen terms. (See Zhai and Lafferty (2001b; 2002) for
detailed discussion of smoothing language models for information retrieval.)

Both estimates just described are typically extended to distributions over term
sequences by assuming that terms are independent: for an n-term text sequence
t1t2 · · · tn,

pMLE
x (t1t2 · · · tn)

def
=

n∏

j=1

p̃MLE
x (tj);

p[µ]
x (t1t2 · · · tn)

def
=

n∏

j=1

p̃ [µ]
x (tj).

While for the standard language modeling approach this estimator is used to
estimate a probability for a fixed short query, in several of our settings we would
like to estimate probabilities for different (and much longer) textual items such as

clusters and documents. Now, observe that for both pMLE
x (·) and p

[µ]
x (·), long text

sequences tend to be assigned lower probabilities (as the number of multiplicands

15

in the equations above increases, and the value of each is less than one, if the text
contains at least two different terms) and this will have detrimental effects on our
probability estimates for documents and clusters if the (smoothed) MLE is to be

used directly2. In addition, the value of p
[µ]
x (·) can cause underflow problems due

to the long term sequences that comprise documents and clusters.
As mentioned above, throughout the following chapters we use language model

probabilities to estimate the strength of association (similarity) between spans of
text of varying lengths. Therefore, to cope with the issues incurred by the direct use
of the (smoothed) MLE, we adopt an estimation approach that utilizes the cross-
entropy measure in the following way. For estimating the strength of association
between text x (representing either a document’s or a cluster’s term sequence) and
word sequence ~t = t1t2 · · · tn (in our settings, a term sequence that comprises a
query, a document or a cluster), we use

pCE,µ
x (~t)

def
= exp

(
−CE(p̃MLE

~t
(·), p̃ [µ]

x (·))
)
, (2.3)

where CE(·, ·) is the cross-entropy between two term-based distributions.
It is important to note that this estimate does not form a valid probability dis-

tribution, because the sum over all possible ~t is not 1. In fact, the basic unigram
language model itself does not form a proper probability distribution, although
it could be adjusted to be so. We do, however, use the probability notation p
for this estimate to denote that the estimate is based on language-model prob-
abilities. (In fact, as will be shown below, this estimate is a length-normalized

version of the “probability” assigned by the smoothed language model p̃
[µ]
x (·) to

the term sequence ~t.) Moreover, where required, we can scale the estimate to form
a probability distribution.

Now, by the definition of cross entropy we get that

pCE,µ
x (~t) = exp

(
∑

v

p̃MLE
~t

(v) log
(
p̃ [µ]

x (v)
)
)

,

where v is a term in the vocabulary, and can occur zero or more times in ~t.
Since p̃MLE

~t
(·) is an unsmoothed MLE, we get that p̃MLE

~t
(v) = 0 for v 6∈ ~t,

resulting in

pCE,µ
x (~t) = exp




∑

v∈~t

p̃MLE
~t

(v) log
(
p̃ [µ]

x (v)
)


 .

2Note that the fact that a language model (induced from some source text)
assigns a lower probability to a long text than it assigns to a shorter text is unjus-
tified if the probability serves to model the strength of association (or similarity)
between the source text and the text to which the probability is assigned — as is
assumed throughout this thesis. However, there are settings wherein the assump-
tion is that long texts are less probable to be generated and therefore the above
mentioned length-bias does not constitute a problem.

16

Now, by the definition of the MLE and using algebraic manipulations we get
that:

pCE,µ
x (~t) = exp



∑

v∈~t

tf(v ∈ ~t)

|~t|
log
(
p̃ [µ]

x (v)
)



= exp



∑

v∈~t

log

(
p̃ [µ]

x (v)
tf(v∈~t)

|~t|

)


= exp


log

∏

v∈~t

(
p̃ [µ]

x (v)
tf(v∈~t)

|~t|

)


=
∏

v∈~t

(
p̃ [µ]

x (v)
tf(v∈~t)

|~t|

)
=
∏

v∈~t

(
p̃ [µ]

x (v)tf(v∈~t)
) 1

|~t|

=



∏

tj

p̃ [µ]
x (tj)




1
|~t|

= p[µ]
x (~t)

1
|~t| .

The above derivation shows that the estimator from equation 2.3 is the geo-
metric mean of the probability assigned by the smoothed unigram language model
induced from x to the text sequence ~t:

pCE,µ
x (~t) = p[µ]

x (~t)
1
|~t| , (2.4)

which was also used in work on topic detection and tracking (Lavrenko et al.,
2002a). This proposed estimator compensates for the length penalization incurred
by the (smoothed) MLE, and ameliorates the above mentioned underflow problem.

Another estimator that we will use in Chapters 5, 6, 7 and 8 is based on the
Kullback Leibler divergence (Cover and Thomas, 1991) (denoted as D(·||·)):

pKL,µ
x (~t)

def
= exp

(
−D(p̃MLE

~t
(·)||p̃ [µ]

x (·))
)
, (2.5)

Now, by the definition of the KL divergence and cross entropy, for any two
probability distributions p and q the following holds

D(p||q) = CE(p, q) − H(p),

where H is the entropy function.
Therefore, using Equation 2.4 we get that our KL-based estimate is

pKL,µ
x (~t) = exp

(
H(~t)

)
· p[µ]

x (~t)
1
|~t| . (2.6)

17

In the re-ranking setting (discussed in Chapters 5, 6, 7 and 8), high entropy of a
document language model can (sometimes) provide an indication for the relevancy
of the corresponding document. (We further discuss this issue in Chapter 6.)

The cross-entropy and the KL divergence (as described in Section 2.2) were di-
rectly used in numerous approaches within the language-modeling retrieval frame-
work (e.g., (Xu and Croft, 1999; Ng, 2000; Zhai and Lafferty, 2001b; Lavrenko
and Croft, 2003)) in settings where a single (extended) query was used to rank
documents or collections. In such settings, this is equivalent to ranking by the
smoothed MLE estimate, as was observed by Lafferty and Zhai (2001) and as can
be seen in equations 2.4 and 2.6. (Note that in these settings ~t is fixed to be the
query.) However, this ranking equivalence does not hold in most of our settings
since we want to estimate association between different units (documents, clusters)
and to avoid the above described problems of length bias and numerical underflow.

Finally, we observe that both estimates just described represent asymmetric no-
tions of similarity, e.g., for arbitrary ~t and x, pCE,µ

x (~t) 6= pCE,µ
~t

(x). This asymmetry
is (conceptually) highly important for the graph-based framework we present in
Chapter 6.

Chapter 3
Exploiting corpus-structure analysis for
ad hoc retrieval
We open this chapter with a toy example that provides some intuition for the
potential in exploiting corpus structure — via clusters of similar documents — for
ad hoc retrieval. We then survey past work on ad hoc IR that exploits information
from document clusters created offline. (Chapter 5 focuses on exploiting query-
dependent clusters.). We continue with an overview of some well known methods
for modeling corpus structure, some of which were used in a retrieval context. We
then observe that while the combination of language models and clustering was
shown to be successful in tasks such as distributional clustering (Pereira et al., 1993;
Rooth et al., 1999; Clark and Weir, 2002) (and its application to text categorization
(Baker and McCallum, 1998)), topic detection and tracking (Spitters and Kraaij,
2001) and modeling long distance dependencies in text (Iyer and Ostendorf, 1999),
there has been almost no work (until very recently) on utilizing this combination
for ad hoc IR.

3.1 How can clustering help ad hoc retrieval ?

One way to model corpus structure is to cluster the documents in the corpus in a
query-independent fashion (i.e., before any query is initiated). Then at retrieval
time, information drawn from these clusters can potentially enhance retrieval ef-
fectiveness. In what follows we illustrate the potential of such an approach using
a toy example.

Let q = {truck, bus} be a query, and consider the documents in the following
table:

Document Id Document Terms

x1 school, bus, classes, teachers
x2 school, classes, teachers, study
x3 school, teachers, classroom, grades

y1 bus, taxi, boat, bike
y2 taxi, boat, truck, scooter
y3 boat, horse, taxi, bike

For simplicity assume that we represent both the documents and the query as
vectors of terms (i.e., we use a vector space representation (Salton, 1968)), and
that the weight for each term in a vector is its frequency within the corresponding

18

19

document (or query).1 For similarity measure we use the inner product. (Note that
length normalization has no effect since all documents are of the same length.)

Now, if we rank the documents in response to q and in doing so assume that
ties are broken arbitrarily we might end up with the following ranking:

Rdoc = x1, y1, y2, x2, x3, y3.

(x1 is the top retrieved document.)
However, since it is reasonable to assume that the underlying topic of the query

is “vehicles” rather than “school”, we would like to have y1, y2 and y3 ranked as
high as possible in the list.

Note that for i 6= j, documents xi and yj do not have more than one term in
common, while any two documents xi and xj (and similarly yi and yj) have two
terms in common, so, clustering the document collection using a hard clustering
scheme — clustering in which each document belongs to exactly one cluster —
into two clusters (e.g., using agglomerative single-link clustering (Hartigan, 1975)),
could result in the following clusters: X = {x1, x2, x3}, Y = {y1, y2, y3}.

Now, if we treat a cluster as the (long) document that results from the con-
catenation of the cluster’s constituent documents we get the following ranking for
clusters in response to q:

Rclust = Y, X.

Assume that to derive a document-based ranking from this cluster-based rank-
ing we replace each cluster with its constituent documents (ordered by some cri-
terion). We then get that y1, y2 and y3 are ranked higher than the rest of the
documents — our desired result. In particular, y3, which does not contain any of
the terms that occur in q, is now ranked higher than x1, which does contain one
query term, but does not seem to discuss the query topic.

This toy example demonstrates the potential effectiveness of cluster-based re-
trieval. Documents that discuss the same “topic” underlying the query are ranked
high even if they do not exhibit high surface similarity to the query. Furthermore,
if we consider the terms “boat, taxi, bike and bus” to be synonyms in the “topic
space”, then this example shows how the problem of synonymy is ameliorated using
cluster-based retrieval.

Another interesting observation with regard to the example above is the po-
tential superiority of cluster-based methods to pseudo-feedback (PF) methods in
certain settings. Suppose we use some PF method on top of the ranking Rdoc to
define an expanded query model. If we use only the single highest-ranked docu-
ment (x1) then the model defined will be biased towards retrieving the documents
x1, x2, x3 instead of y1, y2 and y3. Similarly, if we use the two highest-ranked

1While for simplicity reasons we use vector-space representation, we hasten to
point out that all the conclusions we present based on this example also hold if
language models are utilized.

20

documents x1, y1 then the defined model will represent a mixture of “topics” from
clusters X and Y and would not necessarily result in the desired ranking.

In the next section we describe past approaches to retrieval that exploit infor-
mation drawn from clusters created offline. Most of these approaches were based
on the vector space model, as they were presented a long time before language
models were first used for information retrieval.

3.2 Ad hoc IR using clusters created offline

Using clusters created in a query-independent fashion for the task of ad hoc re-
trieval has a long history. While the initial motivation for using clusters was to in-
crease efficiency (Salton, 1971b; Croft, 1978; Voorhees, 1986) (i.e., reduce retrieval
time by considering only subsets of the documents in the corpus as candidates for
retrieval), effectiveness (as manifested in the quality of the retrieved results) was
also an important consideration (Jardine and van Rijsbergen, 1971; Croft, 1980).

The premise that clusters can enhance retrieval effectiveness goes back to Ri-
jsbergen’s cluster hypothesis (van Rijsbergen, 1979): Closely associated documents
tend to be relevant to the same requests. Some tests to evaluate the hypothesis
with respect to different definitions of “closely associated” were designed (Jardine
and van Rijsbergen, 1971; Voorhees, 1985; El-Hamdouchi and Willett, 1987) but
different data sets exhibited different “degrees” (according to the specific choice of
test) to which the hypothesis held.

In most work on cluster-based retrieval, hierarchical clustering methods were
employed (Jardine and van Rijsbergen, 1971; Croft, 1980; Voorhees, 1985), as
partition-based clustering approaches were shown to result in performance some-
what inferior to that of standard document-based retrieval (Salton, 1971b). In
these projects, clusters were used to select documents for retrieval. To find clus-
ters in the hierarchy in response to a query, both top-down and bottom-up search
techniques were used; the latter were shown to be more effective than the former
(Croft, 1980). In a later study, where different stopping criteria for the search of the
clustering tree were explored, El-Hamdouchi and Willett (1989) found that simply
ranking the “bottom level clusters” — those containing documents that first enter
the cluster hierarchy — resulted in better performance than a bottom-up search
with any of the studied stopping criteria.

To present a user with documents in response to a query, often, clusters were
retrieved in their entirety, with no partial ordering imposed on their constituent
documents. (In some cases a threshold on the query-document similarity was used
to select documents within clusters.) Later work by Voorhees (1985) suggested a
method wherein the relative ordering of documents within a cluster is determined
by the similarity of the documents to the query. Another example of this approach,
termed CQL, was presented by Liu and Croft (2004). However, CQL utilizes query-
dependent clusters, not clusters created offline.

As for information representation, the leading paradigm is the vector space

21

representation (Salton et al., 1975), and clusters were usually represented by the
centroid of their constituent documents. Symmetric similarity functions (such as
the cosine or Dice coefficient) were used to rank clusters and documents against
queries. Furthermore, once a clustering was determined, the strength of association
between a cluster and its constituent documents was not modeled — an important
point we address in our work in Chapter 4.

The results of comparisons between cluster-based and document-based retrieval
were inconclusive. While in certain cases cluster-based retrieval resulted in higher
precision than document-based retrieval, this was not always the case and some-
times cluster-based retrieval actually hurt performance.

Several important observations, which shed some light on the body of work de-
scribed above, were presented by Griffiths et al. (1986). They observed that the op-
timal cluster size (when using hierarchical clustering) for effective retrieval should
be relatively small. (In many cases clusters contained a document and its single
nearest neighbor). Following this observation, they proposed a nearest-neighbor
approach to clustering but found that the resultant retrieval performance was not
better than that obtained using hierarchical clustering. However, they did find that
the documents retrieved by a cluster-based approach using nearest-neighbor clus-
ters were different than the ones retrieved by a standard document-based ranking
and left the question of how to combine the two approaches open, postulating that
this would be highly beneficial. Similarly, El-Hamdouchi and Willett (1989) found
that clusters of size two — a document and its nearest neighbor — were indeed
more effective than agglomerative clusters, thereby strengthening the conclusion
about the way corpus structure should be modeled (i.e., small clusters that repre-
sent local information in the corpus) when clusters are used for selecting potential
relevant documents.

Our choice of modeling corpus structure using nearest-neighbors clusters in
Chapter 4, along with an algorithmic framework for IR that combines cluster-based
LMs with document-based LMs, could be (conceptually) regarded as following the
line and open questions that Griffiths et al. (1986) established. However, apart
from several aspects that our algorithmic framework addresses (e.g., modeling
cluster-document association) and that were not addressed in previous work on
cluster-based retrieval (including that of Griffiths et al. (1986)), we show that not
only is it beneficial to model corpus structure using relatively small clusters, but
the overlap of such clusters can itself be an important source of information for the
retrieval process, whether clustering is performed in a query-independent fashion
(Chapter 4) or query-dependent clusters are utilized (Chapter 5).

3.2.1 Soft clustering

Heretofore we surveyed work that exploited hard clustering schemes for retrieval.
As we mentioned in the previous section, our framework (Chapter 4) is based on
overlapping nearest-neighbor clusters for modeling corpus structure. Naturally,
one of the benefits of probabilistic (soft) clustering methods (by definition) is that

22

they allow documents to be associated with multiple clusters, thereby potentially
modeling different similarities. Case in point: a document could discuss multi-
ple topics (aspects) and if one assumes that clusters represent topics, then the
document should be associated with the corresponding clusters.

Indeed, probabilistic clustering methods were shown to be highly effective in
tasks such as distributional clustering of English words (Pereira et al., 1993; Lee
and Pereira, 1999; Rooth et al., 1999; Clark and Weir, 2002) and modeling long
distance dependencies in text (Iyer and Ostendorf, 1999).

One of the most well-known methods for modeling corpus structure is La-
tent Semantic Indexing (LSI) (Deerwester et al., 1990), which uses a vector space
representation (Salton et al., 1975). LSI is based on a Singular Value Decompo-
sition (SVD) of the term-document matrix of the corpus and results in a lower-
dimensionality representation of both terms and documents. (Note that there are
also probabilistic interpretations of LSI (Papadimitriou et al., 2000; Azar et al.,
2001).) For the task of ad hoc retrieval, queries are “folded” into the lower dimen-
sional space and similarity to the documents is then estimated in this space. When
it comes to evaluating the empirical performance of LSI in the ad hoc retrieval set-
ting, results are inconclusive. While in several instances LSI outperforms a basic
retrieval approach (Deerwester et al., 1990), in other cases this is not the case and
it is outperformed by the latter (Bast and Majumdar, 2005). Furthermore, the
performance of LSI is known to be relatively sensitive to the number of dimensions
used. Alternative models for creating a lower dimensional representation of the
corpus has been proposed that deal with some of the problems inherent in LSI
(Ando and Lee, 2001; He et al., 2004; Bast and Majumdar, 2005; Cai and He,
2005).

Hofmann (2001) proposed the probabilistic Latent Semantic Analysis (pLSA)
method for modeling underlying topics in a corpus using a probabilistic model.
The advantage of such a model is that it results in language models that describe
the presumed topics and that could be potentially incorporated into the language
modeling framework. However, for ad hoc retrieval, queries in Hofmann (2001) are
“folded” into the lower dimensional space and the resultant probabilities are used
as weights in a vector-space-model representation rather than in a probabilistic
framework for retrieval.

Another well-known method for probabilistic analysis of topics in a corpus
is Latent Dirichlet Allocation (LDA) (Blei et al., 2003). This model provides an
improved probabilistic-based mechanism for modeling topics in a corpus. However,
Blei et al. (2003) do not propose a retrieval framework that integrates the LDA-
topic language models.

Note that the latter two approaches (pLSA and LDA) could be considered as
clustering methods that produce probabilistic (or soft) clusters and that describe
these clusters using their term distributions (i.e., language models).

23

3.3 Combining clusters and language models in ad hoc re-
trieval

In several tasks, the combination of clusters and language models has proven to be
highly effective. Examples include distributional clustering (Pereira et al., 1993;
Rooth et al., 1999; Clark and Weir, 2002) (and its application to text categorization
(Baker and McCallum, 1998)), distributed retrieval (Xu and Croft, 1999), modeling
long distance relationships in text (Iyer and Ostendorf, 1999) and topic detection
and tracking (Spitters and Kraaij, 2001).

Now, while Hofmann’s (2001) use of cluster-based language model probabilities
to induce weights in a vector-space representation could be considered as one of
the first attempts to actually combine clusters and language models for ad hoc
retrieval, the retrieval approach is still implemented using the vector-space model
for representation and similarity induction between the query and the documents.

Simultaneously, Azzopardi et al. (2004), Kurland and Lee (2004), and Liu
and Croft (Liu and Croft, 2004) showed that integrating cluster-based information
(induced from a clustering performed offline) into the language modeling framework
results in improved performance with respect to the basic LM approach.

Azzopardi et al. (2004) showed that representing a document as a mixture of
LDA topics and using this representation in the two stage language-model frame-
work of Zhai and Lafferty (2002) can improve the retrieval performance with re-
spect to that of the standard LM approach.

Liu and Croft (2004) showed that clustering the corpus offline using the k-
means clustering algorithm, and smoothing a document’s language model with the
language model constructed from the single cluster to which the document belongs,
results in better performance than that of the basic LM approach.

In Chapter 4 (based on Kurland and Lee (2004)) we present an algorithmic
framework that utilizes language models created from overlapping nearest-neighbor
clusters. One of the algorithms we present can be conceptually viewed as a gen-
eralization of the model suggested by Liu and Croft (2004), and we study its per-
formance when implemented either with our nearest-neighbor clusters or k-means
clusters. Furthermore, this algorithm could also be conceptually viewed as a gen-
eralization of a recent model presented by Wei and Croft (2006) that smoothes
a document language model with LDA-based cluster LMs, and uses these in the
query likelihood model, posting performance improvements over the basic LM ap-
proach.

Thus, the approaches proposed by Azzopardi et al. (Azzopardi et al., 2004),
Kurland and Lee (2004), and Wei and Croft (2006) model corpus structure using
soft (overlapping) clusters, while Liu and Croft (2004) use hard clustering for
modeling the corpus structure.

Very recently, Tao et al. (2006) showed that smoothing a document language
model using counts of terms in the document’s nearest neighbors results in re-
trieval performance superior to that obtained by using a standard collection-based

24

smoothing technique. Similarly, one of our retrieval algorithms in Chapter 4 is
based on smoothing a document language with the language models of its nearest
neighbors.

The work described in this chapter, and our algorithmic framework in the next
chapter, utilize clusters created offline. In Chapter 5 we survey work utilizing clus-
ters created from retrieved results (a.k.a. query-dependent clusters), and present
new algorithms for exploiting such clusters in Chapters 5 and 7.

Chapter 4
Ad hoc retrieval using language models
of clusters created offline1

In this chapter we present a novel algorithmic framework for retrieval that exploits
cluster-based language models.

As described in chapter 3, clusters are a convenient representation of similar-
ity whose potential for improving retrieval performance has long been recognized
(Jardine and van Rijsbergen, 1971; van Rijsbergen, 1979; Croft, 1980). One key
advantage is that they can provide smoothed, more representative statistics for
their elements, as has been recognized in statistical natural language processing
for some time (Brown et al., 1992). As the example in Section 3.1 shows, we could
infer, for example, that a document not containing some query terms is still rele-
vant if the document belongs to a cluster whose other constituent documents do
contain these terms.

Our proposed framework is based on clusters created offline. One potential
drawback of using such clusters is that, by definition, they are query-independent
and therefore at retrieval time one has to estimate the relevance of the information
they provide to the information request specified in the query. Also, cluster statis-
tics may over-generalize with respect to specific member documents. In Chapters 5
and 7 we present retrieval algorithms that utilize query-dependent clusters, some of
which are adaptations of instantiations of the framework presented in this chapter.

Our framework therefore incorporates both corpus-structure information —
using pre-computed, overlapping clusters — and individual-document information.
Importantly, although (in this chapter) cluster formation is query-independent,
within our framework the choice of which clusters to incorporate can depend on
the query. We consider several of the many possible algorithms arising as specific
instantiations of our framework. These include both novel methods and, as special
cases, both the standard, non-cluster-based LM approach (i.e., the query likelihood
model) and a variant of the cluster-based aspect model (Hofmann and Puzicha,
1998).

Our empirical evaluation consists of experiments in an array of settings created
by varying several parameters and meta-parameters; these include the corpus,
the clustering scheme (nearest-neighbors vs. k-means) and the feature selection
method (stopword removal and stemming). In addition, we show that a subset
of our algorithms can be effective even if we employ a vector-space information
representation instead of language models. Analyzing the performance results,

1This chapter is based on a paper written with Lillian Lee (Kurland and Lee,
2004) that appeared in the proceedings of SIGIR 2004. Portions of this chapter
also represent work that appeared in a paper written with Lillian Lee and Carmel
Domshlak (Kurland et al., 2005), which appeared in the proceedings of SIGIR
2005.

25

26

we find that even the worst-performing of our novel algorithms is superior to the
basic LM approach, and our best performing method (the interpolation-t algo-
rithm) consistently improves on the LM approach in a statistically significant way.
Furthermore, the latter algorithm, with minimal tuning, is shown to have compa-
rable performance with that of highly optimized state-of-the-art pseudo-feedback
methods.

4.1 Notational conventions

We use d, q, c and C to denote a document, query, cluster, and corpus, respectively.
A fixed vocabulary is assumed. We use the notation pd(·), pc(·) for the language
models induced from d and c respectively. (Section 4.4.1 provides specific estima-
tion details.)

It is convenient to use Kronecker delta notation δ[s] to set up some definitions.
The argument s is a statement; δ[s] = 1 if s holds, 0 otherwise.

4.2 Retrieval framework

As noted above, when we rank documents with respect to a query, we desire per-
document scores that rely both on information drawn from the particular docu-
ment’s contents and on how the document is situated within the similarity structure
of the ambient corpus.

Structure representation via overlapping clusters As discussed in Chap-
ter 3, document clusters are an attractive choice for representing corpus similarity
structure (van Rijsbergen, 1979, chapter 3). Clusters can be thought of as facets of
the corpus that users might be interested in. While a deep analysis of facets in the
corpus would probably call for clustering over different axes (e.g., document style,
author), traditional work on cluster-based retrieval has mainly focused on hard
clustering schemes implemented over bag-of-words representations of documents
(see Jardine and Rijsbergen (1971), Croft (1980), and Vorhees (1985) for exam-
ples). In section 4.4.5 we report the empirical performance of one of our algorithms
when implemented with one such scheme, the k-means clustering method.

However, given that a particular document can discuss several topics, and be
relevant to a user for several reasons, or to different users for different reasons,
we believe that a set of overlapping (or even probabilistic, e.g., Hofmann (2001),
and Blei et al. (2003)) clusters forms a better model for similarity structure than
a partitioning of the corpus. Furthermore, employing intersecting clusters may
reduce information loss due to the generalization that hard clustering can introduce
(van Rijsbergen, 1979, pg. 44). Such generalization might be incurred by the
association of each document with a single cluster, an association that binds the
document to a single topic or facet and thereby ignores other facets and topics
that might also relate to the document. In light of the potential benefits of using

27

overlapping clusters for modeling corpus structure, we will assume the use of such
clusters (unless otherwise specified) throughout the rest of this chapter.

Information representation We use language models induced from documents
and clusters as our information representation. Each document d (or cluster c)
is represented as a distribution over single terms in the vocabulary, i.e., a term
language model. We then use pd(q) and pc(q) to specify our initial knowledge
of the relation between the query q and a particular document d or cluster c,
respectively. (However, Section 4.4.6 shows that using a tf.idf representation also
yields performance improvements with respect to the appropriate baseline, though
not to the same degree as using language models does.)

Information integration To assign a ranking to the documents in a corpus C
with respect to q, we want to score each d ∈ C against q in a way that incorporates
information from the query-relevant corpus facets to which d belongs. While we
create C l(C), the set of clusters, in advance, and hence in a query-independent
fashion, to compensate, at retrieval time we base the choice of appropriate pre-
computed clusters on the query.

How might cluster information be used? Our discussion above indicates that
clusters can serve two roles. Insofar as they approximate facets of the corpus,
they can aid in the selection of relevant documents: we would want to retrieve
those that belong to clusters corresponding to facets of interest to the user. On
the other hand, clusters also have the capacity to smooth individual-document
language models, since they pool statistics from multiple documents. Finally, we
must remember that over-reliance on pc(q) can over-generalize by failing to account
for document-specific information encoded in pd(q).

These observations motivate the algorithm template shown in Figure 4.1. This
template is fairly general: both the standard language-modeling approach intro-
duced by Ponte and Croft (1998) and the aspect model (Hofmann and Puzicha,
1998) are concrete instantiations. In the template, the choice of Facetsq(d) (line
4) corresponds to utilizing clusters in their selection role. The scoring step (line
5) can be thought of as integrating pd(q) with cluster-based language models in
their smoothing role. The optional re-ranking step (line 7) is used as a way to
further bias the final ranking towards document-specific information, if desired.
Note that re-ranking can change the average non-interpolated precision but not
the absolute precision or recall of the retrieval results; we therefore use it, when
necessary, to enhance average (non-interpolated) precision. (Section 4.4 reports
experiments studying its efficacy.)

In the next section, we describe a number of specific algorithms arising from this
template, concentrating on their degree of dependence on cluster-induced language
models.

28

1. Offline: Create C l(C)
2. Given q and N , the number of documents to retrieve:
3. For each d ∈ C,
4. Choose a cluster subset Facetsq(d) ⊆ C l(C)
5. Score d by a weighted combination of pd(q) and

the pc(q)’s for all c ∈ Facetsq(d)
6. Set TopDocs(N) to the rank-ordered list of N top-

scoring documents
7. Optional: re-rank d ∈ TopDocs(N) by pd(q)
8. Return TopDocs(N)

Figure 4.1: Algorithm template.

Table 4.1: Algorithm specifications. (“Top” stands for TopClustersq(m).)

Facetsq(d) Score Re-rank by pd(q)?

LM N/A pd(q) (redundant)
basis-select {Cohort(d)} ∩ Top pd(q) · δ[|Facetsq(d)| > 0] (redundant)
set-select {c : d ∈ c} ∩ Top pd(q) · δ[|Facetsq(d)| > 0] (redundant)
bag-select {c : d ∈ c} ∩ Top pd(q) · |Facetsq(d)| no
uniform-aspect-t {c : d ∈ c} ∩ Top

P
c∈Facetsq(d) pc(q) yes

aspect-t {c : d ∈ c} ∩ Top
P

c∈Facetsq(d) pc(q) · pd(c) yes

interpolation-t {c : d ∈ c} ∩ Top λ · pd(q) + (1 − λ)
P

c∈Facetsq(d) pc(q) · pd(c) no

4.3 Retrieval algorithms

Table 4.1 summarizes the algorithms we consider, which represent a few choices
out of the many possible ways to instantiate the template of Figure 4.1. Our
preference in picking these algorithms has been towards simpler methods, so as
to focus on the impact of using cluster information (as opposed to the impact of
tuning many weighting parameters, say).

First step: Cluster formation and selection There are many algorithms that
can be used to create C l(C), the set of overlapping document clusters required by
Figure 4.1’s template (line 1). In our experiments, we simply have each document
d form the basis of a cluster Cohort(d) consisting of d and its nearest neighbors:

Definition 1. Cohort(d) is the cluster that contains d and its k−1 nearest neigh-
bors, which are determined by measuring the Kullback-Leibler (KL) divergence
between d’s unsmoothed language model (as defined over single terms) and the
smoothed language models (as defined over terms) of other documents in the cor-
pus; k is a free parameter.

29

Note that two clusters with different basis documents may contain the same
set of documents.2

The first retrieval-time action specified by our algorithm template is to choose
Facetsq(d), a query-dependent subset of C l(C) (see line 4 in Figure 4.1). In all
the algorithms described below except the baseline (which does not use cluster
information), there is a document-selection aspect to this subset, in that only
documents in some c ∈ Facetsq(d) can appear in the final ranked-list output.
Ideally, we would use the clusters best approximating those facets of the corpus
that are most representative of the user’s interests, as expressed by q; therefore,
we require that Facetsq(d) be a subset of those clusters that exhibit the strongest
similarity to the query, TopClustersq(m):

Definition 2. TopClustersq(m) is the top m clusters c ∈ C l(C) with respect to
pc(q); m is a free parameter.

But we also want to evaluate d only with respect to the facets it actually
exhibits. Thus, in what follows (except for the baseline), Facetsq(d) is always
defined to be a subset of {c : d ∈ c} ∩ TopClustersq(m); we assume m is large
enough to produce the desired number of retrieved documents N .

