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Abstract:  We consider a language for reasoning about probability which allows us
to make statements such as “the probability of £ is less than 1/3” and “the probability
of Fy is at least twice the probability of £y”, where F; and F, are arbitrary events. We
consider the case where all events are measurable (i.e., represent measurable sets) and the
more general case, which is also of interest in practice, where they may not be measurable.
The measurable case is essentially a formalization of (the propositional fragment of ) Nils-
son’s probabilistic logic. As we show in a companion paper, the general (nonmeasurable)
case corresponds precisely to replacing probability measures by Dempster-Shafer belief
functions. In both cases, we provide a complete axiomatization and show that the prob-
lem of deciding satisfiability is NP-complete, no worse than that of propositional logic.
As a tool for proving our complete axiomatizations, we give a complete axiomatization
for reasoning about Boolean combinations of linear inequalities, which is of independent
interest. This proof and others make crucial use of results from the theory of linear
programming. We then extend the language to allow reasoning about conditional prob-
ability, and show that the resulting logic is decidable and completely axiomatizable, by
making use of the theory of real closed fields.

*This paper 1s essentially the same as one that appears in Information and Computation 87:1,2,
1990, pp. 78-128. A preliminary version appears in Proceedings of the Third Symposium on Logic in
Computer Science, 1988, pp. 277-291.



1 Introduction

The need for reasoning about probability arises in many areas of research. In computer
science we must analyze probabilistic programs, reason about the behavior of a program
under probabilistic assumptions about the input, or reason about uncertain information
in an expert system. While probability theory is a well-studied branch of mathematics,
in order to carry out formal reasoning about probability, it is helpful to have a logic
for reasoning about probability with a well-defined syntax and semantics. Having such
a logic might also clarify the role of probability in the analysis. It is all too easy to
lose track of precisely which events it is that are being assigned a probability, and how
that probability should be assigned (see [HT93] for a discussion of the situation in the
context of distributed systems). There is a fairly extensive literature on reasoning about
probability (see for example [Bac90, Car50, Gai64, GKP88, GF87, HF87, Hoo78, Kav89,
Kei85, Luk70, Nil86, Nut87, Sha76] and the references in [Nil86]), but remarkably few

attempts at constructing a logic to reason explicitly about probabilities.

We start by considering a language that allows linear inequalities involving probabil-
ities. Thus, typical formulas include 3w(yp) < 1 and w(yp) > 2w(¢)). We consider two
variants of the logic. In the first, ¢ and @ represent measurable events, which have a
well-defined probability. In this case, these formulas can be read “three times the prob-
ability of ¢ is less than one” (i.e., ¢ has probability less than 1/3) and “p is at least
twice as probable as ©”. However, there are times we want to be able to discuss in the
language events that are not measurable. In such cases, we view w(y) as representing
the inner measure (induced by the probability measure) of the set corresponding to ¢.
The letter w is chosen to stand for “weight”; w will sometimes represent a (probability)
measure and sometimes an inner measure induced by a probability measure.

The usual reason that mathematicians deal with nonmeasurable sets is out of mathe-
matical necessity: for example, it is well known that if the set of points in the probability
space consists of all numbers in the real interval [0, 1], then we cannot allow every set to
be measurable if (like Lebesgue measure) the measure is to be translation-invariant (see
[Roy64, page 54]). However, in this paper we allow nonmeasurable sets out of choice,
rather than out of mathematical necessity. Our original motivation for allowing nonmea-
surable sets came from distributed systems, where they arise naturally, particularly in
asynchronous sytems (see [HT93] for details). It seems that allowing nonmeasurability
might also provide a useful way of reasoning about uncertainty, a topic of great interest
in AL (This point is discussed in detail in [FH91].) Moreover, as is shown in [FH91], in a
precise sense inner measures induced by probability measures correspond to Dempster-
Shafer belief functions [Dem68, Sha76], the key tool in the Dempster-Shafer theory of
evidence (which in turn is one of the major techniques for dealing with uncertainty in
AI). Hence, reasoning about inner measures induced by probability measures corresponds
to one important method of reasoning about uncertainty in AI. We shall discuss belief
functions more in Section 7.

We expect our logic to be used for reasoning about probabilities. All formulas are



either true or false. They do not have probabilistic truth values. We give a complete
axiomatization of the logic for both the measurable and general (nonmeasurable) cases. In
both cases, we show that the problem of deciding satisfiability is NP-complete, no worse
than that of propositional logic. The key ingredient in our proofs is the observation that
the validity problem can be reduced to a linear programming problem, which allows us
to apply techniques from linear programming.

The logic just described does not allow for general reasoning about conditional prob-
abilities. If we think of a formula such as w(p; |pz) > 1/2 as saying “the probability
of p1 given p, is at least 1/2”7, then we can express this in the logic described above
by rewriting w(p; | p2) as w(pi A p2)/w(pz) and then clearing the denominators to get
w(p1 Ap2) —2w(pz) > 0. However, we cannot express more complicated expressions such
as w(pg | p1) + w(pr | p2) > 1/2 in our logic, because clearing the denominator in this
case leaves us with a nonlinear combination of terms. In order to deal with conditional
probabilities, we can extend our logic to allow expressions with products of probability
terms, such as 2w(p; A p2)w(ps) + 2w(pr A p2)w(pr) > w(pr)w(pz) (this is what we get
when we clear the denominators in the conditional expression above). Because we have
products of terms, we can no longer apply techniques from linear programming to get
decision procedures and axiomatizations. However, the decision problem for the resulting
logic can be reduced to the decision problem for the theory of real closed fields [Sho67].
By combining a recent result of Canny [Can88] with some of the techniques we develop
in the linear case, we can obtain a polynomial space decision procedure for both the
measurable case and the general case of the logic. We can further extend the logic to
allow first-order quantification over real numbers. The decision problem for the resulting
logic is still reducible to the decision problem for the theory of real closed fields. This
observation lets us derive complete axiomatizations and decision procedures for the ex-
tended language, for both the measurable and general case. In this case, combining our
techniques with results of Ben-Or, Kozen, and Reif [BKR86], we get an exponential space
decision procedure. Thus, allowing nonlinear terms in the logic seems to have a high cost
in terms of complexity, and further allowing quantifiers an even higher cost.

The measurable case of our first logic (with only linear terms) is essentially a for-
malization of (the propositional fragment of) the logic discussed by Nilsson in [Nil86]."
The question of providing a complete axiomatization and decision procedure for Nils-
son’s logic has attracted the attention of other researchers before. Haddawy and Frisch
[HF87] provide some sound axioms (which they observe are not complete), and show
how interesting consequences can be deduced using their axioms. Georgakopoulos, Kav-
vadias, and Papadimitriou [GKP88] show that a less expressive logic than ours (where
formulas have the form (w(p1) = ¢1) A ... A (w(om) = ¢m), and each ; is a disjunction
of primitive propositions and their negations) is also NP-complete. Since their logic is
weaker than ours, their lower bound implies ours; their upper bound techniques (which
were developed independently of ours) can be extended in a straightforward way to the

! Nilsson does not give an explicit syntax for his logic, but it seems from his examples that he wants
to allow linear combinations of terms.



language of our first logic.

The measurable case of our richer logic bears some similarities to the first-order logic
of probabilities considered by Bacchus [Bac90]. There are also some significant technical
differences; we compare our work with that of Bacchus and the more recent results on
first-order logics of probability in [AH94, Hal90] in more detail in Section 6.

The measurable case of the richer logic can also be viewed as a fragment of the prob-
abilistic propositional dynamic logic considered by Feldman [Fel84]. Feldman provides a
double-exponential space decision procedure for his logic, also by reduction to the deci-
sion problem for the theory of real closed fields. (The extra complexity in his logic arises
from the presence of program operators.) Kozen [Koz85] too considers a probabilistic
propositional dynamic logic (which is a fragment of Feldman’s logic) for which he shows
that the decision problem is PSPACE-complete. While a formula such as w(p) > 2w(¢)
can be viewed as a formula in Kozen’s logic, conjunctions of such formulas cannot be so
viewed (since Kozen’s logic is not closed under Boolean combination). Kozen also does
not allow nonlinear combinations.

None of the papers mentioned above consider the nonmeasurable case. Hoover [Hoo78]
and Keisler [Kei85] provide complete axiomatizations for their logics (their language is
quite different from ours, in that they allow infinite conjunctions, and do not allow sums
of probabilities). Other papers (for example [1.S82, HR87]) consider modal logics that
allow more qualitative reasoning. In [.S82] there are modal operators that allow one
to say “with probability one” or “with probability greater than zero”; in [HR87] there
is a modal operator which says “it is likely that”. Decision procedures and complete
axiomatizations are obtained for these logics. However, neither of them allows explicit
manipulation of probabilities.

In order to prove our results on reasoning about probabilities for our first logic, which
allows only linear terms, we derive results on reasoning about Boolean combinations of
linear inequalities. These results are of interest in their own right. It is here that we
make our main use of results from linear programming. Our complete axiomatizations of
the logic for reasoning about probabilities, in both the measurable and nonmeasurable
case, divide neatly into three parts, which deal respectively with propositional reasoning,
reasoning about linear inequalities, and reasoning about probabilities.

