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15.1 Advertising Tied to Search Behavior

The problem of Web search, as traditionally formulated, has a very “pure” motivation: it

seeks to take the content people produce on the Web and find the pages that are most

relevant, useful, or authoritative for any given query. However, it soon became clear that

a lucrative market existed within this framework for combining search with advertising,

targeted to the queries that users were issuing.

The basic idea behind this is simple. Early Web advertising was sold on the basis of

“impressions,” by analogy with the print ads one sees in newspapers or magazines: a company

like Yahoo! would negotiate a rate with an advertiser, agreeing on a price for showing its

ad a fixed number of times. But if the ad you’re showing a user isn’t tied in some intrinsic

way to their behavior, then you’re missing one of the main benefits of the Internet as an

advertising venue, compared to print or TV. Suppose for example that you’re a very small

retailer who’s trying to sell a specialized product; say, for example, that you run a business

that sells calligraphy pens over the Web. Then paying to display ads to the full Internet-

using population seems like a very inefficient way to find customers; instead, you might want

to work out an agreement with a search engine that said, “Show my ad to any user who

enters the query ‘calligraphy pens.’ ” After all, search engine queries are a potent way to

get users to express their intent — what it is that they’re interested in at the moment they

issue their query — and an ad that is based on the query is catching a user at precisely this

receptive moment.

Originally pioneered by the company Overture, this style of keyword-based advertising

has turned out to be an enormously successful way for search engines to make money. At
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Figure 15.1: Search engines display paid advertisements (shown on the right-hand side of
the page in this example) that match the query issued by a user. These appear alongside
the results determined by the search engine’s own ranking method (shown on the left-hand
side). An auction procedure determines the selection and ordering of the ads.

present it’s a business that generates tens of billions of dollars per year in revenue, and it is

responsible, for example, for nearly all of Google’s revenue. From our perspective, it’s also

a very nice blend of ideas that have come up earlier in this book: it creates markets out of

the information-seeking behavior of hundreds of millions of people traversing the Web; and

we will see shortly that it has surprisingly deep connections to the kinds of auctions and

matching markets that we discussed in Chapters 9 and 10.

Keyword-based ads show up on search engine results pages alongside the unpaid (“or-

ganic” or “algorithmic”) results. Figure 15.1 shows an example of how this currently looks

on Google for the query “Keuka Lake,” one of the Finger Lakes in upstate New York. The

algorithmic results generated by the search engine’s internal ranking procedure are on the

left, while the paid results (in this case for real estate and vacation rentals) are ordered on

the right. There can be multiple paid results for a single query term; this simply means that

the search engine has sold an ad on the query to multiple advertisers. Among the multiple

slots for displaying ads on a single page, the slots higher up on the page are more expensive,

since users click on these at a higher rate.

The search industry has developed certain conventions in the way it sells keyword-based
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ads, and for thinking about this market it’s worth highlighting two of these at the outset.

Paying per click. First, ads such as those shown in Figure 15.1 are based on a cost-per-

click (CPC) model. This means that if you create an ad that will be shown every time a

user enters the query “Keuka Lake,” it will contain a link to your company’s Web site —

and you only pay when a user actually clicks on the ad. Clicking on an ad represents an

even stronger indication of intent than simply issuing a query; it corresponds to a user who

issued the query, read your ad, and is now visiting your site. As a result, the amount that

advertisers are willing to pay per click is often surprisingly high. For example, to occupy

the most prominent spot for “calligraphy pens” costs about $1.70 per click on Google as of

this writing; occupying the top spot for “Keuka Lake” costs about $1.50 per click. (For the

misspelling “calligaphy pens,” the cost is still about $0.60 per click — after all, advertisers

are still interested in potential customers even if their query contains a small but frequent

typo.)

For some queries, the cost per click can be positively stratospheric. Queries like “loan

consolidation,” “mortgage refinancing,” and “mesothelioma” often reach $50 per click or

more. One can take this as an advertiser’s estimate that it stands to gain an expected value

of $50 for every user who clicks through such an ad to its site.1

Setting prices through an auction. There is still the question of how a search engine

should set the prices per click for different queries. One possibility is simply to post prices, the

way that products in a store are sold. But with so many possible keywords and combinations

of keywords, each appealing to a relatively small number of potential advertisers, it would

essentially be hopeless for the search engine to maintain reasonable prices for each query in

the face of changing demand from advertisers.

Instead, search engines determine prices using an auction procedure, in which they solicit

bids from the advertisers. If there were a single slot in which an ad could be displayed, then

this would be just a single-item auction such as we saw in Chapter 9, and there we saw

that the sealed-bid second-price auction had many appealing features. The problem is more

complicated in the present case, however, since there are multiple slots for displaying ads,

and some are more valuable than others.

We will consider how to design an auction for this setting in several stages.

(1) First, if the search engine knew all the advertisers’ valuations for clicks, the situation

could be represented directly as a matching market in the style that we discussed in

1Naturally, you may be wondering at this point what mesothelioma is. As a quick check on Google reveals,
it’s a rare form of lung cancer that is believed to be caused by exposure to asbestos in the workplace. So if
you know enough to be querying this term, you may well have been diagnosed with mesothelioma, and are
considering suing your employer. Most of the top ads for this query link to law firms.
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Chapter 10 — essentially, the slots are the items being sold, and they’re being matched

with the advertisers as buyers.

(2) If we assume that the advertisers’ valuations are not known, however, then we need

to think about ways of encouraging truthful bidding, or to deal with the consequences

of untruthful bidding. This leads us directly to an interesting general question that

long predates the specific problem of keyword-based advertising: how do you design a

price-setting procedure for matching markets in which truthful bidding is a dominant

strategy for the buyers? We will resolve this question using an elegant procedure called

the Vickrey-Clarke-Groves (VCG) mechanism [112, 199, 400], which can be viewed as

a far-reaching generalization of the second-price rule for single-item auctions that we

discussed in Chapter 9.

(3) The VCG mechanism provides a natural way to set prices in matching markets, in-

cluding those arising from keyword-based advertising. For various reasons, however,

it is not the procedure that the search industry adopted. As a result, our third topic

will be an exploration of the auction procedure that is used to sell search advertising

in practice, the Generalized Second-Price Auction (GSP). We will see that although

GSP has a simple description, the bidding behavior it leads to is very complex, with

untruthful bidding and socially non-optimal outcomes. Trying to understand bidder

behavior under this auction turns out to be an interesting case study in the intricacies

of a complex auction procedure as it is implemented in a real application.

15.2 Advertising as a Matching Market

Clickthrough Rates and Revenues Per Click. To begin formulating a precise descrip-

tion of how search advertising is sold, let’s consider the set of available “slots” that the

search engine has for selling ads on a given query, like the three advertising slots shown in

Figure 15.1. The slots are numbered 1, 2, 3, . . . starting from the top of the page, and users

are more likely to click on the higher slots. We will assume that each slot has a specific

clickthrough rate associated with it — this is the number of clicks per hour that an ad placed

in that slot will receive.

In the models we discuss, we will make a few simplifying assumptions about the click-

through rates. First, we assume that advertisers know the clickthrough rates. Second, we

assume that the clickthrough rate depends only on the slot itself and not on the ad that is

placed there. Third, we assume that the clickthrough rate of a slot also doesn’t depend on

the ads that are in other slots. In practice, the first of these assumptions is not particularly

problematic since advertisers have a number of means (including tools provided by the search

engine itself) for estimating clickthrough rates. The second assumption is an important is-
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Figure 15.2: In the basic set-up of a search engine’s market for advertising, there are a certain
number of advertising slots to be sold to a population of potential advertisers. Each slot has
a clickthrough rate: the number of clicks per hour it will receive, with higher slots generally
getting higher clickthrough rates. Each advertisers has a revenue per click, the amount of
money it expects to receive, on average, each time a user clicks on one of its ads and arrives
at its site. We draw the advertisers in descending order of their revenue per click; for now,
this is purely a pictorial convention, but in Section 15.2 we will show that the market in fact
generally allocates slots to the advertisers in this order.

sue: a relevant, high-quality ad in a high slot will receive more clicks than an off-topic ad,

and in fact we will describe how to extend the basic models to deal with ad relevance and ad

quality at the end of the chapter. The third assumption — interaction among the different

ads being shown — is a more complex issue, and it is still not well understood even within

the search industry.

This is the full picture from the search engine’s side: the slots are the inventory that it is

trying to sell. Now, from the advertisers’ side, we assume that each advertiser has a revenue

per click: the expected amount of revenue it receives per user who clicks on the ad. Here too

we will assume that this value is intrinsic to the advertiser, and does not depend on what

was being shown on the page when the user clicked on the ad.

This is all the information we need to understand the market for a particular keyword:

the clickthrough rates of the slots, and the revenues per click of the advertisers. Figure 15.2

shows a small example with three slots and three advertisers: the slots have clickthrough

rates of 10, 5, and 2 respectively, while the advertisers have revenues per click of 3, 2, and 1

respectively.
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(b) Market-clearing prices for slots

Figure 15.3: The allocation of advertising slots to advertisers can be represented as a match-
ing market, in which the slots are the items to be sold, and the advertisers are the buyers.
An advertiser’s valuation for a slot is simply the product of its own revenue per click and
the clickthrough rate of the slot; these can be used to determine market-clearing prices for
the slots.

Constructing a Matching Market. We now show how to represent the market for a

particular keyword as a matching market of the type we studied in Chapter 10. To do this,

it is useful to first review the basic ingredients of matching market from Chapter 10.

• The participants in a matching market consist of a set of buyers and a set of sellers.

• Each buyer j has a valuation for the item offered by each seller i. This valuation can

depend on the identities of both the buyer and the seller, and we denote it vij.

• The goal is to match up buyers with sellers, in such a way that no buyer purchases two

different items, and the same item isn’t sold to two different buyers.

To cast the search engine’s advertising market for a particular keyword in this framework,

we use ri to denote the clickthrough rate of slot i, and vj to denote the revenue per click of

advertiser j. The benefit that advertiser j receives from being shown in slot i is then just

rivj, the product of the number of clicks and the revenue per click.