Retrieval methods and reference comparisons

Baseline method The baseline for our experiments, denoted LM, is to simply
rank documents by pd(q) — no cluster information is used. (See Section 4.4.1 for
language-model estimation details.)

Selection methods In this class of algorithms, the cluster-induced language
models play a very small role once the set Facetsq(d) is selected. In essence, the
standard language-modeling approach (that is, ranking by pd(q)) is invoked to
rank the documents comprising the clusters in Facetsq(d). This method of scoring
is intended to serve as a precision-enhancing mechanism, downgrading documents
that happen to be members of some c ∈ Facetsq(d) by dint of similarity to d in
respects not pertinent to q.

In the basis-select algorithm, the net effect of the definition given in Table 4.1
is that only the basis documents of the clusters in TopClustersq(m) are allowed to
appear in the final output list. Thus, this algorithm uses the pooling of statistics
from documents in Cohort(d) simply to decide whether d is worth ranking; the
rank itself is based solely on pd(q).

The set-select algorithm differs in that all the documents in the clusters in
TopClustersq(m) may appear in the final output list — the “set” referred to in

2Smoothing document language models with language models of their nearest
neighbors was also presented in Ogilvie (2000) and Tao et al. (2006). A similar
smoothing approach, based on local information, was employed for the query model
in Lavrenko (2000) rather than to the documents’ models.

30

the name is the union of the clusters in TopClustersq(m). The idea is that any
document in a “best” cluster, basis or not, is potentially relevant and should be
ranked. Again, the ranking of the selected documents is by pd(q).

Another natural variant of the same idea is that documents appearing in more
than one cluster in TopClustersq(m) should get extra consideration, given that
they appear in several (approximations of) facets thought to be of interest to the
user. This idea gives rise to the bag-select algorithm, so named in reference to the
incorporation of a document’s multiplicity in the bag formed from the “multi-set
union” of all the clusters in Facetsq(d). Each selected document d is assigned a
score consisting of the product of its language-modeling score pd(q) and the number
of top clusters it belongs to.

It is important to observe that for the basis-select and set-select algorithms the
re-rank step is redundant since d’s score is exactly pd(q) (provided that Facetsq(d)
is not empty). For the bag-select algorithm, however, we do not use the additional
re-rank step since the score of a document is already based on the probability pd(q)
and empirical results indeed show that re-ranking does not improve performance.

Aspect methods We now turn to algorithms making more explicit use of clus-
ters as smoothing mechanisms. In particular, we study what we term “aspect-t”
methods. Our choice of name is a reference to the work of Hofmann and Puzicha
(1998), which conceives of clusters as explanatory latent variables underlying the
observed data. (The “t” stands for “truncated”, details below). In our setting, this
idea translates to using pc(q) as a proxy for pd(q), where the degree of dependence
on a particular pc(q) is based on the strength of association between d and c. The
aspect-t algorithm measures this association by pc(d); the uniform-aspect-t al-
gorithm assumes that every d ∈ c has the same degree of association to c (further
details below).

The scoring function we propose can be motivated by appealing to the prob-
abilistic derivation of the aspect model (Hofmann and Puzicha, 1998), as follows.
It is a fact that, regardless of the interpretation of the following conditional prob-
abilities, one can write

p(q|d) =
∑

c

p(q|d, c)p(c|d). (4.1)

The aspect model assumes that a query is conditionally independent of a doc-
ument given a cluster (which is a way of using clusters to smooth individual-
document statistics), in which case

p(q|d) =
∑

c

p(q|c)p(c|d). (4.2)

Our aspect-t algorithm then arises by replacing the conditional probabilities with
the corresponding language model probabilities (e.g., changing p(c|d) to pd(c))

31

and summing over just the clusters in Facetsq(d), as opposed to requiring that the
summation be over all clusters3:

∑

c∈Facetsq(d)

pc(q) · pd(c).

As a point of comparison, we also introduce the uniform-aspect-t algorithm,
which essentially corresponds to setting pd(c) to the uniform distribution. In both
cases, re-ranking by pd(q) is applied, since this important quantity does not oth-
erwise appear in the scoring function.

A hybrid algorithm The selection-only algorithms emphasize pd(q) in scoring
a document d; in contrast, the scoring functions of the aspect-t algorithms make
reference to the query only in the term pc(q). We created the interpolation-t
algorithm to combine the advantages of these two approaches.

The algorithm can be derived by dropping the original aspect model’s condi-
tional independence assumption — namely, that p(q|d, c) = p(q|c) — and instead
setting p(q|d, c) in Equation 4.1 to λp(q|d) + (1 − λ)p(q|c), where λ indicates the
degree of emphasis on individual-document information.

If we do so, we get that

p(q|d) =
∑

c

[λp(q|c) + (1 − λ)p(q|d)]p(c|d)

and since
∑

c p(c|d) = 1, we have

p(q|d) = λp(q|d) + (1 − λ)
∑

c

p(q|c)p(c|d).

Finally, applying the same estimation techniques as described in our discussion of
the aspect-t algorithm yields a score function that is the linear interpolation of
the score of the standard LM approach and the score of the aspect-t algorithm.
Note that no re-ranking step occurs; as we shall see, the interpolation-t algorithm’s
incorporation of document-specific information yields higher precision.

Our interpolation-t algorithm can be conceptually considered as a generaliza-
tion of models proposed by Liu and Croft (2004), and Wei and Croft (2006). Liu
and Croft (2004) presented the CBDM model in which a document language model
is smoothed via interpolation with the language model constructed from the single
cluster to which the document belongs; the cluster is a result of partitioning the
corpus using the k-means algorithm. The smoothed model is then used instead of
the original document language model for ranking. This method is a special case
of our interpolation-t algorithm if we set TopClustersq(m) = C l(C) and note that
our framework does not require clusters to be overlapping.

3The suffix “-t” in the aspect-t methods’ names stands for the truncated sum
used in the scoring function.

32

Similarly to the work of Liu and Croft (2004), Wei and Croft (2006) proposed
interpolating a document language model with language models constructed from
LDA clusters (Blei et al., 2003). Again, setting TopClustersq(m) = C l(C) in our
framework, and in addition setting Facetsq(d) = TopClustersq(m) (as LDA clusters
are represented as probabilities over terms in the vocabulary, and therefore the
notion of membership of documents in clusters does not exist, in contrast to our
nearest-neighbor clustering approach), we get that Wei and Croft’s model is a
special case of our interpolation-t algorithm with LDA clusters instead of nearest-
neighbor clusters.4 A similar LDA-based smoothing of document language models
is presented by Azzopardi et al. (Azzopardi et al., 2004) wherein the two-stage
language model framework is used (Zhai and Lafferty, 2002).

Similarly to the work of Liu and Croft (2004), Wei and Croft (2006), and our
interpolation-t algorithm, although using a vector-space representation for docu-
ments instead of language models in the retrieval algorithm, Hofmann (2001) uses
document vectors that integrate document-based information and cluster-based
information that results from the pLSA algorithm, via interpolation.

As noted above, the interpolation-t scoring function is a linear interpolation of
the score of the standard LM approach and the score of the aspect-t algorithm.
Similarly, Lee et al. (2001) use score-based interpolation of query-document and
query-cluster similarity scores, but do not model the strength of association be-
tween documents and clusters. Thus, their model — although operating in the
vector-space as opposed to our algorithms that operate in the language-model
space — resembles a variant of the interpolation-t algorithm in which the inter-
polation is between the score of the standard LM approach and the score of the
uniform-aspect-t algorithm.

4.4 Evaluation

In this section we present a suite of experiments designed to examine the effec-
tiveness of our algorithms and the different factors that affect their performance,
such as parameter settings and feature extraction (i.e., stemming and stopword
removal). In addition, we compare our nearest-neighbor clustering approach to a
hard clustering scheme (k-means) that was suggested in previous work on cluster-
based retrieval, as mentioned above. We also study the clustering properties of
relevant documents in the tested corpora and examine the effect of implementing
our algorithms with a vector-space representation in comparison to the language-
modeling approach we have focused on throughout this chapter.

4We note that the models of Liu and Croft (2004) and Wei and Croft (2006)
use interpolation at the “term level”, while the interpolation-t algorithm utilizes
interpolation at the “query level”.

33

4.4.1 Language model induction

Our algorithms require the estimation of the following language-model probabili-
ties: pd(q), pc(q), and pd(c). We note that these probabilities represent the strength
of association between pairs of text spans (i.e., document-query, cluster-query and
document-cluster respectively). Therefore, to avoid the length-bias and underflow
problems described in Section 2.3, we use the estimate from Equation 2.3 (page
15) for the values of pd(q) and pc(q). Following the derivation given in Section

2.3, we get the estimates p
[µ]
d (q)

1
|q| and p

[µ]
c (q)

1
|q| respectively, which are the length-

normalized (Dirichlet-smoothed-)language-model probabilities.
In order to have the estimator for document-cluster association probability

(pd(c)) form a valid probability distribution, i.e., to have
∑

c:c3d p(c|d) = 1 for
every document d, we use the following normalized estimate for c 3 d:5

p
[µ]
d (c)

1
|c|

∑
ci3d p

[µ]
d (ci)

1
|ci|

.

Note that such normalization implies that a document can only be associated with
the clusters to which it belongs, and the document-cluster strength of association
is the relative language-model similarity between the document and the cluster
with respect to all the clusters to which the document belongs.

The Dirichlet smoothing parameter µ was set to the value 2000 recommended
by Zhai and Lafferty (2001b).

4.4.2 Experimental setup

Our main experiments were conducted on TREC data. We used titles (rather than
full descriptions) as queries, resulting in an average length of 2-5 terms. Some
characteristics of our three corpora are summarized in the following table.

corpus # of docs queries # relevant documents
AP89 84,678 1-46,48-50 3261
AP88+89 164,597 101-150 4850
LA+FR 187,526 401-450 1391

Following Zhai and Lafferty (2001b), query 47 was omitted from AP89. Note that
LA+FR is more heterogeneous than the other two corpora, as it contains both
newswire and US government rules, notices, and related documents.

We used the Lemur toolkit (www.lemurproject.org) to run our experiments.
The number of documents to be returned at the end of the retrieval process was
fixed at N = 1000. In the results reported below, the interpolation parameter λ
for the interpolation-t algorithm was determined by optimizing for average non-
interpolated precision at N . (The value of λ was chosen from {0.1,. . . ,0.9}.) For

5Experiments showed that using the raw estimate (without normalization) re-
sults in inferior performance.

34

the selection algorithms, we also optimized the value of m, the number of top
clusters retrieved, with respect to average non-interpolated precision; for the as-
pect and interpolation-t algorithms, we experimented with two different methods
for choosing m, reported below. After limited experimentation with its effect on
average precision, the cluster size k was fixed at 40 for AP89, 20 for AP88+89,
and 10 for LA+FR.

35

Figure 4.2: Comparison of algorithms under the following conditions: (1) the num-
ber of clusters for the selection algorithms was chosen to optimize average precision
at N = 1000, but for the aspect and interpolation-t algorithms, all clusters were
used; and (2) no stemming or stopword removal was applied.

36

Table of performance numbers. Italics indicate results superior to those of the
baseline language model; b’s and i’s mark results that differ to a statistically sig-
nificant degree from the baseline or the interpolation algorithm, respectively; and
bold indicates the best results for a given experimental setting (column).

AP89 AP88+89 LA+FR
prec recall prec recall prec recall

LM (baseline) 19.52% 44.89% 21.03% 55.34% 21.72% 48.81%

basis-select 21 .31%bi 54 .06%bi 23 .27%bi 64 .22%bi 21 .84%i 54 .92%i

set-select 20 .12%bi 49 .68%i 23 .13%bi 69 .57%bi 22 .33%bi 57 .30%bi

bag-select 22 .71%b 60.78%b 28 .01%b 75.63%b 20.54%i 62 .54%b

uniform-aspect-t 20 .68%bi 54 .00%i 21 .22%i 50.70%bi 21.62%i 54 .35%i

aspect-t 21 .57%bi 60 .69%b 23 .94%bi 72 .63%bi 22 .42%bi 62 .19%b

interpolation-t 24.16%b 60 .20%b 28.45%b 73 .88%b 24.05%b 64.20%b

37

Figure 4.2 (continued)
AP89

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.45 0.5 0.55 0.6 0.65 0.7 0.75

pr
ec

is
io

n

recall

Recall&Precision, corpus = AP89

LM (baseline)
basis-select

set-select
bag-select

uniform aspect-t
aspect-t

interpolation

AP88+89

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.45 0.5 0.55 0.6 0.65 0.7 0.75

pr
ec

is
io

n

recall

Recall&Precision, corpus = AP88+89

LM (baseline)
basis-select

set-select
bag-select

uniform aspect-t
aspect-t

interpolation

LA+FR

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.45 0.5 0.55 0.6 0.65 0.7 0.75

pr
ec

is
io

n

recall

Recall&Precision, corpus = LA+FR

LM (baseline)
basis-select

set-select
bag-select

uniform aspect-t
aspect-t

interpolation

Graphical version of the previous page table’s results. Triangles indicate selection
algorithms; quadrilaterals represent aspect algorithms, and the circle indicates the
hybrid interpolation-t algorithm. Both axes of all three plots are to the same scale.

38

In general, we report both average non-interpolated precision and recall, al-
though any optimizations were only performed with respect to the former evalua-
tion metric. To compute statistical significance, we used the Wilcoxon two-sided
test with significance threshold p = 0.05 and with the degrees of freedom depen-
dent on the number of queries for the given corpus. (Refer back to Section 1.2 for
more details regarding our evaluation methodology.)

4.4.3 Primary evaluations

Our first set of comparisons were performed under the following experimental con-
ditions. No stemming or stopword removal was performed at this stage. For the
aspect and interpolation-t algorithms, we set m, the number of top clusters, to its
maximum value (namely, the number of documents in the corpus), in deference to
the original probabilistic motivation for the aspect model given in Equation 4.2
above. (Note that by our definitions of Facetsq(d) for these methods, setting m to
the size of the corpus means that the set of clusters considered in scoring a par-
ticular document d is precisely the set of clusters containing d.) For the selection
algorithms, on the other hand, we searched for the value of m optimizing average
precision at N , as mentioned above, since limiting the number of clusters used is,
conceptually, an important part of the process of selecting documents.

Figure 4.2 shows that all of our algorithms almost always provide better av-
erage precision than the baseline language model, with many of the performance
enhancements being statistically significant. Furthermore, recall at the settings
that optimize precision is also much better than the basic language model’s. Addi-
tionally, Table 4.2 shows that similar patterns of behavior are observed if stemming
(via the porter stemmer) and removal of INQUERY stopwords (Allan et al., 2000)
are applied (this pre-processing does generally improve the performance of all al-
gorithms, including the baseline). Thus, it appears that there is a great deal of
useful information carried by our language-model-based nearest-neighbor clusters
that can be incorporated in a variety of ways to useful effect.

We now consider differences between individual algorithms; for the sake of
brevity, we examine only the results shown in Figure 4.2. The interpolation-t al-
gorithm always exhibits the best precision, with the corresponding recall rates also
being very high, relatively speaking. The bag-select algorithm can also yield very
good results, although not consistently so: on AP89 and AP88+89, it posts very
high precision (indeed, statistically indistinguishable from that of the interpolation-
t algorithm on those corpora), but it is the lowest-precision algorithm on LA+FR.
The set-select yields precision that is somewhat better than that of the uniform-
aspect-t algorithm, but in several cases inferior to that of the basis-select and
aspect-t algorithms. The precision of the basis-select algorithm tends to lie be-
tween that of the two aspect algorithms. Of the aspect algorithms, aspect-t yields
better results than uniform-aspect-t, which is presumably an effect of the fact that
the aspect-t algorithm is able to down-weight those clusters that a document being
scored belongs to only in a weak sense.

39

Table 4.2: Version of the comparison results in Figure 4.2 in which stemming and
removal of stopwords was applied to the corpora first. Thus, the number of clusters
for the selection algorithms was chosen to optimize average precision at N , but for
the aspect and interpolation-t algorithms, all clusters were used. Italics indicate
results superior to those of the baseline language model; b’s and i’s mark results
that differ to a statistically significant degree from the baseline or the interpolation
algorithm, respectively; and bold indicates the best results for a given experimental
setting (column).

AP89 AP88+89 LA+FR
prec recall prec recall prec recall

LM (baseline) 20.77% 47.99% 23.55% 66.10% 24.38% 64.20%

basis-select 22 .09%bi 55 .11%bi 25 .44%bi 71 .18%i 24 .42%bi 65 .13%bi

set-select 21 .31%bi 52 .87%bi 25 .64%bi 76 .73%bi 24 .59%i 64 .99%i

bag-select 24 .36%b 61 .70%b 29 .11%b 80 .65%b 21.43%bi 67 .07%

uniform-aspect-t 21 .89%b 56 .42% 24 .11%i 59.44%bi 23.20%i 53.56%bi

aspect-t 22 .61%bi 61 .85%b 26 .48%bi 79 .04%bi 24 .66%bi 66 .00%i

interpolation-t 25.41%b 62.16%b 29.96%b 80.81%b 27.06%b 75.34%b

Table 4.3: Comparison between bag-select and simply counting the overlap be-
tween top clusters, optimizing the parameter m (the number of top clusters re-
trieved) for average precision. A “b” marks a statistically significant difference
from the baseline. Bold highlights the best performance for a given experimental
setting (column).

AP89 AP88+89 LA+FR
prec recall prec recall prec recall

LM (baseline) 19.52% 44.89% 21.03% 55.34% 21.72% 48.81%

bag-select 22.71%b 60.78%b 28.01%b 75.63%b 20.54% 62.54%b

overlap only 15.54% 59 .12%b 23 .38% 73 .19%b 10.85%b 58 .95%b

It is interesting to note that bag-select (score function: pd(q) · |Facetsq(d)|) per-
forms so differently from set-select (score function: pd(q) · δ[|Facetsq(d)| > 0]). The
two algorithms can produce different results only because we are using (highly)
overlapping clusters. It seems that for our selection methods, utilizing the exact
degree of overlap is helpful on AP89 and AP88+89, but not on LA+FR. Inci-
dentally, the performance that results from just counting the overlap among the
top-retrieved clusters — that is, employing the score function |Facetsq(d)| (without
subsequent re-ranking by pd(q)) — is shown in Table 4.3. As can be seen, ignoring
the query-generation probability pd(q) is clearly detrimental to performance.6

6Degradation in precision also occurs if we take the basis-select algorithm and
remove the pd(q) term. Note that such an alteration corresponds to applying the
basic language-modeling approach to the “document” Cohort(d) rather than to
d itself, and so can be thought of as a smoothing method wherein the document
language model is created by backing off completely to a cluster language model.

40

We note that both aspect-t and uniform-aspect-t resemble the bag-select method
in that they tend to assign higher scores to documents that belong to more than
one top cluster (thus incorporating information regarding degree of cluster over-
lap) and also utilize pd(q) (albeit for re-ranking rather than directly in a score
function). Given this similarity, and the fact the bag-select method substantially
outperforms (in terms of precision) both aspect-t and uniform-aspect-t, we need to
examine whether the performance difference is due solely to the fact that the bag-
select algorithm (and the selection algorithms in general) were allowed an extra
free parameter in the experiments reported in Figure 4.2, namely, m, the (max-
imum) number of top clusters considered for each document. Therefore, we now
examine the effect of varying this parameter for all our cluster-based algorithms,
not just the selection ones.

Figure 4.3 demonstrates that altering m has some interesting effects. The
selection algorithms all exhibit a “clockwise” pattern: at first, increasing the max-
imum number of top clusters considered improves both precision and recall (after
all, these methods require some minimum number of clusters — e.g., 1000 in the
basis-select case — in order to be able to return N = 1000 documents); but too
many clusters causes both precision and recall to drop. The uniform-aspect-t also
follows this “clockwise” pattern, which makes intuitive sense since considering a
large number of clusters per document means that clusters to which the docu-
ment is only weakly associated are allowed to participate in the scoring decision.
At small values of m, the aspect-t algorithm yields extremely similar results to
those of the uniform-aspect-t algorithm. However, the precision of the aspect-t
and interpolation-t methods does not greatly suffer when one chooses a large num-
ber of clusters (in fact, in the latter case such values are preferable), indicating
that both algorithms are able to reduce the contribution of clusters that are only
weakly associated with a given document in a fairly effective manner. On the other
hand, the robustness of the performance of the aspect-t algorithm to choice of m
means that its precision never rises appreciably above that of the best achievable
by bag-select no matter what value of m is picked.

41

Figure 4.3: The effect of varying the number of top-retrieved clusters: m = 50,
100, 500, 1K, 5K, 10K, 50K, all. (x-axis: recall, y-axis: precision.) All curves
move either roughly clockwise or diagonally upward as m increases. As before,
triangles indicate selection algorithms, quadrilaterals represent aspect algorithms,
and the circle indicates the hybrid interpolation-t algorithm. The axes for plots on
the same corpus are to the same scale; thus, the baseline indicator is in the same
spot in each pair of plots. No stemming or stopword removal was applied.

42

AP89, selection algorithms AP89, aspect & interpolation algo.

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

pr
ec

is
io

n

recall

Recall&Precision wrt number of retrieved clusters, corpus = AP89

baseline (LM)
basis-select

set-select
bag-select

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

pr
ec

is
io

n

recall

Recall&Precision wrt number of retrieved clusters, corpus = AP89

baseline (LM)
uniform aspect-t

aspect-t
interpolation

AP88+89, selection algorithms AP88+89, aspect & interpolation algo.

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pr
ec

is
io

n

recall

Recall&Precision wrt number of retrieved clusters, corpus = AP88+89

baseline (LM)
basis-select

set-select
bag-select

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pr
ec

is
io

n

recall

Recall&Precision wrt number of retrieved clusters, corpus = AP88+89

baseline (LM)
uniform aspect-t

aspect-t
interpolation

LA+FR, selection algorithms LA+FR, aspect & interpolation algo.

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.2 0.3 0.4 0.5 0.6

pr
ec

is
io

n

recall

Recall&Precision wrt number of retrieved clusters, corpus = LA+FR

baseline (LM)
basis-select

set-select
bag-select

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.2 0.3 0.4 0.5 0.6

pr
ec

is
io

n

recall

Recall&Precision wrt number of retrieved clusters, corpus = LA+FR

baseline (LM)
uniform aspect-t

aspect-t
interpolation

43

Given that the aspect-t and interpolation-t algorithms have similar scoring
functions, it is interesting to observe how much the results they produce differ —
the corresponding performance curves in Figure 4.3 do not even cross. One reason
for the superior performance of interpolation-t might be its different handling of
pd(q) information — aspect-t re-ranks the top-scoring documents by it, whereas
for every document, interpolation-t linearly interpolates aspect-t’s initial document
score with pd(q). But again, the interpolation-t method has an extra parameter,
so it could be the case that it performs better than the aspect-t algorithm simply
because of overfitting. Therefore, we next study the effect of varying the interpo-
lation parameter λ, which represents the degree of dependence on pd(q) instead of
the cluster-based scoring function of the aspect-t algorithm.

Figure 4.4 plots the “trajectory” of the interpolation-t algorithm through per-
formance space as λ is increased. Small λ’s (emphasizing clusters) produce good
recall but, in the AP89 and LA+FR case, relatively poor precision. Large values
of λ (emphasizing documents) always degrade recall in comparison to small values;
on LA+FR, they do yield higher precision in return, but on the other two corpora,
precision is either about the same as or quite a bit lower than that achieved when
λ = 0. It appears that taking values from a reasonably-sized interval around 0.6 or
so (and thus striking a balance between cluster and document-specific information)
guarantees performance superior to that of the aspect-t algorithm, although for
AP89 and AP88+89, somewhat careful tuning of λ seems to be necessary to im-
prove over bag-select (although the latter algorithm is itself sensitive to the choice
of its free parameter, m).

44

Figure 4.4: Performance of the interpolation-t algorithm as λ takes values in
{0, 0.1, 0.2, . . . , 0.9, 1} while m is held fixed at its maximum value. (x-axis: re-
call, y-axis: precision.) Note that λ = 0 (arrow tail) corresponds to a version of
the aspect-t algorithm without re-ranking, and that λ = 1 (arrow head) is equiv-
alent to the baseline language model. The results of some other methods, copied
over from Figure 4.2, are also depicted for reference.

45

AP89

 0.19

 0.195

 0.2

 0.205

 0.21

 0.215

 0.22

 0.225

 0.23

 0.235

 0.24

 0.245

 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

av
er

ag
e

pr
ec

is
io

n
at

 N
=

10
00

recall at N=1000

Effect of increasing lambda on recall and average precision, corpus = AP89

set select
bag select

aspect-t
interp

AP88+89

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.55 0.6 0.65 0.7 0.75 0.8

av
er

ag
e

pr
ec

is
io

n
at

 N
=

10
00

recall at N=1000

Effect of increasing lambda on recall and average precision, corpus = AP88+89

set select
bag select

aspect-t
interp

LA+FR

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

av
er

ag
e

pr
ec

is
io

n
at

 N
=

10
00

recall at N=1000

Effect of increasing lambda on recall and average precision, corpus = LA+FR

set select
bag select

aspect-t
interp

46

Aside: the re-rank step We note that at λ = 0, the interpolation-t algorithm
corresponds to a version of the aspect-t algorithm in which re-ranking of the top N
documents d by pd(q) is not applied. Figure 4.4 thus also shows that on AP89 and
LA+FR, re-ranking substantially improves the average precision of aspect-t. We
can therefore ask whether re-ranking might also improve the average precision of
our best-performing algorithm, the interpolation-t method, even though its score
function already incorporates pd(q).

Figure 4.5 shows that for intermediate to large values of λ (the value λ =
0.6, which yields near-optimal average precision on all our corpora, qualifies), re-
ranking degrades performance. It is only when λ is small, so that little weight
is given to document-specific language models in the interpolation-t algorithm’s
score function, that re-ranking can help, and in fact, in the LA+FR case, re-
ranking never helps. Thus, again, interpolation seems to be superior to re-ranking
as a way to balance cluster and document information.

Summary Given the set of results described throughout this section, we come
to the following main conclusions. The interpolation-t method is clearly the best
performing algorithm, with this being perhaps due in part to the way in which
it balances document-specific information and information drawn from (multiple)
clusters. But, all of the algorithms we have proposed for integrating cluster and
document language models almost always provide better results than our baseline
of document-based language-modeling, demonstrating that the clusters themselves
convey a great deal of useful information.

4.4.4 Comparison to pseudo-feedback methods

Our cluster-based algorithms utilize corpus-structure information that is induced
in a query-independent fashion, by offline clustering. As described above, such in-
formation is used to represent the “context” of the documents within the corpus. In
contrast, pseudo feedback (PF) methods exploit corpus structure via query-biased
sampling in order to “enhance” the original query with “corpus context”. Indeed,
the new query model that such methods construct from the initially retrieved list
of documents often represents similarities within the list. Thus, such similarities
could be considered as representing corpus-structure information that pertains to
the query in hand.

To compare representatives of the two paradigms for exploiting corpus-structure,
we now compare our interpolation-t algorithm against two well known and highly

47

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 0.2 0.4 0.6 0.8 1

A
vg

. p
re

c.
 d

iff
er

en
ce

 b
et

w
ee

n
"w

ith
"

an
d

"w
ith

ou
t"

 r
er

an
k

lambda

Effect of re-rank on average precision for the interpolation algorithm

AP88+89
AP89

LA+FR

Figure 4.5: Effect on average precision of re-ranking the interpolation-t algorithm’s
retrieval results by pd(q), shown as a function of the interpolation parameter λ.
When the function is positive, it is better to re-rank. The number of top clusters
retrieved was fixed at its maximum value.

effective pseudo-feedback methods, the Rocchio algorithm (Rocchio, 1971) as ap-
plied to highest-ranked documents with respect to an initial search (using positive
feedback only), and the relevance model (Lavrenko and Croft, 2001). Our imple-
mentation of both PF models is based on the Lemur toolkit (www.lemurproject.org).

Rocchio’s original method is based on a vector space representation for doc-
uments and queries; we denote as x the vector representation of text x. We use
the inner product as similarity measure in the vector space. Then, given the list
of highest ranked documents (denoted as Dinit) with respect to an initial search
performed in response to q (using document-query similarity), a new query vector
is defined as follows:

q + α
1

|Dinit|

∑

di∈Dinit

di,

and is used to (re-)rank all the documents in the corpus.
Following past work (e.g., Lafferty and Zhai (2001)), and to comply with op-

timization steps that we implemented for the relevance model (details further be-
low), we also experimented with a version of this model wherein we only use the β

48

terms with highest weights in the vector 1
|Dinit|

∑
di∈Dinit

di to add to q in the above
equation.

Throughout some experiments with different forms of weighting schemes we
found that using “log(tf)∗log(idf)” weights (Zobel and Moffat, 1998) results in very
good performance. In our experiments, we varied the following free parameters so
as to optimize performance: (i) the number of highest-ranked documents from the
initial search used for feedback (|Dinit|), (ii) the number of terms β to augment the
original query with, and (iii) the weighting coefficient α for the augmenting terms.

The relevance model (Lavrenko and Croft, 2001) takes a generative perspective:
assuming that there is a single relevance language model R underlying the creation
of both q and the documents relevant to q, documents are ranked by their degree
of “match” with R, rather than by how well they directly match the query. In
implementation, Lavrenko and Croft estimate R by combining the language models
of those documents assigning the highest language-model probabilities to q.

Our Lemur-based implementation of the relevance model utilized i.i.d sampling
(following the implementation details described in Lavrenko and Croft (2003)) to
construct R. We set Dinit to be the set of highest ranked documents with respect to
a retrieval performed (over the entire corpus) using pCE,µ

d (q) (setting µ = 2000 as
we did for our algorithms). 7 We write q = q1, . . . q|q| for the query, and estimate
the unigram language model of document d ∈ Dinit using Jelinek-Mercer (JM)
smoothing (Zhai and Lafferty, 2001b), instead of the Dirichlet smoothing technique
we use throughout the thesis, in order to follow the exact implementation details
of Lavrenko and Croft (2001; 2003)). Thus, for term t in the vocabulary we get:

p̃
JM ;[λ]
d (t)

def
= λp̃MLE

d (t) + (1 − λ)p̃MLE
C (t).

(Refer back to Section 2.3 (page 13) for further details regarding language model
notation.)