The rest of this paper is organized as follows. Section 2 defines the first logic for
reasoning about probabilities, which allows only linear combinations, and deals with the
measurable case of the logic: we give the syntax and semantics, provide an axiomati-
zation, which we prove is sound and complete, prove a small model theorem, and show
that the decision procedure is NP-complete. In Section 3, we extend these results to the
nonmeasurable case. Section 4 deals with reasoning about Boolean combinations of lin-
ear inequalities: again we give the syntax and semantics, provide a sound and complete
axiomatization, prove a small model theorem, and show that the decision procedure is
NP-complete. In Section 5, we extend the logic for reasoning about probabilities to allow
nonlinear combinations of terms, thus allowing us to reason about conditional probabil-



ities. In Section 6, we extend the logic further to allow first-order quantification over
real numbers. We show that the techniques of the previous sections can be extended to
obtain decision procedures and complete axiomatizations for the richer logic. In Section
7, we discuss Dempster-Shafer belief functions and their relationship to inner measures
induced by probability measures. We give our conclusions in Section 8.

2 The measurable case

2.1 Syntax and semantics

The syntax for our first logic for reasoning about probabilities is quite simple. We start
with a fixed infinite set ® = {py,pa,...} of primitive proposilions or basic events. For
convenience, we define true to be an abbreviation for the formula pV —p, where p is a fixed
primitive proposition. We abbreviate —true by false. The set of propositional formulas
or events is the closure of ® under the Boolean operations A and —. We use p, possibly
subscripted or primed, to represent primitive propositions, and @ and ), again possibly
subscripted or primed, to represent propositional formulas. A primitive weight term is an
expression of the form w(y), where ¢ is a propositional formula. A weight term, or just
term, is an expression of the form ajw(py) 4 - - - + arw(pr), where ay, ..., ay are integers
and k > 1. A basic weight formula is a statement of the form ¢ > ¢, where ¢ is a term and
¢ is an integer.? For example, 2w(p; A p2) + Tw(p1 V —=p3) > 3 is a basic weight formula.
A weight formula is a Boolean combination of basic weight formulas. We now use f and
g, again possibly subscripted or primed, to refer to weight formulas. When we refer to a
“formula”, without saying whether it is a propositional formula or a weight formula, we
mean “weight formula”. We shall use obvious abbreviations, such as w(yp) — w(v) > a
for (i) + (— 1)) = @, w(g) > w(®) for w(p) —w() > 0, w(e) < ¢ for —u(p) = —c,
w(p) < ¢ for ~(w(p) > ¢), and w(p) = ¢ for (w(p) > ¢) A (w(p) < ¢). A formula such
as w(p) > 1/3 can be viewed as an abbreviation for 3w(¢) > 1; we can always allow
rational numbers in our formulas as abbreviations for the formula that would be obtained
by clearing the denominators.

In order to give semantics to such formulas, we first need to review briefly some
probability theory (see, for example, [Fel57, Hal50] for more details). A probability space
is a tuple (S, X, ) where S is a set (we think of S as a set of states or possible worlds,
for reasons to be explained below), X' is a o-algebra of subsets of S (i.e., a set of subsets
of S containing the empty set and closed under complementation and countable union)

?In an earlier version of this paper [FHMSS], we allowed ¢ and the coefficients that appear in terms
to be arbitrary real numbers, rather than requiring them to be integers as we do here. There is no
problem giving semantics to formulas with real coefficients, and we can still obtain the same complete
axiomatization by precisely the same techniques as described below. However, when we go to richer
languages later, we need the restriction to integers in order to make use of results from the theory of real
closed fields. We remark that we have deliberately chosen to be sloppy and use a for both the symbol
in the language that represents the integer a, and for the integer itself.
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whose elements are called measurable sets, and p is a probabilily measure defined on the
measurable sets. Thus pu: X' — [0, 1] satisfies the following properties:

P1. p(X)>0forall X € X
P2. pu(S)=1
P3. p(U2, X;) = X2, u(X;), if the X,’s are pairwise disjoint members of X

Property P3 is called countable additivity. Of course, the fact that X is closed under
countable union guarantees that if each X; € X, then so is U2, X;. If X' is a finite set,
then we can simplify property P3 to

P3. p(XUY)=p(X)+ p(Y),if X and Y are disjoint members of X

This property is called finite additivity. Properties P1, P2, and P3’ characterize probabil-
ity measures in finite spaces. Observe that from P2 and P3' it follows (taking Y = X, the
complement of X) that u(X) =1— u(X). Taking X = S, we also get that u(0)) = 0. We

remark for future reference that it is easy to show that P3’ is equivalent to the following
axiom:

P3". u(X)=pu(XNY)+u(XNY)

Given a probability space (S, X, ), we can give semantics to weight formulas by
associating with every basic event (primitive proposition) a measurable set, extending
this association to all events in a straightforward way, and then computing the probability
of these events using p. More formally, a probability structure is a tuple M = (S, X, p, 7),
where (S, X, ) is a probability space, and 7 associates with each state in S a truth
assignment on the primitive propositions in ®. Thus #(s)(p) € {true,false} for each
s € S and p € ®. Define p = {s € S|x(s)(p) = true}. We say that a probability
structure M is measurable if for each primitive proposition p, the set p™ is measurable.
We restrict attention in this section to measurable probability structures. The set p™
can be thought of as the possible worlds where p is true, or the states at which the event
p occurs. We can extend 7 (s) to a truth assignment on all propositional formulas in the
standard way, and then associate with each propositional formula ¢ the set o™ = {s €

S |7(s)(p) = true}. An easy induction on the structure of formulas shows that p* is a
measurable set. If M = (S, X, yu, 7), we define

M E ayw(en) + -+ apw(pr) > ¢ iff ayp(@M) + -+ app(el) > c.

We then extend |= (“satisfies”) to arbitrary weight formulas, which are just Boolean
combinations of basic weight formulas, in the obvious way, namely

ME-f it MES
MEfAg iff MEfand M =g.



There are two other approaches we could have taken to assigning semantics, both
of which are easily seen to be equivalent to this one. One is to have = associate a
measurable set pM directly with a primitive proposition p, rather than going through
truth assignments as we have done. The second (which was taken in [Nil86]) is to have
S consist of one state for each of the 2" different truth assignments to the primitive
propositions of & and have X' consist of all subsets of S. We choose our approach
because it extends more easily to the nonmeasurable case considered in Section 3, to the
first-order case, and to the case considered in [FH94] where we extend the language to
allow statements about an agent’s knowledge. (See [FH91] for more discussion about the
relationship between our approach and Nilsson’s approach.)

As before, we say a weight formula f is valid if M = f for all probability structures
M, and is salisfiable if M |= f for some probability structure M. We may then say that
f is satisfied in M.

2.2 Complete axiomatization

In this subsection we characterize the valid formulas for the measurable case by a sound
and complete axiomatization. A formula f is said to be provable in an axiom system if
it can be proven in a finite sequence of steps, each of which is an axiom of the system
or follows from previous steps by an application of an inference rule. It is said to be
inconsistent if its negation —f is provable, and otherwise f is said to be consistent.
An axiom system is sound if every provable formula is valid and all the inference rules
preserve validity. It is complete if every valid formula is provable (or, equivalently, if
every consistent formula is satisfiable).

The system we now present, which we call AXy;p4s, divides nicely into three parts,
which deal respectively with propositional reasoning, reasoning about linear inequalities,
and reasoning about probability.

Propositional reasoning:
Taut. All instances of propositional tautologies

MP. From f and f = g infer ¢ (modus ponens)

Reasoning about linear inequalities:

Ineq. All instances of valid formulas about linear inequalities (we explain this in more
detail below)

Reasoning about probabilities:

W1. w(p) > 0 (nonnegativity)



W2. w(true) = 1 (the probability of the event true is 1)
W3. w(p AY)+w(p A ) =w(p) (additivity)

W4. w(p) = w(v) if ¢ = 1 is a propositional tautology (distributivity)

Before we prove the soundness and completeness of AXyrgas, we briefly discuss the
axioms and rules in the system.

First note that axioms W1, W2, and W3 correspond precisely to P1, P2, and P3",
the axioms that characterize probability measures in finite spaces. We have no axiom
that says that the probability measure is countably additive. Indeed, we can easily
construct a “nonstandard” model M = (S, X, u,n) satisfying all these axioms where
p s finitely additive, but not countably additive, and thus not a probability measure.
(An example can be obtained by letting S be countably infinite, letting X' consist of
the finite and co-finite sets, and letting u(7') = 0 if 7" is finite, and p(7) = 1 if T is
co-finite, for each T' € X'.) Nevertheless, as we shall show in Theorem 2.2, the axiom
system above completely characterizes the properties of weight formulas in probability
structures. This is consistent with the observation that our axiom system does not imply
countable additivity, since countable additivity cannot be expressed by a formula in our
language.

Instances of Taut include formulas such as f V =f, where f is a weight formula.
However, note that if p is a primitive proposition, then pV —p is not an instance of Taut,
since pV —p is not a weight formula, and all of our axioms are, of course, weight formulas.
We remark that we could replace Taut by a simple collection of axioms that characterize
propositional tautologies (see for example [Men64]). We have not done so here because
we want to focus here on the axioms for probability.

The axiom Ineq includes “all valid formulas about linear inequalities.” To make this
precise, assume that we start with a fixed infinite set of wvariables. Let an inequality
term (or just term, if there is no danger of confusion) be an expression of the form
a1y + - - -+ aprp, where aq, ..., ap are integers and k > 1. A basic inequality formula is a
statement of the form ¢ > ¢, where ¢ is a term and ¢ is an integer. For example, 2z3+ 7z, >
3 is a basic inequality formula. An inequality formula is a Boolean combination of basic
inequality formulas. We use f and g, again possibly subscripted or primed, to refer
to inequality formulas. An assignment to variables is a function A that assigns a real
number to every variable. We define

AEaz+ - +agey > ciff a1 A(zy) + - + arA(zg) > c.

We then extend |= to arbitrary inequality formulas, which are just Boolean combinations
of basic inequality formulas, in the obvious way, namely

A G AW
AE=EfAg it AEfand AEyg.