In the language of matching markets, this is advertiser j’s valuation vij for slot i — that

is, the value it receives from acquiring slot i. So by declaring the slots to be the sellers,

the advertisers to be the buyers, and the buyers’ valuations to be vij = rivj, the problem

of assigning slots to advertisers is precisely the problem of assigning sellers to buyers in a

matching market. In Figure 15.3(a), we show how this conversion is applied to the example in

Figure 15.2, yielding the buyer valuations shown. As this figure makes clear, the advertising

set-up produces a matching market with a special structure: since the valuations are obtained
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by multiplying rates by revenues, we have a situation where all the buyers agree on their

preferences for the items being sold, and where in fact the valuations of one buyer simply

form a multiple of the valuations of any other buyer.

When we considered matching markets in Chapter 10, we focused on the special case

in which the number of sellers and the number of buyers were the same. This made the

discussion simpler in a number of respects; in particular, it meant that the buyers and sellers

could be perfectly matched, so that each item is sold, and each buyer purchases exactly one

item. We will make the analogous assumption here: with slots playing the role of sellers

and advertisers playing the role of buyers, we will focus on the case in which the numbers

of slots and advertisers are the same. But it is important to note that this assumption

is not at all essential, because for purposes of analysis we can always translate a scenario

with unequal numbers of slots and advertisers into an equivalent one with equal numbers, as

follows. If there are more advertisers than slots, we simply create additional “fictitious” slots

of clickthrough rate 0 (i.e. of valuation 0 to all buyers) until the number of slots is equal to

the number of advertisers. The advertisers who are matched with the slots of clickthrough

rate 0 are then simply the ones who don’t get assigned a (real) slot for advertising. Similarly,

if there are more slots than advertisers, we just create additional “fictitious” advertisers who

have a valuation of 0 for all slots.

Obtaining Market-Clearing Prices. With the connection to matching markets in place,

we can use the framework from Chapter 10 to determine market-clearing prices. Again, it

is worth reviewing this notion from Chapter 10 in a bit of detail as well, since we will be

using it heavily in what follows. Recall, roughly speaking, that a set of prices charged by

the sellers is market-clearing if, with these prices, each buyer prefers a different slot. More

precisely, the basic ingredients of market-clearing prices are as follows.

• Each seller i announces a price pi for his item. (In our case, the items are the slots.)

• Each buyer j evaluates her payoff for choosing a particular seller i: it is equal to the

valuation minus the price for this seller’s item, vij − pi.

• We then build a preferred-seller graph as in Figure 15.3(b) by linking each buyer to

the seller or sellers from which she gets the highest payoff.

• The prices are market-clearing if this graph has a perfect matching: in this case, we

can assign distinct items to all the buyers in such a way that each buyer gets an item

that maximizes her payoff.

In Chapter 10, we showed that market-clearing prices exist for every matching market, and

we gave a procedure to construct them. We also showed in Chapter 10 that the assignment
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of buyers to sellers achieved by market-clearing prices always maximizes the buyers’ total

valuations for the items they get.

Returning to the specific context of advertising markets, market-clearing prices for the

search engine’s advertising slots have the desirable property that advertisers prefer different

slots, and the resulting assignment of advertisers to slots maximizes the total valuations of

each advertiser for what they get. (Again, see Figure 15.3(b).) In fact, it is not hard to work

out that when valuations have the special form that we see in advertising markets — each

consisting of a clickthrough rate times a revenue per click — then the maximum valuation

is always obtained by giving the slot with highest clickthrough rate to the advertiser with

maximum revenue per click, the slot with second highest rate to the advertiser with second

highest revenue per click, and so forth.

The connection with matching markets shows that we can in fact think about advertising

prices in the more general case where different advertisers can have arbitrary valuations for

slots — they need not be the product of a clickthrough rate and a revenue per click. This

allows advertisers, for example, to express how they feel about users who arrive via an ad

in the third slot compared with those who arrive via an ad in the first slot. (And indeed, it

is reasonable to believe that these two populations of users might have different behavioral

characteristics.)

Finally, however, this construction of prices can only be carried out by a search engine if

it actually knows the valuations of the advertisers. In the next section we consider how to

set prices in a setting where the search engine doesn’t know these valuations; it must rely

on advertisers to report them without being able to know whether this reporting is truthful.

15.3 Encouraging Truthful Bidding in Matching Mar-
kets: The VCG Principle

What would be a good price-setting procedure when the search engine doesn’t know the

advertisers’ valuations? In the early days of the search industry, variants of the first-price

auction were used: advertisers were simply asked to report their revenues per click in the

form of bids, and then they were assigned slots in decreasing order of these bids. Recall from

Chapter 9 that when bidders are simply asked to report their values, they will generally

under-report, and this is what happened here. Bids were shaded downward, below their true

values; and beyond this, since the auctions were running continuously over time, advertisers

constantly adjusted their bids by small increments to experiment with the outcome and

to try slightly outbidding competitors. This resulted in a highly turbulent market and a

huge resource expenditure on the part of both the advertisers and the search engines, as the

constant price experimentation led to prices for all queries being updated essentially all the

time.
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In the case of a single-item auction, we saw in Chapter 9 that these problems are handled

by running a second-price auction, in which the single item is awarded to the highest bidder at

a price equal to the second-highest bid. As we showed there, truthful bidding is a dominant

strategy for second-price auctions — that is, it is at least as good as any other strategy,

regardless of what the other participants are doing. This dominant strategy result means

that second-price auctions avoid many of the pathologies associated with more complex

auctions.

But what is the analogue of the second-price auction for advertising markets with multiple

slots? Given the connections we’ve just seen to matching markets in the previous section,

this turns out to be a special case of an interesting and fundamental question: how can we

define a price-setting procedure for matching markets so that truthful reporting of valuations

is a dominant strategy for the buyers? Such a procedure would be a massive generalization

of the second-price auction, which — though already fairly subtle — only applies to the case

of single items.

The VCG Principle. Since a matching market contains many items, it is hard to directly

generalize the literal description of the second-price single-item auction, in which we assign

the item to the highest bidder at the second-highest price. However, by viewing the second-

price auction in a somewhat less obvious way, we get a principle that does generalize.

This view is the following. First, the second-price auction produces an allocation that

maximizes social welfare — the bidder who values the item the most gets it. Second, the

winner of the auction is charged an amount equal to the “harm” he causes the other bidders

by receiving the item. That is, suppose the bidders’ values for the item are v1, v2, v3, . . . , vn

in decreasing order. Then if bidder 1 were not present, the item would have gone to bidder 2,

who values it at v2. The other bidders still would not get the item, even if bidder 1 weren’t

there. Thus, bidders 2 through n collectively experience a harm of v2 because bidder 1 is

there — since bidder 2 loses this much value, and bidders 3 through n are unaffected. This

harm of v2 is exactly what bidder 1 is charged. Indeed, the other bidders are also charged

an amount equal to the harm they cause to others — in this case, zero, since no bidder is

affected by the presence of any of bidders 2 through n in the single-item auction.

Again, this is a non-obvious way to think about single-item auctions, but it is a principle

that turns out to encourage truthful reporting of values in much more general situations:

each individual is charged the harm they cause to the rest of the world. Or to put it

another way, each individual is charged a price equal to the total amount better off everyone

else would be if this individual weren’t there. We will refer to this as the Vickrey-Clarke-

Groves (VCG) principle, after the work of Clarke and Groves, who generalized the central

idea behind Vickrey’s second-price auction for single items [112, 199, 400]. For matching

markets, we will describe an application of this principle due to Herman Leonard [270] and
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Gabrielle Demange [128]; it develops a pricing mechanism in this context that causes buyers

to reveal their valuations truthfully.

Applying the VCG Principle to Matching Markets. In a matching market, we have

a set of buyers and a set of sellers — with equal numbers of each — and buyer j has a

valuation of vij for the item being sold by seller i.2 We are assuming here that each buyer

knows her own valuations, but that these valuations are not known to the other buyers or

to the sellers. Also, we assume that each buyer only cares which item she receives, not

about how the remaining goods are allocated to the other buyers. Thus, in the language of

auctions, the buyers have independent, private values.

Under the VCG principle, we first assign items to buyers so as to maximize total valuation.

Then, the price buyer j should pay for seller i’s item — in the event she receives it — is the

harm she causes to the remaining buyers through her acquisition of this item. This is equal

to the total boost in valuation everyone else would get if we computed the optimal matching

without buyer j present. To give a better sense of how this principle works for matching

markets, we first walk through how it would apply to the example in Figure 15.3. We then

define the VCG price-setting procedure in general, and in the next section we show that it

yields truth-telling as a dominant strategy — for each buyer, truth-telling is at least as good

as any other option, regardless of what the other buyers are doing.

In Figure 15.3, where the buyers are advertisers and the items are advertising slots,

suppose we assign items to maximize total valuation: item a to buyer x, item b to buyer

y, and item c to buyer z. What prices does the VCG principle dictate for each buyer? We

show the reasoning in Figure 15.4.

• First, in the optimal matching without buyer x present, buyer y gets item a and buyer

z gets item b. This improves the respective valuations of y and z for their assigned

items by 20 − 10 = 10 and 5 − 2 = 3 respectively. The total harm caused by x is

therefore 10 + 3 = 13, and so this is the price that x should pay.

• In the optimal matching without buyer y present, buyer x still gets a (so she is un-

affected), while buyer z gets item b, for an improved valuation of 3. The total harm

caused by y is 0 + 3 = 3, and so this is the price that y should pay.

• Finally, in the optimal matching without buyer z present, buyers x and y each get the

same items they would have gotten had z been there. z causes no harm to the rest of

the world, and so her VCG price is 0.

With this example in mind, we now describe the VCG prices for a general matching

market. This follows exactly from the principle we’ve been discussing, but it requires a bit

2As always, we can handle unequal numbers of buyers and sellers by creating “fictitious” individuals and
valuations of 0, as in Section 15.2.
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Figure 15.4: The VCG price an individual buyer pays for an item can be determined by working out how
much better off all other buyers would be if this individual buyer were not present.

of notation due to the multiple items and valuations. First, let S denote the set of sellers and

B denote the set of buyers. Let V S
B denote the maximum total valuation over all possible

perfect matchings of sellers and buyers — this is simply the value of the socially optimal

outcome with all buyers and sellers present.