We then define R as

pR(t)
def
=

∑

di∈Dinit

p̃
JM ;[λ]
di

(t) · p(di|q), (4.3)

where for each document d ∈ Dinit we write:

p(d|q) =
p(d)

∏
j p̃

JM ;[λ]
d (qj)

∑
di∈Dinit

p(di)
∏

j p̃
JM ;[λ]
di

(qj)
,

and set p(di) to a constant (thus assuming a uniform distribution over documents).
Given the constructed relevance language model R, we use the divergence

D(R||p̃
[µ]
d (·)) (recall that p̃

[µ]
d (·) is the Dirichlet-smoothed language model induced

from d) as ranking criterion, setting µ = 2000 (as for all our algorithms). (Note

7Recall from Section 2.3 (page 13) that this is equivalent to ranking by query
likelihood.

49

that this ranking criterion is equivalent to using the cross entropy — details can
be found in Section 2.3). The free parameters are the number of highest-ranked
documents (|Dinit|) used for estimation and the interpolation parameter λ, which
controls the evaluation of the highest-ranked-documents’ language models.

Following past work on relevance models (Connell et al., 2004; Cronen-Townsend
et al., 2004; Metzler et al., 2005), and our implementation of Rocchio’s model, we
also experimented with clipping the relevance model to assign non-zero probability
to only a restricted number of terms (up to a maximum of several hundred) —
those with the highest pR(·) value.

Although our reference comparison models operate in different spaces (vector
space vs. the probability simplex), as can be seen in Equation 4.3 and as Lavrenko
and Croft (2003) observe (with regard to the i.i.d sampling we employed here), both
the pseudo-feedback version of Rocchio and the relevance model utilize a linear
combination of the top-retrieved documents’ models to construct an expanded query
model.

The number of top retrieved documents (|Dinit|) used for the estimation of both
pseudo-feedback methods (Rocchio’s model and the relevance model) was chosen
from {5, 10, 20, . . . , 100}. The number of terms used for expansion in Rocchio’s
method and the clipped relevance model was set to a value in
{5, 10, . . . , 50, 100, . . . , 600}. (As mentioned above, we also experimented with Roc-
chio’s original model without employing term clipping, and the performance results
we present reflect the better performing model of Rocchio’s — i.e., with or without
clipping.)

The interpolation parameter λ for the (clipped) relevance model and the weight-
ing coefficient for Rocchio’s method was set to a value in {0.1, . . . , 0.9}.

Table 4.4 presents the performance numbers for the interpolation-t algorithm
and the pseudo-feedback methods. Our first observation is that the performance of
the interpolation-t algorithm is better than that of Rocchio’s method in 4 out of the
6 relevant comparisons (2 evaluation measures × 3 corpora), and in the other two
relevant comparisons, the performance differences are neither substantial nor sta-
tistically significant. Furthermore, on LA+FR the interpolation-t algorithm posts
substantial and statistically significant performance improvements over Rocchio’s
model.

We can also see in Table 4.4 that our interpolation-t algorithm performance is
in most cases better than that of the non-clipped relevance model; on LA+FR the
differences are not only substantial but also statistically significant.

When comparing the interpolation-t algorithm with the clipped relevance model
(Table 4.4), we observe that the latter posts small (non statistically-significant) per-
formance improvements over the interpolation-t algorithm on AP89, but clearly
has an inferior performance on LA+FR (though not a to a statistically signifi-
cant degree). However, on AP88+89, the clipped relevance model has statistically
significantly better performance than that of the interpolation-t algorithm. We at-
tribute the latter differences to the extensive optimization employed for the number
of terms used for expansion for the clipped relevance model. Indeed, the differ-

50

Table 4.4: Comparison of the interpolation-t algorithm with Rocchio’s method,
the relevance model and the clipped relevance model. (Boldface: best result in
column.) Statistically significant differences with the three methods are marked
with η, R, and c respectively. No stemming or stopword removal have been applied.

AP89 AP88+89 LA+FR
prec recall prec recall prec recall

Rocchio 22.62% 60.9% 28.91% 74.71% 17.88% 51.4%
Rel. Model 23% 50.29% 30% 71.8 22.03% 46.59%
Clipped Rel. Model 24.49% 61.67% 31.84% 80.5% 22.34% 56.65%

interpolation-t 24.16% 60.20%R 28.45%c 73.88%c 24.05%ηR 64.20%ηR

ences between the interpolation-t algorithm performance and that of the relevance
model are not significant on AP88+89. (In fact, the latter had worse recall perfor-
mance than that of the interpolation-t algorithm on AP88+89.) Furthermore, term
clipping might have also helped to improve the performance of the interpolation-t
algorithm, if employed on the clusters’ language models, for example, by improving
the estimates for cluster-query and document-cluster associations.

Our conclusion in light of the above is that with moderate optimization, our
interpolation-t algorithm has performance that in general is competitive with that
of highly optimized state-of-the-art pseudo-feedback methods. While on AP88+89
some of the reference comparisons post improvements over the interpolation-t al-
gorithm, on AP89 the performance of the latter is in some cases better than that of
the pseudo-feedback methods, and on the LA+FR corpus, which is the most het-
erogeneous corpus among the three corpora tested, the interpolation-t algorithm
has performance that is substantially (and in some cases statistically significant)
better than that of the pseudo-feedback methods.

4.4.5 Cluster composition: alternatives and analysis

Cluster-based information plays a crucial role in our algorithms. Indeed, as shown,
our algorithms’ performance is superior to that of a basic LM approach. This leads
us now to examine more closely the nature of the clusters we create. Recall that
each of our clusters is the cohort of some document d, defined as those documents
whose induced language models have smallest KL divergence to the language model
induced from d.

How important is it to our algorithms that our clusters overlap? To study this
issue, we looked at the effect of using a set of non-overlapping clusters created
via the well-known k-means algorithm with cosine as document similarity metric;
such clusters were used by Liu and Croft (2004) for query-independent clustering
in their work on cluster-based language models for ad hoc retrieval. (Since the
KL divergence is asymmetric, it is not well-suited to serving as a basis for mea-
suring similarity for k-means.) Specifically, we ran the interpolation-t algorithm
on k-means clusters rather than our nearest-neighbor clusters. Note that doing so

51

Table 4.5: Average precision of the interpolation-t algorithm using non-overlapping
k-means clusters (cosine similarity metric) versus overlapping nearest-neighbor
clusters (KL divergence-based similarity metric). Bold indicates the best per-
formance for a given experimental setting (column). Stars (*) indicate statistically
significant differences with respect to the baseline.

MED CISI CACM

LM (baseline) 44.79% 12.95% 25.31%

interpolation-t (K-MEANS) 46 .90% 13 .52% 25 .53%

interpolation-t (NN) 63.60%∗ 17.72%∗ 28.71%∗

reduces the interpolation-t algorithm’s score function to

δ
[
c ∈ TopClustersq(m)

]
· (λpd(q) + (1 − λ)pc(q)) ,

where c is the sole cluster that contains the document d being scored. If one then
sets m, the number of top clusters retrieved, to its maximum possible value, then
the above function becomes

λpd(q) + (1 − λ)pc(q),

which is the CBDM model proposed by Liu and Croft(2004) (modulo details re-
garding how to estimate the language models themselves), as mentioned in Section
4.2. We used smaller corpora than those utilized in the experiments reported above
to allow for clustering the corpora numerous times with varying values of k (we
searched for the values of k optimizing average precision); in particular, we worked
with MED (1033 documents, best k = 250), CISI (1460 documents, best k = 300),
and CACM (3204 documents, best k = 200).

Table 4.5 shows the change in the average precision results for the interpolation-
t algorithm when we use k-means clusters. As can be seen, the use of non-
overlapping clusters yields results that are statistically indistinguishable from those
of the baseline on all three corpora. In contrast, use of the language-model-based,
overlapping cohorts as clusters allows the interpolation-t algorithm to significantly
outperform the baseline.

While the results above indicate that hard partitioning of the corpus results in
performance substantially inferior to that of using overlapping clusters, we are also
interested in examining the question of whether the large amount of overlapping
induced by our nearest-neighbor clustering is indeed crucial for the success of our
algorithms. (Recall that the number of clusters we create is the same as the number
of documents in the corpus.)

To decrease the amount of overlapping, we present two heuristics for producing
a reduced number of nearest-neighbor clusters that are cohorts of documents in
the corpus. We maintain the invariant that every document is contained in at

52

least one cluster. (Otherwise some documents will never be assigned a score by
our definition of Facetsq(d) in Table 4.1.) Since the clusters we create are cohorts
of documents, the resultant set of clusters is a subset of the original set C l(C).

Our heuristics, h-basis and h-all, are based on a greedy algorithm that traverses
the documents in the corpus in some order, say d1, · · · , d|C|, and that decides
whether to use the next document di in the list as a basis for adding Cohort(di)
to the list of clusters according to the following criteria:

Heuristic Use di as basis for creating Cohort(di) iff

h-basis 6 ∃dj s.t. j < i and di ∈ Cohort(dj)

h-all ∃d ∈ Cohort(di) s.t. d 6∈
⋃i−1

j=1 Cohort(dj)

In other words, by the h-basis heuristic a cluster in the original set of clus-
ters C l(C) is filtered out if its basis document is a member of a previous cluster
(wherein the ordering of clusters corresponds to the ordering of their respective ba-
sis documents). According to h-all, a cluster is filtered out only if all its constituent
documents are members of previous clusters.

To experiment with the reduced set of clusters, we randomize the order of doc-
uments in the corpus three times, and present the average resultant performance
of the interpolation-t algorithm in Table 4.6.

Our first observation from Table 4.6 is that both heuristics substantially reduce
the number of clusters8. For example, using the h-basis heuristic on LA+FR results
in roughly a 33% decrease in the number of clusters (from 183283 to 57068 on
average). Naturally, though, the h-basis heuristic results in fewer clusters than
those resulting from the application of the h-all heuristic.

Another observation from Table 4.6 is that the application of the heuristics
results in performance that is inferior to that obtained using the original list of
clusters (as the boldfaced numbers imply) — in many of the randomized runs sig-
nificantly so. Furthermore, we observe that the application of the h-all heuristic
results in a slightly better performance than that obtained using the h-basis heuris-
tics, providing further support to the finding that a reduced number of clusters
results in somewhat worse performance.

However, it is clear that for both heuristics employed the resultant performance
is still better than that of the basic LM approach. In fact, for both heuristics
and for all evaluation settings (3 corpora × 2 evaluation metrics), the resultant
performance is significantly better than that of the baseline in all the randomized
runs (the average results of which are the numbers presented in Table 4.6).

Our conclusion is that while the high degree of overlap between our created
clusters seems to be an important factor in the performance of the interpolation-t
algorithm, promising results can still be obtained by reducing this overlapping.
We hasten to point, however, that further research is required for finding a smaller

8The variance in the number of resultant clusters for both heuristics is very
small. Furthermore, the variance of the performance results is also very small.

53

Table 4.6: Effect of applying the h-basis and h-all heuristics on the interpolation-t
algorithm’s performance. No stemming or stopword removal have been applied.
“h-x(n1, n2, n3)” indicates the (rounded average) number of clusters for AP89,
AP88+89 and LA+FR respectively that results from applying the “h-x” heuristic.
“original” denotes that no heuristic has been applied (i.e., the original set of clusters
C l(C) was used.) Boldface: best result in column.

AP89 AP88+89 LA+FR
prec recall prec recall prec recall

LM (baseline) 19.52% 44.89% 21.03% 55.34% 21.72% 48.81%

original (84678, 164597, 183283) 24.16% 60.20% 28.45% 73.88% 24.05% 64.20%

h-basis(10207, 32493, 57068) 22.06% 55.22% 25.83% 69.42% 23.49% 60.48%

h-all(13069, 39200, 64813) 22.66% 56.08% 26.06% 70.74% 23.65% 61.23%

set of cohorts that will result in strong performance without necessitating the
computation of nearest neighbors of every document in the corpus, as is the case
for the above suggested heuristics, and more generally, for all our algorithms.

Similarity and relevance Now that we have established that our particular
choice of clusters seems well justified from a performance point of view, we now
consider another question of interest: is there a relationship between documents
having similar induced language models and documents having similar relevance
status?

One way to answer this question is to compute the extent to which the top
clusters with respect to a query tend to contain documents that are relevant to
that query. Figure 4.6 shows that indeed, clusters that are poor “matches” to the
query (that is, whose language models assign low probability to it) tend to contain
a lower percentage of relevant documents. We also see substantial variation from
corpus to corpus in the percentage of relevant documents that the top 50 clusters
contain: for LA+FR, only about 1 out of the 10 documents in each such cluster
tends to be relevant, whereas for AP88+89, on average more than 5 out of 20
documents in each such cluster are relevant.

Another way to study the relationship between language-model-based similarity
and relevance is to look at whether the nearest neighbors (in KL-divergence terms)
of a relevant document tend to also be relevant or not (cf. Voorhees’ (1985) nearest-
neighbors test for the cluster hypothesis). Figure 4.7 shows that no matter what
the corpus, at least 50% of the relevant documents have at least one other relevant
document within a 10-document radius, but less than 40% have at least 5 out
the 10 nearest neighbors being relevant. For AP89 and AP88+89, roughly 8% of
the relevant documents have the “ideal” property of having all 10 of their nearest
neighbors also being relevant.

54

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 100 1000 10000 100000 1e+06

pe
rc

en
ta

ge
 o

f r
el

ev
an

t d
oc

um
en

ts
 p

er
 c

lu
st

er

of retrieved clusters

Percentage of relevant documents per top-retrieved cluster

LA+FR
AP89

AP88+89

Figure 4.6: Average percentage of relevant documents per top-retrieved cluster as
the number of clusters retrieved grows.

4.4.6 The role of language models

Throughout this chapter, we have considered a language-model-based framework
for incorporating cluster information into the ranking decision. However, if we
think of our estimate of px(y) as being one way (that happens to be asymmetric)
of measuring the similarity between two text items x and y, then we can view
the algorithm template we have proposed (see Figure 4.1) as specifying a subset
of a broader family of algorithms, wherein px(y) can be replaced by some other
measure of similarity between the two items. Doing so allows us to study the
specific contribution of the language models themselves, as opposed to the general
effect of integrating cluster and document information.

We therefore experimented with replacing all quantities of the form px(y) with
the inner product between the tf.idf vectors9 formed from x and y (as before, clus-
ters were treated as large documents formed by concatenating their constituent
documents). Altering our selection algorithms (basis-select, set-select, and bag-
select) in this way leads to improved performance with respect to the basic tf.idf
retrieval algorithm, as shown in Table 4.7. On the other hand, these algorithms
did not do as well as their original, LM-based counterparts (in most of the rele-
vant comparisons, especially with respect to average precision), as can be seen by

9We used tf · log(idf) weights in the vectors.

55

 0

 10

 20

 30

 40

 50

 60

 70

 80

10987654321

%
 o

f r
el

ev
an

t d
oc

um
en

ts
 w

ith
 th

is
 p

ro
pe

rt
y

Minimum number of relevant documents in a 10-document neighborhood

Composition of 10-document neighborhoods of relevant documents

LA+FR
AP89

AP88+89

Figure 4.7: For each number x, the percentage of relevant documents r such that
at least x of the 10 nearest-neighbors documents to r (not including r itself, and
where similarity is calculated based on the documents’ induced language models)
are relevant.

comparison of Table 4.7 with our primary-evaluation results given in Figure 4.2.
We thus see that our general cluster-based algorithmic framework can boost per-
formance over document-specific retrieval techniques when alternative similarity
measures are applied, but language models do seem to have some advantages, at
least in comparison to our specific choice for vector-space-model representation.

56

Table 4.7: Results using tf.idf to measure similarity instead of probabilities as-
signed by induced language models. Italics indicate results superior to those of
the baseline tf.idf-based ranking. A “b” marks a statistically significant difference
from the baseline. Bold highlights the best performance for a given experimental
setting (column). No stemming or stop-word removal was applied.

AP89 AP88+89 LA+FR
prec recall prec recall prec recall

TF.IDF 18.01% 45.38% 19.04% 55.46% 16.29% 47.66%

TF.IDF-basis-select 19 .32% 52 .44% 23 .71% 65 .58% 16 .68% 55 .93%

TF.IDF-set-select 19 .01%b
52 .74%b

24 .25%b
71 .80%b 16.73%b 52 .19%

TF.IDF-bag-select 22.32%b 56.82%b 25.79%b 73.71%b 15.17% 56.00%b

Chapter 5
Structural re-ranking utilizing
query-dependent cluster-based language
models
In the previous chapter we presented an algorithmic framework for ad hoc retrieval
that exploits language models induced from clusters created offline. As mentioned,
one of the challenges in utilizing clusters that are created in a query-independent
fashion is to relate the information they provide to the information need specified
in a user’s query. In this chapter, we study the effectiveness of our cluster-based
algorithms when implemented with query-dependent clusters, that is, clusters cre-
ated from an initial list of documents retrieved in response to a query. We study
the resultant retrieval algorithms in the context of a re-ranking setting: re-ordering
an initially retrieved list of documents to obtain high precision at top ranks.

5.1 Structural re-ranking

High precision at the top ranks of the list of retrieved results is highly important for
users of search engines (Croft, 1995). Naturally, users want to find the documents
pertaining to their information needs as quickly as possible, and avoid traversing
long lists in an attempt to locate potentially relevant documents. The ability of a
retrieval method to position relevant documents at the very highest ranks of the
returned results is sometimes termed high accuracy retrieval (Allan, 2003; Shah
and Croft, 2004).

Furthermore, high precision at top ranks is also important for applications
that utilize ad hoc retrieval as an intermediate step. The implementation of ques-
tion answering systems (Voorhees, 2002), for example, is often based on an initial
retrieval step wherein the top retrieved documents are assumed to contain the
information required to answer the question at hand. Naturally, high precision
at the top ranks of the initial list is very important for the overall success of the
system (Collins-Thompson et al., 2004).

An approach that some researchers have taken with the aim of achieving high
accuracy retrieval is that of structural re-ranking: re-ranking an initial list of docu-
ments retrieved in response to a query based on inter-document similarities within
the list1. As noted throughout the first chapters of this thesis, clusters are con-
venient means for representing inter-document similarities. Indeed, the potential
merits of using query-dependent clusters, that is, clusters created from documents
in the initial list, for re-ranking have long been recognized (Preece, 1973).

1There are also some re-ranking approaches that do not use inter-document
similarities within the initial list, but rather use, for example, term co-occurrence
information within the list (Mitra et al., 1998).

57

58

In one of the earliest works on fully automatic retrieval with query-dependent
clusters, Willett (1985) showed that ranking such clusters based on their similarity
to the query resulted in a slightly worse performance than that of an equivalent
ranking approach that utilized static clusters (i.e., clusters created offline). How-
ever, as Willett states (1985), this could be attributed to the fact that correlation-
based ranking was employed rather than a more effective ranking approach.

Further research on query-dependent clusters demonstrated their potential mer-
its for retrieved-results visualization and navigation (Hearst and Pedersen, 1996;
Leuski, 2001). The main benefits in using query-dependent clusters for such tasks
are that relevant documents in the initial list “tend” to cluster together — there-
fore supporting van Rijsbergen’s cluster hypothesis (1979) in the re-ranking setting
— and clusters can therefore enable a user to quickly detect relevant documents.

One interesting open question posed by both Hearst and Pedersen (1996) and
Tombros et al. (2002) was optimal cluster detection. They showed that if the initial
list is clustered, then there is always a cluster that, if retrieved in its entirety,
could be used to achieve performance better than that obtained by document-
based retrieval performed over the entire corpus. Moreover, not only was this
result true for both a partitioning of the list (Hearst and Pedersen, 1996) and for
agglomerative clustering applied to it (Tombros et al., 2002), but it also held for
different types of comparisons to document-based retrieval (Tombros et al., 2002).
However, automatically finding the optimal cluster — the one whose retrieval
would result in the best performance — remains a hard challenge. (We present
some progress on this front in Chapter 7.)

Recently, in the language modeling framework, Liu and Croft (2004) showed
that clustering the initial list with an agglomerative clustering technique, and
smoothing a document language model with the language model of the single
cluster to which it belongs (for use in query-likelihood scoring), results in ranking
that is somewhat better than the initial ranking of the list.

Throughout the rest of this chapter we examine the performance of (some
of) the cluster-based algorithms presented in Chapter 4 when adapted to the re-
ranking setting. Through an array of experiments we examine the effect of factors
such as different clustering schemes and the set of clusters to be used for smoothing
in our aspect-t and interpolation-t algorithms.

It is also important to observe here that one disadvantage of using query-
dependent clustering is the computational cost involved in creating the clusters.
In contrast to offline clustering, wherein the clusters are created once and then
used for all queries, with query-dependent clustering each query requires a new
clustering to be performed upon the (changed) list of retrieved documents. There-
fore, several researchers proposed fast clustering algorithms for clustering retrieved
results (Cutting et al., 1992; Zamir and Etzioni, 1998). The focus of the work in
this chapter (and in Chapter 7), on the other hand, is on the potential effective-
ness in exploiting clustering and not the efficiency of the clustering method. In
fact, as we show in Section 5.3.5, our best performing algorithm has very good
performance for several different clustering methods.

59

5.2 Retrieval framework

Since we are focused on the re-ranking setting, our algorithms are applied not to
the entire corpus C, but to a subset DN,q

init (henceforth Dinit), defined as the top N
documents retrieved in response to the query q by a given initial retrieval engine.
Our algorithms also take into account a set C l(Dinit) of clusters of the documents
in Dinit.

We now adapt the algorithmic framework from Figure 4.1 (page 28), originally
designed for utilizing query-independent clusters, to the re-ranking setting. The
framework is presented in Figure 5.1.

1. Create C l(Dinit)
2. For each d ∈ Dinit,
3. Choose a cluster subset Facetsq(d) ⊆ C l(Dinit)
4. Score d by a weighted combination of pd(q) and

the pc(q)’s for all c ∈ Facetsq(d)
5. Use the obtained scores for ordering the documents in Dinit

Figure 5.1: Algorithm template for re-ranking an initially retrieved list of docu-
ments (Dinit). This template is an adaptation of the template from Figure 4.1 to
the re-ranking setting.

As can be seen in Figure 5.1, we do not employ the optional step of re-ranking by
pd(q) that was presented in the original framework (Figure 4.1), since the initial
list Dinit was obtained by a retrieval performed in response to q, and therefore
such a re-ranking step would potentially restore the initial ranking. (In fact, in
our experimental setup (see Section 5.3), such a re-ranking step will result in a
ranking equivalent to the initial ranking of the list, since we use a language-model-
based approach to create the initial list.)

Clustering algorithm We use the nearest-neighbor clustering approach from
Chapter 4 to cluster Dinit into the set of clusters C l(Dinit). Each document d ∈
Dinit forms the basis of a cluster Cohort(d) consisting of d and its k − 1 nearest
neighbors (from Dinit) in the language-model space. In Section 5.3.2 we study the
performance of our best performing algorithm with alternative clustering schemes.

Retrieval algorithms In Table 5.1 we present adaptations of some of the algo-
rithms from Chapter 4 to the re-ranking setting, as instantiations of the template
in Figure 5.1. As noted above, one major difference from the original setting for
which these algorithms were designed (i.e., ranking all documents in a corpus using
clusters created offline) is the omission of the additional re-ranking step. Another
important difference is the definition of the set of clusters Facetsq(d). Not only is it
now a subset of C l(Dinit) — clusters containing only documents from Dinit — but it

60

Table 5.1: Re-ranking algorithms.

Facetsq(d) ⊆ C l(Dinit) Score

basis-select {Cohort(d)} p{Cohort(d)}(q)

bag-select {c : d ∈ c} pd(q) · |Facetsq(d)|

aspect-t {c : d ∈ c}
∑

c∈Facetsq(d) pc(q) · pd(c)

interpolation-t {c : d ∈ c} λ · pd(q) + (1 − λ)
∑

c∈Facetsq(d) pc(q) · pd(c)

also does not encapsulate the notion of “top-retrieved clusters” (TopClustersq(m))
as was the case in Table 4.1 (page 28). Indeed, while in Chapter 4 top-retrieved
clusters were used to ensure that only clusters that “resemble” the query to a
certain extent will be considered at retrieval time, here the clusters contain docu-
ments retrieved in response to the query and therefore employing the concept of
“top-retrieved clusters” is redundant.

We also observe in Table 5.1 that the basis-select algorithm scores a docu-
ment by the probability that the language model induced from its cohort assigns
to the query, and not by the probability assigned by the language model of the
document itself, as was the case in Chapter 4. The performance of this ranking
criterion can indicate whether smoothing of a document language model using a
nearest-neighbor approach is effective in a re-ranking setting as it is for ranking
all documents in a corpus (Tao et al., 2006). Furthermore, using the scoring func-
tion from Chapter 4 would have been equivalent to re-ranking Dinit by a basic LM
method. As noted above, this would have resulted in no re-ranking since a basic
LM approach is used (in our experiments) to create Dinit.

5.3 Evaluation

5.3.1 Language model induction

We use the estimate pKL,µ
x (·) from Equation 2.5 (page 13) for estimating the

language-model probabilities pd(·) and pc(·) on which the algorithms in Table 5.1
are based. 2 Recall from Section 2.3 that for text x and term sequence ~t, the

estimate pKL,µ
x (~t) is equivalent to exp

(
H(~t)

)
· p

[µ]
x (~t)

1
|~t| .

Now, the entropy of a text span can be considered as an indicator of its relevance
in the re-ranking setting, as will be shown (for documents) in Chapter 6. However,
we hasten to point out that experiments for this chapter utilizing the estimate

pCE,µ
x (·) — which is equivalent to p

[µ]
x (~t)

1
|~t| and therefore does not encapsulate

the entropy effect — resulted in performance almost identical to that obtained
using pKL,µ

x (·). To maintain a uniform experimental setup throughout the chapters

2We treat a cluster as the concatenation of its constituent documents for the
purpose of language model induction (see Section 2.3 in Chapter 2).

61

discussing the re-ranking setting (Chapters 5, 6 and 7), all experimental results in
these chapters utilize the pKL,µ

x (·) estimate.
We also recall that in Section 4.4.1 the estimate for document-cluster associa-

tion (pd(c)) was re-scaled to ensure that
∑

c:c3d p(c|d) = 1. Experiments with this
re-scaling for the aspect-t and interpolation-t algorithms in this chapter revealed
that, in general, the resultant performance was slightly worse than that obtained
without re-scaling. Therefore, all experimental results reported in this chapter are
based on the above “raw” estimate pKL,µ

x (·).

5.3.2 Experimental setup

We conducted our experiments on three TREC datasets (Voorhees and Harman,
2000):

corpus # of docs queries
AP 242,918 51-64, 66-150
TREC8 528,155 401-450
WSJ 173,252 151-200

We applied basic tokenization and Porter stemming (Porter, 1980) via the
Lemur toolkit (www.lemurproject.org), which we also used for language-model
induction. Topic titles served as queries.

As described in Section 1.2, we apply here evaluation metrics appropriate to the
structural re-ranking task: precision at the top 5 and 10 documents (henceforth
prec@5 and prec@10, respectively) and the mean reciprocal rank (MRR) of the
first relevant document (Shah and Croft, 2004). All performance numbers are
averaged over the set of queries for a given corpus.

We are interested in the general validity of the algorithms presented in Sec-
tion 5.2 for structural re-ranking. We believe that a good way to emphasize the
effectiveness (or lack thereof) of the underlying principles is to downplay the role
of parameter tuning. Therefore, we made the following design decisions, with the
effect that the performance numbers we report are purposely not necessarily the
best achievable by exhaustive parameter search:

• The initial ranking that created the set Dinit was built according to the
estimate pKL,µ

d (q) where the value of µ was chosen to optimize the non-
interpolated average precision of the top 1000 retrieved documents. This is
not one of our evaluation metrics, but is a reasonable general-purpose opti-
mization criterion. (In fact, results with this initial ranking turned out to be
statistically indistinguishable from the results obtained by optimizing with
respect to the actual evaluation metrics, although of course they were lower
in absolute terms.) In our experiments to follow, we set Dinit to be the 50
highest-ranked documents using the above criterion.

• The value µ in the estimate pKL,µ
x (·) was set to 2000 in all our re-ranking

algorithms, following a general recommendation in Zhai and Lafferty (2001b).

62

Table 5.2: Experimental results, showing algorithm performance with respect to
our 9 evaluation settings (3 performance metrics × 3 corpora). For each evaluation
setting, improvements over the optimized baselines are given in italics; statistically
significant differences between the structural re-ranking algorithms and the initial
ranking and optimized baselines are indicated by i and o respectively; bold high-
lights the best results over all algorithms.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

upper bound .876 .788 .930 .944 .850 .980 .896 .800 1.000
init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .439 .635 .512 .464 .696 .560 .494 .772

basis-select .438 .413 o .554 o .468 .460 .591 i
o .456 i

o .450 .636 i
o

bag-select .507 .494 i
o .630 .532 .514 i

o .660 .548 .488 .719

aspect-t .517 i .496 i
o .654 .548 .484 .688 .528 .496 .689

interpolation-t .527 i
o .499 i

o .651 .564 i .494 .707 .568 .490 .725

• We only optimized settings for k (cluster size) and λ (the interpolation pa-
rameter in the interpolation-t algorithm) with respect to precision among the
top 5 documents3, not with respect to all three evaluation metrics employed.
As a consequence, our prec@10 and MRR results are presumably not as high
as possible; but the advantage of our policy is that we can see whether opti-
mization with respect to a fixed criterion yields good results no matter how
“goodness” is measured. (Refer back to Section 1.2 for more details about
our evaluation methodology.)

Parameter values were selected from the following sets. The cluster size k:
{2, 5, 10, 20, 30}. The interpolation parameter λ: {0.1, 0.2, . . . 0.9}.

In what follows, when we say that results or the difference between results are
“significant”, we mean according to the two-sided Wilcoxon test at a confidence
level of 95%.

A ranking method might assign different documents the same score; we break
such ties by item ID. Alternatively, the scores used to determine Dinit can be
utilized, if available.

5.3.3 Primary evaluations

Our main experimental results are presented in Table 5.2. The first three rows
specify reference-comparison data. The initial ranking was, as described above,
produced using pKL,µ

d (q) with µ chosen to optimize for non-interpolated precision
at 1000. The empirical upper bound on structural re-ranking, which applies to any

3If two different parameter settings yield the same prec@5, we choose the setting
minimizing prec@10 so as to provide a conservative estimate of expected perfor-
mance. Similarly, if we have ties for both prec@5 and prec@10, we choose the
setting minimizing MRR.

63

algorithm that re-ranks Dinit, indicates the performance that would be achieved
if all the relevant documents within the initial fifty were placed at the top of the
retrieval list. We also computed an optimized baseline for each metric m and test
corpus C; this consists of ranking all the documents (not just those in Dinit) by
pKL,µ

d (q), with µ chosen to yield the best m-results on C. As a sanity check, we
observe that the performance of the initial retrieval method is always below that
of the corresponding optimized baseline (though not statistically distinguishable
from it).