As usual we say an inequality formula f is valid if A |= f for all A that are assignments
to variables, and is satisfiable if A = f for some such A.

A typical valid inequality formula is

(@121 + -+ agxr > ) A (ajz1 + - + afay > ) = (1)
(a1+a/1)$1+"'+(ak+aﬁc)l'k2(C—I—c’).

To get an instance of Ineq, we simply replace each variable z; that occurs in a valid
formula about linear inequalities by a primitive weight term w(p;) (of course, each oc-
currence of the variable z; must be replaced by the same primitive weight term w(¢;)).
Thus, the following weight formula, which results from replacing each occurrence of z;
in (1) by w(g;), is an instance of Ineq:

(arw(pr) + - + apw(pr) > ) A (dqw(pr) + - + qyw(pr) > ) = (2)
(a1 + ay)w(er) + -+ + (ax + aj)w(pr) > (e + ).

We give a particular sound and complete axiomatization for Boolean combinations of
linear inequalities (which, for example, has (1) as an axiom) in Section 4. Other axiom-
atizations are also possible; the details don’t matter here.

Finally, we note that just as for Taut and Ineq, we could make use of a complete
axiomatization for propositional equivalences to create a collection of elementary axioms
that could replace WA4.

In order to see an example of how the axioms operate, we show that w(false) = 0 is
provable. Note that this formula is easily seen to be valid, since it corresponds to the fact
that p(0) = 0, which we already observed follows from the other axioms of probability.

Lemma 2.1: The formula w(false) =0 is provable from AXygas.

Proof: In the semi-formal proof below, PR is an abbreviation for “propositional reason-
ing”, i.e., using a combination of Taut and MP.

1. w(true A true) + w(true A false) = w(true) (W3, taking ¢ and ¢ both to be true)
2. w(true A true) = w(true) (W4)
3. w(true A false) = w(false) (W4)

4. ((w(true A true)+w(trueA false) = w(true)) A (w(true A true) = w(true)) A (w(true A
false) = w(false))) = (w(false) = 0) (Ineq, since this is an instance of the valid
inequality ((z1 + 22 = 23) A (21 = 23) A (22 = 24)) = (24 = 0))

5. w(false) =0 (1, 2, 3, 4, PR) 11



Theorem 2.2: AXypas ts sound and complete with respect to measurable probability
structures.

Proof: It is easy to see that each axiom is valid in measurable probability structures. To
prove completeness, we show that if f is consistent then f is satisfiable. So suppose that
f is consistent. We construct a measurable probability structure satisfying f by reducing
satisfiability of f to satisfiability of a set of linear inequalities, and then making use of
the axiom Ineq.

Our first step is to reduce f to a canonical form. Let ¢4 V---V g, be a disjunctive
normal form expression for f (where each g; is a conjunction of basic weight formulas
and their negations). Using propositional reasoning, we can show that f is provably
equivalent to this disjunction. Since f is consistent, so is some g¢;; this is because if —g;
is provable for each ¢, then so is =(¢1 V -+ V g,). Moreover, any structure satisfying g;
also satisfies f. Thus, without loss of generality, we can restrict attention to a formula f
that is a conjunction of basic weight formulas and their negations.

An n-atom is a formula of the form p} A ... A pl, where p. is either p; or —p; for each
¢. If n 1s understood or not important, we may refer to n-atoms as simply atoms.

Lemma 2.3: Let ¢ be a propositional formula. Assume thal {pi,...,p,} includes all of
the primitive propositions that appear in @. Let At,(¢) consist of all the n-atoms & such
that & = ¢ is a propositional tautology. Then w(p) = s ar, (o) w(8) is provable.”

Proof: While the formula w(p) = Y se 41, (o) w(9) is clearly valid, showing it is provable
requires some care. We now show by induction on 5 > 1, that if ¢1,..., ¥y, are all of the
J-atoms (in some fixed but arbitrary order), then w(p) = w(p A1)+ -+ w(@ Ahyi) is
provable. If j = 1, this follows by finite additivity (axiom W3), possibly along with Ineq
and propositional reasoning (to permute the order of the 1-atoms, if necessary). Assume
inductively that we have shown that

w(p) = w(p Ar) + - +wlp Ay) (3)

is provable. By W3, w(@o A ¢1 A pjr1) +w(e A1 A =pip1) = w(e Athy) is provable. By
Ineq and propositional reasoning, we can replace each w(p A ,) in (3) by w(e A ¥, A
pi+1) + w(e A, A =p;jr1). This proves the inductive step.

In particular,

w(p) = w(p Aér)+ -+ w(p A dsn) (4)

is provable. Since {p1,...,p,} includes all of the primitive propositions that appear in
@, it is clear that if 6, € At,(¢), then ¢ A 6, is equivalent to 6., and if 6, & At,(p), then
© N6, is equivalent to false. So by W4, we see that if 6, € At,(¢), then w(pAé,) = w(6,)

3Here Zéemn(w w(8) represents w(é1) + - -+ w(é,), where 81,...,8, are the distinct members of

At (@) in some arbitrary order. By Ineq, the particular order chosen does not matter.



is provable, and if §, € At,(p), then w(p A 6,) = w(false) is provable. Therefore, as
before, we can replace each w(e A é,) in (4) by either w(é,) or w(false) (as appropriate).
Also, we can drop the w(false) terms, since w(false) = 0 is provable by Lemma 2.1. The
lemma now follows. 1

Using Lemma 2.3 we can find a formula f’ provably equivalent to f where f’ is
obtained from f by replacing each term in f by a term of the form ajw(é;) + -+ +
agnw(6zn), where {py,...,p,} includes all of the primitive propositions that appear in f,
and where {61,...,62n} are the n-atoms. For example, the term 2w(p, Vp2)+3w(—p;) can
be replaced by 2w(py A pa) + 2w(—py A p2) + dw(pr A —p2) + 3w(—=p; A =p2) (the reader can
easily verify the validity of this replacement with a Venn diagram). Let f” be obtained
from f’ by adding as conjuncts to f’ all of the weight formulas w(é;) > 0, for 1 < j <27,
along with weight formulas w(é1) + -+ + w(é2n) > 1 and —w(é;) — -+ — w(ban) > —1
(which together say that the sum of the probabilities of the n-atoms is 1). Then f” is
provably equivalent to f’, and hence to f. (The fact that the formulas that say “the sum
of the probabilities of the n-atoms is 17 are provable follow from Lemma 2.3, where we
let ¢ be true.) So we need only show that f” is satisfiable.

The negation of a basic weight formula a1w(61) + -+ - 4 a2nw(é2n) > ¢ can be written

—a1w(b1) — -+ — agnw(bzn) > —c. Thus, without loss of generality, we can assume that
f" is the conjunction of the following 2" + r + s + 2 formulas:
w(br) + - Fw(bm) > 1
—w(by) — —w(bpm) > -1
U)(&Qn) Z 0
arqw(6y) 4+ -+ aggnw(ben) > (5)
arqw(br) + -+ apmw(ben) > ¢
—a'171w(51) - a/1,2nw(52“) > —q
—ay (1) = —aggmw(ben) > =

Here the a; ;’s and a
b

;s are some integers.

Since probabilities can be assigned independently to n-atoms (subject to the con-
straint that the sum of the probabilities equals one), it follows that f” is satisfiable iff

the following system of linear inequalities is satisfiable:

At ae > 1
P D |
T 2 0

10



Ton 2 0
1T+ -+ a1 onTon 2> ¢ (6)
r1T1 + F AQroanTon > ¢,
! . ! /
—OT1 T T Gy geTan > TG
! . ! /
—0s1T1 — — Qg gnTon > =G

As we have shown, the proof is concluded if we can show that f” is satisfiable. Assume
that f” is unsatisfiable. Then the set of inequalities in (6) is unsatisfiable. So = f" is an
instance of the axiom Ineq. Since f” is provably equivalent to f, it follows that —=f is
provable, that is, f is inconsistent. This is a contradiction. I

Remark: When we originally started this investigation, we considered a language with
weight formulas of the form w(y) > ¢, without linear combinations. We extended to allow
linear combinations for two reasons. The first is that the greater expressive power of linear
combinations seems to be quite useful in practice (to say that ¢ is twice as probable as
1, for example). The second is that we do not know a complete axiomatization for the
weaker language. The fact that we can express linear combinations is crucial to the proof
given above. 1

2.3 Small model theorem

The proof of completeness presented in the previous subsection gives us a great deal of
information. As we now show, the ideas of the proof let us also prove that a satisfiable
formula is satisfiable in a small model.

Let us define the length |f| of the weight formula f to be the number of symbols
required to write f, where we count the length of each coefficient as 1. We have the
following small model theorem.

Theorem 2.4: Suppose f is a weight formula that is salisfied in some measurable prob-
ability structure. Then f is satisfied in a structure (S, X, u,w) with at most |f| states
where every set of stales is measurable.

Proof: We make use of the following lemma [Chv83, page 145].

Lemma 2.5: If a system of r linear equalities and/or inequalilies has a nonnegative
solution, then it has a nonnegative solution with at most r entries positive.

11



(This lemma is actually stated in [Chv83] in terms of equalities only, but the case stated
above easily follows: if x7,..., z} is a solution to the system of inequalities, then we pass
to the system where we replace each inequality h(zq,...,25) > cor h(z1,...,25) > ¢ by
the equality h(zq,...,zr) = h(2,...,27).)

Returning to the proof of the small model theorem, as in the completeness proof,
we can write f in disjunctive normal form. It is easy to show that each disjunct is a
conjunction of at most |f| — 1 basic weight formulas and their negations. Clearly, since f
is satisfiable, one of the disjuncts, call it g, is satisfiable. Suppose that ¢ is the conjunction
of r basic weight formulas and s negations of basic weight formulas. Then just as in the
completeness proof, we can find a system of equalities and inequalities of the following
form, corresponding to ¢, which has a nonnegative solution.