Now, let S− i denote the set of sellers with seller i removed, and let B− j denote the set

of buyers with buyer j removed. So if we give item i to seller j, then the best total valuation

the rest of the buyers could get is V S−i
B−j : this is the value of the optimal matching of sellers

and buyers when we’ve taken item i and buyer j out of consideration. On the other hand, if

buyer j simply didn’t exist, but item i were still an option for everyone else, then the best

total valuation the rest of the buyers could get is V S
B−j. Thus, the total harm caused by
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buyer j to the rest of the buyers is the difference between how they’d do without j present

and how they do with j present; in other words, it is the difference V S
B−j −V S−i

B−j . This is the

VCG price pij that we charge to buyer j for item i, so we have the equation

pij = V S
B−j − V S−i

B−j . (15.1)

The VCG Price-Setting Procedure. Using the ideas developed so far, we can now

define the complete VCG price-setting procedure for matching markets. We assume that

there is a single price-setting authority (an “auctioneer”) who can collect information from

buyers, assign items to them, and charge prices. Fortunately, this framework works very well

for selling advertising slots, where all the items (the slots) are under the control of a single

agent (the search engine).

The procedure is as follows:

1. Ask buyers to announce valuations for the items. (These announcements need not be

truthful.)

2. Choose a socially optimal assignment of items to buyers — that is, a perfect matching

that maximizes the total valuation of each buyer for what they get. This assignment

is based on the announced valuations (since that’s all we have access to.)

3. Charge each buyer the appropriate VCG price: that is, if buyer j receives item i

under the optimal matching, then charge buyer j a price pij determined according to

Equation (15.1).

Essentially, what the auctioneer has done is to define a game that the buyers play: they

must choose a strategy (a set of valuations to announce), and they receive a payoff: their

valuation for the item they get, minus the price they pay. What turns out to be true, though

it is far from obvious, is that this game has been designed to make truth-telling — in which

a buyer announces her true valuations — a dominant strategy. We will prove this in the

next section; but before this, we make a few observations.

First, notice that there’s a crucial difference between the VCG prices defined here, and

the market-clearing prices arising from the auction procedure in Chapter 10. The market-

clearing prices defined there were posted prices, in that the seller simply announced a price

and was willing to charge it to any buyer who was interested. The VCG prices here, on the

other hand, are personalized prices: they depend on both the item being sold and the buyer

it is being sold to, The VCG price pij paid by buyer j for item i might well differ, under

Equation (15.1), from the VCG price pik that buyer k would pay if it were assigned item i.3

3Despite this, there is are deep and subtle connections between the two kinds of prices; we explore this
issue further in the final section of this chapter.
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Another way to think about the relationship between the market-clearing prices from

Chapter 10 and the VCG prices here is to observe how each is designed to generalize a

different single-item auction format. The market-clearing prices in Chapter 10 were defined

by a significant generalization of the ascending (English) auction: prices were raised step-

by-step until each buyer favored a different item, and we saw in Section 10.5 that one could

encode the single-item ascending auction as a special case of the general construction of

market-clearing prices.

The VCG prices, on the other hand, are defined by an analogous and equally substantial

generalization of the sealed-bid second-price auction. At a qualitative level, we can see the

“harm-done-to-others” principle is behind both the second-price auction and the VCG prices,

but in fact we can also see fairly directly that the second-price auction is a special case of

the VCG procedure. Specifically, suppose there are n buyers who each want a single item,

and buyer i has valuation vi for it, where the numbers vi are sorted in descending order so

that v1 is the largest. Let’s turn this into a matching market with n buyers and n sellers by

simply adding n−1 fictitious items; all buyers have valuation 0 for each fictitious item. Now,

if everyone reports their values truthfully, then the VCG procedure will assign item 1 (the

real item — the only one with any value) to buyer 1 (who has the highest valuation), and

all the rest of the buyers would get fictitious items of zero value. What price should buyer

1 pay? According to Equation (15.1), she should pay V S
B−1 − V S−1

B−1 . The first term is buyer

2’s valuation, since with buyer 1 gone the socially optimal matching gives item 1 to buyer

2. The second term is 0, since with both buyer 1 and item 1 gone, there are no remaining

items of any value. Thus, buyer 1 pays buyer 2’s valuation, and so we have precisely the

pricing rule for second-price sealed-bid auctions.

15.4 Analyzing the VCG Procedure: Truth-Telling as
a Dominant Strategy

We now show that the VCG procedure encourages truth-telling in a matching market. Con-

cretely, we will prove the following claim.

Claim: If items are assigned and prices computed according to the VCG procedure,

then truthfully announcing valuations is a dominant strategy for each buyer, and

the resulting assignment maximizes the total valuation of any perfect matching of

slots and advertisers.

The second part of this claim (that the total valuation is maximized) is easy to justify:

if buyers report their valuations truthfully, then the assignment of items is designed to

maximize the total valuation by definition.

The first part of the claim is the more subtle: Why is truth-telling a dominant strategy?

Suppose that buyer j announces her valuations truthfully, and in the matching we assign
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Figure 15.5: The heart of the proof that the VCG procedure encourages truthful bidding
comes down to a comparison of the value of two matchings.

her item i. Then her payoff is vij − pij. We want to show that buyer j has no incentive to

deviate from a truthful announcement.

If buyer j decides to lie about her valuations, then one of two things can happen: either

this lie affects the item she gets, or it doesn’t. If buyer j lies but still gets the same item

i, then her payoff remains exactly the same, because the price pij is computed only using

announcements by buyers other than j. So if a deviation from truth-telling is going to be

beneficial for buyer j, it has to affect the item she receives.

Suppose, therefore, that buyer j lies about her valuations and gets item h instead of item

i. In this case, her payoff would be vhj − phj. Notice again that the price phj is determined

only by the announcements of buyers other than j. To show that there is no incentive to lie

and receive item h instead of i, we need to show that

vij − pij ≥ vhj − phj.
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If we expand out the definitions of pij and phj using Equation (15.1), this is equivalent to

showing

vij − [V S
B−j − V S−i

B−j ] ≥ vhj − [V S
B−j − V S−h

B−j ].

Both sides of this inequality contain the term V S
B−j, so we can add this to both sides; in this

way, the previous inequality is equivalent to showing

vij + V S−i
B−j ≥ vhj + V S−h

B−j . (15.2)

We now argue why this last inequality holds. In fact, both the left-hand side and the

right-hand side describe the total valuation of different matchings, as shown in Figure 15.5.

The matching on the left-hand side is constructed by pairing j with the item i she would

get in an optimal matching, and then optimally matching the remaining buyers and items.

In other words, it is a matching that achieves the maximum total valuation over all possible

perfect matchings, so we can write the left-hand side as

vij + V S−i
B−j = V S

B . (15.3)

In contrast, the matching on the right-hand side of Inequality (15.2) is constructed by pairing

j with some other item h, and then optimally matching the remaining buyers and items. So

it is a matching that achieves the maximum total valuation only over those matchings that

pair j with h. Therefore,

vhj + V S−h
B−j ≤ V S

B .

The left-hand side of Inequality (15.2), the maximum valuation with no restrictions on who

gets any slot, must be at least as large as the right-hand side, the maximum with a restriction.

And this is what we wanted to show.

Nothing in this argument depends on the decisions made by other buyers about what to

announce. For example, it doesn’t require them to announce their true values; the arguments

comparing different matchings can be applied to whatever valuations are announced by the

other buyers, with the same consequences. Thus we have shown that truthfully announcing

valuations is a dominant strategy in the VCG procedure.

To close this section, let’s go back to the specific case of keyword-based advertising, in

which the buyers correspond to advertisers and the items for sale correspond to advertising

slots. Our discussion so far has focused on finding and achieving an assignment of advertisers

to slots that maximizes the total valuation obtained by advertisers. But of course, this is

not what the search engine selling the advertising slots directly cares about. Instead it cares

about its revenue: the sum of the prices that it can charge for slots. It is not clear that

the VCG procedure is the best way to generate revenue for the search engine. Determining

which procedure will maximize seller revenue is a current topic of research. It could be

that the best a seller can do is to use some procedure that generates an optimal matching
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— and potentially one that is better than VCG at converting more of the total valuation

into seller revenue. Or it could be that the seller is better off using a procedure that does

not always yield an optimal matching. And it may be that some version of a revenue-

equivalence principle — such as we saw for single-item auctions in Chapter 9 — holds here

as well, showing that certain classes of auction provide equivalent amounts of revenue to the

seller when buyers behave strategically.

In the next sections, we sample the general flavor of some of these revenue issues by

considering the alternative to VCG that the search industry has adopted in practice — a

simple-to-describe auction called the Generalized Second Price auction that induces complex

bidding behavior.

15.5 The Generalized Second Price Auction

After some initial experiments with other formats, the main search engines have adopted a

procedure for selling advertising slots called the Generalized Second Price auction (GSP). At

some level, GSP — like VCG — is a generalization of the second-price auction for a single

item. However, as will see, GSP is a generalization only in a superficial sense, since it doesn’t

retain the nice properties of the second-price auction and VCG.

In the GSP procedure, each advertiser j announces a bid consisting of a single number

bj — the price it is willing to pay per click. (This would correspond, for example, to the

$1.70 for “calligraphy pens” or $1.50 for “Keuka Lake” that we saw at the beginning of the

chapter.) As usual, it is up to the advertiser whether or not its bid is equal to its true

valuation per click vj. Then, after each advertiser submits a bid, the GSP procedure awards

each slot i to the ith highest bidder, at a price per click equal to the (i + 1)st highest bid.

In other words, each advertiser who is shown on the results page is paying a price per click

equal to the bid of the advertiser just below them.

So GSP and VCG can be viewed in parallel terms, in that each asks for announced

valuations from the advertisers, and then each uses these announcements to determine an

assignment of slots to advertisers, as well as prices to charge. When there is a single slot,

both are equivalent to the second-price auction. But when there are multiple slots, their

rules for producing prices are different. VCG’s rule is given by Equation (15.1). GSP’s rule,

when the bids per click are b1, b2, b3, . . . in descending order, is to charge a cumulative price

of ribi+1 for slot i. This is because the ith highest bidder will get slot i at a price per click of

bi+1; multiplying by the clickthrough rate of ri gives a total price of ribi+1 for all the clicks

associated with slot i.