Our first observation from Table 5.2 is that the interpolation-t algorithm is
the best performing method among the ones presented in Table 5.1 for structural
re-ranking. In particular, interpolation-t always outperforms the other re-ranking
algorithms with respect to prec@5 — the evaluation metric for which we optimized
performance. Furthermore, in 7 of the 9 evaluation settings (3 corpora × 3 evalua-
tion metrics), the interpolation-t algorithm outperforms the optimized baselines —
sometimes to a significant degree, though applied to a sub-optimally-ranked initial
list. The aspect-t algorithm also posts effective performance — in the majority of
the cases superior to that of the initial ranking — but not as effective as that of
the interpolation-t algorithm. This indicates that although our algorithms operate
in the re-ranking setting, similarity to the query is still an important source of
information.

Further analysis of the results in Table 5.2 reveals that the basis-select al-
gorithm, as adapted to the re-ranking setting in Table 5.1, is not effective for
structural re-ranking, as its performance is always below that of the initial rank-
ing. This result is not surprising, since the basis-select algorithm ranks documents
in Dinit by the “match” of their smoothed language models to the query, wherein
smoothing is based on nearest neighbors in Dinit. Since all documents in Dinit are
somewhat similar to one another (by virtue of them being deemed similar to q),
nearest-neighbor smoothing makes the differentiation between them even harder.

The bag-select algorithm, on the other hand, is very effective for structural
re-ranking. It outperforms the initial ranking in 7 out of the 9 relevant settings (3
corpora × 3 evaluation metrics). Specifically, it always posts improvements over
the initial ranking when prec@5 — the evaluation metric for which performance
was optimized — is concerned.

When comparing the relative performance patterns of our algorithms as em-
ployed for the re-ranking setting to those they exhibited in the setting presented
in the previous chapter (see Figure 4.2, page 35), that is, ranking all documents in
a corpus in response to a query, we observe that the relative performance patterns
are quite consistent except for the aspect-t algorithm posting performance that
is often better than that of the bag-select algorithm in the re-ranking case. We
believe that this difference stems from the fact that over-generalization, which is
a major problem for the aspect-t algorithm in the ranking setting, is not as severe
a problem in the re-ranking setting since the clusters contain only documents that
bear high similarity to the query.

64

Table 5.3: Comparison between the “truncated” (-t) and “full” (-f) versions of the
aspect and interpolation algorithms. Underline: best result in a “block” (corpus ×
algorithm × evaluation measure). Boldface: best result per column. Statistically
significant differences with the initial ranking and optimized baselines are marked
with i and o respectively.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .439 .635 .512 .464 .696 .560 .494 .772

aspect-t .517 i .496 io .654 .548 .484 .688 .528 .496 .689
aspect-f .537 io .498 io .628 .560 i .504 i .714 .576 .504 .759

interpolation-t .527 io .499 io .651 .564 i .494 .707 .568 .490 .725

interpolation-f .537 io .498 io .628 .576 i .496 .687 .592 i .508 .767

5.3.4 Cluster-document relationship

In both the aspect-t and interpolation-t algorithms, clusters can “represent” (or
smooth the language model of) only documents that they contain. (Recall the def-
inition of the Facetsq(d) set in Table 5.1.) In Section 4.4.5 (Chapter 4) we saw that
the high degree of cluster overlap had a considerable effect on the performance of
the interpolation-t algorithm, i.e., “representing” documents via multiple clusters
seemed to result in improved retrieval performance.

Therefore, we examine here the question of whether “representing” documents
in Dinit via more clusters than originally proposed in Table 5.1 can enhance the
re-ranking performance of the aspect-t and interpolation-t algorithms.

For this purpose, we define the aspect-f and interpolation-f algorithms to
utilize the same scoring functions of aspect-t and interpolation-t respectively, but
to use all the clusters in C l(Dinit) as the facets group (i.e., we set Facetsq(d) =
C l(Dinit)).

4 Thus, the aspect-f algorithm scores a document d ∈ Dinit by:
∑

c∈C l(Dinit)

pc(q)pd(c),

(note that this is exactly the aspect model of Hofmann and Puzicha (1998)) and
the interpolation-f algorithm, then, scores d by:

λpd(q) + (1 − λ)
∑

c∈C l(Dinit)

pc(q)pd(c).

(See Section 4.3 (Chapter 4) for the mathematical derivation.).

4The suffix “-f” stands for “full”, to indicate that the scoring function does
not employ any sum truncation, nor is any constraint imposed on the clusters
participating in this summation. Recall that in Chapter 4, our experiments with
the aspect-t and interpolation-t algorithms also utilized all available clusters (i.e.,
all clusters in the corpus), but, as opposed to the “-f” algorithms here, a document’s
facets group contained only clusters to which it belongs.

65

Table 5.3 presents a comparison of the performance results of the aspect-f and
interpolation-f algorithms with those of the original “truncation”-based algorithms
(aspect-t and interpolation-t respectively). These results clearly indicate that using
all the clusters in C l(Dinit) to “represent” — to a degree determined by pd(c) —
each document instead of just using the clusters to which the document belongs is
beneficial for performance. (Note that most of the underlined numbers appear in
“-f” rows.)

Furthermore, in terms of prec@5 — the metric for which performance was
optimized — the interpolation-f algorithm always improves on the initial ranking
by a wide margin that is also statistically significant.

5.3.5 Alternative clustering schemes

Heretofore, we have focused on nearest-neighbor overlapping clusters. However,
our aspect and interpolation algorithms can utilize hard clusters as well, whether
we use their “truncated” or “full” versions. Indeed, as mentioned in Section 4.4.5,
the interpolation-t algorithm implemented with hard clusters is essentially the
CBDM model proposed by Liu and Croft (2004), who tested its performance uti-
lizing agglomerative clustering techniques in the re-ranking setting. We recall that
the CBDM model scores a document d by:

λpd(q) + (1 − λ)pc(q),

where c is the single hard cluster to which d belongs (i.e., Facetsq(d) = {c}).
To study the effect of the clustering scheme on the performance of the interpo-

lation algorithm, we now turn to an analysis of its two versions (i.e., interpolation-t
and interpolation-f) when implemented with hard clusters, i.e., Facetsq(d) will now
be the set of clusters resulting from clustering Dinit using a hard clustering scheme.

One hard clustering scheme that we employ is agglomerative clustering, which
was extensively used in previous work on structural re-ranking (Willett, 1985;
Leuski, 2001; Tombros et al., 2002; Liu and Croft, 2004). The different criteria we
use for merging clusters are: single link, complete link, average distance, centroid
distance and the Ward criterion (El-Hamdouchi and Willett, 1986). Descriptions
of these criteria, with a focus on the re-ranking setting, can be found in Leuski
(2001). To produce a list of (non-overlapping) clusters using these different criteria,
we utilize a bottom-up merging approach, and stop the merging process when the
number of clusters is as required. The number of clusters we use in our experiments
is chosen from the set {2, 5, 10, 25} so as to roughly result in an average cluster
size equivalent to the cluster size used for the nearest-neighbor clustering method
we used so far.

We also use the k-means clustering algorithm, so as to follow previous work on
visualization in the re-ranking setting that utilized partitioning algorithms (Cut-
ting et al., 1992; Hearst and Pedersen, 1996). We set k to a value in {2, 5, 10, 25} to
comply with the choice we made for the agglomerative clustering methods above.5

5For both the agglomerative clustering and k-means clustering methods, all

66

The above clustering algorithms require a symmetric similarity measure, and
are usually implemented using a vector space representation. We therefore use a
“log tf.log idf” representation6 and the cosine similarity function that was used
in previous work on re-ranking using hard clusters (Willett, 1985; Leuski, 2001;
Tombros et al., 2002; Liu and Croft, 2004). In addition, for completeness of com-
parison, we also implement the nearest-neighbor clustering method using the same
vector space representation. (We will denote it as “nn-VS” to differentiate it
from our original nearest-neighbor-based clustering method which operates in the
language-model space and which we denote as “nn-LM”).

In Figure 5.2 we present the performance results of the interpolation-t and
interpolation-f algorithms when utilizing the different clustering methods. Table
5.4 then summarizes the relative performance patterns of the two algorithms: each
entry depicts in non ascending order of performance the algorithms that improve
on the initial ranking with at least 2.5% relative difference (a hat (̂) indicates that
the difference is statistically significant).

Our first observation with respect to Figure 5.2 is that in most of the relevant
settings (corpora × evaluation measures), for all clustering methods, the interpola-
tion algorithm (in both its truncated interpolation-t (“-t”) and full interpolation-f
(“-f”) versions) improves on the initial ranking, thereby once again demonstrating
its effectiveness as a cluster-based structural re-ranking paradigm.

In comparing the overlapping clustering methods to the hard clustering ones,
when using the vector space representation, we see that the interpolation-f algo-
rithm with nn-VS clustering (nearest-neighbors in a vector space) posts the best
performance in a majority of the settings. For the interpolation-t algorithm, how-
ever, this is not necessarily the case. Nevertheless, we can clearly see that in most
of the evaluation settings (for both the interpolation-t and interpolation-f algo-
rithms), the best performing results are obtained for one of the nearest-neighbor
clustering methods. Thus, these findings support the hypothesis that overlapping
clusters are effective means for modeling structure not only in a query-independent
fashion but also in a re-ranking setting.

Comparing the interpolation-t and interpolation-f algorithms, we observe in
Table 5.4 that while for the single link, average link and centroid-distance methods
the interpolation-t algorithm is superior to the interpolation-f algorithm, for the
other five clustering methods the reverse is true. Additional exploration revealed
that for the first three (single, average and centroid) the clustering usually resulted
in one large cluster along with very few small ones each often containing a single

presented results reflect an optimal choice of the number of clusters as determined
by our optimization criterion (see Section 5.3.2).

6We note that the weighting scheme for vector-space-model representation can
have considerable effect on the resultant performance. Different experiments with
estimating inter-document similarities for the work presented in this thesis showed
that “log tf.log idf” weights resulted, in general, in better performance than “tf.log
idf” weights (Zobel and Moffat, 1998). We further discuss this in Section 6.3.6.

67

document. Thus, it seems that in these cases the interpolation-t algorithm simply
enjoys the separation of what could be considered as “outliers” from the rest of the
documents, while the interpolation-f does not, since for each document all clusters
are being considered.

All in all, we believe that the most important message arising from this analysis
is that the interpolation algorithm is a highly effective paradigm for structural
re-ranking that can utilize different clustering methods, whether they result in
(soft) overlapping clusters or hard clusters.

68

Figure 5.2: Performance numbers for the “truncated” (-t) and “full” (-f) versions
of the interpolation algorithm (interpolation-t and interpolation-f respectively),
utilizing different clustering methods. Boldface: best result per column; i, o: sig-
nificant difference with the initial ranking and optimized baseline respectively;
italics: improvements over the optimized baselines.

69

(a) Performance of the interpolation-t algorithm.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .439 .635 .512 .464 .696 .560 .494 .772

nn-LM .527 i
o .499 i

o .651 .564 i .494 .707 .568 .490 .725
nn-VS .519 i

o .474 .644 .524 .446 .748 .584 .492 .761

agg-single .521 i .488 i
o .620 .528 .490 i .662 .580 .530 .783

agg-comp .493 .467 .600 .524 .468 .674 .544 .488 .740
agg-avg .525 i

o .490 i
o .619 .540 .504 i .675 .572 .532 i .765

agg-centroid .523 i
o .487 i

o .592 .528 .492 i .662 .592 .530 .773

agg-ward .491 .465 .587 .504 .446 .694 .584 .508 .715

kmeans .475 .459 .579 .532 .486 i .720 .568 .502 .743

(b) Performance of the interpolation-f algorithm.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .439 .635 .512 .464 .696 .560 .494 .772

nn-LM .537 i
o .498 i

o .628 .576 i .496 .687 .592 i .508 .767

nn-VS .523 i .490 i .642 .572 i .476 .760 .608 i .544 i
o .758

agg-single .493 .482 i .582 .516 .468 .704 .552 .476 .747

agg-comp .513 i
o .480 i

o .613 .564 i .508 i .750 .584 .534 .771
agg-avg .503 .482 i

o .599 .524 .468 .738 .568 .506 .767

agg-centroid .493 .482 i
o .584 .508 .466 .673 .556 .494 .748

agg-ward .525 i
o .491 i

o .612 .536 .484 .685 .592 .530 .762

kmeans .509 .465 .584 .556 i .482 .701 .580 .520 .753

70

Table 5.4: Comparison of the interpolation-t (T) algorithm with the interpolation-f
(F) algorithm, utilizing different clustering methods. Each entry depicts in non-
ascending order of performance the algorithms that post a 2.5% (or more) relative
performance improvement over the initial ranking (a hat (“̂ ”) indicates that the
improvement is significant). Bold highlights the best performing algorithm per
entry.

nn-LM nn-VS ag-single ag-comp. ag-avg. ag-cent. ag-ward kmeans

prec @5 F̂ T̂ F̂ T̂ T̂F F̂T T̂F T̂F F̂ T̂ FT

AP prec @10 T̂ F̂ F̂T T̂ F̂ F̂T T̂ F̂ T̂ F̂ F̂ T̂ FT

MRR TF TF T F T FT

prec @5 F̂ T̂ F̂T TF F̂T TF T FT F̂T

TREC8 prec @10 FT F T̂F F̂T T̂F T̂ FT T̂F

MRR FT F F T

prec @5 F̂T F̂T TF F TF TF FT FT

WSJ prec @10 F F̂ T F T̂F T FT FT

MRR F T F F T

5.3.6 Clusters-mediated similarity vs. distinct document

similarity

As mentioned above, the aspect-f algorithm assigns a document d the score∑
c pc(q)pd(c); the interpolation-f algorithm assigns d the score λpd(q) + (1 −

λ)
∑

c pc(q)pd(c). In these two scoring functions, clusters only play the role of
smoothing: their language models are used to smooth d’s language model so as to
provide “context” within the list Dinit.

We therefore ask now the following question: if clusters are indeed required
only for providing context within the list Dinit, can single documents play the
same role? We study this question by simply defining singleton clusters, i.e., each
document in Dinit serves as a cluster. Then, the scoring functions of the aspect-
f and interpolation-f algorithms become

∑
di∈Dinit

pdi
(q)pd(di) and λpd(q) + (1 −

λ)
∑

di∈Dinit
pdi

(q)pd(di) respectively.
Note that in this version the aspect-f algorithm assigns relatively high scores to

documents that are similar (to a large extent) to many other documents in Dinit,
and interpolation-f integrates this information with direct similarity to the query.

Table 5.5 presents results using documents as singleton clusters for both the
aspect-f and interpolation-f algorithms. Our first observation is that while the
aspect-f algorithm (with singleton clusters) only sometimes outperforms the initial
ranking, the interpolation-f (with singleton clusters) not only does so in most of
the evaluation settings, but also outperforms the optimized baselines in a majority
of the cases.

When comparing the resultant performance of the aspect-f and interpolation-
f algorithms with nearest-neighbor clusters to that obtained by using singleton
clusters (i.e., documents), we clearly see that the former is a much better approach
for both algorithms (aspect-f and interpolation-f). This gives further support to

71

Table 5.5: Comparison of the aspect-f and interpolation-f algorithms performance
with nearest-neighbors (in LM space) clusters (“nn-LM”) vs. singleton (“single”)
clusters (i.e., each document serves as a cluster). Underline: best performance
within a block (algorithm × corpus × evaluation metric). Boldface: best perfor-
mance per column; i, o: statistically significant difference with the initial ranking
and optimized baseline respectively.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

opt. baselines .465 .439 .635 .512 .464 .696 .560 .494 .772

aspect-f (single) .499 .477 .622 .508 .448 .653 .520 .484 .687
aspect-f (nn-LM) .537 io .498 io .628 .560 i .504 i .714 .576 .504 .759

interp.-f (single) .515 .497 io .615 .536 .482 .698 .564 .510 .696

interp.-f (nn-LM) .537 io .498 io .628 .576 i .496 .687 .592 i .508 .767

the hypothesis that clusters, even if used only for smoothing, play a very important
role in our algorithms.7

We also observe that the fact that the interpolation-f algorithm almost always
outperforms the aspect-f algorithm when singleton clusters are used (as is the case
for using nearest-neighbor clusters) implies that while similarity to other docu-
ments in the list is by itself a (somewhat) useful source of information, enhancing
it with information about similarity to the query can improve performance sub-
stantially.

Finally, the resultant retrieval effectiveness of utilizing inter-document simi-
larities in the list Dinit, as manifested in the performance of the interpolation-f
algorithm when implemented with singleton clusters, will lead us in the next chap-
ter to design a framework that models such similarities as links in a graph and
that leverages both information drawn from these links and from similarities to
the query.

7A similar conclusion with respect to the superiority of clusters to documents
as “pseudo-queries” was made in Kurland et al. (2005).

Chapter 6
Language-model-based graph framework
for structural re-ranking1

In the concluding section of the previous chapter, we saw that pairwise inter-
document similarities convey valuable information that can be exploited for struc-
tural re-ranking. In the Web setting, for example, explicitly-indicated pairwise
relationships — i.e., hyperlinks — help to compute which documents are the most
central. The PageRank algorithm (Brin and Page, 1998) is one of the most well
known examples for computing centrality based on hyperlink information. In this
chapter, we consider adapting this idea to the re-ranking setting for corpora in
which explicit links between documents do not exist. Then, in the next chapter we
show how to incorporate cluster-based information into the framework we develop
here for improving centrality-based (re-)ranking.

How should we form links in a non-hypertext setting? While previous work in
text summarization has applied PageRank to cosine-based links induced for pairs
of sentences (Erkan and Radev, 2004), we utilize here statistical language mod-
els. Specifically, we employ generation links, which are based on the probability
assigned by the language model induced from one document to the term sequence
comprising another2. We thus combine the strengths of two approaches; one is
based on language models used both to model textual information within docu-
ments and to infer links between them, and the other induces centrality based on
the inferred links.

We note that the analogy between hyperlinks and generation links is not perfect.
In particular, one can attribute much of the success of link-based Web-search
algorithms to the fact that hyperlinks are (often) human-provided certifications
that two pages are truly related (Kleinberg, 1999). In contrast, automatically-
induced generation links are surely a noisier source of information. However, since
we are focused on a re-ranking setting, the initial set we wish to re-rank (Dinit) could
be considered as having a reasonable ratio of relevant to non-relevant documents,
and thus forms a good foundation for our algorithms.

We also observe that generation links can be thought of as “complementing”
hyperlinks, if utilized in a Web setting, rather than replacing (or serving as the
means for re-construction of) hyperlinks. Indeed, hyperlinks indicate “connection”
between documents that are related by virtue of a decision stemming from various

1This chapter is based on work presented in a paper written with Lillian Lee
(Kurland and Lee, 2005) that appeared in the proceedings of SIGIR 2005.

2While the term “generate” is convenient, we do not think of a “generator” doc-
ument or language model as literally “creating” others. That is, we do not assume
an underlying generative model, in contrast to Lavrenko and Croft (2003), and
Lavrenko (2004), inter alia. Other work further discusses this issue and proposes
alternate terminology (e.g., “render”) (Kurland et al., 2005).

72

73

author-dependent reasons, while generation links convey “objective” information
stemming from textual similarities.

To compute centrality values for a given graph, we propose a number of meth-
ods, including variants of PageRank (Brin and Page, 1998) and HITS (a.k.a. hubs
and authorities) (Kleinberg, 1998).

Through an array of experiments, we show that centrality, as induced by graph-
based methods over our graphs, and relevance are connected. Furthermore, com-
parisons against numerous baselines show that language-model-based re-ranking
using centrality as a form of “document prior” is indeed successful at moving rel-
evant documents in the initial retrieval results higher up in the list.

In further exploration, we demonstrate the merits of our language-model-based
link induction method by comparing it with different vector-space-based notions
of similarity (including the cosine measure).

Using an additional array of experiments, we show that our centrality measures
are superior to measures based on document-specific characteristics, and explore
the “clustering” patterns of relevant and non-relevant documents within our gen-
eration graphs by studying the patterns of links induced between them.

6.1 Centrality and relevance

In the Web setting, to determine whether a document is a good candidate for
answering the information need underlying a user’s query, two types of information
(among others) are often considered. The first is the estimated relevance — the
extent to which a document’s content seems to pertain to a query as judged by
the textual similarity between them. The second is the centrality of the document,
which is estimated based on the graph structure of the Web as induced by the
hyperlink structure (Brin and Page, 1998; Kleinberg, 1998).

In this chapter, we adopt the centrality principle to our proposed re-ranking
setting wherein documents lack hyperlink information. We follow (in spirit) Klein-
berg’s (Kleinberg, 1998) proposal (for the Web setting) to define centrality over an
(augmented) initially retrieved list of documents, in trying to couple the notions
of relevance and centrality in the (augmented) initial list. However, as just men-
tioned, in contrast to the Web setting (Kleinberg, 1998), documents in our setting
do not have hyperlinks connecting them; furthermore, we focus on the initially
retrieved list and do not augment it with additional documents.

Our hypothesis is that a document that is “central” to the initially retrieved
list in terms of its being a “good representative” of other documents in the list
has good chances of being relevant to the query. Naturally, defining the notions of
“centrality” and “good representative” calls for a specific formulation, one example
of which we present in the next section. At the very least though, we can assert
that a document in the list that contains terms occurring with “high weight” in
many other documents in the list has a good chance of being relevant to the query
since the documents in the list were retrieved by virtue of their being similar

74

to the query. The concluding section of the previous chapter provided (very)
preliminary evidence for the latter observation, as the aspect-f algorithm — with
single documents acting as clusters — was shown to be effective for re-ranking on
one of our corpora.

6.2 Retrieval framework

Similarly to Section 5.2 we assume throughout this chapter that the following have
been fixed: the corpus C (in which each document has been assigned a unique nu-
merical ID); the query q (composed of a list of terms); and the set Dinit ⊆ C of most
highly ranked documents returned by some initial retrieval algorithm in response to
q (this is the set upon which re-ranking is performed). In addition, we assume the
value of an ancestry parameter α that pertains to our graph construction process
has been fixed.

For each document d ∈ C, pd(·) denotes a unigram language model induced
from d. (Specific estimation details appear in Section 6.3.1). We use g and o to
distinguish between a document treated as a “generator” and a document treated
as “offspring”, that is, something that is generated (details below).

We use the notation (V,w t) for weighted directed graphs: V is the set of vertices
and w t : V × V → {y ∈ < : y ≥ 0} is the edge-weight function. Thus, there is
a directed edge between every ordered pair of vertices, but w t may assign zero
weight to some edges. We write w t(v1 → v2) to denote the value of w t on edge
(v1, v2).

6.2.1 Relevance-flow graphs

Our use of language models to form links can be motivated by considering the
following two documents:

d1: Toronto Sheffield Salvador
d2: Salvador Salvador Salvador

Knowing that d2 is important (i.e., central or relevant) would provide strong
evidence that d1 is at least somewhat important, because d2’s importance must
stem from the term “Salvador”, which also appears in d1. However, knowing that
d1 is very important does not allow us to conclude that d2 is, since the importance
of d1 might stem from its first two terms. Using language models induced from
documents enables us to capture this asymmetry in how centrality is propagated:
we allow a document d to receive support for centrality status from a document o
only to the extent that pd(o) is relatively large. (If o is not in fact important, the
support it provides may not be significant.) Indeed, as shown in Figure 6.1, if for
simplicity’s sake we induce two unsmoothed unigram language models pd1(·) and
pd2(·) from d1 and d2 respectively, we get that pd1(d2) = pd1(“Salvador”)3 = (1/3)3

is larger than pd2(d1) = 0 (due to “Sheffield” and “Toronto” not appearing in d2).

75

Salvador, Salvador, SalvadorToronto, Sheffield, Salvador

d2d1

d1 Relevant 6⇒ d2 Relevant

d2 Relevant ⇒ d1 Relevant

Figure 6.1: Intuition behind using language models to induce link information.
Assuming unsmoothed unigram language models, pd1(d2) = pd1(“Salvador”)3 =
(1/3)3, which is larger than pd2(d1) = 0 (due to “Sheffield” and “Toronto” not
appearing in d2). Therefore, the “support” for centrality being transferred from d2

to d1 given that d2 is relevant (thick arrow) is much stronger than the “support”
transferred from d1 to d2 (thin arrow) given that d1 is relevant.

Therefore, the link induced between d2 and d1 should have higher weight than the
opposite link, indicating that d2 “transfers” more centrality status to d1 than the
other way around3.

We also note that ranking documents by pd(q) — i.e., the query likelihood
ranking principle (Ponte and Croft, 1998; Miller et al., 1999) — can be considered
a variation of our proposed centrality-based principle: given that a query is central
(relevant), rank documents by the support for centrality status that they “receive”
from the query (as captured by pd(q)).

We are thus led to the following definitions.

Definition 3. The top α generators of a document d ∈ Dinit, denoted TopGen(d),
is the set of α documents g ∈ Dinit − {d} that yield the highest pg(d), where ties
are broken by document ID. (We suppress α in our notation for clarity.)

Definition 4. The offspring of a document d ∈ Dinit are those documents that d
is a top generator of, i.e., the set {o ∈ Dinit : d ∈ TopGen(o)}.

Note that multiple documents can share offspring, and that it is possible for a
document to have no offspring.

3The inequality pd1(d2) > pd2(d1) also holds if smoothed language models are
utilized. As noted before, our actual method for language-model induction does
involve smoothing (details in section 6.3.1).

76

We can encode top-generation relationships using either of two relevance-flow
graphs4 GU = (Dinit,w tU) and GW = (Dinit,w tW), where for o, g ∈ Dinit,

w tU(o → g) =

{
1 if g ∈ TopGen(o),

0 otherwise;

w tW (o → g) =

{
pg(o) if g ∈ TopGen(o),

0 otherwise.

Thus, in both graphs, positive-weight edges lead only from offspring to their respec-
tive top α generators; but GU treats (edges to) the top generators of o uniformly,
whereas GW differentially weights them by the probability their induced language
models assign to o.

Several of our algorithms (namely, the direct variants of PageRank) rely on the
assumption that the graph satisfies certain connectivity properties with respect to
those edges with non-zero weight and that for each o ∈ Dinit,

∑
g w t(o → g) = 1

holds. Since GU and GW do not satisfy these assumptions, we define “smoothed”
versions of them in which all edges (including self-loops) have non-zero weight. To
be specific, we employ PageRank’s (Brin and Page, 1998) smoothing technique.

Definition 5. Given an edge-weighted directed graph G = (Dinit,w t) and smooth-
ing parameter λ ∈ [0, 1), the smoothed graph G[λ] = (Dinit,w t[λ]) has edge weights
defined as follows: for every o, g ∈ Dinit,

w t[λ](o → g) = λ ·
1

|Dinit|
+ (1 − λ) ·

w t(o → g)∑
g′∈Dinit

w t(o → g′)
.

Note that the definition is valid (i.e.,
∑

g′∈Dinit
w t(o → g′) 6= 0), since each

document is assigned non-zero generation probability by all documents in Dinit

(as a result of applying smoothed language models; details in section 6.3.1). Fur-
thermore, it is easy to see that

∑
g′∈Dinit

w t[λ](o → g′) = 1, and thus the weights

of all edges leading out of any given node in G[λ] may be treated as transition
probabilities.

With these concepts in hand, we can now phrase our centrality-determination
task as follows: given a relevance-flow graph, compute for each node (i.e., doc-
ument) how much centrality is “transferred” to it from other nodes — by our
edge-weight definitions, centrality therefore corresponds to the degree to which
a document is responsible for “generating” (perhaps indirectly) the other docu-
ments in the initially retrieved set. We now consider different ways to formalize
this notion of transferrence of centrality.

4We use the term “relevance-flow” for our graphs as they describe propagation
of “centrality status”, and under our hypothesis (and as will be shown in Sec-
tion 6.3.4) centrality and relevance are correlated in the re-ranking setting. The
paper upon which this chapter was developed uses the terminology “generation
graphs” and so did some work utilizing our graphs to form document representa-
tions (Erkan, 2006).

77

6.2.2 Computing graph centrality

A straightforward way to define the centrality of a document d with respect to a
given graph G = (Dinit,w t) is to set it to d’s weighted in-degree, which we call its
influx:

C enI(d; G)
def
=

∑

o∈Dinit

w t(o → d). (6.1)

The Uniform Influx algorithm sets G = GU , so that the only thing that matters
is how many offspring d has; it is thus reminiscent of the journal impact factor
function from bibliometrics (Garfield, 1972), which computes normalized counts of
explicit citation links. The Weighted Influx algorithm sets G = GW , so that the
generation probabilities that d assigns to its offspring are factored in as well.

As previously noted by Pinski and Narin (1976) in their work on influence
weights, one intuition not accounted for by weighted in-degree methods is that
a document with even a great many offspring should not be considered central
(or relevant) if those offspring are themselves very non-central. We can easily
modify Equation 6.1 to model this intuition; we simply scale the evidence from a
particular offspring document by that offspring’s centrality, thus arriving at the
following recursive equation:

CenRI(d; G)
def
=

∑

o∈Dinit

w t(o → d) · CenRI(o; G), (6.2)

where we also require that
∑

d∈Dinit
CenRI(d; G) = 1. Unfortunately, for arbitrary

GU and GW , Equation 6.2 may not have a unique solution or even any solution
at all under the normalization constraint just given; however, a unique solution is
guaranteed to exist for their PageRank-smoothed versions, since in such graphs,
the edge weights correspond to the transition probabilities for a Markov chain that
is aperiodic and irreducible, and hence has a unique stationary distribution (Grim-
mett and Stirzaker, 2001) that can be computed by a variety of means (Stewart,
1994; Golub and Van Loan, 1996; Grassmann et al., 1985). 5 In our experiments,
power iteration converged very quickly.

By analogy with the two influx algorithms given above, then, we have the
Recursive Uniform Influx algorithm, which sets G = G

[λ]
U and is a direct ana-

log of PageRank (Brin and Page, 1998), and the Recursive Weighted Influx

algorithm, which sets G = G
[λ]
W .

5Note that under the original “random surfer” model (Brin and Page, 1998),
the sum of the transition probabilities out of nodes with no positive-weight edges
emanating from them would be (1−λ) not 1 (Ng et al., 2001; Langville and Meyer,
2005). However, by virtue of the edge-weight functions detailed in this chapter,
such nodes do not exist in our graphs.

78

6.2.3 Incorporating initial scores

The centrality scores presented above can be used in isolation as criteria by which
to rank the documents in Dinit, as our hypothesis states that centrality and rele-
vance should be correlated in the re-ranking setting. However, if available, it might
be useful to incorporate more information from the initial retrieval engine to help
handle cases where centrality and relevance are not strongly correlated. (Recall
that the initial retrieval engine participates in any case by specifying the set Dinit.)
In our experiments, we explore one concrete instantiation of this approach: we
apply language-model-based retrieval (Ponte and Croft, 1998; Croft and Lafferty,
2003) to determine Dinit (as in Section 5.3.2 of Chapter 5), and consider the fol-
lowing family of re-ranking criteria:

C en(d; G) · pd(q), (6.3)

where d ∈ Dinit, C en is one of the centrality functions defined in the previous
section, and pd(q) is the score that the initial retrieval engine assigns to d. This
gives rise to the algorithms Uniform Influx+LM 6, Weighted Influx+LM,
Recursive Uniform Influx+LM, and Recursive Weighted Influx+LM.