T4t am = 1

1171+ -+ AT >

r1T1 +  F AQroanTon > ¢, (7)
Sy e — g > —c
ay 1T @y gnTan e
' o ' '
—0s1T1 — — Qg gnTon > =G

So by Lemma 2.5, we know that (7) has a solution z*, where z* is a vector with at most
r 4+ s + 1 entries positive. Suppose x .,x; are the positive entries of the vector =,

2'17 «.
where t < r+s+41. We can now use this solution to construct a small structure satisfying

f. Let M = (S, X, u, w) where S has ¢ states, say s1,..., s, and X consists of all subsets
of S. Let 7(s;) be the truth assignment corresponding to the n-atom é;; (and where
7(s;)(p) = false for every primitive proposition p not appearing in f). The measure y is
defined by letting p({s;}) = a7 , and extending p by additivity. We leave it to the reader
to check that M |= f. Since t <r 4+ s+ 1 < |f[, the theorem follows.

2.4 Decision procedure

When we consider decision procedures, we must take into account the length of coeffi-
cients. We define || f|| to be the length of the longest coefficient appearing in f, when
written in binary. The size of a rational number a/b, where a and b are relatively prime,
is defined to be the sum of lengths of a¢ and b, when written in binary. We can then
extend the small model theorem above as follows:

Theorem 2.6: Suppose f is a weight formula that is satlisfied in some measurable prob-
ability structure. Then f is satisfied in a structure (S, X, p,w) with at most |f| states
where every set of states is measurable, and where the probability assigned to each state

is a rational number with size O(|f]||f|| + | f| log(|f])).

12



Theorem 2.6 follows from the proof of Theorem 2.4 and the following variation of
Lemma 2.5, which can be proven using Cramer’s rule and simple estimates on the size
of the determinant.

Lemma 2.7: If a system of r linear equalities and/or inequalilies with integer coefficients
each of length at most { has a nonnegative solution, then it has a nonnegative solution
with at most r entries positive, and where the size of each member of the solution is

O(rl + rlog(r)).

We need one more lemma, which says that in deciding whether a weight formula f is
satisfied in a probability structure, we can ignore the primitive propositions that do not

appear in f.

Lemma 2.8: Let f be a weight formula. Let M = (S, X, p,7) and M" = (S, X, p,%") be
probability structures with the same underlying probability space (S, X, ). Assume that
7(s)(p) = 7'(s)(p) for every state s and every primitive proposition p that appears in f.
Then M = [ iff M' = f.

Proof: If f is a basic weight formula, then the result follows immediately from the
definitions. Furthermore, this property is clearly preserved under Boolean combinations
of formulas. I

We can now show that the problem of deciding satisfiability is NP-complete.

Theorem 2.9: The problem of deciding whether a weight formula is satisfiable in a
measurable probability structure is NP-complete.

Proof: For the lower bound, observe that the propositional formula ¢ is satisfiable iff
the weight formula w(p) > 0 is satisfiable. For the upper bound, given a weight formula
[, we guess a satisfying structure M = (S, X, u, 7) for f with at most | f| states such that
the probability of each state is a rational number with size O(|f] || f|l + |f|1log(]f])), and
where 7 (s)(p) = false for every state s and every primitive proposition p not appearing
in f (by Lemma 2.8, the selection of x(s)(p) when p does not appear in f is irrelevant).
We verify that M |= f as follows. For each term w(v) of f, we create the set Z;, C S of
states that are in 9»™ by checking the truth assignment of each s € S and seeing whether
this truth assignment makes 1 true; if so, then s € ™. We then replace each occurrence
of w(¢) in f by ¥,ez, pn(s), and verify that the the resulting expression is true. i

3 The general (nonmeasurable) case

3.1 Semantics

In general, we may not want to assume that the set ™ associated with the event ¢ is a
measurable set. For example, as shown in [HT93], in an asynchronous system, the most
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natural set associated with an event such as “the most recent coin toss landed heads”

will not in general be measurable. More generally, as discussed in [FH91], we may not

want to assign a probability to all sets. The fact that we do not assign a probability to a

set then becomes a measure of our uncertainty as to its precise probability; as we show

below, all we can do is bound the probability from above and below.

M
)

If o™ is not a measurable set, then (™) is not well-defined. Therefore, we must give

a different semantics to weight formulas than we did in the measurable case, where (™)
is well-defined for each formula ¢. One natural semantics is obtained by considering the
inner measure induced by the probability measure rather than the probability measure
itself. Given a probability space (S, X', ) and an arbitrary subset A of S, define p.(A) =
sup{u(B)| B C A and B € X'}. Then p. is called the inner measure induced by p [Hal50].
Clearly p. is defined on all subsets of S, and p.(A) = p(A) if A is measurable. We now

define

M E arw(en) + -+ apw(pr) > ciff aip(er’) + -+ arp(ey’) > ¢, (8)

and extend this definition to all weight formulas just as before. Note that M satisfies
w(p) > c iff there is a measurable set contained in ™ whose probability is at least c.
Of course, if M is a measurable probability structure, then p.(¢™) = (™) for every
formula ¢, so this definition extends the one of the previous section.

We could just as easily have considered outer measures instead of inner measures.
Given a probability space (S, X, ) and an arbitrary subset A of S, define p*(A) =
inf{u(B)|A C B and B € X'}. Then p* is called the outer measure induced by p [Hal50].
As with the innner measure, the outer measure is defined on all subsets of S. It is easy to
show that p.(A) < p*(A) for all A C S; moreover, if A is measurable, then p*(A) = u(A)
if A is measurable. We can view the inner and outer measures as providing the best
approximations from below and above to the probability of A. (See [FH91] for more
discussion of this point.)

Since p*(A) = 1 — p.(A), where as before, A is the complement of A, it follows
that the inner and outer measures are expressible in terms of the other. We would get
essentially the same results in this paper if we were to replace the inner measure p, in
(8) by the outer measure p*.

If M =(S,X,p,x) is a probability structure, and if X" is a set of nonempty, disjoint
subsets of S such that X consists precisely of all countable unions of members of X”,
then let us call X’ a basis of M. We can think of X’ as a “description” of the measurable
sets. It is easy to see that if X' is finite, then there is a basis. Moreover, whenever X' has
a basis, it is unique: it consists precisely of the minimal elements of X' (the nonempty
sets in X’ none of whose proper nonempty subsets are in X'). Note that if X has a basis,
once we know the probability of every set in the basis, we can compute the probability
of every measurable set by using countable additivity. Furthermore, the inner and outer
measures can be defined in terms of the basis: the inner measure of A is the sum of the
measures of the basis elements that are subsets of A, and the outer measure of A is the
sum of the measures of the basis elements that intersect A.

14



3.2 Complete axiomatization

Allowing p™ to be nonmeasurable adds a number of complexities to both the axiomati-
zation and decision procedure. Of the axioms for reasoning about weights, while W1 and
W2 are still sound, it is easy to see that W3 is not. Finite additivity does not hold for
inner measures. It is easy to see that we do not get a complete axiomatization simply by
dropping W3. For one thing, we can no longer prove w(false) = 0. Thus, we add it as
a new axiom:

W5. w(false) =0

But even this is not enough. For example, superadditivity is sound for inner measures.
That is, the following axiom is valid in all probability structures:

wle AY) +w(p A=) < w(p). (9)

But adding this axiom still does not give us completeness. For example, let 61, 65, 65 be
any three of the four distinct 2-atoms p; A pa, p1 A =pe, =p1 A pa, and —p; A =py. Consider
the following formula:

w(b1 V83V b3) —w(by V by) —w(61V b3) —w(dy V 63) + w(é1) + w(b2) + w(és) > 0. (10)

Although it is not obvious, we shall show that (10) is valid in probability structures. It
also turns out that (10) does not follow from the other axioms and rules we just mentioned
above; we demonstrate this after giving a few more definitions.

As before, we assume that 61,..., 62 is a list of all the n-atoms in some fixed order.
Define an n-region to be a disjunction of n-atoms where the n-atoms appear in the
disjunct in order. For example, 6, V 63 is an n-region, while 63 V 6, is not. By insisting
on this order, we ensure that there are exactly 22" distinct n-regions (one corresponding
to each subset of the n-atoms). We identify the empty disjunction with the formula
false. As before, if n is understood or not important, we may refer to n-regions as simply
regions. Note that every propositional formula all of whose primitive propositions are in
{p1,...,pn} is equivalent to some n-region. Define a size r region to be a region that
consists of precisely r disjuncts. We say that p’ is a subregion of p if p and p" are n-regions,
and each disjunct of p’ is a disjunct of p. Thus, p’ is a subregion of p iff p’ = pis a
propositional tautology. We shall often write p’ = p for “p’ is a subregion of p”. A size
r subregion of a region p is a size r region that is a subregion of p.

Remark: We can now show that (10) (where 61,8;,65 are distinct 2-atoms) does not
follow from AXprgas with W3 replaced by W5 and the superadditivity axiom (9). Define
a function v whose domain is the set of propositional formulas, by letting v(¢) = 1 when
at least one of the 2-regions 61 V 69, 61 V 83, or 03 V 8, logically implies p. Let F' be the
set of basic weight formulas that are satisfied when v plays the role of w (for example, a
basic weight formula ayw(e1) +- - -+ apw(pr) > cisin Fiff av(e1) + - - -+ arv(pr) > ).
Now (10) is not in F, since the left-hand side of (10)is 1 =1 —1—1404 0+ 0, which is
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—2. However, it is easy to see that I’ contains every instance of every axiom of AXypas
other than W3, as well as W5 and every instance of the superadditivity axiom (9), and is
closed under modus ponens. (The fact that every instance of (9) is in F follows from the
fact that both ¢ At and @ A =1 cannot simultaneously be implied by 2-regions where two
of 81,84, 05 are disjuncts.) Therefore, (10) does not follow from the system that results
when we replace W3 by W5 and the superadditivity axiom. I

Now (10) is just one instance of the following new axiom:
W6. 327_1 2, asize t subregionof p(—1)""‘w(p’) >0, if p is a size r region and r > 1.