Analyzing GSP. GSP was originally developed at Google; once it had been in use for

a while in the search industry, researchers including Varian [399] and Edelman, Ostrovsky,
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and Schwarz [144] began working out some of its basic properties. Their analysis formulates

the problem as a game, using the definitions from Chapter 6. Each advertiser is a player, its

bid is its strategy, and its payoff is its revenue minus the price it pays. In this game, we will

consider Nash equilibria — we seek sets of bids so that, given these bids, no advertiser has

an incentive to change how it is behaving.4

First, we’ll see that GSP has a number of pathologies that VCG was designed to avoid:

truth-telling might not constitute a Nash equilibrium; there can in fact be multiple possible

equilibria; and some of these may produce assignments of advertisers to slots that do not

maximize total advertiser valuation. On the positive side, we show in the next section

that there is always at least one Nash equilibrium set of bids for GSP, and that among

the (possibly multiple) equilibria, there is always one that does maximize total advertiser

valuation. The analysis leading to these positive results about equilibria builds directly on

the market-clearing prices for the matching market of advertisers and slots, thus establishing

a connection between GSP and market-clearing prices.

Hence, while GSP possesses Nash equilibria, it lacks some of the main nice properties of

the VCG procedure from Sections 15.3 and 15.4. However, in keeping with our discussion

from the end of the last section, the search engines ultimately have an interest in choosing a

procedure that will maximize their revenue (given the behavior of the advertisers in response

to it). Viewed in this light, it is not clear that GSP is the wrong choice, though it is also far

from clear that it is the right choice. As mentioned at the end of Section 15.4, understanding

the revenue trade-offs among different procedures for selling keyword-based advertising is

largely an open question, and the subject of current research.

Truth-telling may not be an equilibrium. It is not hard to make an example to show

that truth-telling may not be an equilibrium when the GSP procedure is used. One example

of this is depicted in Figure 15.6:

• There are two slots for ads, with clickthrough rates of 10 and 4. In the figure, we

also show a third fictitious slot of clickthrough rate 0, so as to equalize the number of

advertisers and slots.

• There are three advertisers x, y, and z, with values per click of 7, 6, and 1 respectively.

Now, if each advertiser bids its true valuation, then advertiser x gets the top slot at a

price per click of 6; since there are 10 clicks associated with this slot, x pays a cumulative

price of 6 · 10 = 60 for the slot. Advertiser x’s valuation for the top slot is 7 · 10 = 70, so its

4In order to analyze Nash equilibrium in the bidding game we will assume that each advertiser knows
the values of all other bidders. Otherwise, they do not know the payoffs to all players in the bidding game
and we could not use Nash equilibrium to analyze the game. The motivation for this assumption is that we
envision a situation in which these bidders have been bidding against each other repeatedly and have learned
each others’ willingnesses to pay for clicks.
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Figure 15.6: An example of a set of advertisers and slots for which truthful bidding is not
an equilibrium in the Generalized Second Price auction. Moreover, this example possesses
multiple equilibria, some of which are not socially optimal.

payoff is 70− 60 = 10. Now, if x were to lower its bid to 5, then it would get the second slot

for a price per click of 1, implying a cumulative price of 4 for the slot. Since its valuation

for the second slot is 7 · 4 = 28, this is a payoff of 28− 4 = 24, which is an improvement over

the result of bidding truthfully.

Multiple and non-optimal equilibria. The example in Figure 15.6 turns out to illus-

trate some other complex properties of bidding behavior in GSP. In particular, there is more

than one equilibrium set of bids for this example, and among these equilibria are some that

produce a socially non-optimal assignment of advertisers to slots.

First, suppose that advertiser x bids 5, advertiser y bids 4, and advertiser z bids 2. With

a little effort, we can check that this forms an equilibrium: checking the condition for z is

easy, and the main further things to observe are that x doesn’t want to lower its bid below

4 so as to move to the second slot, and y doesn’t want to raise its bid above 5 to get the

first slot. This is an equilibrium that produces a socially optimal allocation of advertisers to

slots, since x gets slot a, while y gets b and z gets c.

But one can also check that if advertiser x bids 3, advertiser y bids 5, and advertiser z

bids 1, then we also get a set of bids in Nash equilibrium. Again, the main thing to verify is

that x doesn’t want to raise its bid above y’s, and that y doesn’t want to lower its bid below

x’s. This equilibrium is not socially optimal, since it assigns y to the highest slot and x to

the second-highest.

There is much that is not understood in general about the structure of the sub-optimal

equilibria arising from GSP. For example, it is an interesting open question to try quantifying
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Figure 15.7: Representing the example in Figure 15.6 as a matching market, with advertiser
valuations for the full set of clicks associated with each slot.

how far from social optimality a Nash equilibrium of GSP can be.

The Revenue of GSP and VCG. The existence of multiple equilibria also adds to the

difficulty in reasoning about the search engine revenue generated by GSP, since it depends

on which equilibrium (potentially from among many) is selected by the bidders. In the

example we’ve been working with, we’ll show that depending on which equilibrium of GSP

the advertisers actually use, the revenue to the search engine can be either higher or lower

than the revenue it would collect by charging the VCG prices.

Let’s start by determining the revenue to the search engine from the two GSP equilibria

that we worked out above.

• With bids of 5, 4, and 2, the 10 clicks in the top slot are sold for 4 per click, and the 4

clicks in the second slot are sold for 2 per click, for a total revenue to the search engine

of 48.

• On the other hand, with bids of 3, 5, and 1, the 10 clicks in the top slot are sold for 3

per click, and the 4 clicks in the second slot are sold for 1 per click, for a total revenue

to the search engine of 34.

Now, how do these compare with the revenue generated by the VCG procedure? To work

out the VCG prices, we first need to convert the example from Figure 15.6 into a matching

market, just as we did in Section 15.2: for each advertiser and each slot, we work out the

advertiser’s valuation for the full set of clicks associated with that slot. We show these

valuations in Figure 15.7.
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Figure 15.8: Determining market-clearing prices for the example in Figure 15.6, starting
with its representation as a matching market.

The matching used by the VCG procedure is the one which maximizes the total valuation

of all advertisers for the slot they get; this is achieved by assigning slot a to x, slot b to y,

and slot c to z. Now, we work out a price to charge each advertiser for the full set of clicks

in the slot it gets, by determining the harm each advertiser causes to all others. The harm x

causes to y and z can be computed as follows: without x present, y would move up one slot,

obtaining an increased valuation of 60− 24 = 36, and z would move up one slot, obtaining

an increased valuation of 4 − 0 = 4. Therefore, x should pay 40 for the full set of clicks in

the first slot. Similarly, without y present, z would get 4 instead of 0, so y should pay 4

for the set of clicks in the second slot. Finally, since z causes no harm to anyone, it pays 0.

Thus, the total revenue collected by the search engine is 44.

So we find that in this example, the answer to the question, “Does GSP or VCG provide

more revenue to the search engine?” is indeed that it depends on which equilibrium of GSP

the advertisers use. With the first equilibrium of GSP that we identified, the revenue is

48, while with the second, the revenue is 34. The revenue from the VCG mechanism is in

between these two values, at 44.

15.6 Equilibria of the Generalized Second Price Auc-
tion

The examples in the previous section give a sense for some of the complex behavior of GSP.

Here, we show that there is nonetheless a natural connection between GSP and market-

clearing prices: from a set of market-clearing prices for the matching market of advertisers
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and slots, one can always construct a set of bids in Nash equilibrium — and moreover one

that produces a socially optimal assignment of advertisers to slots. As a consequence, there

always exists a set of socially optimal equilibrium bids for the GSP procedure.

To give the basic idea for how to construct an equilibrium, we do it first on the example

from Figure 15.6. In fact, we’ve just seen two equilibria for this example in the previous

section, but the point here is to see how a socially optimal one can be easily constructed

by following a few simple principles, rather than by trial-and-error or guesswork. We’ll then

identify the principles from this example that carry over to construct equilibria in general.

An Equilibrium for Figure 15.6. The basic idea is to use market-clearing prices to guide

us to a set of bids that produce these prices. To construct market-clearing prices, we first

convert the example from Figure 15.6 into a matching market by determining advertisers’

valuations for each slot, as we did at the end of the previous section (in Figure 15.7). We

then determine market-clearing prices for this matching market, as shown in Figure 15.8.

These market-clearing prices are cumulative prices for each slot — single prices that cover

all the clicks associated with that slot. We can easily translate back to prices per click by

simply dividing by the clickthrough rate: this produces a price per click of 40/10 = 4 for the

first slot, and 4/4 = 1 for the second slot. It will turn out not to be important how we price

the fictitious third slot per click, but it is fine to give it a price of 0.

Next, we find bids that result in these prices per click. This is not hard to do: the prices

per click are 4 and 1 for the two slots, so these should be the bids of y and z respectively.

Then the bid of x can be anything as long as it’s more than 4. With these bids, x pays 4

per click for the first slot, y pays 1 per click for the second slot, and z pays 0 per click for

the (fake) third slot — and the allocation of advertisers to slots is socially optimal.

Having used the market-clearing prices to guide us toward a set of bids, we now use

the market-clearing property to verify that these bids form a Nash equilibrium. There are

several cases to consider, but the overall reasoning will form the general principles that

extend beyond just this example. First, let’s argue that x doesn’t want to lower its bid. If it

drops down to match y’s bid, then it can get the second slot at the price that y is currently

paying. Similarly, it could match z’s bid and get the third slot at the price that z is currently

paying. But since the prices are market-clearing, x doesn’t want to do either of these things.

For similar reasons, y doesn’t want to drop its bid to get the third slot at the price z is

currently paying.

Next, let’s argue that y doesn’t want to raise its bid. Indeed, suppose that it raised its

bid to get the first slot — to do this, it would need to match x’s current bid. But in this

case, x becomes the second-highest bidder, and so y would get the first slot at a price per

click equal to x’s current bid, which is above 4. Because the prices are market-clearing, y

doesn’t prefer the first slot to its current slot at a price per click of 4, so it certainly doesn’t
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prefer the first slot to its current slot at a higher price per click. Thus, y doesn’t want to

raise its bid. Similar reasoning shows that z doesn’t want to raise its bid.

This concludes the analysis: no advertiser wants to raise or lower its current bid, and so

the set of bids in this example forms a Nash equilibrium.

It is not hard to carry out the construction and the reasoning used here in general; we

show how to do this next.

GSP always has a Nash equilibrium: The General Argument Now let’s consider

a general instance where we have a set of advertisers and a set of slots; by adding fake slots

of 0 value if necessary, we will assume that these two sets have the same size.