Incidentally, our choosing pd(q) as initial score function has the interesting
consequence that it suggests interpreting C en(d; G) as a document “prior” — in
fact, Lafferty and Zhai write, “with hypertext, [a document prior] might be the
distribution calculated using the ‘PageRank’ scheme” (Lafferty and Zhai, 2001).
We will return to this idea later.

6.3 Evaluation

In what follows, we first describe our language-model induction method. We then
describe an array of experiments evaluating the effectiveness of our algorithms in
re-ranking an initially retrieved list to improve precision at top ranks. We also
explore via a controlled experimental setup the connection between centrality and
relevance, and in doing so study the way relevant and non-relevant documents are
situated within our graphs. We then compare our algorithms with previously pro-
posed measures for inducing centrality that are based on document-specific prop-
erties. We analyze the importance of basing our graph formation on a language
modeling framework and generation probabilities by studying an analogous frame-
work using a vector-space representation and corresponding similarity measures.
In addition, we examine another well-known Web-based algorithm for inducing
centrality, HITS (Kleinberg, 1999), that in contrast to our algorithms is based on
two different types of centrality (hub and authority) that are natural to the Web
setting.

6Note that the ranking principle of the Uniform Influx+LM algorithm is the
same as that of the bag-select algorithm (when implemented on top of our LM-
based nearest-neighbor clusters) in Section 5.2 of Chapter 5.

79

6.3.1 Language model induction

For estimating pd(·), treated as a similarity rather than a probability, we use the
estimate pKL,µ

d (·) from Equation 2.5 in Section 2.3. As described in Section 2.3,
for term sequence ~t the following equality holds:

pKL,µ
d (~t) = exp

(
H(~t)

)
· p

[µ]
d (~t)

1
|~t| .

High entropy may be correlated with a larger number of unique terms — for
example, we get an entropy of 0 for the document “Salvador Salvador Salvador”
but log 3 for “Toronto Sheffield Salvador” — which, in turn, has previously been
suggested as a cue for relevance (Singhal et al., 1996; Hiemstra and Kraaij, 1999).
Furthermore, in Section 6.3.5 we show that in the re-ranking setting, high entropy
might be an indicator for relevance. Hence, generators of documents inducing high-
entropy language models may be good candidates for centrality status. (We hasten
to point out, though, that for the algorithms based on smoothed graphs (Definition
5), the entropy term cancels out due to our normalization of edge weights.)

6.3.2 Experimental setting

We use the same experimental setup as that of Section 5.3.2. Specifically, our
choice of Dinit (|Dinit| = 50) and its initial ranking, the optimized baselines and
the smoothing parameter (µ) for the estimated language models are all described
in Section 5.3.2 (page 61).

We choose the value of α (the “graph out-degree”, that is, the ancestry param-
eter controlling the number of top generators considered for each document) from
{2, 4, 9, 19, 29, 39, 49}; the search range for λ (the edge-weight smoothing factor) is
0.05, 0.1, 0.2, . . . , 0.9, 0.95. We optimize performance for prec@5; the optimization
procedure for parameter tuning is the same as that described in Section 5.3.2.

In the results tables that follow, we use the following abbreviations for algorithm
names.

U-In Uniform Influx
W-In Weighted Influx

R-U-In Recursive Uniform Influx
R-W-In Recursive Weighted Influx

U-In+LM Uniform Influx+LM
W-In+LM Weighted Influx+LM

R-U-In+LM Recursive Uniform Influx+LM
R-W-In+LM Recursive Weighted Influx+LM

80

Table 6.1: Primary experimental results, showing algorithm performance with re-
spect to our 9 evaluation settings (3 performance metrics × 3 corpora). For each
evaluation setting, improvements over the optimized baselines are given in italics;
statistically significant differences between our structural re-ranking algorithms
and the initial ranking and optimized baselines are indicated by i and o respec-
tively; bold highlights the best results over all ten algorithms.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

upper bound .876 .788 .930 .944 .850 .980 .896 .800 1.000
init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .439 .635 .512 .464 .696 .560 .494 .772

U-In .513 .492 i
o .640 .500 .442 .622 .512 .472 .673

W-In .515 .487 i .643 .488 .432 .637 .520 .470 .644 o

U-In+LM .509 .494 i
o .631 .528 .518 i

o .665 .544 .490 .724
W-In+LM .511 i .486 i

o .630 .516 .464 .703 .560 .500 .787

R-U-In .513 .477 .625 .532 .450 .687 .536 .478 .707
R-W-In .519 .480 .632 .524 .446 .666 .536 .486 .699
R-U-In+LM .519 i

o .491 i
o .652 .556 .460 .684 .576 i .496 .757

R-W-In+LM .531 i
o .492 i

o .630 .560 .460 .676 .572 i .496 .747

81

6.3.3 Primary evaluations

Our main experimental results are presented in Table 6.1. The first three rows
specify reference-comparison data. The initial ranking was, as described in Section
5.3.2, produced using pKL,µ

d (q) with µ chosen to optimize for non-interpolated
precision at 1000. We recall that the empirical upper bound on structural re-rank-
ing, which applies to any algorithm that re-ranks Dinit, indicates the performance
that would be achieved if all the relevant documents within the initial fifty were
placed at the top of the retrieval list.

The first question we are interested in is how our graph-based algorithms taken
as a whole do. As shown in Table 6.1, our methods improve upon the initial
ranking in many cases, specifically, roughly 2/3 of the 72 relevant comparisons (8
centrality-based algorithms × 3 corpora × 3 evaluation metrics).

An even more gratifying observation is that Table 6.1 shows (via italics and
boldface) that in many cases, our algorithms, even though optimized for precision
at 5, can outperform a language model optimized for a different (albeit related)
metric m even when performance is measured with respect to m; see, for example,
the results for precision at 10 on the AP corpus.

Closer examination of the results in Table 6.1 reveals that in a majority of the
evaluation settings for AP and TREC8, our algorithms are more effective when
applied to the graph GW than when applied to GU . On WSJ, however, GU seems
to be a better choice. In general, the performance patterns imply that it is a bit
better to explicitly incorporate generation probabilities into the edge weights of
our generation graphs than to treat all the top generators of a document equally.
(Experiments with the AP89 corpus in Kurland and Lee (2005) provide further
support for this conclusion.)

Another observation we can draw from Table 6.1 is that adding in query-
generation probabilities as weights on the centrality scores (see Equation 6.3) tends
to enhance performance. This can be seen by comparing rows labeled with some al-
gorithm abbreviation “X” against the corresponding rows labeled “X+LM”: about
83% of the 36 relevant comparisons exhibit this improvement. Most of the coun-
terexamples occur in settings involving precision at 10 and MRR, which we did
not optimize our algorithms for.

Similarly, by comparing “Y”-labeled rows with “R-Y”-labeled ones, we see
that in about 2/3 of the 36 relevant comparisons, it is better to use the recursive
formulation of Equation 6.2, where the centrality of a document is affected by the
centrality of its offspring, than to ignore offspring centrality as is done by Equation
6.1.

Perhaps not surprisingly, then, the Recursive Uniform Influx+LM and Recur-
sive Weighted Influx+LM algorithms, which combine the two preferred features
just described (recursive centrality computation and use of the initial search en-
gine’s score function) appear to be our best performing algorithms: working from
a starting point below the optimized baselines, they improve the initial retrieval
set to yield results that even at their worst, are not only clearly better than the

82

initial ranking for precision at 5 and 10, but are also statistically indistinguishable
from the optimized baselines. Moreover, on both AP and WSJ, the improvements
they post over the initial ranking with respect to prec@5, the metric for which
performance was optimized, are statistically significant. (In fact, on AP they
post significant improvements over the optimized baselines for both prec@5 and
prec@10).

83

Figure 6.2: Centrality and relevance: the effect of varying the percentage of rele-
vant documents in Dinit on the performance (prec@5) of the Weighted Influx and
Recursive Weighted Influx algorithms.

84

AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

@
5

% relevant docs

Effect of percentage of relevant documents on prec@5 results, corpus:AP

RW-Influx
W-Influx
random

TREC8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

@
5

% relevant docs

Effect of percentage of relevant documents on prec@5 results, corpus:TREC8

RW-Influx
W-Influx
random

WSJ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

@
5

% relevant docs

Effect of percentage of relevant documents on prec@5 results, corpus:WSJ

RW-Influx
W-Influx
random

85

6.3.4 Centrality and relevance

We now further explore the connection between centrality in Dinit and relevance.
In the previous section we saw that ranking solely based on centrality values (i.e.,
using the algorithms Uniform Influx, Weighted Influx, Recursive Uniform Influx
and Recursive Weighted Influx) was effective to varying degrees. For example,
while on the AP corpus the Uniform Influx and Weighted Influx algorithms post
significant improvements (for prec@5 and prec@10) not only over the initial ranking
but also over the optimized baselines, their performance is somewhat inferior to
the initial ranking on WSJ and TREC8. One reason for such variation is the
percentage of relevant documents in Dinit; this percentage exhibits high variance
over different queries and corpora.

To factor out the differences in percentage of relevant documents in Dinit across
all queries and across all corpora, in order to evaluate the effect it has on the cor-
relation between centrality and relevance, we establish the following experimental
setting. For each query, we scan the original ranked list of documents (from which
Dinit was extracted) from the highest ranked document to the document at rank
1000, and collect n relevant documents. (Queries with fewer than n relevant doc-
uments among the 1000 are omitted; we experimented with n = 5, 10, 20, 30, 40.)
Then, we perform another pass (top to bottom) and accumulate 50−n non-relevant
documents. Dinit is then the set of 50 collected documents, n of which are relevant.

Note that our list construction is guided by the initial ranking in order to
maintain the similarity patterns (with respect to the query) among the returned
results as far as possible. We thus try to preserve (as much as possible) the concept
of “re-ranking an initial list of documents retrieved in response to a query”.

86

Figure 6.3: The percentage of generation weight on edges between a (non) rele-
vant document and its 5 top generators that are (non) relevant (wR2R (wN2N)),
with respect to the total generation weight on the document’s outgoing edges (per-
centages are averaged over documents) as a function of the percentage of relevant
documents in Dinit.

87

AP

75

50

25

8070605040302010

av
g.

 fl
ow

% relevant docs

Flow of generation weight among rel and non rel docs, corpus:AP

wR2R,deg=5
wN2N,deg=5

TREC8

75

50

25

8070605040302010

av
g.

 fl
ow

% relevant docs

Flow of generation weight among rel and non rel docs, corpus:TREC8

wR2R,deg=5
wN2N,deg=5

WSJ

75

50

25

8070605040302010

av
g.

 fl
ow

% relevant docs

Flow of generation weight among rel and non rel docs, corpus:WSJ

wR2R,deg=5
wN2N,deg=5

88

Figure 6.2 presents the prec@5 performance of our Weighted Influx and Re-
cursive Weighted Influx algorithms when the percentage of relevant documents in
Dinit is varied as described above. (We present only prec@5 and the weighted-
graphs-based algorithms so as to avoid cluttering the figures; results for prec@10
exhibit exactly the same patterns as those for prec@5.)

Our first observation with respect to Figure 6.2 is that for all three corpora,
centrality as induced by either of the two presented algorithms is connected with
relevance, as the performance curves of both algorithms are above the random
line. We also note that for both algorithms (on all three corpora), the perfor-
mance is monotonically increasing with respect to the percentage of relevant doc-
uments. (We hasten to point out that one would expect from any re-ranking
method to exhibit performance that is monotonically non-decreasing with respect
to the percentage of relevant documents in the initial list upon which re-ranking
is performed.)

We also note that on TREC8, our algorithms performance is somewhat closer
to random than on WSJ and AP. We attribute this to the fact that TREC8 is a
much more heterogeneous corpus than the other two, and the queries which we
tested for it are considered challenging (Hu et al., 2003).

In comparing the performance of the Weighted Influx and Recursive Weighted
Influx algorithms in Figure 6.2, we clearly see that the latter is at least as effective
as the former for all tested values of relevant document percentage in Dinit and for
all three corpora. This finding, again, supports the hypothesis that for determining
the centrality of a document, the centrality of the documents from which it gets
support is a very important source of information that should be considered. (See
Equation 6.2 vs. Equation 6.1.)

Structure of Dinit An interesting question, which naturally affects the corre-
lation between centrality in Dinit (as induced by our methods) and relevance, is
the situation of relevant and non-relevant documents within the graphs we con-
struct. More specifically, we would like to know whether the top generators of
relevant documents tend to themselves be relevant, and whether the top gener-
ators of non-relevant documents tend to also be non-relevant. Such an analysis
is closely related to van Rijsbergen’s cluster hypothesis:“Closely associated doc-
uments tend to be relevant to the same requests” (van Rijsbergen, 1979, chapter
3). As mentioned before, this hypothesis has motivated many cluster-based re-
trieval approaches (e.g., Jardine and Rijsbergen (1971) and Croft (1980)) and has
also been explored in the re-ranking setting (Leuski and Allan, 1998; Hearst and
Pedersen, 1996; Tombros et al., 2002).

To perform this analysis, we measure the relative weights on edges from a
(non-) relevant document to its top generators that are also (non-)relevant with
respect to the total sum of weights on the document’s outgoing edges. Indeed, this
measure, when applied to the uniform-edge-weight graph GU , is exactly Voorhees’
(1985) cluster-hypothesis test applied to the re-ranking setting. Figure 6.3 presents

89

the values of this estimate using the GW graph (whose edge weights represent
generation “probabilities”) constructed with α = 5 (i.e., we consider for each
document its 5 top generators).7 We present the resultant numbers as a function
of the percentage of relevant documents in Dinit (We control this percentage as
described above.)

Our first observation from Figure 6.3 is that increasing the percent of relevant
documents results in two effects. The flow of generation weight from relevant
documents to relevant documents increases (as the “wR2R” line indicates), and
therefore the flow of generation weight from relevant to non-relevant documents
decreases. In addition, the flow of generation weight from non-relevant documents
to relevant document increases (since the “wN2N” line goes down), and therefore
flow from non-relevant to non-relevant documents decreases.

Perhaps the most important message rising from Figure 6.3 comes from ob-
serving the points in the graphs indicating that 50% of the documents in Dinit are
relevant. In these cases, more than 75% of the generation weight that a relevant
document “transfers” to its top-generators goes to relevant documents, while about
more than 45% of the generation weight that a non-relevant document “transfers”
goes to relevant documents. Therefore, while the set of relevant documents in Dinit

“tends” to keep centrality support within the set, the set of non-relevant documents
“leaks” a lot of centrality-status support to relevant documents. This observation
helps to shed some light on our finding above that centrality (as induced by our
methods) in Dinit and relevance are correlated.

6.3.5 Non-structural re-ranking

So far, we have discussed the use of graph-based centrality as a re-ranking criterion,
the idea being that relationships between documents can serve as an additional
source of information. Our best empirical results in Table 6.1 seem to be produced
by using the weighted formulation given in Equation 6.3 from Section 6.2.3:

C en(d; G) · pd(q).

Since, as noted above, in this equation C en(d; G) can be regarded as a “prior”
on documents, it is natural to ask whether other previously-proposed biases on
generation probabilities might prove similarly useful. The comparison is especially
interesting because these biases have tended to be isolated-document heuristics; we
thus refer to their use as a replacement for C en(d; G) as “non-structural re-rank-
ing”.

Document length has been employed several times in the past to model the
intuition that longer texts contain more information (Hiemstra and Kraaij, 1999;
Kraaij and Westerveld, 2001; Miller et al., 1999). We refine this hypothesis to
disentangle several distinct notions of information: the number of tokens in a

7Results for GU exhibit the exact same patterns as those for GW and are there-
fore omitted.

90

Table 6.2: Comparison between our use of language-model-based structural-
centrality scores in Equation 6.3 vs. non-structural re-ranking heuristics. For
each evaluation setting, italics mark improvements over the default baseline of
uniform centrality scores, stars (*) indicate statistically significant differences with
this default baseline, and bold highlights the best results over all eight algorithms.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

uniform (= init) .457 .432 .596 .500 .456 .691 .536 .484 .748

W-In .511∗ .486∗ .630 .516 .464 .703 .560 .500 .787

R-W-In .531∗ .492∗ .630 .560 .460 .676 .572∗ .496 .747

length .416 .414 .551 .472 .414 .642 .480 .446 .694
log(length) .453 .432 .606 .496 .468 .692 .552 .484 .717
entropy .461 .425 .608 .496 .468 .717∗ .544 .486 .722
uniqTerms .420 .413 .560 .492 .442 .712 .508 .456 .698
log(uniqTerms) .459 .423 .608 .496 .472 .700 .544 .490 .723

document, the distribution of these tokens, and the number of types (“Salvador
Salvador Salvador” contains three tokens but only one type). Thus, as substitu-
tions for centrality in the above expression, we consider not only document length,
but also the entropy of the term distribution and the number of unique terms,
the latter statistic having served as the basis for pivoted unique normalization in
Singhal et al. (1996). As baseline, we took the initial retrieval results; note that
doing so corresponds to using a uniform bias, or, equivalently, using no bias at all.

As can be seen in Table 6.2, taking the log of token or type count is an improve-
ment over using the raw frequencies, often yielding above-baseline performance.
The entropy is more effective than raw frequency of either tokens or types, and
in one case leads to the best performance overall. However, in the majority of
settings, structural re-ranking gives the highest accuracies.

6.3.6 Information representation and similarity measures

We have advocated the use of generation relationships to define centrality, where
these asymmetric relationships are based on language-model probabilities. To com-
pare our choice with previously proposed notions of inter-document relationships,
we first distinguish between two aspects. The first is information representation;
in our framework, documents are represented via their induced unigram language
models. Another well-known alternative is the vector-space representation (Salton
et al., 1975). Similarity measure is the second aspect we have to consider. Mod-
els based on a vector-space representation often use the cosine as a (symmetric)
similarity measure — indeed, as mentioned above, previous work in summariza-
tion (Erkan and Radev, 2004) used the cosine to determine centrality in ways very
similar to the ones we have considered.

Figure 6.4 presents a comparison of the different methods we experimented
with to define relevance-flow graphs. We focus on unigram language models and

91

“log(tf).log(idf)”-weight vectors (Zobel and Moffat, 1998) for document represen-
tation8, as they represent two approaches that have formed the basis for numerous
approaches in information retrieval. While there is a huge number of similarity
measures one can think of, we focus on a few simple but representative choices,
rather than attempt to exhaustively search the enormous space of possible models
of similarity.

Table (a) of Figure 6.4 provides the specification of the methods we compare,
focusing on differences in choice of representation and similarity measure. The first
two methods are based on a (smoothed) unigram language-model representation.
The L method is the one we we have established our graph formulation on, i.e.,
language models with generation probabilities (details in Section 6.3.1). Method
S utilizes the J divergence (Jeffreys, 1946), resulting in a symmetric variant of the
generation probabilities in L: for two probability distributions p and q over terms,
J (p || q) = D (p || q) + D (q || p).

The next three methods utilize the vector-space representation based on
“log(tf).log(idf)” weights. In C, the cosine of the angle between the vector rep-
resentation of d1 and d2 determines similarity, whereas in method T we use the
inner product between the respective vectors. Method A presents an asymmetric
variant of the previous two measures (we recall that cos(d1, d2) = d1·d2

||d1||2·||d2||2
). It

is interesting to note that this measure incorporates length normalization of d2,
which is similar in spirit to the “normalization” embedded in our estimates of
language-model generation probabilities (refer back to Section 2.3 (Chapter 2) for
details).

To run the evaluation for methods S, C, T and A we simply modify Definition
3 to use the corresponding similarity measure as the basis for determining edge
weights of our graphs. Note that the fact that a measure is symmetric does not
imply that edges (v1, v2) and (v2, v1) get the same weight even in our non-smoothed
graphs — document d1 being a top “generator” of d2 with respect to the measure
does not imply the reverse. It should also be observed that the language-model
weights on centrality scores (i.e., the pd(q) term in Equation 6.3, on which the
“+LM” algorithms are based) were not replaced with the similarity measure values,
which makes sense since we want our comparison to focus on the effect of different
means of computing graph-based centrality.

8Alternative representation utilizing tf.log(idf) weights resulted in inferior per-
formance for the methods we examined.

92

Method Information representation Similarity measure (sim(d1,d2))

L language model LM generation probability exp
“
−D(ep MLE

d1
(·)||ep [µ]

d2
(·))

”

S language model symmetric LM-based measure exp
“
−J

“
ep MLE
d1

(·)
˛̨
˛
˛̨
˛ ep [µ]

d2
(·)

””

C vector space cosine cos(d1, d2)
T vector space inner product d1 · d2

A vector space “asymmetric cosine (inner product)” d1·d2

||d2||2
= cos(d1, d2) × ||d1||2

(a) Methods for forming relevance-flow graphs. Depending on the information representation approach, di (i =
1, 2) refers either to the term sequence that di is composed of (language model) or to di’s vectorial representation
(vector space). D and J denote KL divergence and J divergence respectively (J (p || q) = D (p || q) + D (q || p)).

U-In W-In U-In+LM W-In+LM R-U-In R-W-In R-U-In+LM R-W-In+LM

prec @5 LCAT LACT T̂ LCA L̂ĈÂT ĈÂLT LCAT L̂ĈÂT̂ L̂ĈÂT

AP prec @10 L̂CTA L̂CAT L̂T̂CA L̂ÂĈT ĈÂLT ĈÂLT L̂ĈÂT̂ ĈÂL̂T̂
MRR L L L L L LCA LCA

prec @5 L L L LCA

TREC8 prec @10 L̂CA ĈÂ

MRR T

prec @5 C CT̂A ACT CA T̂ ĈÂL̂ T CAL̂

WSJ prec @10 CA ĈÂ

MRR T̂ L ĈÂT

(b) Comparison of the different methods specified in Table (a) for relevance-flow-graph formation. In each entry,
methods that pose a relative improvement of at least 5% over the initial ranking are ordered left to right in
non-ascending order of performance (best performing method in each entry, i.e., the leftmost one, is boldfaced).
A hat (“̂ ”) marks methods that post a statistically significant improvement with respect to the initial ranking.

method best better than init. ranking significantly better than init. ranking

L 47.2% 63.9% 16.7%
S 1.4% 26.4% 0%

C 36.1% 72.2% 18.1%

T 12.5% 56.9% 11.1%
A 2.8% 70.8% 18.1%

(c) Summary of the relative performance of methods in Table (a). For each method, the percentage of cases
it performs the best, outperforms the initial ranking (by any margin) and significantly outperforms the initial
ranking is presented. Percentages refer to the 72 relevant comparisons: 8 centrality-based algorithms × 3 corpora
× 3 evaluation metrics. Bold: highest percent per column.

Figure 6.4: Comparison of different methods for defining relevance-flow
graphs.

93

As can be seen in Table (c) of Figure 6.4, the L method (language-model
generation probabilities) is in most cases the best performing method. Additional
pairwise comparisons with the other methods revealed that indeed L is the best
performing method. 9

Table (c) shows that both the C (cosine) and A (its asymmetric variant) meth-
ods are very effective, as can be seen by the percentage of times they improve on
the initial ranking (and significantly so). Pairwise comparisons between the two
showed that neither of which managed to substantially outperform the other.

In comparing symmetric with asymmetric measures, we first see that our orig-
inal proposal of asymmetric generation probabilities (L) is much more effective
than its symmetric version (S) as can be seen in Tables (b) and (c). In compar-
ing the inner product with its asymmetric variant (A), we see that the latter is
more effective with respect to improvements over the initial ranking (and their
significance). Furthermore, pairwise comparisons of the two methods give further
support for the superiority of the asymmetric variant (A). However, as mentioned
above, when comparing C and A — which is also C’s asymmetric variant — with
respect to pairwise comparisons, none of the two methods is superior to the other.
(Although according to the “best performing” criterion one might suggest that C
is superior.) We hasten to point, although, that our methods S and A are not
necessarily the most effective ones for (a-)symmetrizing other measures.

Overall, while language-model generation probabilities indeed seem to be an
attractive choice compared to other inter-document relationships considered in past
literature, we believe that the important message emerging from our findings is that
the overall graph-based structural re-ranking approach is a flexible and effective
paradigm that can incorporate different types of inter-document relationships when
appropriate.

6.3.7 Inducing centrality with the HITS algorithm

One well-known alternative method for computing centrality in a graph is the
HITS algorithm (Kleinberg, 1998), originally proposed for Web search. There has
been some work utilizing it for text summarization in non-Web domains as well
(Mihalcea, 2004). The reason we have not yet discussed it in detail is that it differs
conceptually from our proposed algorithms in an important way: two different

9On the AP89 corpus used in Kurland and Lee (2005), some of the vector-
space-based methods (C and T) are in general superior to the L method. Results
for AP89 are omitted from this chapter as many of the queries for AP89 have no
relevant documents in Dinit. However, it is also important to note that our choice
of weight function for the vector-space methods constitutes an “optimization” step.
Case in point: using tf.log(idf) weights (instead of log(tf).log(idf) weights) results
in vector-space-based performance substantially inferior to that of L in most cases.
A possible analogous optimization step for L could be tuning the language-model
smoothing parameter (see Section 2.3 of Chapter 2).

94

Table 6.3: Comparing the HITS-based algorithms. For each of the four algorithms,
we evaluate using either authority (A) or hub-ness (H) as centrality score. An
entry depicts those centrality scores, if any, that lead to performance superior
to that of the initial ranking. The left-to-right ordering within an entry reflects
descending performance; the more effective centrality score is boldfaced. A hat
(“̂ ”) marks instances in which the improvement over the initial ranking is to a
statistical significant degree.

U-HITS W-HITS U-HITS+LM W-HITS+LM

prec @5 A AH ÂH AH

AP prec @10 AH AH ÂH AH

MRR A A AH A

prec @5 AH A

TREC8 prec @10 ÂH H

MRR H H

prec @5 AH AH

WSJ prec @10 A A

MRR H A

notions of centrality are identified, represented by hub and authority scores. While
the concepts of hubs and authorities are highly suitable for Web-search scenarios,
it is less clear whether it is useful in our setting to distinguish between the two.

Using our graph notation from section 6.2, we define the authority and hub
score of a document to be:

CenAUTH(d, G)
def
=
∑

o∈Off(d) w t(o → d) · CenHUB(o, G);

CenHUB(d, G)
def
=
∑

g∈TopGen(d) w t(d → g) · CenAUTH(g, G).

Convergence of an iterative procedure to determine the scores is guaranteed under
mild assumptions (Kleinberg, 1999) 10.

Similarly to the definitions of the (recursive) influx algorithms in section 6.2,
we define the algorithms U-HITS (which sets G = GU) and W-HITS (which sets
G = GW). In either case, we compute both CenAUTH(d, G) and CenHUB(d, G),
but only one is chosen as the centrality score on which the actual ranking is based.
The corresponding algorithms based on Equation 6.3 are termed U-HITS+LM
and W-HITS+LM respectively; again, for each such algorithm, we may choose
to use either hub or authority scores as centrality measures.

Performance comparison of the HITS-based algorithms are presented in Table
6.3. Each entry in the table depicts in descending order of performance which
choices, if any, of centrality measure result in performance better than that of
the initial ranking. The hats (“̂ ”) mark improvements that are statistically sig-
nificant. By counting the number of appearances of A (authority) in Table 6.3,

10Strictly speaking, the algorithm and proof of convergence as originally pre-
sented (Kleinberg, 1998) need (trivial) modification to apply to edge-weighted
graphs.

95

Table 6.4: Performance comparison of the HITS-based algorithms, utilizing au-
thority scores, as implemented on unsmoothed and smoothed (S) graphs with the
recursive influx algorithms. Underline: best performance per block (3 algorithms
× evaluation measure). Boldface: best result per column.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

U-HITS .509 .482 .645 .500 .452 .668 .532 .474 .685
(S)U-HITS .517 .480 .627 .536 .464 .636 .512 .474 .696
R-U-In .513 .477 .625 .532 .450 .687 .536 .478 .707

W-HITS .509 .486 .638 .440 .424 .648 .504 .464 .638
(S)W-HITS .511 .471 .642 .488 .440 .637 .520 .470 .642
R-W-In .519 .480 .632 .524 .446 .666 .536 .486 .699

U-HITS+LM .519 .491 .669 .528 .502 .667 .544 .490 .702
(S)U-HITS+LM .525 .493 .643 .544 .500 .683 .572 .504 .768
R-U-In+LM .519 .491 .652 .556 .460 .684 .576 .496 .757

W-HITS+LM .519 .492 .635 .504 .452 .674 .564 .490 .771
(S)W-HITS+LM .527 .487 .629 .528 .462 .665 .568 .498 .772

R-W-In+LM .531 .492 .630 .560 .460 .676 .572 .496 .747

we observe that authority scores lead to improvements over the initial ranking
in about 55% of the relevant comparisons (4 algorithms × 3 evaluation measures
× 3 corpora). Furthermore, if we focus on prec@5, the evaluation measure for
which performance was optimized, authority scores lead to improvements in 8 out
of 12 relevant comparisons. In addition, when examining the results for the U-
HITS+LM and W-HITS+LM algorithms when authority scores act as a “prior”
on the initial search engine’s score (pd(q)), we get 14 cases of improvement over
the initial ranking out of 18 relevant comparisons. (We hasten to point out that
while Recursive Uniform Influx and Recursive Weighted Influx scores correspond
to a stationary distribution that could be loosely interpreted as a prior, in which
case multiplicative combination with query likelihood is sensible (refer to Equation
6.3 of Section 6.2), it is not usual to assign a probabilistic interpretation to hub or
authority scores. However, for completeness of the comparison to follow, we also
experimented with HITS-based scores as “priors”.) Thus, authority scores seems
to be quite an effective centrality measure in our graph framework. In contrast,
hub scores lead to improvements over the initial ranking in only 42% of the relevant
comparisons, and in the vast majority of Table 6.3’s entries H is positioned after
A, indicating that the hub scores lead to performance inferior to that achieved by
utilizing authority scores.

This finding strengthens our hypothesis in section 6.2.1 that effective structural
re-ranking of Dinit can be accomplished by identifying documents that are “good”
generators of other documents; indeed, documents with high authority scores are
“good” generators, while documents with high hub scores are offspring of such
generators.