There is one such axiom for each n, each n-region p, and each r with 1 < r < 22", It is
instructive to look at a few special cases of W6. Let the size r region p be the disjunction
61V ---Vé,. If r =1, then W6 says that w(é;) > 0, which is a special case of axiom W1
(nonnegativity). If r = 2, then W6 says

w(6y V 63) —w(ér) —w(by) >0,

which is a special case of superadditivity. If r = 3, we obtain (10) above.

3.2.1 Soundness of W6

In order to prove soundness of W6, we need to develop some machinery (which will
prove to be useful again later for both our proot of completeness and for our decision
procedure).

Let M = (S, X, u, 7) be a probability structure. We shall find it useful to have a fixed
standard ordering pq, ..., pyn of the n-regions, where every size r’ region precedes every
size r region if v’ < r. In particular, if pgp is a proper subregion of pg, then &' < k. We
have identified p; with false; similarly, we can identify pyen with true.

We now show that for every n-region p there is a measurable set h(p) C p™ such that
all of the h(p)’s are disjoint, and such that the inner measure of p™ is the sum of the
measures of the sets h(p’) where p’ is a subregion of p. In the measurable case (where

each pM is measurable), it is easy to see that we can take h(p) = pM if p is an n-atom,
and h(p) = 0 otherwise. Let R be the set of all 22" distinct n-regions.

Proposition 3.1: Let M = (S, X, u,7) be a probability structure. There is a function
h: R — X such that if p is an n-region, then

1. h(p) € p™.
2. If p and p' are distinct n-regions, then h(p) and h(p') are disjoint.

3. If h(p) C (p")M for some proper subregion p' of p, then h(p) = 0.
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4. p(p™M) =3 m, n(R(p)).

Proof: If M has a basis, then the proof is easy: We define h(p) to be the union of all
members of the basis that are subsets of p™, but not of (p')™ for any proper subregion
p' of p. Tt is then easy to verify that the four conditions of the proposition hold.

We now give the proof in the general case (where M does not necessarily have a
basis). This proof is more complicated.

We define h(p;) by induction on j, in such a way that

L. h(p;) € p}".

2. If 5/ < j, then h(p;) and h(p;) are disjoint.
3. If y < j, and h(p;) C p?,J, then h(p;) = 0.
4 p(p}) = Cmp, u(h(p")).

Because our ordering ensures that if p; is a subregion of p; then j° < j, this is enough
to prove the proposition.

To begin the induction, let us define h(py) (that is, h(false)) to be 0. For the induc-
tive step, assume that %(p;) has been defined whenever j < k, and that each of the four
conditions above hold whenever j < k. We now define h(py) so that the four conditions
hold when j = k. Clearly 1n.(py') > Y2, and prsp, #(A(p)); since Uy, and pro, h(p')
is a measurable set contained in p} (because h(p’) C (p )M C pM), with measure
> pim o and pipy 1 R(p)) (because by inductive assumption the sets h(p") where u(h(p’))
goes into this sum are pairwise disjoint). If p.(ph) = Yo, and g, £(R(p)), then
we define h(pg) to be (). In this case, the four conditions clearly hold when j = k.
If not, let W be a measurable subset of pM such that p.(p¥) = p(W). Let W' =
W — U= p, and prz. h(p'). Since by inductive assumption the sets h(p') that go into this
union are pairwise disjoint and are each subsets of p} (because h(p’) C (p )M C pM),
it follows that p.(p}) = p(W') + ¥ ,=,, p(h(p')), and in particular p(W’) > 0. Let
W" = W' — Upcrh(pr). Suppose we can show p(W"”) = u(W’). It then follows that
p(ppt) = p(W") + 3 s, 1(h(p')). We define h(py) to be W”. Thus, condition (4)
holds when j = k, and by construction, so do conditions (1) and (2). We now show
that condition (3) holds. If not, find ¥’ < k such that h(py) C pM and h(px) # 0.
By our construction, since h(py) # 0, it follows that h(py) has positive measure. By
inductive assumption, p.(pM) = Y=, 1(R(p")). Now when p" = pyp, it follows that
h(p') C (o)™ C ppf. Hence, if T = Uy, h(p'), then T is a measurable set contained
in pM with measure equal to the inner measure of p}/. However, h(p;) is a measurable
set contained in p}/ with positive measure, and which is disjoint from 7. This is clearly
impossible.

Thus it only remains to show that u(W") = p(W'). If not, then u(W’' N h(py)) >0
for some k' < k. Let Z = W' N h(pw) (thus, p(Z) > 0), and let pr» be the n-region
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logically equivalent to pg A ppr. Since k' < k, it follows that pg» is a proper subregion
of pi, and hence k” < k. Since W C W C pM, and since h(pr) C pM, it follows that
Z =W'Nh(pr) C pM N pd = pM (where the final equality follows from the fact that pgn
is logically equivalent to pg A prr). By construction, W' is disjoint from h(p’) for every
subregion p’ of pg, and in particular for every subregion p’ of pgr (since ppn = p). 7
is disjoint from h(p’) for every subregion p’ of pgr, since Z C W’'. So Z is a subset of
pM with positive measure which is disjoint from h(p') for every subregion p’ of pgr. But
this contradicts our inductive assumption that p.(pih) = ¥,2, , #(h(p')). Thus we have
shown that p(W") = u(W’'). 1

In the fourth part of Proposition 3.1, we expressed inner measures of n-regions in terms
of measures of certain measurable sets h(p). We now show how to invert, to give the
measure of a set h(p) in terms of inner measures of various n-regions. We thereby obtain a
formula expressing p(h(p)) in terms of the inner measure. As we shall see, axiom W6 says
precisely that p(h(p)) is nonnegative. So W6 is sound, since probabilities are nonnegative.
Since we shall “re-use” this inversion later, we shall state the next proposition abstractly,
where we assume that we have vectors (v,,,...,7,,,) and (y,,,..., Y, ,n ), each indexed
by the n-regions. In our case of interest, y, is u(h(p)), and z, is p.(p™).

Proposition 3.2: Assume that x, = 3, ,y,, for each n-region p. Lel p be a size r

region. Then
T

Yo = Z Z (—1)T_t.’17p/.

t=0 p’ a size t subregion of p

Proof: This proposition is simply a special case of Mobius inversion [Rot64] (see [Hal67,
pp. 14-18]). Since the proof of Proposition 3.2 is fairly short, we now give it.

Replace each z, in the right-hand side of the equality in the statement of the propo-
sition by >~ i y,». We need only show that the result is precisely y, (in particular,
every other y, “cancels out”). Note that for every y, that is involved in this replacement,
7 is a subregion of p (since it is a subregion of some p’ that is a subregion of p).

First, y, is contributed to the right-hand side precisely once, when ¢ = r, by z,. Now
let 7 be a size s subregion of p, where 0 < s < r — 1. We shall show that the total of
the contributions of y, is zero (that is, the sum of the positive coefficients of the times it
is added in plus the sum of the negative coefficients is zero). Thus, we count how many
times ¥, is contributed by

T

Z Z (1) "z, (11)
t=0 p’ a size t subregion of p
If + < s, then y, is not contributed by the tth summand of (11). If ¢ > s, then it is
—s

:_ . ) distinct size ¢ subregions of p,

straightforward to see that 7 is a subregion of (
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and so the total contribution by the {th summand of (11)is (—1)""* (

S (120

t=s

the total contribution is

u=0

This last expression is easily seen to be equal to (—1)"7* 37 —5(—1)" ( :

is (—1)"=* times the binomial expansion of (1 —1)"7* and so is 0.

Corollary 3.3: Let p be a size v region. Then

r

n(h(p)) =2 > (=1 (M),

t=0 p’ a size t subregion of p

r_
t—s

S ) . Therefore,

(12)

—° ) But this
u

Proof: Let y, be u(h(p), and let z, be p.(pM). The corollary then follows from part (4)

of Proposition 3.1, and Proposition 3.2. 1

Corollary 3.4: Letl p be a size v region. Then

r

> > (=) pa((p")M) > 0.

t=0 p’ a size t subregion of p

Proof: This follows from Corollary 3.3 and from the fact that measures are nonnegative.

Proposition 3.5: Aziom W6 is sound.

Proof: This follows from Corollary 3.4, where we ignore the ¢ = 0 term since p.(#)) = 0.