Let’s suppose that the advertisers are labeled 1, 2, . . . , n in decreasing order of their

valuations per click, and let’s suppose that the slots are labeled 1, 2, . . . , n in decreasing

order of their clickthrough rates. We first represent the set of advertisers and slots using a

matching market, and we consider any set of market-clearing prices for the slots, denoted

p1, p2, . . . , pn in order. Again, these are prices for the full set of clicks in each slot; we

will consider the price per click of each slot below. In Section 15.2, we argued that since

a perfect matching in the resulting preferred-seller graph maximizes the total valuation of

each advertiser for the slot it gets, it follows that the advertiser with the highest valuation

per click gets the top slot, the advertiser with next-highest valuation gets the second slot,

and so forth, with advertiser i getting slot i.

We now show how to get this outcome from an equilibrium set of bids in GSP. Our plan is

first to construct a set of bids that produces this same set of market-clearing prices, together

with the same socially optimal matching of advertisers to slots. Then, we will show that

these bids form a Nash equilibrium.

Constructing the bids. For the first step, we start by considering the prices per click

that we get from the market-clearing prices: p∗j = pj/rj. We start by arguing that these

prices per click decrease as we move down the slots: p∗1 ≥ p∗2 ≥ · · · ≥ p∗n. To see why this

is true, let’s compare two slots j and k, where j is numbered lower than k, and show that

p∗j ≥ p∗k.

Since the prices are market-clearing, advertiser k is at least as happy with slot k as it

would be with slot j. In slot k, its total payoff is the product of its payoff per click, vk − p∗k,

times the clickthrough rate rk. In slot j, its total payoff would be the product of its payoff

per click there, vk − p∗j , times the clickthrough rate rj. Now, the clickthrough rate is higher

in slot j, yet slot k is preferred; so it must be that the payoff per click is smaller in slot j.

That is, vk − p∗j is smaller than vk − p∗k, or equivalently, p∗j ≥ p∗k. This inequality is precisely

the fact we were looking for.

Now that we have decreasing prices per click, we can construct the bids we’re looking
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for. We simply have advertiser j place a bid of p∗j−1 for each j > 1, and we have advertiser 1

place any bid larger than p∗1. Notice that this is exactly what happened when we constructed

an equilibrium for the example in Figure 15.6. With these bids, we have all the desired

properties: for each j, advertiser j is assigned to slot j and pays a price per click of p∗j .

Why do the bids form a Nash equilibrium? To show why these bids form a Nash

equilibrium, we adapt the principles that we used in analyzing the equilibrium for Figure 15.6.

We first argue that no advertiser will want to lower its bid, and then that no advertiser will

want to raise its bid either.

Consider an advertiser j, currently in slot j. If it were to lower its bid, the best it could

do is to pick some lower slot k, bid just under the current bid of advertiser k, and thereby

get slot k at the price that advertiser k is currently paying. But since the prices are market-

clearing, j is at least as happy with its current slot at its current price as it would be with

k’s current slot at k’s current price. So in fact, this shows that no advertiser will want to

lower its bid.

How about raising a bid? The best advertiser j could do here is to pick some higher slot

i, bid just above the current bid of advertiser i, and thereby get slot i. What price would j

pay for slot i if it did this? It’s forcing advertiser i one slot down, and so it would pay the

current bid of advertiser i. This is actually larger than what advertiser i is currently paying

for slot i: advertiser i is currently paying the bid of advertiser i + 1, which is lower. So the

upshot is that j would get slot i at a price higher than the current price of slot i. Since

the market-clearing condition says that j doesn’t even prefer slot i at the current price, it

certainly wouldn’t prefer it at a higher price. This shows that no advertiser wants to raise

its bid either, and so the set of bids indeed forms a Nash equilibrium.

15.7 Ad Quality

What we’ve discussed thus far forms part of the basic framework for thinking about search

advertising markets. Of course, there are numerous further issues that come up in the use

of this framework by the major search engines, and in this section and the next we briefly

discuss a few of these issues. We begin with the issue of ad quality.

The assumption of a fixed clickthrough rate. One of the assumptions we’ve made

throughout the analysis is that a fixed clickthrough rate rj is associated with each slot j —

in other words, that the number of clicks this slot receives is independent of which ad you

place there. But in general this is not likely to be true: users will look at the thumbnail

description of an ad placed in a given slot (evaluating, for example, whether they recognize

the name of the company placing the ad), and this will affect whether they click on the ad.
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And this, in turn, affects how much money the search engine makes, since it’s charging per

click, not per impression.

So from the search engine’s point of view, the worrisome scenario is that a low-quality

advertiser bids very highly, thus obtaining the first slot under GSP. Users are then not

interested in clicking through on this ad (maybe they don’t trust the company, or the ad is

only minimally relevant to the query term). As a result, it sits at the top of the list as the

high bidder, but the search engine makes almost no money from it because users rarely click

on the ad. If the search engine could somehow expel this ad and promote the higher-quality

ads, it could potentially make more money.

Again, our model as described can’t really address this, since it starts from the assumption

that an ad in position i will get clicks at rate ri, regardless of which ad it is. This “pure”

version of GSP, using the model from Sections 15.5 and 15.6 is essentially what the company

Overture used at the time it was acquired by Yahoo!, and hence what Yahoo! used initially

as well. And indeed, it suffers from exactly this problem — advertisers can sometimes occupy

high slots without generating much money for the search engine.

The role of ad quality. When Google developed its system for advertising, it addressed

this problem as follows. For each ad submitted by an advertiser j, they determine an

estimated quality factor qj. This is intended as a “fudge factor” on the clickthrough rate: if

advertiser j appears in slot i, then the clickthrough rate is estimated to be not ri but the

product qjri. The introduction of ad quality is simply a generalization of the model we’ve

been studying all along: in particular, if we assume that all factors qi are equal to 1, then

we get back the model that we’ve been using thus far in the chapter.

From the perspective of our matching market formulation, it’s easy to incorporate these

quality factors: we simply change the valuation of advertiser j for slot i, from vij = rivj to

vij = qjrivj. The rest of the analysis remains the same, using these new valuations.

Google has adapted the GSP procedure analogously. Rather than assigning advertisers to

slots in decreasing orders of their bids bj, it assigns them in decreasing order of the product of

their bid and quality factor qjbj. This makes sense, since this is the ordering of advertisers by

expected revenue to the search engine. The payments change correspondingly. The previous

rule — paying the bid of the advertiser just below you — can, in retrospect, be interpreted

more generally as paying the minimum bid you would need in order to hold your current

position. This rule carries over to the version with quality factors: each advertiser pays the

minimum amount it would need to keep its current position, when ranked according to qjbj.

With these changes, it’s possible to go back and perform the analysis of GSP at this

more general level. Close analogues of all the previous findings still hold here; while the

introduction of quality factors makes the analysis a little bit more complicated, the basic

ideas remain largely the same [144, 399].
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The mysterious nature of ad quality. How is ad quality computed? To a significant

extent, it’s estimated by actually observing the clickthrough rate of the ad when shown on

search results pages — this makes sense, since the goal of the quality factor is to act as

a modifier on the clickthrough rate. But other factors are taken into account, including

the relevance of the ad text and the “landing page” that the ad links to. Just as with the

unpaid organic search engine results on the left-hand-side of the screen, search engines are

very secretive about how they compute ad quality, and will not reveal the function to the

advertisers who are bidding.

One consequence is that the introduction of ad quality factors makes the keyword-based

advertising market much more opaque to the advertisers. With pure GSP, the rules were

very simple: for a given set of bids, it was clear how the advertisers would be allocated to

slots. But since the ad quality factor is under the search engine’s control, it gives the search

engine nearly unlimited power to affect the actual ordering of the advertisers for a given set

of bids.

How does the behavior of a matching market such as this one change when the precise

rules of the allocation procedure are being kept secret from the bidders? This is an issue

that is actively discussed in the search industry, and a topic for potential research.

15.8 Complex Queries and Interactions Among Key-
words

At the outset, we observed that markets are being conducted simultaneously for millions of

query words and phrases. In our analysis, we’ve focused the model on what goes on in a

single one of these markets, for a single keyword; but in reality, of course, there are complex

interactions among the markets for different keywords.

In particular, consider the perspective of a company that’s trying to advertise a product

using keyword-based advertising; suppose, for example, that the company is selling ski va-

cation packages to Switzerland. There are a lot of different keywords and phrases on which

the company might want to place bids: “Switzerland,” “Swiss vacation,” “Swiss hotels,”

“Alps,” “ski vacation,” “European ski vacation,” and many others (including grammatical

permutations of these). With a fixed advertising budget, and some estimates about user

behavior and the behavior of other advertisers, how should the company go about dividing

its budget across different keywords? This is a challenging problem, and one that is the

subject of current research [357].

There’s an analogous problem from the search engine’s perspective. Suppose advertisers

have placed bids on many queries relevant to Swiss ski vacations, and then a user comes and

issues the query, “Zurich ski vacation trip December.” It’s quite likely that very few users

have ever issued this exact query before, and also very likely that no advertiser has placed
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a bid on this exact phrase. If the rules of the keyword-based advertising market are defined

too strictly — that the search engine can only show ads for words or phrases that have been

explicitly bid on — then it seems as though both the search engine and the advertisers are

losing money: there clearly are advertisers who would be happy to be displayed for this

query.

The question of which ads to show, however, is quite a difficult problem. A simple

rule, such as showing the advertisers that placed the maximum bid for any of the words

in the query, seems like a bad idea: probably there are advertisers who have placed very

high bids on “vacation” (e.g. companies that sell generic vacation packages) and “ski” (e.g.

companies that sell skis), and neither of these seems like the right match to the query. It

seems important to take into account the fact that the query, through its choice of terms, is

specifying something fairly narrow.

Furthermore, even if relevant advertisers can be identified, how much should they be

charged for a click, given that they never expressed a bid on exactly this query? The main

search engines tend to get agreements from advertisers that they’ll extrapolate from their

bids on certain queries to implied bids on more complex queries, such as in this example,

but working out the best way to do this is not fully understood. These issues are the subject

of active work at search engine companies, and again the subject of some very interesting

potential further research.