In further analysis, we compare the HITS-based algorithms, utilizing authority
scores, to our recursive influx algorithms, since these were shown to be quite ef-
fective in Table 6.2 and since both paradigms employ recursion in their definitions

96

of centrality. However, such a comparison might not be completely fair since the
recursive influx algorithms are implemented on graphs wherein the edge weights
were smoothed (refer to Definition 5 in Section 6.2), while the HITS-based ones are
not. (The HITS algorithm does not require any smoothing of edge weights.) This
difference might be quite important, however, since HITS assigns scores of zero to
nodes that are not in the graph’s largest connected component (with respect to
positive-weight edges, considered to be bi-directional). Notice that an unsmoothed
graph may have several connected components, whereas utilizing smoothing (as in
Definition 5) ensures that each node has a positive-weight directed edge to every
other node (self loops included). Additionally, the re-weighted version of HITS has
provable stability properties (Ng et al., 2001).

We therefore define (S)U-HITS, (S)W-HITS, (S)U-HITS+LM and (S)
W-HITS+LM to be the analogs of the algorithms defined above, when setting
G to G

[λ]
U and G

[λ]
W instead of GU and GW respectively.

The performance results of the HITS-based algorithms (with both unsmoothed
and smoothed graphs) compared to those of the recursive influx algorithms are
presented in Table 6.4. Our first observation is that running the HITS-based al-
gorithms on the smoothed graphs results (in most of the relevant comparisons)
in better performance than that obtained by running them on the unsmoothed
graphs. (Note that when comparing two consecutive “HITS” rows, the one with
(S) contains larger numbers in most of the cases.) Another observation from Table
6.4 is that the recursive influx algorithms have better performance in general than
that of the corresponding HITS-based algorithms whether run on unsmoothed or
smoothed graphs, when judging by pairwise comparisons of the algorithms. (We
point out, though, that while in comparison to the HITS-based algorithms imple-
mented on smoothed graphs with weights representing generation probabilities the
recursive influx algorithms are indeed superior (see the “W” algorithms), this is
not the case for graphs having uniformly weighted edges (see the “U” algorithms)).
Furthermore, the best performance in terms of prec@5 — the evaluation metric
for which we optimized performance — is always obtained by one of the recursive
influx algorithms.

All in all, our conclusion in light of the above observations is that although the
HITS algorithm is based on concepts more suited to the Web environment than to
our setting (non-hypertext documents), it can still provide an effective mechanism
for inducing centrality (in the form of authority scores), attesting to the flexibility
of our graph-based framework in accommodating different notions of centrality.

97

Table 6.5: Comparison of our algorithms’ performance when implemented over
graphs utilizing the estimate from Equation 6.4 (marked by the prefix [off]) —
thereby based on the “seek for central offspring” approach — with that of their
implementation on the original graphs from Section 6.2 (representing the “seek for
central generators” approach.). Underline: best result per block. Boldface: best
result per column.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

U-In 51.3 49.2 64.0 50.0 44.2 62.2 51.2 47.2 67.3
[off]U-In 38.4 38.5 49.6 34.8 32.2 54.3 40.0 38.2 50.4

W-In 51.5 48.7 64.3 48.8 43.2 63.7 52.0 47.0 64.4
[off]W-In 38.8 37.2 51.9 34.0 33.4 53.7 40.0 39.2 49.2

U-In+LM 50.9 49.4 63.1 52.8 51.8 66.5 54.4 49.0 72.4
[off]U-In+LM 45.7 43.2 59.6 50.8 45.8 71.0 54.4 46.8 75.6

W-In+LM 51.1 48.6 63.0 51.6 46.4 70.3 56.0 50.0 78.7

[off]W-In+LM 43.6 42.8 55.5 50.4 44.4 68.5 53.6 46.0 69.1

R-U-In 51.3 47.7 62.5 53.2 45.0 68.7 53.6 47.8 70.7
[off]R-U-In 40.8 40.5 51.3 35.2 32.2 53.9 41.2 39.6 52.4

R-W-In 51.9 48.0 63.2 52.4 44.6 66.6 53.6 48.6 69.9
[off]R-W-In 41.0 40.3 53.0 34.4 33.4 52.7 40.4 38.6 50.6

R-U-In+LM 51.9 49.1 65.2 55.6 46.0 68.4 57.6 49.6 75.7
[off]R-U-In+LM 46.1 43.1 61.0 52.0 45.8 71.1 55.6 48.2 72.6

R-W-In+LM 53.1 49.2 63.0 56.0 46.0 67.6 57.2 49.6 74.7
[off]R-W-In+LM 46.3 44.2 59.5 50.4 46.2 69.3 56.0 48.0 68.3

98

6.3.8 Seeking generators versus seeking offspring

Throughout this chapter we advocated the approach of searching for central gener-
ators in the initial list Dinit, that is, seeking documents with language models highly
probable to generate terms in many other (central) documents. Now, we explore
the question of whether an alternative paradigm based on searching for central
offspring documents — i.e, documents with term sequences that with high proba-
bility are generated by many documents (that are themselves central offspring) —
can also result in effective algorithms for re-ranking Dinit.

In fact, we have already seen in the previous section some evidence for our orig-
inal approach (searching for central generators) being more effective than looking
for central offspring in the HITS context: authority scores served as a much better
centrality measure than hub scores.

To examine the question of generators centrality vs. offspring centrality in the
context of our two original approaches for centrality induction, i.e., (recursive)
influx, we first define a new estimate given documents d1, d2 ∈ Dinit:

poff
d1

(d2)
def
= pd2(d1), (6.4)

which we simply use in Definition 3 (page 75) to result in graphs describing “flow”
from documents to their top offspring. (Note that the resultant graphs do not
completely reflect an “edge inversion” of the original graphs, since the fact that
g is a top generator of o does not imply that o is a top-offspring of g. (Recall
our discussion in Section 6.2 with regard to the asymmetry embedded in our link
induction method.) Observe also that both types of graphs have an α “out-degree”
parameter.)

Thus, the Uniform Influx, Weighted Influx, Recursive Uniform Influx and Re-
cursive Weighted Influx algorithms implemented over these graphs rank documents
in Dinit by their centrality as offspring. However, for the “+LM” algorithms (see
Equation 6.3 in Section 6.2.3), we still use pd(q) as weight on the centrality value, as
we are interested in only testing the effectiveness of the offspring-search paradigm
as centrality-based induction approach.

Table 6.5 presents performance numbers of our algorithms when implemented
on the newly constructed graphs — those describing “flow” from generators to
offspring— (such algorithms are indicated with the [off] prefix), and their imple-
mentation on the original graphs — describing “flow” from offspring to “genera-
tors”. (Note that the latter results are the ones from Table 6.1.)

The message rising from Table 6.5 is clear: it is much better to use our orig-
inal proposal of “searching for central generators” than to use the “searching for
central offspring” approach, as for all algorithms, it is almost always the case that
the implementation over the original graphs results in a substantially better per-
formance than that obtained using the implementation over graphs constructed
with the estimate from Equation 6.4. (Note that the underlined numbers almost
always appear in rows with algorithms names not having the [off] prefix.).

99

Figure 6.5: The effect of varying the number of documents in Dinit on the perfor-
mance of the Weighted Influx, Recursive Weighted Influx, Weighted Influx+LM
and Recursive Weighted Influx+LM algorithms performance (prec@5).

100

AP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1000 500 100 50

pr
ec

@
5

Result Set Size

Effect of initial result set size on prec@5, corpus:AP

W-Influx
W-Influx+LM

RW-Influx
RW-Influx+LM

init. rank

TREC8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1000 500 100 50

pr
ec

@
5

Result Set Size

Effect of initial result set size on prec@5, corpus:TREC8

W-Influx
W-Influx+LM

RW-Influx
RW-Influx+LM

init. rank

WSJ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1000 500 100 50

pr
ec

@
5

Result Set Size

Effect of initial result set size on prec@5, corpus:WSJ

W-Influx
W-Influx+LM

RW-Influx
RW-Influx+LM

init. rank

101

6.3.9 The initial set size (|Dinit|)

We posed our centrality-computation techniques as methods for improving the re-
sults returned by an initial retrieval engine, and showed that they are successful
at accomplishing this goal when the set of top retrieved documents (Dinit) is rel-
atively small. (Recall that |Dinit| = 50). We now study the effect of including
more documents from the initial ranking in Dinit on the performance of our algo-
rithms. Figure 6.5 presents the performance results of the Weighted Influx, Recur-
sive Weighted Influx, Weighted Influx+LM and Recursive Weighted Influx+LM
algorithms when the number of documents in Dinit is varied. (We set |Dinit| to
values in {50, 100, 500, 1000}).

The first observation that can be made from Figure 6.5 is that the performance
of the Weighted Influx and Recursive Weighted Influx algorithms, which use cen-
trality values as the sole criterion for ranking, quickly degrades with increasing
numbers of documents in Dinit. We do not see this finding as surprising, since such
an increase necessarily results in a severe decrease in the ratio between the num-
ber of relevant documents to non-relevant documents in Dinit. As hypothesized in
Section 6.2 and as was shown in Section 6.3.4, this ratio can have a major effect
on the correlation between centrality and relevance.

We also observe in Figure 6.5 that the performance decrease of the Weighted
Influx+LM and Recursive Weighted Influx+LM algorithms in light of an increase
to the size of Dinit is much more gradual than the one observed for the respective
Weighted Influx and Recursive Weighted Influx algorithms. Furthermore, the Re-
cursive Weighted Influx+LM algorithm posts performance that is better than that
of the initial ranking for all tested values of |Dinit| (on all three corpora). These per-
formance patterns can be attributed to the initial ranking score embedded in the
scoring functions of the Weighted Influx+LM and Recursive Weighted Influx+LM
algorithms (recall Equation 6.3 from Section 6.2.3), which actually plays a dual
role when increasing the size of Dinit: it lowers the final score of documents initially
ranked low in the list — which therefore are less likely to be relevant — and helps
to handle cases in which centrality and relevance are not strongly correlated (as
explained in Section 6.2.3).

Another fact that is evident in Figure 6.5 is that the recursive algorithms
post better performance than that of their non-recursive analogs for almost all
values of |Dinit|. This gives further support to the observation that in computing
the centrality of a document, the centrality of its offspring documents should be
considered as well.

6.4 Related work

As described in Chapter 5, work on structural re-ranking in traditional ad hoc
information retrieval has mainly focused on query-dependent clustering, wherein
one seeks to compute and exploit a clustering of the initial retrieval results (Preece,
1973; Willett, 1985; Hearst and Pedersen, 1996; Leuski, 2001; Tombros et al., 2002;

102

Liu and Croft, 2004). Interestingly, some centrality measures have been previously
employed to produce clusterings; in Tishby and Slonim (2000), the stochastic-
process interpretation of our Equation 6.2 was utilized to detect structures in the
underlying graph, thereby inducing a clustering.

In a related vein, Baliński and Dani lowicz (2005) and Diaz (2005) apply score
regularization to ensure that similar documents within an initial retrieved list
receive similar scores. In contrast to our framework, centrality is not introduced
as an explicit notion and therefore cannot be explored at its own right.

There has been increasing use of techniques based on graphs induced by im-
plicit relationships between documents or other linguistic items (Salton and Buck-
ley, 1988; Hatzivassiloglou and McKeown, 1997; Dani lowicz and Baliński, 2000;
Dhillon, 2001; Lafferty and Zhai, 2001; Joachims, 2003; Erkan and Radev, 2004;
Mihalcea and Tarau, 2004; Pang and Lee, 2004; Toutanova et al., 2004; Barzilay
and Lapata, 2005; Collins-Thompson and Callan, 2005; Otterbacher et al., 2005;
Zhang et al., 2005; Zhu, 2005; Erkan, 2006).

Work in the domain of text summarization (Erkan and Radev, 2004; Mihal-
cea and Tarau, 2004) resembles ours, in that it also computes centrality on graphs,
although the nodes correspond to sentences or terms instead of documents. Specif-
ically, Erkan and Radev (2004) and Mihalcea and Tarau (2004) present methods
similar to our Recursive Weighted Influx algorithm, and the Uniform Influx al-
gorithm is also used in (Erkan and Radev, 2004) for selecting central sentences.
Perhaps the main contrast with our work is that links were not induced by gener-
ation probabilities, but by (symmetric) vector-space similarity measures; Section
6.3.6 presents the results of experiments studying the relative merits of our partic-
ular choice of link definition. Moreover, in Erkan and Radev (2004) and Mihalcea
and Tarau (2004), summarization does not depend on a specific user’s request and
therefore centrality serves as the sole criterion for selecting sentences, while in the
ad hoc retrieval setting, one has to handle cases in which relevance and centrality
are not strongly correlated; one method for doing so is the technique represented
by Equation 6.3.

Otterbacher et al. (2005) and Dani lowicz and Baliński (2000) use inter-item
similarities to define transition probabilities of a Markov chain for sentence retrieval
and document re-ranking respectively. While the the Markov chain approach is
similar to our Recursive Weighted Influx method, the transition probabilities are
based on symmetric inter-item similarity functions, in contrast to our link induc-
tion method. Furthermore, these probabilities also incorporate information about
similarity to the information need at hand, and thus centrality cannot be explored
in isolation as in our algorithms.

Recent work on Web retrieval (Zhang et al., 2005) utilizes asymmetric similar-
ity relationships in the vector space for link induction. Centrality is induced using
the PageRank algorithm, similarly to our Recursive Weighted Influx algorithm.
However, since the task at hand is to rank all documents in the corpus (rather
than re-rank an initially retrieved list), centrality is integrated with similarity to
the query to define a relevance scoring function and is not explored in isolation.

103

In Section 6.3.6 we explored one alternative for utilizing an asymmetric similarity
measure within the vector space model, studying its effectiveness both as an iso-
lated ranking criterion and in combination with similarity to the query following
Equation 6.3.

Our graphs are constructed using a nearest-neighbor principle. Such graphs
have been used for numerous tasks (Levow and Matveeva, 2004; Matveeva, 2004;
Zhu, 2005; Erkan, 2006). For document re-ranking (Levow and Matveeva, 2004;
Matveeva, 2004), for example, a lower dimensional representation of the initial
list is obtained using nearest-neighbor graphs, and queries are folded into the new
space and then compared to the folded documents to obtain new scores used for
re-ranking. Score regularization of documents in an initially retrieved list (Diaz,
2005) is another example of an application in which nearest-neighbor graphs are
used. Some previous work (Belkin and Niyogi, 2003) showed that using Laplacian
eigenmaps on such graphs can help to find a locality-preserving lower-dimensional
manifold embedding of the original data.

Our centrality scores constitute a relationship-based re-ranking criterion that
can serve as a bias affecting the initial retrieval engine’s scores, as in Equation 6.3.
Alternative biases that are based on individual documents alone have also been
investigated. Functions incorporating document or average word length (Hiemstra
and Kraaij, 1999; Kraaij and Westerveld, 2001; Miller et al., 1999) are applicable
in our setting; we reported on experiments with (variants of) document length
in Section 6.3.5. Other previously suggested biases that may be somewhat less
appropriate for general domains include document source (Miller et al., 1999) and
creation time (Li and Croft, 2003), as well as webpage hyperlink in-degree and
URL form (Kraaij et al., 2002).

Chapter 7
Bipartite cluster-document
relevance-flow graphs1

In this chapter we present algorithms for structural re-ranking that incorporate
cluster information into the graph-based framework of Chapter 6. The main idea is
to perform re-ranking based on centrality within bipartite graphs of documents (on
one side) and clusters (on the other side), on the premise that these are mutually
reinforcing entities. We find that cluster-document graphs give rise to much better
retrieval performance than document-only graphs do.

For example, authority-based re-ranking of documents via a HITS-style cluster-
based approach outperforms our previously-proposed Recursive Weighted Influx
algorithm as applied to the solely-document graphs of Chapter 6. Moreover, we
also show that computing authority scores for clusters constitutes an effective
method for detecting clusters that contain a large percentage of relevant docu-
ments.

7.1 Re-consideration of HITS

In the previous chapter we saw that centrality in the initially retrieved list (Dinit) as
induced by our Weighted Influx and Recursive Weighted Influx algorithms is highly
correlated with relevance. (Refer back to Section 6.3.4 of Chapter 6.) Furthermore,
the latter algorithm (Recursive Weighted Influx) — a weighted variant of PageRank
(Brin and Page, 1998), which is based on recursive formulation of centrality— was
shown to be more effective than the Weighted Influx algorithm, which is based on
a weighted in-degree criterion.

The arguably most well-known alternative to PageRank is Kleinberg’s HITS
(hyper-text induced topic selection) algorithm (Kleinberg, 1998). As described in
the previous chapter, the major conceptual way in which HITS differs from PageR-
ank is that it defines two different types of central items: each node is assigned
both a hub and an authority score as opposed to a single PageRank score. In the
Web setting, in which HITS was originally proposed, good hubs correspond roughly
to high-quality resource lists or collections of pointers, whereas good authorities
correspond to the high-quality resources themselves; thus, distinguishing between
two differing but interdependent types of Webpages is quite appropriate.

However, as described in Section 6.3.7 of Chapter 6, when applying the HITS-
based algorithm to non-Web documents in our re-ranking setting, we found that
its performance was was not as effective as that of the Recursive Weighted Influx-
based algorithms. (This observation is true in comparing both ranking based solely
on centrality, and ranking that incorporates the initial scores as per Equation 6.3.)

1This chapter is based on a paper written with Lillian Lee (Kurland and Lee,
2006) that will appear in the proceedings of SIGIR 2006.

104

105

Do these results imply that Recursive Weighted Influx (i.e., PageRank) is bet-
ter than HITS for structural re-ranking of non-Web documents? Not necessarily,
because there may exist graph-construction methods that are more suitable for
HITS. Note that the only entities considered in the previous chapter were docu-
ments. If we could introduce entities distinct from documents but enjoying a mu-
tually reinforcing relationship with them, then we might better satisfy the spirit of
the hubs-versus-authorities distinction, and thus derive stronger results utilizing
HITS.

A crucial insight of this chapter is that document clusters appear extremely
well-suited to play this complementary role. The intuition is that: (a) given those
clusters that are “most representative” of the user’s information need, the doc-
uments within those clusters are likely to be relevant; and (b) the “most repre-
sentative” clusters should be those that contain many relevant documents. This
apparently circular reasoning is strongly reminiscent of the inter-related hubs and
authorities concepts underlying HITS. Furthermore, we saw in Chapter 5 that
clusters are a promising source of information in the re-ranking setting.

In this chapter, we show through an array of experiments that consideration of
the mutual reinforcement of clusters and documents in determining centrality can
lead to highly effective algorithms for re-ranking the initially retrieved list Dinit.
Specifically, our experimental results show that the centrality-induction methods
that we studied solely in the context of document-only graphs in Chapter 6 result
in much better re-ranking performance if implemented over bipartite graphs of
documents (on one side) and clusters (on the other side). For example, ranking
documents by their “authoritativeness” as computed by HITS upon these cluster-
document graphs yields better performance than that of our Recursive Weighted
Influx algorithm applied to document-only graphs. Interestingly, we also find that
cluster authority scores can be used to identify clusters containing a large percent-
age of relevant documents.

7.2 Re-ranking algorithms

As in Chapters 5 and 6, we are focused on the structural re-ranking paradigm, and
therefore our algorithms are applied not to the entire corpus, but to the set Dinit

that was retrieved in response to the query q, by a given initial retrieval engine.
Some of our algorithms also take into account the set C l(Dinit) of clusters of the
documents in Dinit, as was the case in Chapter 5. We use Sinit to refer generically
to whichever set of entities — either Dinit or Dinit ∪C l(Dinit) — is used by a given
algorithm.

Following Section 6.2, we consider relevance-flow graphs that can be all repre-
sented as weighted directed graphs of the form (V,w t), where V is a finite non-
empty set of nodes and w t : V ×V → {y ∈ < : y ≥ 0} is a non-negative edge-weight
function. Recall that while such graphs technically have edges between all ordered

106

pairs of nodes (self-loops included), edges with zero edge-weight are conceptually
equivalent to missing edges.

In what follows, we mainly focus on algorithms that rank documents in Dinit

based solely on centrality. Section 7.4 presents results for integrating centrality
scores with the initial search engine scores as in Equation 6.3 of Chapter 6.

HITS The HITS algorithm (previously discussed in Section 6.3.7) for computing
centrality can be motivated as follows. Let G = (V,w t) be the input graph, and let
v2 be a node in V . First, suppose we somehow knew the hub score CenHUB(v1, G)
of each node v1 ∈ V , where “hubness” is the extent to which the nodes that v1

points to are “good” in some sense. Then, v2’s authority score

CenAUTH(v2, G) =
∑

v1∈V

w t(v1 → v2) · CenHUB(v1, G) (7.1)

would be a natural measure of how “good” v is, since a node that is “strongly”
pointed to by high-quality hubs (which, by definition, tend to point to “good”
nodes) receives a high score. But where do we get the hub score for a given node
v1? A natural choice is to use the extent to which v1 “strongly” points to highly
authoritative nodes:

CenHUB(v1, G) =
∑

v2∈V

w t(v1 → v2) · CenAUTH(v2, G). (7.2)

Clearly, Equations 7.1 and 7.2 are mutually recursive , but the iterative HITS
algorithm provably converges to (non-identically-zero, non-negative) score func-
tions Cen∗

HUB(·, G) and Cen∗
AUTH(·, G) that satisfy the above pair of equations.

(As mentioned in Section 6.3.7, the algorithm and proof of convergence as originally
presented (Kleinberg, 1998) need (trivial) modification to apply to edge-weighted
graphs.)

Figure 7.1 depicts the “iconic” case in which the input graph G is one-way bi-
partite, that is, V can be partitioned into non-empty sets VLeft and VRight such
that only edges in VLeft × VRight can receive positive weight, and ∀v1 ∈ VLeft,∑

v2∈VRight
w t(v1 → v2) > 0.

It is the case that Cen∗
AUTH(v1, G) = 0 for every v1 ∈ VLeft and Cen∗

AUTH(v2, G) =
0 for every v2 ∈ VRight; in this sense, the left-hand nodes are “pure” hubs and the
right-hand nodes are “pure” authorities.

Recall that in the end, we need to produce a single centrality score for each
node n ∈ V . As in Section 6.3.7 we consider only two possibilities in this chapter —
using Cen∗

AUTH(·, G) as the final centrality score, or using Cen∗
HUB(·, G) instead—

although combining the hub and authority scores is also an interesting possibility.

7.2.1 Graph schemata: incorporating clusters

Recall that the fundamental operation in our structural re-ranking paradigm is to
compute the centrality of entities (with)in a set Sinit. One possibility is to define

107

Figure 7.1: A one-way bipartite graph. We only show positive-weight edges (omit-
ting weight values). According to HITS, the left-hand nodes are (pure) hubs; the
right-hand ones are (pure) authorities.

Sinit as Dinit, the documents in the initially retrieved set, as we did in Chapter 6;
we refer to any relevance-flow graph induced under this choice as a document-

to-document graph. But as previously discussed, for non-Web documents it may
not be obvious a priori what kinds of documents are hubs and what kinds are
authorities.

Alternatively, we can define Sinit as Dinit ∪ C l(Dinit), where C l(Dinit) consists
of clusters of the documents in Dinit. On a purely formal level, doing so allows us
to map the hubs/authorities duality discussed above onto the documents/clusters
duality, as follows. Recalling our discussion of the “iconic” case of one-way bipartite
graphs G = ((VLeft, VRight),w t), we can create document-as-authority graphs
simply by choosing VLeft = C l(Dinit) and VRight = Dinit, so that necessarily clusters
serve the role of (pure) hubs and documents serve the role of (pure) authorities.
Contrariwise,2 we can create document-as-hub graphs by setting VLeft = Dinit

and VRight = C l(Dinit).
But the advantages of incorporating cluster-based information are not just

formal. The well-known cluster hypothesis (van Rijsbergen, 1979) encapsulates the
intuition that clusters can reveal groups of relevant documents; in practice, the
potential utility of clustering for this purpose has been demonstrated a number
of times in the re-ranking setting (see Chapter 5). Since central clusters are,
supposedly, those that accrue the most evidence for relevance, documents that are
strongly identified with such clusters should themselves be judged highly relevant.3

2In practice, one can simultaneously compute the output of HITS for a given
document-as-authority and document-as-hub graph pair by “overlaying” the two
into a single graph and suitably modifying HITS’s normalization scheme.

3We say “are strongly identified with”, as opposed to “belong to” to allow

108

4 But identifying such clusters is facilitated by knowledge of which documents are
most likely to be relevant — exactly the mutual reinforcement property that HITS
was designed to leverage.

7.2.2 Scoring by (recursive) influx

We will compare the results of using the HITS algorithm against those derived
using the Recursive Influx scoring method instead (see Equation 6.2, page 77),
as we saw in Chapter 6 that the latter resulted in effective algorithms (Recursive
Uniform Influx, Recursive Weighted Influx) for document-only graphs 5.

Note that one can think of the Recursive Influx method (Equation 6.2):

CenRI(v2; G) =
∑

v1∈V

w t(v1 → v2) · CenRI(v1; G),

as a version of HITS in which the hub/authority distinction has been collapsed.
Thus, we can conceptually get the above equation by writing CenRI(·; G) for both
CenHUB(·, G) and CenAUTH(·, G),

Recall that in Section 6.2, we used the PageRank smoothing scheme (Brin
and Page, 1998) (see Definition 5) to alter the original graph G = (V,w t) weight
function (w t), thus taking care that the resultant graph G[λ] = (V,w t[λ]) represents
an ergodic Markov chain for which the Recursive Influx equation from above has
a solution. Alternatively, we can use the original graph G = (V,w t) and simply
alter the scoring function to ensure that the sum of weights on outgoing edges
from each node is 1. One also has to apply a correction for nodes with no positive-
weight edges emanating from them (Ng et al., 2001; Langville and Meyer, 2005) —
which are abundant in one-way bipartite graphs since under the original “random
surfer” model, the sum of the transition probabilities out of such nodes would be
(1 − λ), not 1. We therefore re-define our Recursive Influx ranking method over
the “unsmoothed” graph G as:

for overlapping or probabilistic clusters. Indeed, the one-way bipartite graphs
we construct are ill-suited to the HITS algorithm if document-to-cluster links are
based on membership in disjoint clusters.

4This is, in some sense, a type of smoothing: a document might be missing
some of the query terms (perhaps due to synonymy), but if it lies within a sector
of “document space” containing many relevant documents, it could still be deemed
highly relevant. The aspect-f and interpolation-f algorithms from Chapter 5, for
example, are based on this smoothing idea. See also Liu and Croft (2004) for
cluster-based smoothing in the re-ranking setting.

5Recall that Recursive Uniform Influx is essentially the PageRank algorithm
(Brin and Page, 1998) and that Recursive Weighted Influx is a weighted analog of
PageRank.

109

Cen [λ]
RI(v2; G)

def
=

∑

v1∈V :out(v1)>0

[
(1 − λ)

|V |
+ λ

w t(v1 → v2)

out(v1)

]
· Cen [λ]

RI(v1; G)

+
∑

v1∈V :out(v1)=0

1

|V |
· Cen [λ]

RI(v1; G) (7.3)

where out(v1)
def
=
∑

v′2∈V w t(v1 → v′
2), and λ ∈ (0, 1) is a parameter. (Conceptually,

the role of the second summation in Equation 7.3 is to set λ = 0 for no-outflow
nodes.)

Equation 7.3 is recursive, but there are iterative algorithms that provably con-
verge to the unique positive solution Cen

∗[λ]
RI (·; G) satisfying the sum-normalization

constraint
∑

v∈V CenRI(v; G) = 1 (Langville and Meyer, 2005).
Moreover, note that setting G = GW (refer back to Section 6.2 for the defi-

nition of GW) in Equation 7.3 and observing that GW has no vertices with zero

“outflux”, we get that the solution to Equation 7.3 (Cen
∗[λ]
RI (·; G)) is exactly the

scoring function used by our Recursive Weighted Influx algorithm from Chapter 6.
Moreover, a (non-trivial) closed-form — and quite easily computed — solution

exists for one-way bipartite graphs:

Theorem 1. If G = (V,w t) is one-way bipartite, then

CenRI,Bip(v2; G)
def
=

∑

v1∈V :out(v1)>0

w t(v1 → v2)

out(v1)
(7.4)

is an affine transformation (with respect to positive constants) of, and therefore
equivalent for ranking purposes to, the unique positive sum-normalized solution to
Equation 7.3.

Proof. Let the underlying one-way bipartite graph be G = ((VLeft, VRight),w t) and
assume that |VLeft| > 0 and |VRight| > 0. Let N = |VLeft ∪ VRight|. Let vr denote a
node in VRight and vl denote a node in VLeft.

For the one-way bipartite graph G, Equation 7.3 can be rewritten for any node
z ∈ VLeft ∪ VRight as

CenRI(z) =
∑

vl∈VLeft

[
(1 − λ)

|V |
+ λ

w t(vl → z)

out(vl)

]
· CenRI(vl)

+
∑

vr∈VRight

1

|V |
· CenRI(vr) (7.5)

(For clarity, we use the shortened notation CenRI(z) to denote Cen [λ]
RI(z; G)

throughout the proof.)
A unique positive and sum-normalized solution Cen∗

RI(·) to this set of equations
exists because it describes the stationary distribution of an ergodic Markov chain.

110

Therefore, SR
def
=
∑

vr∈VRight
Cen∗

RI(vr) exists and is positive,

and
∑

vl∈VLeft
Cen∗

RI(vl) = 1 − SR.
Computing Cen∗

RI(vl) for vl ∈ VLeft from the equation above yields, after some
algebra,

Cen∗
RI(vl) =

1 − λ + λSR

N
+

∑

v′
l
∈VLeft

0.

Denote κ = 1−λ+λSR

N
(κ > 0), we get

Cen∗
RI(vl) = κ + κλ

∑

v′
l
∈VLeft

w t(v′
l → vl)

out(v′
l)

,

since the second term is 0.
Using the value Cen∗

RI(vl) in Equation 7.5, we find using some algebra that

Cen∗
RI(vr) = κ + κλ

∑

v′
l
∈VLeft

w t(v′
l → vr)

out(v′
l)

.

Interestingly, this result shows that while one might have thought that clus-
ters and documents would “compete” for centrality score — as assigned by the
Recursive Influx method — when placed within the same graph, in our document-
as-authority and document-as-hub graphs this is not the case.

In addition, we will also examine the performance of our Influx method, which
scores node v2 by

C enI(v2; G) =
∑

v1∈V

w t(v1 → v2).

This can be viewed as a non-recursive version of the Recursive Influx method
(refer back to the discussion in Chapter 6) , or as an un-normalized analog of
Equation 7.4.

7.2.3 Algorithms based on centrality scores

Clearly, we can rank documents by their scores as computed by any of the functions
introduced above. But when we operate on document-as-authority or document-
as-hub graphs, centrality scores for the clusters are also produced. These can be
used to derive alternative means for ranking documents. We follow Liu and Croft’s
approach (Liu and Croft, 2004): first, rank the documents within (or most strongly
associated to) each cluster according to the initial retrieval engine’s scores; then,
derive the final list by concatenating the within-cluster lists in order of decreasing
cluster score, discarding repeats. Such an approach would be successful if cluster
centrality is strongly correlated with the property of containing a large percentage
of relevant documents.