3.2.2 Completeness

Let AX be the axiom system that results when we replace W3 by W5 and W6. We
now prove that AX is a complete axiomatization in the general case, where we allow
nonmeasurable events. Thus we want to show that if a formula f is consistent, then
f 1s satisfiable. As in the measurable case, we can easily reduce to the case that f is

a conjunction of basic weight formulas and their negations. However, now we cannot

rewrite subformulas of f in terms of subformulas involving atoms over the primitive
propositions that appear in f, since this requires W3, which does not hold if we consider

inner measures. Instead, we proceed as follows.
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Let pq,...,p, include all of the primitive propositions that appear in f. Since every
propositional formula using only the primitive propositions py, ..., p, is provably equiva-
lent to some n-region p;, it follows that f is provably equivalent to a formula f’ where each
conjunct of f’is of the form ajw(p1) + -+ + agenw(pgen). As before, f’ corresponds in a
natural way to a system Az > b, A’z > b of inequalities, where x = (z1,...,242n) is a col-
umn vector whose entries correspond to the inner measures of the n-regions py,..., pyen.
If f is satisfiable in a probability structure (when w is interpreted as an inner measure in-
duced by a probability measure), then Az > b, A’z > b’ clearly has a solution. However,
the converse is false. For example, if this system consists of a single formula, namely
—w(p) > 0, then of course the inequality has a solution (such as w(p) = —1), but f
is not satisfiable. Clearly, we need to add constraints that say that the inner measure
of each n-region is nonnegative, and the inner measure of the region equivalent to the
formula false (respectively true) is 0 (respectively 1).* But even this is not enough. For
example, we can construct an example of a formula inconsistent with W6 (namely, the
negation of (10)), where the corresponding system is satisfiable. We now show that by
adding inequalities corresponding to W6, we can force the solution to act like the inner
measure induced by some probability measure. Thus, we can still reduce satisfiability of
f to the satisfiability of a system of linear inequalities.

Let P be the 22" x 22" matrix of 0’s and 1’s such that if z = (z,,,.. 3 Tp,n) and
Y= Yp,-- .,yp22n), then =z = Py describes the hypotheses of Proposition 3.2, that is,
such that = Py “says” that =, = 3, ,y,, for each n-region p. Similarly, let N be
the 22" x 22" matrix of 0’s, 1’s, and —1’s such that y = Nz describes the conclusions of
Proposition 3.2, that is, such that y = Nz “says” that

r

Yo = Z E (=) ay,

t=0 p’ a size t subregion of p

for each n-region p. We shall make use of the following technical properties of the matrix

N:
Lemma 3.6:
1. The matriz N is invertible.
2. ZZQ:(NT)Z = 2,on for each vector z of length 22".
Proof: The proof of Proposition 3.2 shows that whenever x and y are vectors where

x = Py, then y = Nz. Therefore, P is invertible, with inverse N. Hence, N is invertible.
This proves part (1). As for part (2), let  be an arbitrary vector of length 22", and

let ¥y = Nz. Since N and P are inverses, it follows that * = Py. Now ZQZ(NQC)Z =

*Actually, when we speak about the inner measure of an n-region p, we really mean the inner measure
of the set pM that corresponds to the n-region p.
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Efj y;. But it is easy to see that the last row of x = Py says that x,n = Efj Y. S0
Y2 (Nx); = z4om, as desired. I

We can now show how to reduce satisfiability of f to the satisfiability of a system of
linear inequalities. Assume that f is a conjunction of basic weight formulas and negations
of basic weight formulas. Define f to be the system Az > b, A’z > b’ of inequalities that
correspond to f.

Theorem 3.7: Lel f be a conjunction of basic weight formulas and negations of basic
weight formulas. Then [ is satisfied in some probability siructure iff there is a solulion
to the system f,xqy = 0,29n =1, Nz > 0.

Proof: Assume first that f is satisfiable. Thus, assume that (S, X, u,7) = f. Define z*
by letting =7 = p.(pM), for 1 < i < 22", Clearly z* is a solution to the system given in
the statement of the theorem, where x7 = 0 holds since p, () = 0, 2}:» = 1 holds since

p«(S) =1, and Nz* > 0 holds by Corollary 3.4.

Conversely, let z* satisfy the system given in the statement of the theorem. We now
construct a probability structure M = (S, X, y, 7) such that M |= f. This, of course, is
sufficient to prove the theorem. Assume that {p;,...,p,} includes all of the primitive
propositions that appear in f. For each of the 2" n-atoms § and each of the 22" n-regions
p, if 6 = p (that is, if § is one of the n-atoms whose disjunction is p), then let ss, be a
distinct state. We let S consist of these states ss, (of which there are less than 2”22n).
Intuitively, ss, will turn out to be a member of h(p) where the atom ¢ is satisfied. For
each n-region p, let H, be the set of all states ss5,. Note that H, and H, are disjoint
if p and p’ are distinct. The measurable sets (the members of X') are defined to be
all possible unions of subsets of {H,,,..., H, . }. If J is a subset of {1,.. ,22"}, then
the complement of U;csH; is Ujg;H;. Thus, &' is closed under complementation. Since
also X' clearly contains the empty set and is closed under union, it follows that X" is a
o-algebra of sets. As we shall see, H, will play the role of h(p) in Proposition 3.1. The
measure y is defined by first letting u(H,,) (where p; is the ith n-region) be the tth entry
of Naz* (which is nonnegative by assumption), and then extending p to X' by additivity.
Note that the only H,, that is empty is H,,, and that p(H,, ) is correctly assigned the
value 0, since the first entry of Nz* is z7, which equals 0, since x; = 0 is an equality of
the system that =* is a solution to. By additivity, x(S5) (where S is the whole space) is
assigned the value Ef: w(H,) = Ef:(N;z:*)“ which equals 23,» by Lemma 3.6, which
equals 1, since z4m» = 1 is an equality of the system that z* is a solution to. Thus, p is
indeed a probability measure.

We define 7 by letting 7(ss,)(pi) = true iff 6 = p;, for each primitive proposition p;.
It is straightforward to verify that if § is an n-atom, then 6™ is the set of all states ss,,,
and if p is an n-region, then pM is the set of all states s, where § = p.

Recall that R is the set of all n-regions. For each p € R, define h(p) = H,. We now
show that the four conditions of Proposition 3.1 hold.
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1. h(p) C pM: This holds because h(p) = H, = {s5,|6 = p} C {s5,|6 = p} = pM.

2. If p and p’' are distinct n-regions, then h(p) and h(p’) are disjoint: This holds
because if p and p’ are distinct, then h(p) = {s5,|6 = p}, which is disjoint from

h(p') = {55,216 = p'}.

3. If h(p) C (p')M for some proper subregion p’ of p, then h(p) = §: We shall actually
prove the stronger result that if A(p) C (p/ )M, then p = p'. If p % p/, then let § be
an n-atom of p that is not an n-atom of p’. Then ss, € h(p), but s5, & (p')*. So

hp) € (p)M.

4. p(pM) =3 o, 1(h(p)): We just showed (with the roles of p and p’ reversed) that
if h(p') C pM, then p' = p. Also, if p' = p, then h(p') C p'™ by condition (1) above,
so h(p') C pM. Therefore, the sets h(p') that are subsets of pM are precisely those
where p’ = p. By construction, every measurable set is the disjoint union of sets

of the form k(p'). Hence, U, ,h(p') is the largest measurable set contained in p™.
Therefore, by disjointness of the sets h(p’), it follows that p.(p™) =3, , u(h(p)).

Let y* = Nz*. Then, by construction, the ith entry of y* is u(H,,) = u(h(p:)),
for i = 1,...,2%". Define a vector z* of length 2%" by letting the sth entry be pu.(pM).
Since, as we just showed, p.(p™) = 3, , u(h(p')), it follows from Proposition 3.2 that
y* = Nz*. By Lemma 3.6, the matrix NV is invertible. So, since y* = Nz* and y* = Nz*,
it follows that * = 2*. But z* satisfies the inequalities f Since z* = z*, it follows that
z* is the vector of inner measures. So M = f, as desired. §

Theorem 3.8: AX is a sound and complete axiom system with respect to probability
structures.

Proof: We proved soundness of W6 in Proposition 3.5 (the other axioms are clearly
sound). As for completeness, assume that formula f is unsatisfiable; we must show that
f 1s inconsistent. As we noted, we reduce as before to the case that f is a conjunction
of basic weight formulas and their negations. By Theorem 3.7, since f is unsatisfiable,
the system Az > b, A’z > 0,21 = 0,250 = 1, Nx > 0 of Theorem 3.7 has no solution.
Now the formulas corresponding to z; = 0,x9» = 1, and Nz > 0 are provable; this is
because the formulas corresponding to 7 = 0 and z4» = 1 are axioms W5 and W2, and
because the formulas corresponding to Na > 0 follow from axiom W6. We now conclude
by making use of Ineq as before. 1

The observant reader may have noticed that the proof of Theorem 3.8 does not make
use of axiom W1. Hence, the axiom system that results by removing axiom W1 from AX
is still complete. This is perhaps not too surprising. We noted earlier that W1 in the
case of atoms (i.e., w(8§) > 0 for ¢ an atom) is a special case of W6. With a little more
work, we can prove W1 for all formulas ¢ from the other axioms.
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3.3 Small model theorem

It follows from the construction in the proof of Theorem 3.7 that a small model theorem
again holds. In particular, it follows that if f is a weight formula and if f is satisfiable
in the nonmeasurable case, then f is satisfied in a structure with less than 272%" states.
Indeed, it is easy to see from our proof that if f involves only & primitive propositions,
and f is satisfiable in the nonmeasurable case, then f is satisfied in a structure with less
than 2822" states. However, we can do much better than this, as we shall show.

The remaining results of Section 3 were obtained jointly with Moshe Vardi.

Theorem 3.9: Let [ be a weight formula that is satisfied in some probability structure.
Then it is satisfied in a structure with at most |f|* states, with a basis of size al most

/-

Proof: By considering a disjunct of the disjunctive normal form of f, we can assume
as before that f is a conjunction of basic weight formulas and their negations. Let us
assume that f is a conjunction of r such inequalities altogether.