15.9 Advanced Material: VCG Prices and the Market-
Clearing Property

At the end of Section 15.3, we noted some of the differences between the two main ways we’ve

seen to assign prices to items in matching markets: the VCG prices defined in this chapter,

and the construction of market-clearing prices from Chapter 10. In particular, we observed

that the difference reflected a contrast between personalized and posted prices. VCG prices

are selected only after a matching between buyers and sellers has been determined — the

matching that maximizes the total valuation of buyers for what they get. The VCG price

of an item thus makes use of information not just about the item itself, but also about who

is buying it in the matching. Market-clearing prices, in a sense, work the other way around:

the prices are chosen first, and they are posted prices that are offered to any buyer who

is interested. The prices then cause certain buyers to select certain items, resulting in a

matching.5

Given these significant differences, one might expect the prices to look different as well.

But a comparison of simple examples suggests that something intriguing might be going on.

5In the discussion that follows, we’ll refer to nodes on the left-hand side of the bipartite graph sometimes
as “items” and sometimes as “sellers”; for our purposes here, we treat these as meaning the same thing.
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Figure 15.9: A matching market, with valuations and market-clearing prices specified, and
a perfect matching in the preferred-seller graph indicated by the bold edges.

Consider for instance the matching market shown in Figures 15.3 and 15.4. In Figure 15.3

we see a set of market-clearing prices constructed using the procedure from Chapter 10. In

Figure 15.4, we see that these same prices arise as the VCG prices too.

Nor is it the special structure of prices arising from clickthrough rates and revenues per

click that causes this. For instance, let’s go back to the example used in Figure 10.6 from

Chapter 10, which has valuations with a much more “scrambled” structure. We’ve re-drawn

the final preferred-seller graph arising from the auction procedure in Figure 15.9, with the

(unique) perfect matching in this graph indicated using bold edges. This is the matching

that maximizes the total valuation of buyers for the item they get, so we apply the definitions

from earlier in the current chapter to determine the VCG prices. For example, to determine

the price that should be charged for seller a’s item, we observe

• If neither a nor x were present, the maximum total valuation of a matching between

the remaining sellers and buyers would be 11, by matching y to c and z to b.

• If x weren’t present but a were, then the maximum total valuation possible would be

14, by matching y to b and z to a.

• The difference between these two quantities is the definition of the VCG price for item

a; it is 14− 11 = 3.

We could perform the corresponding analysis to get the VCG prices for items b and c, and

we’d see that the values are 1 and 0, respectively. In other words, we again find that the

VCG prices are also market-clearing prices.
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In this section, we show that the relationship suggested by these examples holds in

general. Our main result is that despite their definition as personalized prices, VCG prices

are always market-clearing. That is, suppose we were to compute the VCG prices for a

given matching market, first determining a matching of maximum total valuation, and then

assigning each buyer the item they receive in this matching, with a price tailored for this

buyer-seller match. Then, however, suppose we go on to post the prices publicly: rather than

requiring buyers to follow the matching used in the VCG construction, we allow any buyer to

purchase any item at the indicated price. We will see that despite this greater freedom, each

buyer will in fact achieve the highest payoff by selecting the item she was assigned when the

VCG prices were constructed. This will establish that the prices are market-clearing under

the definition from Chapter 10.

First Steps Toward a Proof. Let’s think for a minute about how you might prove such

a fact, once you start to suspect from simple examples that it might be true. It’s tempting

to start with the very compact formula defining the VCG prices — Equation (15.1) — and

then somehow reason about this formula to show that it has the market-clearing property.

In fact, it’s tricky to make this approach work, and it’s useful to understand why. Recall

that Equation (15.1) says that if item i is assigned to buyer j in the optimal matching, then

we should charge a price of

V S
B−j − V S−i

B−j ,

where V S
B−j is the total valuation of an optimal matching with j removed, and V S−i

B−j is the

total valuation of an optimal matching with both i and j removed. Now, the term V S
B−j is in

fact a sum of many smaller terms, each consisting of the valuation of a distinct buyer for the

item she is assigned in an optimal matching. V S−i
B−j is similarly a sum of many terms. But

the key conceptual difficulty is the following: V S
B−j and V S−i

B−j arise from different matchings

— potentially very different matchings — and so there is no direct way to compare the sums

that they represent and easily subtract the terms of one from the other.

To make progress, we need to actually understand how the matchings that define these

two terms V S
B−j and V S−i

B−j relate to each other at a structural level. And to do this, we will

show that matchings achieving these respective quantities can in fact arise from a common

set of market-clearing prices: there is a single set of market-clearing prices on the set of

items S so that matchings achieving each of V S
B−j and V S−i

B−j arise as perfect matchings in the

preferred-seller graphs of related but slightly different matching markets. This will enable

us to see how the two matchings relate to each other — and in particular how to build one

from the other — in a way that lets us subtract the relevant terms from each other and thus

analyze the right-hand side of Equation (15.1).

For all this to work, we need to first understand which set of market-clearing prices

actually correspond to the VCG prices. There are many possible sets of market-clearing
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prices, but with some checking, we can see that in our examples, the VCG prices have

corresponded to prices that are as small as possible, subject to having the market-clearing

property. So let’s consider the following way to make this precise. Over all possible sets of

market-clearing prices, consider the ones that minimize the total sum of the prices. (For

example, in Figure 15.9, the total sum of prices is 3 + 1 + 0 = 4.) We will refer to such

prices as a set of minimum market-clearing prices. In principle, there could be multiple sets

of minimum market-clearing prices, but in fact we will see that there is only one such set,

and they form the VCG prices. This is the crux of the following result, proved by Leonard

[270] and Demange [128].

Claim: In any matching market, the VCG prices form the unique set of market-

clearing prices of minimum total sum.

This is the statement we will prove in this section.

The proof of this statement is quite elegant, but it is also arguably the most intricate piece

of analysis in the book; it has a level of complexity that involves bringing together several

non-trivial lines of argument as part of the overall proof. In approaching a proof with this

type of structure, it helps to proceed in two stages. First, we will outline a sequence of two

key facts that illuminate the structure of the underlying matchings. Each of these two facts

needs a proof, but we will first simply state the facts and show how the overall proof of the

claim follows directly from them. This provides a high-level overview of how the proof works,

in a way that is self-contained and contains the central ideas. After this, we will describe

how to prove the two facts themselves, which will fill in the remaining details of the proof.

Finally, here is one more point to note before beginning: As in a number of previous

places when we discussed matching markets, we will assume that all valuations are whole

numbers (0, 1, 2, . . .), and that all prices are whole numbers as well.

A. High-Level Overview of the Proof

Recall that our basic plan is to understand how matchings defining the quantities V S
B−j and

V S−i
B−j relate to each other, by showing how they arise from a common structure. To do this,

the first step is to show that the preferred-seller graph for the minimum market-clearing

prices contains not only the edges of a perfect matching, but also enough extra edges that

we can easily assemble other matchings once we begin removing buyers in the ways suggested

by the VCG formula.

The First Fact: The Preferred-Seller Graph for Minimum Market-Clearing Prices.

The first of our two facts talks about the structure of the preferred-seller graph in the case

when a set of market-clearing prices has minimum total sum. As a first step, let’s go back
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There is an alternating path, 
beginning with a non-matching edge, 

from i to an item (i*) of price 0.

price 0

Figure 15.10: The key property of the preferred-seller graph for minimum market-clearing
prices: for each item of price greater than 0, there is an alternating path, beginning with a
non-matching edge, to an item of price 0.

to the initial example of market-clearing prices from Chapter 10, and in particular com-

pare preferred-seller graphs for two different sets of market-clearing prices on the same set

of valuations, shown in Figures 10.5(b) and 10.5(d). Notice that the prices in the first of

these, Figure 10.5(b), are larger and more “spread out,” while the prices in Figure 10.5(d)

in fact have minimum total sum. This corresponds to a difference in the structures of the

preferred-seller graphs as well. The preferred-seller graph in Figure 10.5(b) is very sparse,

with just three separate edges that constitute a perfect matching. The preferred-seller graph

in Figure 10.5(d) is much denser: although it too contains only one perfect matching, it has

additional edges that seem to serve as supports, “anchoring” the matching in place.

We now show that this anchoring effect is a general one: essentially, whenever a set of

market-clearing prices has minimum total sum, the preferred-seller graph must contain not

only a perfect matching, but also enough other edges to form a path linking each item to

an item of price 0. In fact, the paths we construct will be alternating paths in the sense

defined in Section 10.6: for a given perfect matching in the graph, the edges on the paths

will alternate between being part of the matching and not part of the matching. We will

refer to these two kinds of edges as matching edges and non-matching edges respectively.

Here is the exact statement of the first fact, shown schematically in Figure 15.10.

Fact 1: Consider the preferred-seller graph for a set of market-clearing prices

of minimum total sum, fix a particular perfect matching in this graph, and let

i be any item whose price is greater than 0. Then there is an alternating path,
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Figure 15.11: A matching market with market-clearing prices of minimum total sum. Note
how from each item, there is an alternating path, beginning with a non-matching edge, that
leads to the item of zero price.

beginning with a non-matching edge, that connects i to some item of price 0.

For example, in Figure 15.9, with the matching indicated in bold, there is an alternating

path from b to y to c; this path begins with the non-matching b-y edge, and ends at the

zero-priced item c. Similarly, there is a longer alternating path from a through z, b, and

y, ending at c. Figure 15.11 shows a larger example, also with market-clearing prices of

minimum-total sum, and also with the matching indicated in bold; here too one can find

alternating paths from each of items a, b, and c down to the zero-priced item d.

Following our plan, we defer the proof of Fact 1 until later in the section. However, we can

give some intuition for the proof as follows. Roughly speaking, if there weren’t alternating

paths anchoring all the prices to items of price 0, then we could find a set of items that were

“floating” free of any relation to the zero-priced items. In this case, we could push the prices

of these free-floating items down slightly, while still preserving the market-clearing property.

This would yield a set of market-clearing prices of smaller total sum, contradicting our

assumption that we already have the minimum market-clearing prices. This contradiction
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Figure 15.12: If we start with the example in Figure 15.11 and zero out buyer x, the structure
of the optimal matching changes significantly.

will show that the minimum market-clearing prices are all anchored via alternating paths to

zero-priced items.

The Second Fact: Zeroing Out a Buyer. Our second main fact will relate the minimum

market-clearing prices to a matching that achieves the value V S
B−j, the first term on the right-

hand side of Equation (15.1).