111

Ranking algorithms Since we have two possible ranking paradigms, and our
algorithms operate either on document-only graphs or on cluster-doc graphs we
adopt the following algorithm naming abbreviations for this chapter. Ab-
breviations consist of a hyphen-separated prefix and suffix. The prefix (“doc”
(or “d”) or “clust” (or “c”)) indicates whether documents were ranked directly
by their centrality scores, or indirectly through the concatenation process out-
lined above in which it is the clusters’ centrality scores that were employed.
The suffix (“WAuth”, “WHub”, “RWI”, or “WI”) indicates which score function

(Cen∗
AUTH(·, G), Cen∗

HUB(·, G), Cen
∗[λ]
RI (·; G) (or CenRI,Bip(·; G)), or C enI(·; G))

was used to measure centrality. 6 For a given re-ranking algorithm, we indicate
the graph upon which it was run in brackets, e.g., “doc-Auth[G]”.

7.3 Evaluation framework

7.3.1 Graph construction

Relevance flow based on language models (LMs) To evaluate “relevance
flow” between two nodes in our graphs (i.e., to determine edge weights) we follow
Section 6.3.1 and utilize the language-model-based asymmetric similarity measure
pKL,µ

x (·) for both documents and clusters.7

We extend the definition of top-generators (TopGen(·)) from Definition 3 for
settings with multiple types of entities. Specifically, we define TopGen(x |m, R),
to be the m items y within the “restriction set” R that have the highest values
of pKL,µ

y (x) (we break ties by item ID, assuming that these have been assigned to
documents and clusters).

Graphs used in experiments For a given set Dinit of initially retrieved docu-
ments and positive integer α (an “out-degree” parameter), we consider the follow-
ing three graphs. Each connects nodes v1 to the α other nodes, drawn from some
specified set, that v1 has the highest relevance flow to.

The document-to-document d↔d graph — denoted in the previous Chapter

6We use “W” in the suffixes since all our algorithms (in this chapter) are imple-
mented over graphs wherein edge weights represent generation probabilities. (See
Section 7.3).

7Recall from sections 2.3 and 5.3, that we treat a cluster as the big document
resulting from the concatenation of its constituent documets. Concatenation order
is irrelevant for unigram LMs.

112

as GW
8 — has vertex set Dinit and weight function

w td↔d(v1 → v2) =

{
pKL,µ

v2
(v1) if v2 ∈ TopGen(v1 |α,Dinit − {v1}),

0 otherwise.

The document-as-authority graph c→d has vertex set Dinit ∪ C l(Dinit) and a
weight function such that positive-weight edges go only from clusters to documents:

w tc→d(v1 → v2) =





pKL,µ
v2

(v1) if v1 ∈ C l(Dinit) and

v2 ∈ TopGen(v1 |α,Dinit),

0 otherwise.

The document-as-hub graph d→c has vertex set Dinit ∪C l(Dinit) and a weight
function such that positive-weight edges go only from documents to clusters:

w td→c(v1 → v2) =





pKL,µ
v2

(v1) if v1 ∈ Dinit and

v2 ∈ TopGen(v1 |α,C l(Dinit)),

0 otherwise.

Since the latter two graphs are one-way bipartite, Theorem 1 applies to them.

Clustering Method We utilize our language-model-based nearest-neighbor clus-
tering method from Section 5.2 and define for each document d the cluster {d} ∪
TopGen(d | k − 1,Dinit − {d}), where k is the cluster-size parameter.

7.3.2 Experimental setup

We follow the exact same experimental set up as in Sections 5.3 and 6.3.2 for (a)
setting Dinit, (b) choosing the optimized baselines, (c) setting the language-model
smoothing parameter value and (d) optimizing different parameters . Thus, the val-
ues chosen for the free parameters in our algorithms are: (i) the graph “out-degree”
α: {2, 4, 9, 19, 29, 39, 49}, (ii) the cluster size k: {2, 5, 10, 20, 30}, and (iii) the pa-
rameter λ (for the Recursive Influx-based algorithms): {0.05, 0.1 . . . 0.9, 0.95}.

We also recall that a ranking method might assign different items the same
score; we break such ties by item ID. Alternatively, the scores used to determine
Dinit can be utilized, if available.

8We use here the notation d↔d instead of GW (used in Chapter 6) to dif-
ferentiate this document-only graph from the bipartite graphs introduced in this
chapter.

113

7.4 Experimental results

As in previous chapters, when we say that results or the difference between results
are “significant”, we mean according to the two-sided Wilcoxon test at a confidence
level of 95%.

Recall that an algorithm is defined by the underlying method and the graph
upon which it is implemented. Table 7.1 presents the algorithms that we discuss
in what follows.

Table 7.1: Graph-based algorithms for structural re-ranking.

algorithm method graph

doc-WI[d↔d] Weighted Influx d↔d
doc-RWI[d↔d] Recursive Weighted Influx d↔d
doc-WAuth[d↔d] W-HITS (using authority scores) d↔d
doc-WAuth[d↔d] W-HITS (using hub scores) d↔d

doc-WI[c→d] Weighted Influx c→d
doc-RWI[c→d] Recursive Weighted Influx c→d
doc-WAuth[c→d] W-HITS (using authority scores) c→d
clust-WHub[c→d] W-HITS (using hub scores) c→d

clust-WI[d→c] Weighted Influx d→c
clust-RWI[d→c] Recursive Weighted Influx d→c
clust-WAuth[d→c] W-HITS (using authority scores) d→c
doc-WHub[d→c] W-HITS (using hub scores) d→c

As mentioned above, in some cases we will use the prefixes “d” and “c” instead
of “doc” and “clust” respectively.

7.4.1 Re-ranking by document centrality

Main result We first consider our main question: can we substantially boost
the effectiveness of HITS by applying it to cluster-to-document graphs, which we
have argued are more suitable for it than the document-to-document graphs we
constructed in the previous chapter? The answer, as shown in Table 7.2, is clearly
“yes”: we see that moving to cluster-to-document graphs results in substantial im-
provement for HITS, and indeed boosts its results over those for Recursive Weighted
Influx on document-to-document graphs.

To further explore the connection between centrality (as induced by either doc-
WAuth[c→d] or doc-RWI[d↔d]) and relevance we use the experimental setup from
Section 6.3.4 to control the percentage of relevant documents in Dinit. We present
the effect of this percentage on the prec@5 performance results of centrality-based
ranking in Figure 7.2.

114

Figure 7.2: Centrality and relevance: the effect of varying the percentage of rele-
vant documents in Dinit on the performance (prec@5) of the doc-RWI[d↔d] and
doc-WAuth[c→d] algorithms.

115

AP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

@
5

% relevant docs

Effect of percentage of relevant documents on prec@5 results, corpus:AP

docRWI[d->d]
docWAuth[c->d]

random

TREC8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

@
5

% relevant docs

Effect of percentage of relevant documents on prec@5 results, corpus:TREC8

docRWI[d->d]
docWAuth[c->d]

random

WSJ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

pr
ec

@
5

% relevant docs

Effect of percentage of relevant documents on prec@5 results, corpus:WSJ

docRWI[d->d]
docWAuth[c->d]

random

116

Table 7.2: Main comparison: HITS or Recursive Influx on document-only graphs
versus HITS on cluster-to-document graphs. Bold: best results per column. Sym-
bols “r” and “a”: doc-WAuth[c→d] result differs significantly from that of doc-
RWI[d↔d] or doc-WAuth[d↔d], respectively. (For algorithms’ names in the table,
“doc-” is abbreviated as “d-”.)

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

d-WAuth[d↔d] .509 .486 .638 .440 .424 .648 .504 .464 .638
d-RWI[d↔d] .519 .480 .632 .524 .446 .666 .536 .486 .699
d-WAuth[c→d] .541 .501 r .669 r .544 a .452 .674 .564 a .514 a .746 a

Table 7.3: Re-Ranking algorithms, as applied to either d↔d graphs or c→d graphs.
Underline: best results for a given algorithm when the underlying graph is varied.
Boldface: best results per column. Symbols “i” and “o”: results differ significantly
from the initial ranking or the optimized baseline, respectively. (For algorithms’
names in the table, “doc-” is abbreviated as “d-”.)

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .439 .635 .512 .464 .696 .560 .494 .772

d-WI[d↔d] .515 .487 io .643 .488 .432 .637 .520 .470 .644 o

d-WI[c→d] .537 io .502 io .673 .536 .436 .666 .564 .512 .704

d-RWI[d↔d] .519 .480 .632 .524 .446 .666 .536 .486 .699
d-RWI[c→d] .543 io .488 io .649 .532 .432 .675 .568 .512 .704

d-WAuth[d↔d] .509 .486 .638 .440 .424 .648 .504 .464 .638 o

d-WAuth[c→d] .541 io .501 io .669 .544 .452 .674 .564 .514 .746

We can see in Figure 7.2 that the performance of doc-WAuth[c→d] (for almost
all evaluation points on all corpora) is at least as good as — and on WSJ in
general better than — that of doc-RWI[d↔d], attesting to the effectiveness of
implementing HITS on the cluster-doc graphs. Furthermore, centrality as induced
by both algorithms is connected with relevance, as the corresponding curves are
above the line representing a random ranking of documents in Dinit.

Full suite of comparisons We now turn to Table 7.3, which gives the results for
the re-ranking algorithms doc-WI, doc-RWI and doc-WAuth as applied to either
the document-based graph d↔d (as in Chapter 6) or the cluster-document graph
c→d. (Discussion of doc-WHub is deferred to Section 7.4.3.)

To focus our discussion, it is useful to first point out that in almost all of
our nine evaluation settings (3 corpora × 3 evaluation measures), all three of the
re-ranking algorithms perform better when applied to c→d graphs than to d↔d
graphs, as the number of underlined numbers appearing in “d↔d” rows in Table 7.3
indicates. 9 Since it is thus clearly useful to incorporate cluster-based information,
we will now mainly concentrate on c→d-based algorithms.

9This cannot be entirely attributed to having an extra cluster-size parameter:

117

Table 7.4: Cluster-based re-ranking. Bold: best results per column. Symbols i, o,
c: results differ significantly from the initial ranking, optimized baseline, or (for
the re-ranking algorithms) clust-pc(q) (Liu and Croft, 2004), respectively. (For
algorithms’ names in the table, “c-” stands for “clust-”.)

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748
opt. baselines .465 .439 .635 .512 .464 .696 .560 .494 .772

c-pc(q) .448 .418 .549 io .500 .432 .723 .504 o .454 io .680

c-WI[d→c] .511 c .479 c .619 .524 .478 .681 .568 c .512 c .760
c-RWI[d→c] .493 .475 c .595 .496 .444 .683 .528 .490 c .736

c-WAuth[d→c] .533 ioc .478 c .651 c .532 .460 .714 .552 .478 .757

The results for prec@5, the metric for which the re-ranking algorithms’ param-
eters were optimized, show that all c→d-based algorithms outperform the prec@5-
optimized baseline — significantly so for the AP corpus — even though applied to
a sub-optimally-ranked initial set. (Although we recall that while the initial rank-
ing is always inferior to the corresponding optimized baseline, the differences are
never significant.) In contrast, the use of d↔d graphs never leads to significantly
superior prec@5 results.

We also observe in Table 7.3 that the doc-WAuth[c→d] algorithm is always
either the best of the c→d-based algorithms or clearly competitive with the best.
Furthermore, pairwise comparison of it to each of the doc-WI[c→d] and doc-
RWI[c→d] algorithms favors the HITS-style doc-WAuth[c→d] algorithm in a ma-
jority of the evaluation settings.

We also experimented with a few alternate graph-construction methods, such
as sum-normalizing the weights of edges out of nodes, and found that the doc-
WAuth[c→d] algorithm remained superior to doc-WI[c→d] and doc-RWI[c→d].
(The results are omitted since the precise numerical comparison does not yield
additional information.)

All in all, these findings lead us to believe that not only is it useful to incorporate
information from clusters, but it can be more effective to do so in a way reflecting
the mutually-reinforcing nature of clusters and documents, as the HITS algorithm
does.

7.4.2 Re-ranking by cluster centrality

We now consider the alternative, mentioned in Section 7.2.3, of using the centrality
scores for clusters as an indirect means of ranking documents, in the sense of
identifying clusters that contain a high percentage of relevant documents. Note
that the problem of automatically identifying such clusters in the re-ranking setting
has been acknowledged to be a hard task for some time (Willett, 1985).

in the case of PageRank, the damping factor λ is tunable in the d↔d case but,
according to Theorem 1, irrelevant in the c→d case.

118

Nevertheless, as stated in Section 7.2.3, we experimented with Liu and Croft’s
general clusters-for-selection approach (Liu and Croft, 2004): rank the clusters,
then rank the documents within each cluster by pd(q). Our baseline algorithm,
clust-pc(q), adopts Liu and Croft’s specific proposal of the CQL algorithm 10 —
except that we employ overlapping rather than hard clusters — wherein clusters
are ranked by the query likelihood pc(q) instead of one of our centrality scores.

Table 7.4 presents the performance results. Our first observation is that the
clust-WI[d→c] and clust-WAuth[d→c] algorithms are superior in a majority of
the relevant comparisons to the initial ranking, the optimized baselines, and the
clust-pc(q) algorithm, where the performance differences with the latter sometimes
achieve significance.

However, the performance of the document-centrality-based algorithm doc-
WAuth[c→d] is better in a majority of the evaluation settings than that of any of
the cluster-centrality-based algorithms. On the other hand, it is possible that the
latter methods could be improved by a better technique for within-cluster ranking.

To compare the effectiveness of clust-WI[d→c] and clust-WAuth[d→c] to that
of clust-pc(q) in detecting clusters with a high percentage of relevant documents
— thereby neutralizing within-cluster ranking effects — we present in Table 7.5
the percent of documents in the highest ranked cluster that are relevant. (Cluster
size (k) was fixed to either 5 or 10 and out-degree (α) was chosen to optimize the
above percentage.) Indeed, these results clearly show that our best cluster-based
algorithms are much better than clust-pc(q) in detecting clusters containing a high
percentage of relevant documents, in most cases to a significant degree. However,
there is still a substantial difference between the (average) percentage of relevant
documents in the optimal cluster, that is, the cluster with highest percentage of
relevant documents, and the (average) percentage in the cluster ranked highest by
our methods.

7.4.3 Further analysis

Authorities versus hubs So far in this chapter, we have only considered utiliz-
ing the authority scores that the HITS algorithm produces. We recall from Section
6.3.7, that in document-only graphs (i.e., d↔d), authority scores yielded in general
performance results superior to those resulting from utilizing hub scores.

The chart below shows the relative performance results on our bipartite cluster-
doc graphs when utilizing either auth or hub scores. Specifically, the “documents?”
column compares doc-WAuth[c→d] (i.e., ranking documents by authoritativeness)
to doc-WHub[d→c] (i.e., ranking documents by hubness); similarly, the “clusters?”
column compares clust-WAuth[d→c] to clust-WHub[c→d]. Each entry depicts, in
descending order of performance (except for the one indicated tie) as one moves

10Note that the algorithms from Chapter 5 rank documents rather than clusters,
as opposed to the CQL algorithm, and therefore the latter is a more appropriate
choice to serve as a reference comparison for cluster-based ranking.

119

Table 7.5: Average relevant-document percentage within the top-ranked cluster.
Optimal cluster: cluster with highest percentage. k: cluster size. Bold: best result
obtained by the three different cluster-ranking approaches. c: result (of one of
our algorithms) differs significantly from that of clust-pc(q), used in Liu and Croft
(2004).

Cluster AP TREC8 WSJ
ranking k=5 k=10 k=5 k=10 k=5 k=10

optimal cluster 79.6 70.1 83.6 70.6 81.5 70.4

clust-pc(q) 39.2 38.8 39.6 40.6 44.0 37.0
clust-WI[d→c] 48.7 c 47.6 c 48.0 43.8 51.2 c 48.0 c

clust-WAuth[d→c] 49.5 c 47.2 c 50.8 c 46.6 53.6 c 49.0 c

left to right, those centrality scoring functions that lead to an improvement over
the initial ranking: A stands for “authority” and H for “hub”. Cases in which the
improvement is significant are marked with a ‘*’.

When do we improve the initial ranking
by measuring the centrality of:

documents? clusters?
prec @5 A∗H A∗H

AP prec @10 A∗H AH

MRR AH A

prec @5 AH AH

TREC8 prec @10 HA

MRR H H∗A

prec @5 AH AH (tie)
WSJ prec @10 AH H

MRR HA

We see that in many cases, hub-based re-ranking does yield better performance
than the initial ranking. But authority-based re-ranking appears to be an even
better choice overall, as was the case for document-only graphs.

HITS on “smoothed” one-way bipartite graphs In Section 6.3.7 we saw
that employing HITS on document-only graphs that were smoothed using a PageR-
ank approach (see Definition 5) helped to improve performance, although the re-
sultant performance was in general still inferior to that of the Recursive Weighted
Influx algorithm.

We now examine the effect of smoothing the c→d graph weight function on
the performance of the doc-WAuth[c→d] algorithm. We employ a PageRank style
smoothing technique but take care to preserve the one-way bipartite structure of

c→d. Thus, we smooth the edge weight function w tc→d(v1 → v2) as follows:

120

Table 7.6: Comparison of performance results for the doc-WAuth[d↔d] and doc-
WAuth[c→d] algorithms when run on graphs with (S) and without (U) edge-
weight smoothing. For each algorithm, corpus, and evaluation measure, underline
indicates which of (S) and (U) results in a better performance. Boldface marks
the best performance for an evaluation setting (corpus × evaluation measure).

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

WAuth[d↔d] (U) .509 .486 .638 .440 .424 .648 .504 .464 .638
WAuth[d↔d] (S) .511 .471 .642 .488 .440 .637 .520 .470 .642

WAuth[c→d] (U) .541 .501 .669 .544 .452 .674 .564 .514 .746

WAuth[c→d] (S) .541 .504 .668 .544 .434 .655 .568 .514 .711

Table 7.7: Performance results for using centrality as a sole criterion for ranking
(doc-RWI[d↔d] and doc-WAuth[c→d]), or as a “bias” on query likelihood using
Equation 6.3 (doc-RWI[d↔d]+LM and doc-WAuth[c→d]+LM). Bold: best result
per column.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

RWI[d↔d] .519 .480 .632 .524 .446 .666 .536 .486 .699
RWI[d↔d]+LM .531 .492 .630 .560 .460 .676 .572 .496 .747

WAuth[c→d] .541 .501 .669 .544 .452 .674 .564 .514 .746
WAuth[c→d]+LM .537 .493 .630 .572 .490 .702 .572 .510 .771

w tc→d(v1 → v2; λ)
def
=






1−λ
|VRight|

+ λwt[c→d](v1→v2)P
x wt[v2](v1→x)

if v1 ∈ C l(Dinit) and

v2 ∈ TopGen(v1 |α,Dinit);

0 otherwise.

Table 7.6 presents results for the doc-WAuth[d↔d] and doc-WAuth[c→d] algo-
rithms when run either on smoothed graphs (S) or unsmoothed graphs (U). (The
results for doc-WAuth[d↔d] are those presented in Table 6.4 of Section 6.3.7.) Our
first observation is that in most of the evaluation settings, smoothing of the c→d
graph actually hurts the performance of the doc-WAuth[c→d] algorithm, contrary
to the case for document-only graphs wherein smoothing d↔d helps to improve
the performance of doc-WAuth[d↔d] as was first described in Section 6.3.7. How-
ever, even with a smoothed underlying graph, the doc-WAuth[d↔d] algorithm is
still inferior in all cases to the doc-WAuth[c→d] algorithm implemented on an
unsmoothed graph.

Thus, while we have shown throughout this chapter that information about
document-cluster similarity relationships is very valuable, the results just men-
tioned suggest that such information is more useful in “raw” form.

Re-anchoring to the query In the previous chapter we showed that centrality
scores induced over document-only graphs can be used as a multiplicative weight

121

on document query-likelihood terms, the intent being to cope with cases in which
centrality in Dinit and relevance are not strongly correlated. (Refer back to Section
6.2.3.)

The same modification could be applied to the c→d-based algorithms, although
it is not particularly well-motivated in the HITS case as mentioned in Section
6.3.7. While Recursive Influx correspond to a stationary distribution that could
be loosely interpreted as a “prior”, in which case multiplicative combination with
query likelihood is sensible, it is not usual to assign a probabilistic interpretation
to hub or authority scores.

Nonetheless, for the sake of comparison completeness, we applied this idea
to the doc-WAuth[c→d] algorithm. We denote the resultant ranking algorithm
as doc-WAuth[c→d]+LM, following our practice in Chapter 6 to use “+LM”
for indicating that a centrality score serves as “bias” on query likelihood. (See
Equation 6.3.) We report the resultant performance in Table 7.7 in comparison
to that of the doc-RWI[d↔d] algorithm and its implementation as a “bias” on
query-likelihood — doc-RWI[d↔d]+LM . (Observe that doc-RWI[d↔d]+LM
is the Recursive Weighted Influx+LM algorithm from Chapter 6, following the
abbreviation conventions presented in Section 7.2; see also Table 7.1 for all graph-
based re-ranking algorithms).

We see in Table 7.7 that while the performance of doc-WAuth[c→d] degrades
when it serves as a “bias” (i.e., the doc-WAuth[c→d]+LM algorithm) on the AP
corpus, on WSJ and TREC8 the performance actually improves. Furthermore,
in 8 of 9 relevant comparison settings (3 corpora × 3 evaluation settings) doc-
WAuth[c→d]+LM outperforms doc-RWI[d↔d]+LM.

Thus, it may be the case that centrality scores induced over a document-based
graph are more effective as a multiplicative bias on query-likelihood than as di-
rect representations of relevance in Dinit (see Chapter 6); but, modulo the caveat
above, it seems that when centrality is induced over cluster-based one-way bipar-
tite graphs, the correlation with relevance is much stronger, and hence this kind
of centrality serves as a better “bias” on query-likelihood.

7.5 Related work

Ideas similar to ours by virtue of leveraging the mutual reinforcement of entities of
different types, or using bipartite graphs of such entities for clustering (rather than
using clusters), are abundant (e.g., Karov and Edelman (1998), Dhillon (2001),
and Beeferman and Berger (2000)). Karov and Edelman (1998) model the mutual
reinforcement of context and words for the task of word sense disambiguation.
Dhillon (2001) uses bipartite graphs of documents and terms for producing clusters
of documents and corresponding clusters of terms. Beeferman and Berger (2000)
utilize bipartite graphs of queries and URLs to induce a clustering of each (i.e.,
clusters of URLs and clusters of queries).

Random walks (with early stopping) over bipartite graphs of terms and doc-

122

uments were used for query expansion (Lafferty and Zhai, 2001), but in contrast
to our work, no stationary solution was sought. A similar “short chain” approach
utilizing bipartite graphs of clusters and documents for ranking an entire corpus
was recently proposed (Kurland et al., 2005), thereby constituting the work most
resembling ours. However, again, a stationary distribution was not sought. Also,
query drift prevention mechanisms were required to obtain good performance; in
our re-ranking setting, we need not employ such mechanisms.

Chapter 8
Structural re-ranking:
performance-comparison summary
Throughout the previous three chapters we focused on the re-ranking setting,
wherein an initially retrieved list of documents (Dinit) is re-ranked to obtain high
precision at top ranks. Alternatively, one can use information from the list to
re-rank all documents in a corpus; this approach is the basis of pseudo feedback
(PF) methods (Ruthven and Lalmas, 2003).

To compare these two paradigms, we contrast the performance of our best
performing structural re-ranking algorithms from Chapters 5, 6 and 7 with that
of state-of-the-art pseudo feedback methods. We follow Section 4.4.4 and use
Rocchio’s method (Rocchio, 1971) (as applied to the highest ranking documents)
— which as originally formulated operates in a vector space — and the relevance
model (Lavrenko and Croft, 2001), which is a state-of-the-art language-model-
based approach to retrieval.

To set all methods compared on an equal footing, we use all documents in Dinit

to perform feedback with both PF methods, as these documents are re-ordered by
our methods. Note that this implies that both Rocchio’s method and the relevance
model use (as “feedback”) documents that are retrieved by a basic LM approach
wherein the smoothing parameter is chosen to optimize average non-interpolated
precision at 1000 (i.e., MAP).1

We found that using log(tf).log(idf) weights to represent both the query and
the documents resulted in better performance for Rocchio’s method than that
attained by using tf.log(idf) weights (Zobel and Moffat, 1998). Furthermore, for
both Rocchio’s method and the relevance model we experimented with both the
original approaches and with variants for which we employed term clipping, i.e.,
models that use only the terms with highest weight (likelihood). (Refer back to
Section 4.4.4 for more details.) The number of terms for both models was chosen
from: {5, 10, . . . , 50, 100, . . . , 600} ∪ {∞}, where ∞ means that no term-clipping
was performed. The interpolation parameter for the relevance model was set to
{0.1, . . . , 0.9}, and the (positive) weighting coefficient for Rocchio’s method was
set to {0.01, 0.05, 0.1, . . . , 0.9, 1, 2, 4}.

All parameters (of both the PF methods and of our methods) were chosen to
optimize prec@5 following the optimization procedure described in Section 5.3.2.

As representatives of our structural re-ranking approaches we chose two groups
of algorithms. The first consists of algorithms that use similarities within Dinit

without additional “re-anchoring to the query” information (in the form of integrat-
ing query-likelihood information). This group includes the aspect-f, doc-RWI[d↔d]

1Experiments with Rocchio’s method wherein the initial search was instead
performed using a basic vector-space approach yielded results inferior to those we
present.

123

124

Table 8.1: Performance results of structural re-ranking algorithms from Chap-
ters 5, 6 and 7 compared to those of Rocchio’s method and the relevance model.
Bold: best performance per column; “i”: performance significantly better than
that of the initial ranking. (The prefix “doc-” was omitted from the graph-based
algorithms’ names (doc-RWI[d↔d], doc-WAuth[c→d], doc-RWI[d↔d]+LM, doc-
WAuth[c→d]+LM) due to formatting considerations.)

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

aspect-f .537 .498 .628 .560 .504 .714 .576 .504 .759
RWI[d↔d] .519 .480 .632 .524 .446 .666 .536 .486 .699
WAuth[c→d] .541 i .501 i .669 .544 .452 .674 .564 .514 .746

interpolation-f .537 i .498 i .628 .576 i .496 .687 .592 i .508 .767
RWI[d↔d]+LM .531 i .492 i .630 .560 .460 .676 .572 i .496 .747
WAuth[c→d]+LM .537 i .493 i .630 .572 i .490 .702 .572 .510 .771

Rocchio .481 .449 .589 .388 i .336 i .588 .620 .512 .807

Rel. Model .521 i .501 i .621 .540 .478 .694 .588 .524 .748

(i.e., Recursive Weighted Influx) and doc-WAuth[c→d] algorithms from Chapters
5, 6 and 7 respectively. The second group is algorithms that do incorporate query-
likelihood as an additional source of information for the scoring function of the first
three algorithms (either via interpolation or as multiplicative bias using Equation
6.3): interpolation-f, doc-RWI[d↔d]+LM (Recursive Weighted Influx+LM) and
doc-WAuth[c→d]+LM from Chapters 5, 6 and 7 respectively.

We note that both the six structural re-ranking algorithms mentioned above
and the two PF methods serving as reference comparisons have two free parameters.
Thus, combined with the fact that all algorithms use the exact same documents as
the “ground set”, we feel that the following performance comparison is as “fair”
as possible.

Table 8.1 presents the performance results of our structural re-ranking algo-
rithms when compared to those of the initial ranking and the PF methods (Roc-
chio and relevance model). Our first observation is that the best prec@5 results
— the metric for which we optimized performance — are obtained in two out of
the three corpora by one of our structural re-ranking algorithms. Furthermore, the
interpolation-f algorithm posts prec@5 results that are better in almost all cases
than those of both PF methods (except for Rocchio’s method results on WSJ).

Another observation from Table 8.1 is that our algorithms from the first group,
i.e., those that do not utilize query-likelihood information as an additional source of
information (on top of the basic scoring function) post quite satisfying performance
results — in 5 out of the 9 relevant comparison settings (3 corpora × 3 evaluation
measures) the best performance is obtained by one of these algorithms. Specifically,
the doc-WAuth[c→d] algorithm, which ranks documents by their centrality as
induced by the HITS algorithm over bipartite cluster-doc graphs, is clearly the
best performing algorithm (of all algorithms presented in Table 8.1) on the AP
corpus.

125

Table 8.2: Performance results of our most effective structural re-ranking algo-
rithms, doc-WAuth[c→d]+LM (the prefix “doc-” was omitted from the correspond-
ing table entry) and interpolation-f, compared to those of versions of Rocchio’s
method and the relevance model wherein only Dinit is ranked, instead of the entire
corpus. Bold: best performance per column; “i”: performance significantly better
than that of the initial ranking.

AP TREC8 WSJ
prec@5 prec@10 MRR prec@5 prec@10 MRR prec@5 prec@10 MRR

init. ranking .457 .432 .596 .500 .456 .691 .536 .484 .748

WAuth[c→d]+LM .537 .493 .630 .572 .490 .702 .572 .510 .771
interpolation-f .537 i .498 i .628 .576 i .496 .687 .592 i .508 .767

Rocchio .509 .468 .604 .476 .408 i .722 .612 i .526 .810

Rel. Model .525 i .495 i .630 .544 .486 .696 .580 .514 .735

Consideration of pairwise algorithm comparisons in Table 8.1 reveals that the
interpolation-f and doc-WAuth[c→d]+LM algorithms are the best performing ones
— the former being the only algorithm that posts significant prec@5 improvements
over the initial ranking on all three corpora. This finding not only supports our
premise that structural re-ranking can be an highly effective paradigm for attaining
high precision at top ranks (recall that the PF methods rank all documents in the
corpus), but also that clusters of documents in the initially retrieved list can convey
helpful information either when incorporated into the aspect-model framework (as
in the interpolation-f algorithm), or when modeled in our relevance-flow graph-
based framework (as in the doc-WAuth[c→d]+LM algorithm).

To complete the comparison between our best performing structural re-ranking
methods and the pseudo-feedback models, we also evaluate the performance of the
latter when applied only to documents in Dinit, rather than to all the documents
in the corpus. Thus, both our methods and the PF methods (in this version)
exploit information from Dinit to re-rank only documents in Dinit. We present the
performance results in Table 8.2.2

The first observation we draw from Table 8.2 is that in many cases the perfor-
mance of the PF methods is better than that presented in Table 8.1 — especially
for Rocchio’s model on the TREC8 corpus — implying that in some settings it
might be beneficial to apply PF methods to the initial list rather than to the en-
tire corpus to obtain high precision at top ranks. However, there are some cases in
which the original versions of the PF methods are superior to those applied only
to Dinit.