If M =(S,X,u,n) is a probability structure, let us define an extension of M to be
a tuple £ = (S, X, p,w, h) where h is a function as in Proposition 3.1. In particular,
h(p) is a measurable set for each p € R. We call £ an extended probability structure.
By Proposition 3.1, for every probability structure M there is an extended probability
structure £ that is an extension of M. If p € R and F is an extension of M, then
we may write pP for pM. Define an h-term to be an expression of the form ajw(p) +
ctapw(er)+ayH(Qy) +- -+ al H(pw), where o1, ..., @r, @, ..., ¢} are propositional
formulas, aq,...,a,ay, ..., a}, are integers, and k+k" > 1. An h-basic weight formula is a
statement of the form ¢ > ¢, where ¢ is an h-term and ¢ is an integer. If £ = (S, X, u, 7, h)
is an extension of M we define

Bl arofpn) + -+ ap(on) + a (@) + -+ a Higw) > c if
arp (@) + 4 app(or) + aip(h(en)) + -+ app(h(en) > c.

Thus, H(p) represents p(h(p)). We construct h-weight formulas from h-basic weight
formulas, and make the same conventions on abbreviations (“>”, etc.), as we did with
weight formulas.

Again, assume that {p;,...,p,} includes all of the primitive propositions that appear
in f. Let f’ be obtained from f by replacing each “w(¢)” that appears in f by “w(p)”,
where p is the n-region equivalent to ¢. Then f and f’ are equivalent. By part (4)
of Proposition 3.1, we can “substitute” 3., H(p') for w(p) in f’ for each n-region p,
to obtain an equivalent h-weight formula f” (which is a conjunction of basic h-weight
formulas and their negations). Since f is a conjunction of r inequalities, so is f”.

Consider now the system corresponding to the r inequalities that are the conjuncts
of f", along with the equality >, H(p) = 1. Since f, and hence f”, is satisfiable, this
system has a nonnegative solution. Therefore, we see from Lemma 2.5 that this system
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has a nonnegative solution with at most r 4+ 1 of the H(p)’s positive. Let N be the set of
n-regions p € R such that H(p) is positive in this solution; thus, |V| < r 4 1. Assume
that the solution is given by H(p) = ¢, for p € N, and H(p) = 0 if p ¢ N. Note in

particular that 3~ -\ c, = 1, and that each c, is nonnegative.

Let 7 be the set of all n-regions p such that w(p) appears in f. Note that r+|7|4+1 <
|f|. Recall that At,(p) consists of all the n-atoms é such that 6 = p is a propositional
tautology. Thus p is equivalent to the disjunction of the n-atoms in At,(p). For each n-
region p € N and each n-region 7 € N'U7T such that At,(p) € At,(7), select an n-atom
w,» such that w,, = p but w,, # 7. For each n-region p € N, let p* be the n-region
whose n-atoms are precisely all such n-atoms w, ;. So p* is a subregion of p; moreover,
if p* is a subregion of 7 € N'U 7, then p is a subregion of 7. Let N* = {p*|p € N'}. By
construction, if p and p’ are distinct members of NV, then p* # (p')*. Now N* contains
IVl < r+1 < |f|] members, and if p* € N*, then p* contains at most r + 7| < |f]
n-atoms.

We know from part (4) of Proposition 3.1 that in each extended probability structure
it is the case that w(p) = 3, , H(p') is satisfied. Let d, = 3¢,/ 2 p and preny o5 fOT
each n-region p € 7. Now f”, and hence f, is satisfied when H(p) = ¢, for p € N and
H(p) =0if p ¢ N. Therefore, f is satisfied when w(p) = d, for each p € 7.

We now show that if p € 7, then {p'|p' = pand p' e N} = {p'|(p))* = p and (p')* €
N*}. First, p/ € N iff (p')* € N*, by definition. We then have {p’'|p’ = p and p’ €
N} CH{p | (p') = pand (p')* € N*} since if p' is a subregion of p (i.e., p’ = p), then
(p')* is a subregion of p, because (p')* is a subregion of p’, which is a subregion of p.
Conversely, if (p')* is a subregion of p, then p’ is a subregion of p because p € T (this
was shown above).

We now prove that if an extended probability structure satisfies H(p*) = ¢, if
p* € N* and H(r) = 0 if 7 ¢ N*, then it also satisfies f. In such an extended
probability structure, w(p) takes on the value 2 {(0")*|(s")*=p and (o")*eA*} Cpr» Which equals
S {|(p)*=p and (p/)* €A} € (since * gives a 1-1 correspondence between N and N*), which,
from what we just showed, equals E{p,|p/:>p and p' €N} ol which by definition equals d,. But
we showed that f is satisfied when w(p) = d, for each p € 7.

Therefore, we need only construct an extended probability structure £ = (S, X, y, 7, h)
(which extends a structure M) that satisfies H(p*) = ¢, if p* € N*, and H(7) = 0 if
7 & N*, such that E has at most |f|* states and has a basis of size at most |f|. Our
construction is similar to that in the proof of Theorem 3.7. For each p* € N”* and each
6 € At,(p*), let ss,+ be a distinct state. Let S, the set of states of F, be the set of all
such states ss . Since N* contains at most |f| members and At,(p*) contains at most
|f| n-atoms for each p* € N*, it follows that S contains at most |f|* states. We shall
define 7 and h in such a way that ss « is a state in §" and in h(p*). Define 7 by letting
7(ss,+)(p) = true iff 6 = p (intuitively, iff the primitive proposition p is true in the
n-atom 6). Similarly to before, it is straightforward to verify that if 6 is an n-atom, then
&M is the set of all states ss,+, and if 7 is an n-region, then 7™ is the set of all states
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35, where 6 € At, (7). For each n-region 7 € R, define h by letting h(7) be the set of all
states ss, (in particular, if 7 &€ A*, then h(7) = 0)). The measurable sets (the members
of X') are defined to be all disjoint unions of sets h(7). (It is easy to verify that the sets
h(7) and h(7’) are disjoint if 7 and 7’ are distinct, and that the union of all sets h(7)
is the whole space S.) Finally, p is defined by letting p(h(p*)) = ¢,, and extending p
by additivity. It is easy to see that y is a measure, because the h(p*)’s are nonempty,
disjoint sets whose union is all of S, and 3 «cpr« p(h(p*)) = 3 ,en ¢, = 1. The collection
of sets h(p*), of which there are [N*| < |f], is a basis. Clearly, this construction has the
desired properties. I

3.4 Decision procedure

As before, we can modify the proof of the small model theorem to obtain the following:

Theorem 3.10: Let f be a weight formula that is satisfied in some probability structure.
Then [ is satisfied in a structure with at most |f|* stales, with a basis of size al most
|f|, where the probability assigned to each member of the basis is a raltional number with

size OS] IfIl + /] log([f1))-

Once again, this gives us a decision procedure. Somewhat surprisingly, the complexity
is no worse than it is in the measurable case.

Theorem 3.11: The problem of deciding whether a weight formula is satisfiable with
respect to general probability structures case is NP-complete.

Proof: For the lower bound, again the propositional formula ¢ is satisfiable iff the
weight formula w(e) > 0 is satisfiable. For the upper bound, given a weight formula f,
we guess a satisfying structure M for f as in Theorem 3.10, where the way we represent
the measurable sets and the measure in our guess is through a basis and a measure on
each member of the basis. Thus, we guess a structure M = (S, X, u, 7) with at most | f|?
states and a basis B of size at most |f|, such that the probability of each member of B is
a rational number with size O(|f| || f||+|f|log(|f])), and where = (s)(p) = false for every
state s and every primitive proposition p not appearing in f (again, by Lemma 2.8, the
selection of 7(s)(p) when p does not appear in f is irrelevant). We verify that M |= f as
follows. Let w(t) be an arbitrary term of f. We define By, C B, by letting By consist
of all W € B such that the truth assignment 7(w) of each w € W makes ¢ true. We
then replace each occurrence of w(v) in f by Y wes, (W), and verify that the resulting
expression is true. 1
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4 Reasoning about linear inequalities

In this section, we consider more carefully the logic for reasoning about linear inequalities.
We provide a sound and complete axiomatization, and consider decision procedures. The
reader interested only in reasoning about probability can skip this section with no loss
of continuity.

4.1 Complete axiomatization

In this subsection we give a sound and complete axiomatization for reasoning about linear
inequalities, where now the language consists of inequality formulas (as defined in the
discussion of the axiom Ineq in Section 2). The system has two parts, the first of which
deals with propositional reasoning, and the second of which deals directly with reasoning
about linear inequalities.

Propositional reasoning:
Taut. All instances of propositional tautologies®

MP. From f and f = g infer ¢ (modus ponens)

Reasoning about linear inequalities:
I1. = > = (identity)

12. (@121 + -+ + agzp > ¢) & (a121 + -+ - + aprr + 02541 > ¢) (adding and deleting 0
terms)

I3. (a1z1 4+ -+ apxr > ¢) = (aj,xj, + -+ a2, > c),if j1,...,Jk is a permutation of
1,...,k (permutation)

I4. (a121+ - Farzr > )A(di x4+ - Falx, > ) = (ar+a))z1+- -+ (aptay)zr > (c+)
(addition of coefficients)

I5. (a1z1 + -+ 4+ agpxg > ¢) & (dayzy + - -+ + dagzy > de) if d > 0 (multiplication and
division of nonzero coefficients)

I6. (t > ¢) Vv (t <¢)iftis a term (dichotomy)

I7. (t > ¢) = (t > d) if t is a term and ¢ > d (monotonicity)

5For example, if f is an inequality formula, then fV —f is an instance.
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It is helpful to clarify what we mean when we say that we can replace the axiom Ineq
by this axiom system in our axiomatizations AX and AXj/gas of the previous sections.
We of course already have the axiom and rule for propositional reasoning (Taut and
MP) in AX and AXj/gas, so we can simply replace Ineq by axioms I1-17. As we noted
earlier, this means that we replace each variable z; by w(p;), where @; is an arbitrary
propositional formula. For example, the axiom I3 would become:

(arw(er) + - + agwlpr) = ¢) A (dhw(pn) + -+ dho(ps) = ) =
(a1 + @ )wlon) + -+ (a + aulpr) = (e + ).