To explain how this fact works, we start with a useful way to think about the quantity

V S
B−j. Formally, V S

B−j is the maximum total valuation of any matching in the market where

j has been removed, but where all items have been kept. But here’s a different, equivalent

way to define V S
B−j. Suppose that we were to change j’s valuations for every item to 0; we’ll

call this the version of the matching market in which j has been zeroed out. To find an

optimal matching in this market with j zeroed out, we note that it doesn’t matter which

item j gets (since j values them all at zero); therefore, we can first optimally match all the

other buyers with items, and then give j whatever is left over. The value of the resulting

matching is V S
B−j. In other words, V S

B−j is the value of the optimal matching in the market
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Figure 15.13: However, even after we zero out buyer x, the same set of prices remain market-
clearing. This principle is true not just for this example, but in general.

where j is zeroed out: she is still present, but all her valuations are now equal to 0.

Now, an optimal matching in the market with j zeroed out may have a very different

structure than an optimal matching in the original market — different buyers may get

completely different items. For example, Figure 15.12 shows the unique optimal matching

in the market from Figure 15.11 after we zero out x: other than buyer y, who still gets

item b, the assignment of items to all other buyers has changed completely. This is another

reflection of the difficulty in reasoning about Equation (15.1): when we remove buyers or

items, the matchings can rearrange themselves in complex ways.

Despite this, there is an important connection between the original market and the zeroed-

out market: the minimum market-clearing prices for the original market are also market-

clearing for the zeroed-out market. We illustrate this for our example in Figure 15.13: keeping

the same prices that were used in Figure 15.11, we see that the preferred-seller graph still has

a perfect matching even after x has been zeroed out, and this means that the prices are still

market-clearing. Moreover, we can observe some additional features of this example. First,

x now receives an item of price 0. Second, consider the payoff of each other buyer, defined
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as the valuation minus the price of the item she gets. For each other buyer, the payoff is the

same in Figures 15.11 and 15.13.

Our second fact shows that all these observations hold in general.

Fact 2: Consider any matching market with minimum market-clearing prices p,

and let j be any buyer.

(i) The prices p are also market-clearing for the market in which j is zeroed

out.

Moreover, for any perfect matching in the preferred-seller graph of the zeroed-out

market,

(ii) buyer j receives a zero-priced item; and

(iii) each buyer other than j obtains the same payoff that she did in the original

market.

Again, we defer the proof of Fact 2 to later in the section, but it is not hard to establish the

proof using Fact 1. Essentially, when we zero out j, we look at the item i that j formerly got

in the original market, before she was zeroed out. We follow the alternating path provided

by Fact 1 from i down to an item i∗ of price 0. We then show that assigning item i∗ to j, and

shifting the assignment to all other buyers using the edges on this alternating path, gives us

a perfect matching in the preferred-seller graph of the zeroed-out market at the same prices.

This shows that the same prices are in fact market-clearing for the zeroed-out market, and

will establish parts (ii) and (iii) of the claim as well.

Proving the Claim Using Facts 1 and 2. With Facts 1 and 2 in place, we can finish

the proof of our main claim, that the minimum market-clearing prices are defined by the

VCG formula.

To start, let’s review some notation. As before, let vij denote the valuation that a buyer

j has for an item i. Let pi be the price charged for item i in our market-clearing prices, and

let P be the sum of the prices of all items. Suppose that buyer j is matched to item i in the

perfect matching in the preferred-seller graph. Buyer j receives a payoff of vij − pi from this

item i; we will use zj to denote this payoff,

zj = vij − pi, (15.4)

and Z to denote the sum of the payoffs of all buyers from the items they are matched with.

Next, let’s recall two basic observations that were made in earlier sections. First, each

buyer j achieves a payoff of vij − pi from the item to which she is matched. As we noted in



15.9. ADVANCED MATERIAL: VCG PRICES AND THE MARKET-CLEARING PROPERTY471

Chapter 10, if we add these expressions up over all buyers, we get the following relationship

for the matching M of buyers to items:

Total Payoff of M = Total Valuation of M − Sum of all prices.

In our current notation, this is

Z = V S
B − P. (15.5)

Second, we argued in Section 15.4 that if i is matched to j in an optimal matching, then

vij + V S−i
B−j = V S

B . (15.6)

This is Equation (15.3) from Section 15.4, and it follows simply because one way to achieve

an optimal matching is to first pair i with j (obtaining a valuation of vij), and then optimally

match all the remaining buyers and items.

Finally, let’s consider this same formula

Total Payoff of M = Total Valuation of M − Sum of all prices,

for the market in which j has been zeroed out, using the same set of market-clearing prices

and a perfect matching in the preferred-seller graph that Fact 2 provides. The total valuation

of this matching is V S
B−j, as we argued earlier. The prices haven’t changed, so their total

sum is still P . Finally, what’s the total payoff? By part (ii) of Fact 2, the payoff for buyer

j has dropped from zj, which it was in the original market, to 0. By part (iii) of Fact 2,

the payoff for every other buyer has remained the same. Therefore, the total payoff in the

zeroed-out market is Z − zi. Putting all these together, we have the equation

Z − zi = V S
B−j − P. (15.7)

Since we now have equations that relate the two terms on the right-hand of Equation

(15.1) to a common set of quantities, we can finish the proof using a small amount of algebraic

manipulation. Let’s first subtract Equation (15.7) from Equation (15.5): this gives us

zi = V S
B − V S

B−j.

Next, let’s expand zi using Equation (15.4) and expand V S
B using Equation (15.6). This

gives us

vij − pi = vij + V S−i
B−j − V S

B−j.

Canceling the common term of vij and negating everything, we get

pi = V S
B−j − V S−i

B−j ,

which is the VCG formula we were seeking. This shows that the market-clearing prices of

minimum total sum are defined by the VCG formula, and hence proves the claim.
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Figure 15.14: In order for a matching edge from a buyer k to an item h to leave the preferred-
seller graph when the price of i is reduced by 1, it must be that k now strictly prefers i.
In this case, k must have previously viewed i as comparable in payoff to h, resulting in a
non-matching edge to i.

B. Details of the Proof

The discussion so far provides a complete proof, assuming that we take Facts 1 and 2 as

given. To finish the proof, therefore, we need to provide proofs of Facts 1 and 2. The crux

of this is proving Fact 1, which will consist of an analysis of alternating paths in the style of

Section 10.6. After this analysis, establishing Fact 2 is relatively quick using Fact 1.

A First Step Toward Fact 1. To prove Fact 1, we consider a set of minimum market-

clearing prices, and an item i whose price is greater than 0, and we try to construct an

alternating path (beginning with a non-matching edge) from i to some zero-priced item.

As a first step toward this, to convey the idea at the heart of the argument, let’s show

something simpler: that this item i, of price pi > 0, is connected to at least one non-matching

edge (in addition to its matching edge to the buyer j that obtains it). Clearly it will be

necessary to establish the presence of such a non-matching edge in any case, if we want

ultimately to show that i has an alternating path all the way down to a zero-priced item.

So suppose, by way of contradiction, that i is not connected to a non-matching edge: its

only edge is the matching edge to buyer j. In this case, we claim that we can subtract 1

from the price pi, and the resulting modified prices will still be market-clearing. This would

be a contradiction, since we assumed our market-clearing prices have minimum total sum.

Clearly if we subtract 1 from pi, it is still non-negative, so we just need to show that

the preferred-seller graph still contains a perfect matching. In fact, we’ll show the stronger

fact that the preferred-seller graph still contains all the matching edges that it used to have.

Indeed, how could a matching edge leave the preferred-seller graph after the price reduction?
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(1) No matching edges from a 
buyer in X to an item not in X.

(2) No non-matching edges 
from an item in X to a buyer 

not in X.

Figure 15.15: Consider the set X of all nodes that can be reached from i using an alternating
path that begins with a non-matching edge. As we argue in the text, if k is a buyer in X,
then the item to which she is matched must also be in X. Also, if h is an item in X, then
any buyer to which h is connected by a non-matching edge must also be in X. Here is an
equivalent way to phrase this: there cannot be a matching edge connecting a buyer in X to
an item not in X, or a non-matching edge connecting an item in X to a buyer not in X.

The only item that became more attractive was item i, so for a matching edge to leave the

preferred-seller graph, it must be that some buyer k other than j, who used to be matched to

an item h, drops its edge to h because it now strictly prefers i. This situation is pictured in

Figure 15.14. Now, since i’s price was only reduced by 1, and since all prices and valuations

are whole numbers, if k now strictly prefers i to h after the price reduction, it must have

formerly viewed them as tied. But this means that before the reduction in i’s price, k had a

preferred-seller edge to i. Since k was matched to h, this k-i edge would be a non-matching

edge in the preferred-seller graph, which is not possible since i’s only edge in the preferred-

seller graph was its matching edge to j. This completes the chain of conclusions we need:

no matching edge can leave the preferred-seller graph when i’s price is reduced by 1, so the

reduced prices are still market-clearing, and this contradicts the assumption that we had
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X If n was matched to e but now strictly 
prefers f, then:

(1) n must have had a 
         non-matching edge to f,

(2) f must be in X, and
(3) e must not be in X.

In this case, either the f-n edge or the 
e-n edge causes a contradiction.

......

Figure 15.16: We can reduce the prices of all items in X by 1 and still retain the market-
clearing property: as we argue in the text, the only way this can fail is if some matching
edge connects a buyer in X to an item not in X, or some non-matching edge connects an
item in X to a buyer not in X. Either of these possibilities would contradict the facts in
Figure 15.15.

minimum market-clearing prices.

A Proof of Fact 1. The argument above is the key to proving Fact 1; for the complete

proof, we need to move from simply showing the existence of a non-matching edge out of i

to a full alternating path, beginning with such an edge, all the way to a zero-priced item.

To do this, we start at the item i, and we consider the set X of all nodes in the bipartite

graph (both items and buyers) that can be reached from i, using an alternating path that

begins with a non-matching edge. Here are two simple observations about the set X.

(a) For any buyer k who is in X, the item h to which she is matched is also in X. Fig-

ure 15.15 helps make clear why this must be true. The alternating path that reached

k from i must have ended on a non-matching edge, so by adding the matching edge to

h to the end of this path, we see that h must also be in X.
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(b) For any item h that is in X, and any buyer m connected to h by a non-matching edge

in the preferred-seller graph, the buyer m must also be in X. This is a direct companion

to the previous fact, and also illustrated by Figure‘15.15: the alternating path that

reached h from i must have ended on a matching edge, so by adding the non-matching

edge to m to the end of this path, we see that m must also be in X.