In comparing our two best performing re-ranking algorithms (interpolation-f
and doc-WAuth[c→d]+LM) to the PF methods as applied (only) to Dinit (Table
8.2), we see similar performance patterns to those evident in Table 8.1, attest-

2We also implemented a version of Rocchio’s model that operates in the LM
space. However, the resultant prec@5 performance was consistently worst than
that of the relevance model and therefore the results are omitted.

126

ing to the effectiveness of our algorithms — especially when pairwise algorithm
comparisons are considered. Specifically, our interpolation-f algorithm seems to be
in general more effective than both PF methods (except for Rocchio’s model on
WSJ). Indeed, on two (out of the three) corpora it posts the best prec@5 perfor-
mance. Furthermore, it is clearly much more effective than both PF methods on
the TREC8 corpus, which is the most heterogeneous corpus of the three corpora
tested. Perhaps most importantly, interpolation-f is the only algorithm in Ta-
ble 8.2 that posts significant prec@5 improvements over the initial ranking for all
three corpora. (Recall that prec@5 is the evaluation metric for which we optimized
performance.)

Chapter 9
Summary and Future Work
We have shown throughout this thesis that modeling inter-document similarities
using language models can form the basis of effective algorithms for ad hoc retrieval.

One representation for inter-document similarities that we employed was docu-
ment clusters. Our algorithmic framework, first designed for ranking all documents
in a corpus and then adapted for re-ranking documents within an initially retrieved
(short) list to obtain high precision among the few highest-ranked documents,
leverages language models of (either query independent or query-dependent) clus-
ters and documents to result in highly effective (re-)ranking algorithms.

We then presented a means for incorporating pairwise inter-document simi-
larities within a graph-based framework. Specifically, we constructed graphs over
documents in an initially retrieved list, wherein links are induced by asymmetric
language-model-based inter-document similarities. Centrality induced over these
graphs was shown to be connected with relevance and to be a much more effective
“bias” on query-likelihood than previously non-structural re-ranking approaches
are. Combining our two similarity representation approaches — clusters and links
within graphs — in a bipartite cluster-document graph-based framework resulted
in highly effective centrality-based re-ranking algorithms.

Our best performing algorithms for either ranking all documents in a corpus or
for re-ranking an initial list are competitive with — and in many occasions superior
to — state-of-the-art retrieval approaches.

Future directions One interesting research challenge emerging from our graph-
based framework is the theoretical modeling of centrality and relevance under the
same model. As shown in Chapters 6 and 7, these two concepts are correlated, but
are also not independent as centrality is induced over a list of documents retrieved
in response to a query.

Another important research challenge is the theoretical modeling of the “an-
choring to the query” concept. We showed in Chapters 4 and 5 that interpolation
with query-likelihood scores results in highly effective (re-)ranking algorithms. (Re-
call that this interpolation was a result of an estimation choice for the conditional
probability p(q|c, d).) Then, in Chapters 6 and 7 we saw that using query-likelihood
scores as a multiplicative bias on centrality values results in effective methods for
re-ranking. Deriving one unified framework in which interpolation could represent
a (generative) mixture model and centrality is explained as an intermediate quan-
tity correlated with relevance might be a step towards bringing together these two
different approaches for query-anchoring.

A conceptually interesting challenge is to couple the algorithmic framework
utilizing clusters created offline with the graph-based framework that we proposed
for structural re-ranking. One potential point of connection is the fact that the top-
ranked clusters are used in the algorithmic framework to provide query context at
retrieval time — a conceptual analog of the initial list of documents upon which re-

127

128

ranking is performed. Furthermore, the highest ranked clusters are in essence the
“top generators” of the query (with respect to all offline clusters), and therefore
one possible direction might be to define a graph containing all entities in the
corpus (i.e., documents, clusters and the query), wherein query context is defined
using the top-generators concept.

BIBLIOGRAPHY

Allan, J. (2003). HARD track overview in TREC 2003: High accuracy re-
trieval from documents. In Proceedings of the Twelfth Text Retrieval Conference
(TREC-12), pages 24–37.

Allan, J., Connell, M. E., Croft, W. B., Feng, F.-F., Fisher, D., and Li, X. (2000).
INQUERY and TREC-9. In Proceedings of the Ninth Text Retrieval Conference
(TREC-9), pages 551–562. NIST Special Publication 500-249.

Ando, R. K. and Lee, L. (2001). Iterative residual rescaling: An analysis and
generalization of LSI. In Proceedings of the 24th SIGIR, pages 154–162.

Azar, Y., Fiat, A., Karlin, A., McSherry, F., and Saia, J. (2001). Spectral anal-
ysis of data. In Proceedings of the ACM Symposium on Theory of Computing
(STOC).

Azzopardi, L., Girolami, M., and van Rijsbergen, K. (2003). Investigating the
relationship between language model preplexity and ir precision-recall measures.
In Proceedings of SIGIR, pages 369–370. Poster.

Azzopardi, L., Girolami, M., and van Rijsbergen, K. (2004). Topic based language
models for ad hoc information retrieval. In Proceedings of International Confer-
ence on Neural Networks and IEEE International Conference on Fuzzy Systems,
pages 3281–3286.

Baeza-Yates, R. A. and Reibeiro-Neto, B. A. (1999). Modern Information Re-
trieval. ACM Press / Addison-Wesley.

Baker, L. D. and McCallum, A. K. (1998). Distributional clustering of words for
text classification. In Proceedings of the 21st SIGIR, pages 96–103.

Baliński, J. and Dani lowicz, C. (2005). Re-ranking method based on inter-
document distances. Information Processing and Management, 41(4):759–775.

Barzilay, R. and Lapata, M. (2005). Collective content selection for concept-to-text
generation. In Proceedings of HLT/EMNLP, pages 331–338.

Bast, H. and Majumdar, D. (2005). Why spectral retrieval works. In Proceedings
of SIGIR, pages 11–18.

Beeferman, D. and Berger, A. L. (2000). Agglomerative clustering of a search
engine query log. In Proceedings of KDD, pages 407–416.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6):1373–1396.

Berger, A. and Lafferty, J. (1999). Information retrieval as statistical translation.
In Proceedings of SIGIR, pages 222–229.

129

130

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022.

Brin, S. and Page, L. (1998). The anatomy of a large-scale hypertextual web search
engine. In Proceedings of the 7th International World Wide Web Conference,
pages 107–117.

Brown, P. F., Della Pietra, V. J., deSouza, P. V., Lai, J. C., and Mercer, R. L.
(1992). Class-based n-gram models of natural language. Computational Linguis-
tics, 18(4):467–479.

Buckley, C. (2004). Why current IR engines fail. In Proceedings of SIGIR, pages
584–585. Poster.

Buckley, C. and Voorhees, E. M. (2000). Evaluating evaluation measure stability.
In Proceedings of SIGIR, pages 33–40.

Cai, D. and He, X. (2005). Orthogonal locality preserving indexing. In Proceedings
of SIGIR, pages 3–10.

Chen, S. F. and Goodman, J. (1998). An empirical study of smoothing techniques
for language modeling. Technical Report TR-10-98, Harvard University.

Clark, S. and Weir, D. (2002). Class-based probability estimation using a semantic
hierarchy. Computational Linguistics.

Collins-Thompson, K. and Callan, J. (2005). Query expansion using random walk
models. In Proceedings of the fourteenth International Conference on Informa-
tion and Knowledge Managment (CIKM).

Collins-Thompson, K., Callan, J., Terra, E., and Clarke, C. L. (2004). The effect
of document retrieval quality on factoid question answering performance. In
Proceedings of SIGIR, pages 574–575. Poster.

Connell, M., Feng, A., Kumaran, G., Raghavan, H., Shah, C., and Allan, J. (2004).
UMass at TDT 2004. TDT2004 System Description.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley
series in telecommunications. Wiley-Interscience, New York.

Crestani, F., Lalmas, M., Rijsbergen, C. J. V., and Campbell, I. (1998). ”is this
document relevant? ... probably”: A servey of probabilistic models in informa-
tion retrieval. ACM Computing Surveys, 30(4):528–552.

Croft, W. B. (1978). Organizing and searching large files of documents. PhD thesis,
University of Cambridge.

Croft, W. B. (1980). A model of cluster searching based on classification. Infor-
mation Systems, 5:189–195.

131

Croft, W. B. (1995). What do people want from information retrieval? D-Lib
magazine.

Croft, W. B. and Harper, D. J. (1979). Using probabilistic models of document
retrieval without relevance information. Journal of Documentation, 35(4):285–
295. Reprinted in Karen Sparck Jones and Peter Willett, eds., Readings in
Information Retrieval, Morgan Kaufmann, pp. 339–344, 1997.

Croft, W. B. and Lafferty, J., editors (2003). Language Modeling for Information
Retrieval. Number 13 in Information Retrieval Book Series. Kluwer.

Cronen-Townsend, S., Zhou, Y., and Croft, W. B. (2002). Predicting query per-
formance. In Proceedings of SIGIR, pages 299–306.

Cronen-Townsend, S., Zhou, Y., and Croft, W. B. (2004). A language modeling
framework for selective query expansion. Technical Report IR-338, Center for
Intelligent Information Retrieval, University of Massachusetts.

Cutting, D. R., Karger, D. R., Pedersen, J. O., and Tukey, J. W. (1992). Scat-
ter/Gather: A cluster-based approach to browsing large document collections.
In 15th Annual International SIGIR, pages 318–329, Denmark.

Dani lowicz, C. and Baliński, J. (2000). Document ranking based upon Markov
chains. Information Processing and Management, 41(4):759–775.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R. (1990).
Indexing by latent semantic analysis. Journal of the American Society for In-
formation Science, 41(6):391–407.

Dhillon, I. (2001). Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the Seventh ACM SIGKDD Conference,
pages 269–274.

Diaz, F. (2005). Regularizing ad hoc retrieval scores. In Proceedings of the
Fourteenth International Conference on Information and Knowledge Managment
(CIKM), pages 672–679.

El-Hamdouchi, A. and Willett, P. (1986). Hierarchic document clustering using
ward’s method. In Proceedings of SIGIR, pages 149–156.

El-Hamdouchi, A. and Willett, P. (1987). Techniques for the measurement of clus-
tering tendency in document retrieval systems. Journal of Information Science,
13:361–365.

El-Hamdouchi, A. and Willett, P. (1989). Comparison of hierarchic agglomerative
clustering methods for document retrieval. The Computer journal, 32(3):220–
227.

132

Erkan, G. (2006). Language model based document clustering using random walks.
In Proceedings of HLT/NAACL.

Erkan, G. and Radev, D. R. (2004). LexRank: Graph-based lexical centrality
as salience in text summarization. Journal of Artificial Intelligence Research,
22:457–479.

Fang, H. and Zhai, C. (2005). An exploration of axiomatic approaches to informa-
tion retrieval. In Proceedings of SIGIR, pages 480–487.

Fuhr, N. (1992). Probabilistic models in information retrieval. The Computer
Journal, 35(3):243–255.

Gao, G., Nie, J.-Y., and Bai, J. (2005). Integrating word relationships into language
models. In Proceedings of SIGIR, pages 298–305.

Gao, J., Nie, J.-Y., Wu, G., and Cao, G. (2004). Dependence langauge model for
information retrieval. In Proceedings of SIGIR, pages 170–177.

Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science,
178:471–479.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. The Johns
Hopkins University Press, third edition.

Grassmann, W. K., Taksar, M. I., and Heyman, D. P. (1985). Regenerative anal-
ysis and steady state distributions for Markov chains. Operations Research,
33(5):1107–1116.

Griffiths, A., Luckhurst, H. C., and Willett, P. (1986). Using interdocument simi-
larity information in document retrieval systems. Journal of the American So-
ciety for Information Science (JASIS), 37(1):3–11. Reprinted in Karen Sparck
Jones and Peter Willett, eds., Readings in Information Retrieval, Morgan Kauf-
mann, pp. 365–373, 1997.

Grimmett, G. R. and Stirzaker, D. R. (2001). Probability and Random Processes.
Oxford Science Publications, third edition.

Grossman, D. A. and Frieder, O. (1998). Information Retrieval: Algorithms and
Heuristics. Kluwer.

Harman, D. and Buckley, C. (2004). The NRRC reliable information access (RIA)
workshop. In Proceedings of SIGIR, pages 528–529. Poster.

Harman, D. and Voorhees, E. M. (1998). Overview of the seventh text retrieval
conference (trec-7). In Proceedings of of the Seventh Text Retrieval Conference
(TREC-7), pages 1–24.

133

Hartigan, J. A. (1975). Clustering Algorithms. Wiley series in probability and
mathematical statistics. Wiley-Interscience, New York.

Hatzivassiloglou, V. and McKeown, K. (1997). Predicting the semantic orientation
of adjectives. In Proceedings of the 35th ACL/8th EACL, pages 174–181.

He, X., Cai, D., Liu, H., and Ma, W.-Y. (2004). Locality preserving indexing for
document representation. In Proceedings of SIGIR, pages 96–103.

Hearst, M. A. and Pedersen, J. O. (1996). Reexamining the cluster hypothesis:
Scatter/Gather on retrieval results. In Proceedings of SIGIR.

Hiemstra, D. (2001). Using language models for information retrieval. PhD thesis,
Centre for Telematics and Information Technology, University of Twente.

Hiemstra, D. (2002). Term-specific smoothing for the language modeling approach
to information retrieval: The importance of a query term. In Proceedings of
SIGIR.

Hiemstra, D. and Kraaij, W. (1999). Twenty-One at TREC7: Ad hoc and cross-
language track. In Proceedings of the Seventh Text Retrieval Conference (TREC-
7), pages 227–238.

Hiemstra, D., Robertson, S., and Zaragoza, H. (2004). Parsimonious language
models. In Proceedings of SIGIR, pages 178–185.

Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic anal-
ysis. Machine Learning, 42(1-2):177–196.

Hofmann, T. and Puzicha, J. (1998). Unsupervised learning from dyadic data.
Technical Report TR-98-042, International Computer Science Institute (ICSI).

Hu, X., Bandhakavi, S., and Zhai, C. (2003). Error analysis of difficult TREC
topics. In Proceedings of SIGIR, pages 407–408. Poster.

Iyer, R. and Ostendorf, M. (1999). Modeling long distance dependence in language:
Topic mixtures vs. dynamic cache models. IEEE Transactions on Speech and
Audio Processing, 7(1):30–39.

Jardine, N. and van Rijsbergen, C. J. (1971). The use of hierarchic clustering in
information retrieval. Information Storage and Retrieval, 7(5):217–240.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation
problems. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 186(1007):453–461.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 133–142.

134

Joachims, T. (2003). Transductive learning via spectral graph partitioning. In
Proceedings of ICML, pages 290–297.

Karov, Y. and Edelman, S. (1998). Similarity-based word sense disambiguation.
Computational Linguistics, 24(1):41–59.

Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. In
Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 668–677. Extended version in Journal of the ACM, 46:604–632, 1999.

Kleinberg, J. (1999). Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46:604–632.

Kraaij, W. and Spitters, M. (2003). Language models for topic tracking: The
importance of score normalization. In (Croft and Lafferty, 2003), chapter 5,
pages 95–124.

Kraaij, W. and Westerveld, T. (2001). TNO-UT at TREC9: How different are web
documents? In Proceedings of the Ninth Text Retrieval Conference (TREC-9),
pages 665–671.

Kraaij, W., Westerveld, T., and Hiemstra, D. (2002). The importance of prior
probabilities for entry page search. In Proceedings of SIGIR, pages 27–34.

Krovetz, R. and Croft, W. B. (1992). Lexical ambiguity and information retrieval.
ACM Transactions on Information Systems, 10(2):115–141.

Kurland, O. and Lee, L. (2004). Corpus structure, language models, and ad hoc
information retrieval. In Proceedings of SIGIR, pages 194–201.

Kurland, O. and Lee, L. (2005). PageRank without hyperlinks: Structural re-
ranking using links induced by language models. In Proceedings of SIGIR, pages
306–313.

Kurland, O. and Lee, L. (2006). Respect my authority! HITS without hyperlinks
utilizing cluster-based language models. In Proceedings of SIGIR.

Kurland, O., Lee, L., and Domshlak, C. (2005). Better than the real thing? Iter-
ative pseudo-query processing using cluster-based language models. In Proceed-
ings of SIGIR, pages 19–26.

Lafferty, J. and Zhai, C. (2003). Probabilistic relevance models based on document
and query generation. In (Croft and Lafferty, 2003), pages 1–10.

Lafferty, J. D. and Zhai, C. (2001). Document language models, query models,
and risk minimization for information retrieval. In Proceedings of SIGIR, pages
111–119.

135

Langville, A. N. and Meyer, C. D. (2005). Deeper inside PageRank. Internet
Mathematics.

Lavrenko, V. (2000). Localized smoothing of multinomial language models. Tech-
nical Report IR-222, Center for Intelligent Information Retrieval (CIIR), Uni-
versity of Massachusetts.

Lavrenko, V. (2004). A Generative Theory of Relevance. PhD thesis, University
of Massachusetts Amherst.

Lavrenko, V., Allan, J., DeGuzman, E., LaFlamme, D., Pollard, V., and Thomas,
S. (2002a). Relevance models for topic detection and tracking. In Proceedings
of the Human Language Technology Conference (HLT), pages 104–110.

Lavrenko, V., Choquette, M., and Croft, W. B. (2002b). Cross-lingual relevance
models. In Proceedings of SIGIR, pages 175–182.

Lavrenko, V. and Croft, W. B. (2001). Relevance-based language models. In
Proceedings of SIGIR, pages 120–127.

Lavrenko, V. and Croft, W. B. (2003). Relevance models in information retrieval.
In (Croft and Lafferty, 2003), pages 11–56.

Lee, K.-S., Park, Y.-C., and Choi, K.-S. (2001). Re-ranking model based on doc-
ument clusters. Information Processing and Management, 37(1):1–14.

Lee, L. and Pereira, F. (1999). Distributional similarity models: Clustering vs.
nearest neighbors. In 37th Annual Meeting of the Association for Computational
Linguistics, pages 33–40.

Leuski, A. (2001). Evaluating document clustering for interactive information
retrieval. In Proceedings of the Tenth International Conference on Information
and Knowledge Managment (CIKM), pages 33–40.

Leuski, A. and Allan, J. (1998). Evaluating a visual navigation system for a
digital library. In Proceedings of the Second European conference on research
and advanced technology for digital libraries (ECDL), pages 535–554.

Levow, G.-A. and Matveeva, I. (2004). University of Chicago at CLEF2004: Cross-
language text and spoken document retrieval. In Proceedings of CLEF, pages
170–179.

Li, X. and Croft, W. B. (2003). Time-based language models. In Proceedings of
the 12th International Conference on Information and Knowledge Managment
(CIKM), pages 469–475.

Liu, X. and Croft, W. B. (2004). Cluster-based retrieval using language models.
In Proceedings of SIGIR, pages 186–193.

136

Maron, M. E. and Kuhns, J. L. (1960). On relevance, probabilistic indexing and
retrieval. Journal of the ACM, 7:216–244.

Matveeva, I. (2004). Text representation with the locality preserving projection
algorithm for information retrieval task. Master’s thesis, University of Chicago.

Metzler, D. (2005). Direct maximization of rank-based metrics. Technical Re-
port IR-338425, Center for Intelligent Information Retrieval, University of Mas-
sachusetts.

Metzler, D. and Croft, W. B. (2005). A Markov random field model for term
dependencies. In Proceedings of SIGIR.

Metzler, D., Diaz, F., Strohman, T., and Croft, W. B. (2005). Using mixtures
of relevance models for query expansion. In Proceedings of the Fourteenth Text
Retrieval Conference (TREC).

Mihalcea, R. (2004). Graph-based ranking algorithms for sentence extraction,
applied to text summarization. In The Companion Volume to the Proceedings
of the 42nd Annual Meeting of the Association for Computational Linguistics,
pages 170–173.

Mihalcea, R. and Tarau, P. (2004). TextRank: Bringing order into texts. In
Proceedings of EMNLP, pages 404–411. Poster.

Miller, D. R. H., Leek, T., and Schwartz, R. M. (1999). A hidden Markov model
information retrieval system. In Proceedings of SIGIR, pages 214–221.

Mitra, M., Singhal, A., and Buckley, C. (1998). Improving automatic query ex-
pansion. In Proceedings of SIGIR, pages 206–214.

Morgan, W., Greiff, W., and Henderson, J. (2004). Direct maximization of average
precision by hill-climbing, with a comparison to a maximum entropy approach.
Technical Report 04-0367, The MITRE Corporation.

Nallapati, R. (2004). Discriminative models for information retrieval. In Proceed-
ings of SIGIR, pages 64–71.

Nallapati, R. and Allan, J. (2002). Capturing term dependencies using a language
model bsed on sentence trees. In Proceedings of the 11th International Confer-
ence on Information and Knowledge Managment (CIKM), pages 383–390.

Ng, A. Y., Zheng, A. X., and Jordan, M. I. (2001). Stable algorithms for link
analysis. In Proceedings of SIGIR, pages 258–266.

Ng, K. (2000). A maximum likelihood ratio information retrieval model. In Pro-
ceedings of the Eighth Text Retrieval Conference (TREC-8), pages 483–492.

137

Ogilvie, P. (2000). Nearest neighbor smoothing of language models in IR. Unpub-
lished.

Ogilvie, P. and Callan, J. (2003). Combining document representations for known
item search. In Proceedings of SIGIR, pages 143–150.

Otterbacher, J., Erkan, G., and Radev, D. R. (2005). Using random walks for
question-focused sentence retrieval. In Proceedings of Human Language Tech-
nology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 915–922.

Pang, B. and Lee, L. (2004). A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts. In Proceedings of the ACL,
pages 271–278.

Papadimitriou, C. H., Raghavan, P., Tamaki, H., and Vempala, S. (2000). Latent
Semantic Indexing: A probabilistic analysis. Journal of Computer and System
Sciences, 61(2):217–235.

Pereira, F., Tishby, N., and Lee, L. (1993). Distributional clustering of English
words. In Proceedings of ACL, pages 183–190.

Pinski, G. and Narin, F. (1976). Citation influence for journal aggregates of sci-
entific publications: Theory, with application to the literature of physics. Infor-
mation Processing and Management, 12:297–312.

Ponte, J. M. (1998). Probabilistic Language Models for Topic Segmentation and
Information Retrieval. PhD thesis, University of Massachusetts, Amherst, Mas-
sachusetts.

Ponte, J. M. and Croft, W. B. (1998). A language modeling approach to informa-
tion retrieval. In Proceedings of SIGIR, pages 275–281.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3):130–
137. Reprinted in Karen Sparck Jones and Peter Willett, eds., Readings in
Information Retrieval, Morgan Kaufmann, 1997.

Preece, S. E. (1973). Clustering as an output option. In Proceedings of the Amer-
ican Society for Information Science, pages 189–190.

Robertson, S. E. (1977). The probability ranking principle in IR. Journal of
Documentation, pages 294–304. Reprinted in K. Sparck Jones and P. Willett
(eds), Readings in Information Retrieval, pp. 281–286, 1997.

Robertson, S. E. and Sparck Jones, K. (1976). Relevance weighting of search terms.
Journal of American society for Information Science, 27(3):129–146.

138

Rocchio, J. J. (1971). Relevance feedback in information retrieval. In (Salton,
1971a), pages 313–323.

Rooth, M., Riezler, S., Prescher, D., Carroll, G., and Beil, F. (1999). Inducing a
semantically annotated lexicon via EM-based clustering. In 37th Annual Meeting
of the Association for Computational Linguistics, pages 104–111.

Rosenfeld, R. (2000). Two decades of statistical language modeling: where do we
go from here? Proceedings of the IEEE, 88(9).

Ruthven, I. and Lalmas, M. (2003). A survey on the use of relevance feedback for
information access systems. Knowledge Engineering Review, 18(2):95–145.

Salton, G. (1968). Automatic Information Organization and Retrieval. McGraw-
Hill computer science series. McGraw-Hill, New York.

Salton, G., editor (1971a). Prentice Hall.

Salton, G. (1971b). Cluster search strategies and the optimization of retrieval
effectiveness. In (Salton, 1971a), pages 223–242.

Salton, G. and Buckley, C. (1988). On the use of spreading activation methods in
automatic information retrieval. In Proceedings of SIGIR, pages 147–160.

Salton, J., Wong, A., and Yang, C. S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620.

Sanderson, M. (1994). Word sense disambiguation and information retrieval. In
SIGIR 94, pages 142–151, Dublin, Ireland.

Sanderson, M. and Zobel, J. (2005). Information retrieval system evaluation: effort,
sensitivity and reliability. In Proceedings of SIGIR, pages 162–169.

Shah, C. and Croft, W. B. (2004). Evaluating high accuracy retrieval techniques.
In Proceedings of SIGIR, pages 2–9.

Si, L., Jin, R., Callan, J., and Ogilvie, P. (2002). A language modeling framework
for resource selection and results merging. In Proceedings of the 11th Interna-
tional Conference on Information and Knowledge Managment (CIKM), pages
391–397.

Singhal, A., Buckley, C., and Mitra, M. (1996). Pivoted document length normal-
ization. In Proceedings of SIGIR, pages 21–29.

Song, F. and Croft, W. B. (1999). A general language model for information
retrieval (poster abstract). In Proceedings of SIGIR, pages 279–280.

Sparck Jones, K., Robertson, S., Hiemstra, D., and Zaragoza, H. (2003). Language
modeling and relevance. In (Croft and Lafferty, 2003), pages 57–71.

139

Sparck Jones, K., Walker, S., and Robertson, S. E. (2000). A probabilistic model
of information retrieval: development and comparative experiments - part 1.
Information Processing and Management, 36(6):779–808.

Spink, A. and Jensen, B. J. (2004). A study of web search trends. Webology, 1(2).

Spitters, M. and Kraaij, W. (2001). TNO at TDT2001: Language model-based
topic detection. In Topic Detection and Tracking TDT Workshop.

Srikanth, M. and Srihari, R. (2004). Biterm language models for document re-
trieval. In Proceedings SIGIR, pages 425–426. Poster.

Stewart, W. J. (1994). Introduction to the numerical solution of Markov chains.
Princeton University Press.

Tao, T., Wang, X., Mei, Q., and Zhai, C. (2006). Language model information
retrieval with document expansion. In Proceedings of HLT/NAACL.

Tao, T. and Zhai, C. (2004). A two-stage mixture model for pseudo feedback. In
Proceedings of the 27th SIGIR, pages 486–487. Poster.

Teahan, W. J. and Harper, D. J. (2003). Using compression-based language models
for text categorization. In (Croft and Lafferty, 2003), pages 141–165.

Tishby, N. and Slonim, N. (2000). Data clustering by Markovian relaxation and the
information bottleneck method. In Advances in Neural Information Processing
Systems (NIPS) 14, pages 640–646.

Tombros, A., Villa, R., and van Rijsbergen, C. (2002). The effectiveness of query-
specific hierarchic clustering in information retrieval. Information Processing
and Management, 38(4):559–582.

Toutanova, K., Manning, C. D., and Ng, A. Y. (2004). Learning random walk
models for inducing word dependency distributions. In Proceedings of the Inter-
national Conference on Machine Learning.

Turtle, H. R. and Croft, W. B. (1990). Inference networks for document retrieval.
In Proceedings of SIGIR, pages 1–24.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworths, second edition.

van Rijsbergen, C. J. (1986). A non-classical logic for information retrieval. The
computer jounral, 29(6):481–485.

Voorhees, E. M. (1985). The cluster hypothesis revisited. In Proceedings of SIGIR,
pages 188–196.

Voorhees, E. M. (1986). The efficiency of inverted index and cluster searches. In
Proceedings of SIGIR, pages 164–174.

140

Voorhees, E. M. (2000). Variations in relevance judgments and the measure of
retrieval effectiveness. Information Processing and Management, 36(5):697–716.

Voorhees, E. M. (2002). Overview of the TREC 2002 question answering track. In
The Eleventh Text Retrieval Conference TREC-11, pages 115–123.

Voorhees, E. M. (2005). Overview of the TREC 2005 robust retrieval task. In
Proceedings of the Fourteenth Text Retrieval Conference (TREC).

Voorhees, E. M. and Harman, D. K., editors (2000). The Eighth Text REtrieval
Conference (TREC-8). NIST.

Wei, X. and Croft, W. B. (2006). LDA-based document models for ad-hoc retrieval.
In Proceedings of SIGIR.

Willett, P. (1985). Query specific automatic document classification. International
Forum on Information and Documentation, 10(2):28–32.

Xu, J. and Croft, W. B. (1996). Query expansion using local and global document
analysis. In Proceedings of SIGIR, pages 4–11.

Xu, J. and Croft, W. B. (1999). Cluster-based language models for distributed
retrieval. In Proceedings of SIGIR, pages 254–261.

Yang, Y. and Liu, X. (1999). A re-examination of text categorization methods. In
Proceedings of the 22nd Annual SIGIR, pages 42–49.

Yom-Tov, E., Fine, S., Carmel, D., and Darlow, A. (2005). Learning to esti-
mate query difficulty: including applications to missing content detection and
distributed information retrieval. In Proceedings of SIGIR, pages 512–519.

Zamir, O. and Etzioni, O. (1998). Web document clustering: a feasibility demon-
stration. In Proceedings of SIGIR, pages 46–54.

Zaragoza, H., Hiemstra, D., and Tipping, M. (2003). Bayesian extension to the
language model for ad hoc information retrieval. In Proceedings of SIGIR, pages
4–9.

Zhai, C. and Lafferty, J. (2002). Two-stage language models for information re-
trieval. In Proceedings of SIGIR, pages 49–56.

Zhai, C. and Lafferty, J. D. (2001a). Model-based feedback in the language model-
ing approach to information retrieval. In Proceedings of CIKM, pages 403–410.

Zhai, C. and Lafferty, J. D. (2001b). A study of smoothing methods for language
models applied to ad hoc information retrieval. In Proceedings of SIGIR, pages
334–342.

141

Zhang, B., Li, H., Liu, Y., Ji, L., Xi, W., Fan, W., Chen, Z., and Ma, W.-Y.
(2005). Improving web search results using affinity graph. In Proceedings of
SIGIR, pages 504–511.

Zhang, Y., Callan, J., and Minka, T. (2002). Novelty and redundancy detection
in adaptive filtering. In Proceedings of SIGIR, pages 81–88.

Zhu, X. J. (2005). Semi-Supervised Learning with Graphs. PhD thesis, Carnegie
Mellon University.

Zobel, J. (1998). How reliable are the results of large-scale search engines? In
Proceedings of SIGIR, pages 307–314.

Zobel, J. and Moffat, A. (1998). Exploring the similarity space. ACM SIGIR
forum, 18(1):18–34.