If this set X contains an item of price 0, we are done: we have the path we want. If

this set X doesn’t contains an item of price 0, then we complete the proof using the same

price-reduction idea we saw earlier, in our warm-up to the proof of Fact 1: in this case, we

will reduce the price of each item in X by 1, show that the resulting prices are still market-

clearing, and thereby contradict our assumption that we had the minimum market-clearing

prices. It will follow that X must contain a zero-priced item.

Here is the main thing we need to show.

Suppose we reduce the price of each item in X by 1. Then all matching edges

that were in the preferred-seller graph before the price reduction remain in the

preferred-seller graph after the price reduction.

The argument is essentially the same as the one we used earlier, when we were reducing the

price of just item i. We ask: how could a matching edge leave the preferred-seller graph after

the reduction? Figure 15.16 shows what must happen for this to be possible: a buyer n was

formerly matched to an item e, and now some other item f has strictly higher payoff after

the price reduction. Since all valuations, prices, and payoffs are whole numbers, and no price

changed by more than 1, it must be that e and f used to be tied for the highest payoff to n

(so n had edges to both of them in the preferred-seller graph before the reduction) and f is

in the set X while e is not (so f had its price reduced while e’s price remained the same).

Now we get a contradiction to one of our basic observations (a) and (b) about the set X:

Since n was matched to e, and e is not in X, observation (a) says that n must not be in X;

but since n was not matched to f , and f is in X, observation (b) says that n must be in X.

This contradiction — n must both be in X and not be in X — shows that no matching edge

can leave the preferred-seller graph after the price reduction. And this in turn establishes

that the reduced prices are still market-clearing after the price-reduction, contradicting our

assumption that they were the minimum market-clearing prices.

This concludes the proof, and if we look back at how it worked, we can see that it bears

out our intuition for how the non-matching edges serve to anchor all the items via alternating

paths to the items of price 0. Specifically, if this anchoring did not happen, then there would

be a set X that was floating free of any connections to zero-priced items, and in this case

the prices of all items in X could be pushed further downward. This can’t happen if the

market-clearing prices are already as low as possible.



476 CHAPTER 15. SPONSORED SEARCH MARKETS

i

h

i*
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m

When j is matched to i in the original 

market, first find a path to a zero-

priced item i*.

Figure 15.17: The first step in analyzing the market with j zeroed out: find an alternating
path from item i — to which buyer j was matched in the original market — to a zero-priced
item i∗.

A Proof of Fact 2. To prove Fact 2, we start with a matching market with minimum

market-clearing prices p, and we consider the preferred-seller graph for these prices. Now,

suppose that we zero out a buyer j, but keep the prices the same. The resulting preferred-

seller graph is now different, but we’d like to show that it still contains a perfect matching.

How does the preferred-seller graph change when we zero out j, keeping the prices fixed?

For buyers other than j, their edges remain the same, since they have the same valuations

and observe the same prices. For j, on the other hand, the zero-priced items are now the

only items that give her a non-negative payoff, so her edges in the preferred-seller graph now

go to precisely this set of zero-priced items. Notice, for example, that this is what happens

to the preferred-seller graph as we move from Figure 15.11 to Figure 15.13: the zeroed-out

buyer x has its preferred-seller edge shift from item b to the zero-priced item d.

Because we know that the preferred-seller graph in the original market has the structure

guaranteed by Fact 1, we can view this change to the preferred-seller graph in the way

suggested by Figures 15.17 and 15.18. Before zeroing out j, when it is matched to some item

i, there is an alternating path in the preferred-seller graph, beginning with a non-matching

edge, from i to a zero-priced item i∗. After zeroing out j, there is a preferred-seller edge
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In the zeroed-out market, j loses its 

preferred-seller edge to i, but acquires 

a preferred-seller edge to i*.

Figure 15.18: The second step in analyzing the market with j zeroed out: build the new
preferred-seller graph by rewiring j’s preferred-seller edges to point to the zero-priced items.

from j directly to i∗ (and to any other zero-priced items as well).

It is easy to see from this pair of pictures how to find a perfect matching in the preferred-

seller graph after this change to its structure. This is shown in Figure 15.19: for each buyer

other than j who is involved in the alternating path from i to i∗, we simply shift her edge

“upward” along the alternating path. This makes room for j to match with i∗, restoring the

perfect matching.

Since the preferred-seller graph has a perfect matching, this establishes that the prices

are still market-clearing for the zeroed-out market. We can also establish parts (ii) and (iii)

of Fact 2 directly from our construction. Part (ii) follows simply from the fact that j only

has edges to zero-priced items in the preferred-seller graph. For part (iii), note first of all

that it is a statement about the payoffs that buyers receive. Even when there are potentially

multiple perfect matchings in a preferred-seller graph, any given buyer obtains the same

payoff in every one of these perfect matchings, since all of her edges in the preferred-seller

graph yield the same, maximum payoff. As a result, it is enough to establish part (iii) for

the perfect matching we just constructed, and it will then apply to the payoff properties

of every perfect matching in the preferred-seller graph. So consider the matching we just
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We can still find a perfect matching in 

this new preferred-seller graph.  This 

means that the same prices are also 

market-clearing for the zeroed-out 

market.

Figure 15.19: The third and final step in analyzing the market with j zeroed out: observe
that the rewired preferred-seller graph still contains a perfect matching, in which j is now
paired with i∗.

constructed, and let k be any buyer other than j. Either k gets the same item she had in

the perfect matching for the original market, in which case she gets the same payoff — or

else k shifts from one item to another along the alternating path. In this latter case, since

k had edges to both of these items in the preferred-seller graph of the original market, she

receives the same payoff from each of them, and so again k’s payoff remains the same. This

completes the proof of Fact 2, and hence fills in the final details needed to complete the

proof of the overall claim.

15.10 Exercises

1. Suppose a search engine has two ad slots that it can sell. Slot a has a clickthrough

rate of 10 and slot b has a clickthrough rate of 5. There are three advertisers who are

interested in these slots. Advertiser x values clicks at 3 per click, advertiser y values

clicks at 2 per click, and advertiser z values clicks at 1 per click.

Compute the socially optimal allocation and the VCG prices for it. Give a brief
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explanation for your answer.

2. Suppose a search engine has three ad slots that it can sell. Slot a has a clickthrough

rate of 6, slot b has a clickthrough rate of 5 and slot c has a clickthrough rate of 1.

There are three advertisers who are interested in these slots. Advertiser x values clicks

at 4 per click, advertiser y values clicks at 2 per click, and advertiser z values clicks at

1 per click. Compute the socially optimal allocation and the VCG prices for it. Give

a brief explanation for your answer.

3. Suppose a search engine has three ad slots that it can sell. Slot a has a clickthrough

rate of 5, slot b has a clickthrough rate of 2, and slot c has a clickthrough rate of 1.

There are three advertisers who are interested in these slots. Advertiser x values clicks

at 3 per click, advertiser y values clicks at 2 per click, and advertiser z values clicks at

1 per click.

Compute the socially optimal allocation and the VCG prices for it. Give a brief

explanation for your answer.

4. Suppose a search engine has two ad slots that it can sell. Slot a has a clickthrough

rate of 4 and slot b has a clickthrough rate of 3. There are three advertisers who are

interested in these slots. Advertiser x values clicks at 4 per click, advertiser y values

clicks at 3 per click, and advertiser z values clicks at 1 per click.

(a) Suppose that the search engine runs the VCG Procedure to allocate slots. What

assignment of slots will occur and what prices will the advertisers pay? Give an expla-

nation for your answer.

(b) Now the search engine is considering the creation of a third ad slot which will have

a clickthrough rate of 2. Let’s call this new ad slot c. Suppose that search engine does

create this slot and again uses the VCG Procedure to allocate slots. What assignment

of slots will occur and what prices will the advertisers pay? Give an explanation for

your answer.

(c) What revenue will the search engine receive from the VCG Procedure in parts (a)

and (b)? If you were running the search engine, given this set of advertisers and slots,

and could choose whether to create slot c or not, what would you do? Why? (In

answering this question assume that you have to use the VCG Procedure to allocate

any slots you create.)

5. Suppose a search engine has two ad slots that it can sell. Slot a has a clickthrough

rate of 12 and slot b has a clickthrough rate of 5. There are two advertisers who are
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interested in these slots. Advertiser x values clicks at 5 per click and advertiser y values

clicks at 4 per click.

(a) Compute the socially optimal allocation and the VCG prices for it.

(b) Suppose the search engine decides not to sell slot b. Instead, it sells only slot a

using a sealed-bid, second-price auction. What bids will the advertisers submit for slot

a, who will win, and what price will they pay?

(c) Which of these two possible procedures (a) and (b) generate the greater revenue

for the search engine? By how much?

(d) Now let’s see if the result in part (c) is general or not. That is, does it depend

on the clickthrough rates and values? Let there be two slots and two advertisers; let

the clickthrough rates be ra for slot a and rb for slot b, with ra > rb > 0; and let the

advertisers’ values be vx and vy, with vx > vy > 0. Can you determine which of the

two procedures generates the greater revenue for the search engine? Explain.

6. Chapter 15 discusses the relationship between the VCG Principle and second price

auctions. In particular, we saw that the VCG Principle is a generalization of the idea

behind second price auctions to a setting in which there is more than one object being

sold. In this problem we will explore this relationship in an example. Suppose that a

seller has one item, which we’ll call item x. There are three buyers, whom we’ll call a,

b, and c. The values that these buyers (a, b, and c) have for the item are 6, 3, and 1,

respectively.

(a) Suppose that the seller runs a second price auction for the item. Which buyer will

win the auction and how much will this buyer pay?

(b) Now let’s suppose that the seller uses the VCG procedure to allocate the item.

Remember that the first step in the running the VCG procedure when there are more

buyers than items is to create fictional items, which each buyer values at 0, so that the

number of items to be allocated is the same as the number of bidders. Let’s call these

additional (fictional) items y and z. Find the allocation that results from running the

VCG procedure. What are the prices charged to each buyer for the item that they

receive? Explain why the price that buyer a pays is the harm that he causes to the

remaining bidders by taking the item he is assigned.