We note also that the axiom I1 (which becomes w(¢) > w(¢p)) is redundant in AX and
AXarpas, because it is a special case of axiom W4 (which says that w(p) = w(v) if
© =1 is a propositional tautology).

We call the axiom system described above AXjygrg. In this section, we show that
AXinEqg is sound and complete.

In order to see an example of how the axioms operate, we show that the following
formula is provable:

(@121 + ajz1 + agxe + -+ - + apxy, > ¢) & ((a1 + aj)z1 + agze + -+ - + apz, > ¢). (13)

This formula, which is clearly valid, tells us that it is possible to add coefficients
corresponding to a single variable, and thereby reduce each inequality to one where no
variable appears twice. We give the proof in fairly painful detail, since we shall want
to make use of some techniques from the proof again later. We shall make use of the
provability of (13) in our proof of completeness of AX;ngq.

Lemma 4.1: The formula (13) is provable from AXingq.

Proof: In the semi-formal proof below, we again write PR as an abbreviation for “propo-
sitional reasoning”, i.e., using a combination of Taut and MP. We shall show that the
right implication (the formula that results by replacing “<” in formula (13) by “=") is
provable from AX;ygg. The proof that the left implication holds is very similar, and
is left to the reader. By putting these proofs together and using PR, it follows that
formula (13) is provable.

If the coefficient a; = 0 in (13), then the result follows from 12, I3, and propositional
reasoning. Thus, we assume a; # 0 in our proof.

2. ayzy —ajxzy > 0 (this follows from 1, I5 and PR if a; > 0; if a; < 0, then instead
of multiplying by a;, we multiply by —ay, and get the same result after using the
permutation axiom I3 and PR)

3. a1y — a1 + 055'1 2 0 (2, 12, PR)
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4. ajxy — ajxz1 + 021 > 0 (by the same derivation as for 3)

5. ajx1 4+ 0xy —ajxy >0 (4, 13, PR)

6. (a1 +a})zy —ayzqy —ajzy >0 (3, 5, 14, PR)

7. —ayxq — djzy + (a1 + a})zq + 0xg + - - - + 0z, > 0 (6, 12, 13, PR)

8. (a1xq +diz1 + agze+ -+ a,z, > ¢) = (a1z1+ajz1 + 021 +aszy + -+ a2, > )
(12, 13, PR)

9. (a1 + ajzy + 021 + apwy + - + apxy > ) A(—a121 — ay21 + (a + aj)z + 07z +
w0z, > 0) = (021 + 021 + (a1 + af)zr + agzy + - + apz, > c) (14)

10. (021 40z + (a1 +a})z1+asze+- - -+anz, > ¢) = ((a1+d))z1+azza+- - Fayz, > c)
(12, 13, PR)
11. (a1z1 4 dizy + asxo + - 4 a2, > ¢) = ((a1 + a})z1 + agz2 + - + a2, > ) (T,

8,9, 10, PR) N

For the sake of our proof of completeness of AX;ygrg, we need also to show that the
following formula is provable:

0xy+---+0x, >0 (14)

This formula can be viewed as saying that the right implication of axiom 15 holds when

d=0.
Lemma 4.2: The formula (14) is provable from AXingq.

Proof: This time we shall give a more informal proof of provability. From I1, we obtain
x1 > x1, that is, 21 —z1 > 0. By permutation (axiom 13), we obtain also —zy+z; > 0. If
we add these latter two inequalities by 4, and delete a 0 term by 12, we obtain Oz; > 0.
By using 12 to add 0 terms, we obtain 0zy + --- 4 0z, > 0, as desired. }I

Theorem 4.3: AXingqg s sound and complele.

Proof: It is easy to see that each axiom is valid. To prove completeness, we show that
if f is consistent then f is satisfiable. So suppose that f is consistent.

As in the proof of Theorem 2.2, we first reduce f to a canonical form. Let g;V---V g,
be a disjunctive normal form expression for f (where each g; is a conjunction of basic
inequality formulas and their negations). Using propositional reasoning, we can show
that f is provably equivalent to this disjunction. As in the proof of Theorem 2.2, since f
is consistent, so is some g;. Moreover, any assignment satisfying g¢; also satisfies f. Thus,
without loss of generality, we can restrict attention to a formula f that is a conjunction of
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basic inequality formulas and their negations. The negation of a basic inequality formula
a1xy + -+ + ayxr, > ¢ can be written —ayx; — -+ — ay,x, > —c. Thus, we can think
of both basic inequality formulas and their negations as inequalities. By making use of
Lemma 4.1, we can assume that no variable appears twice in any inequality. By making
use of axiom I2 to add 0 terms and I3 to permute if necessary, we can assume that all of
the inequalities contain the same variables, in the same order, with no variable repeated
in any given inequality. Thus, without loss of generality, we can assume that f is the
conjunction of the following r 4+ s formulas, where z4,. .., x, are distinct variables:

a1 T+ F a1 T, = 0

Gr121 + -+ Gpr Ty Z Cr (15)
/ / /
= Ty = = Ay Ty > 0
! / /
—Ug Ty — =g, Ty > —C

The argument now splits into two cases, depending on whether s (the number of
strict inequalities in the system above or, equivalently, the number of negations of basic
inequality formulas in f) is zero or greater than zero.

We first assume s = 0. We make use of the following variant of Farkas’ lemma [Far02]
(see [Sch86, page 89]) from linear programming, where A is a matrix, bis a column vector,
and x is a column vector of distinct variables:

Lemma 4.4: If Az > b is unsatisfiable, then there exists a row vector a such that

Intuitively, a is a “witness” or “blatant proof” of the fact that Ax > bis unsatisfiable.
This is because if there were a vector z satisfying Az > b, then 0 = (aA)z = a(Az) >
ab > 0, a contradiction.

Note that if s = 0, then we can write (15) in matrix form as Az > b, where A is the
r x n matrix of coefficients on the left-hand side, z is the column vector (z1,...,z,), and
b 1s the column vector of the right-hand sides.

Suppose, by way of contradiction, that f and hence Az > b is unsatisfiable. We now
show that f must be inconsistent, contradicting our assumption that f is consistent. Let
a = (ai,...,a,) be the row vector guaranteed to us by Lemma 4.4. Either by 15 or by
Lemma 4.2 (depending on whether a; > 0 or a; = 0), we can multiply the ;™ inequality
formula in (15) (i.e., the j*® conjunct of f) by «; (for 1 < j < r), and then use 14 to
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add the resulting inequality formulas together. The net result (after deleting some 0
terms by 12) is the formula (0z; > ¢), where ¢ = ab > 0. From this formula, by 17, we
can conclude (0xz; > 0), which is an abbreviation for =(0z; < 0), which is in turn an
abbreviation for =(—0z; > —0), i.e. =((0zy > 0). Thus f = —(0x, > 0) is provable.
However, by Lemma 4.2, (0z; > 0) is also provable. It follows by propositional
reasoning that —f is provable, that is, f is inconsistent. Thus the assumption that f is
unsatisfiable leads to the conclusion that f is inconsistent, a contradiction.

We now consider the case where s > 0. Farkas’ lemma does not apply, but a variant
of it, called Motzkin’s transposition theorem, which is due to Fourier [Fou26], Kuhn

[Kuh56], and Motzkin [Mot56] (see [Sch86, page 94]), does. A and A’ are matrices, b and

b' are column vectors, and x is a column vector of distinct variables.

Lemma 4.5: [f the system Ax > b, A’z > b’ is unsatisfiable, then there exist row vectors
a,a’ such thal

I.a>0anda’ >0
2 aA+dA =0
3. Either

(a) ab+ 't >0, or
(b) some entry of o' is strictly positive, and ab+ o'b" > 0

We now show that a and o' together form a witness to the fact that the system
Ax > b, A’z > b is unsatisfiable. Assume that there were z satisfying Az > b and
A’z > V. In case (3a) of Lemma 4.5 (ab+a'b’ > 0), we are in precisely the same situation
as in Farkas’ lemma, and the argument after Lemma 4.4 applies. In case (3b) of Lemma
4.5, let A = (A'z) —b; thus, A is a column vector and A > 0. Then 0 = (aA+ o'A")z =
(aA)x + (’A")x = a(Az) + o/ (A'z) > ab+ o' (0 + A) = (ab+ V) + /A > /A > 0,
where the last inequality holds since every o’ is nonnegative, some o’ is strictly positive,
and every entry of A is strictly positive. This is a contradiction.

In order to apply Motzkin’s transposition theorem, we write (15) as two matrix in-
equalities: Ax > b, where A is the r x n matrix of coefficients on the left-hand side of
the first r inequalities (those involving “>"), x is the column vector (z1,...,z,), and
b is the column vector of the right-hand sides of the first r inequalities; and A’z > ¥,
where A’ is the s X n matrix of coeflicients on the left-hand side of the last s inequalities
(those involving “>"), and b’ is the column vector of the right-hand sides of the last s
inequalities.

Again assume that f is unsatisfiable. Let a = (aq,...,a,) and o/ = (&f,...,a}) be
the row vectors guaranteed to us by Lemma 4.5. In case (3a) of Lemma 4.5, we replace
every “>" in (15) by “>” and proceed to derive a contradiction as in the case that s = 0.
Note that we can do this replacement by 16, since ¢ > ¢ is an abbreviation for =(¢ < ¢).
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In order to deal with case (3b) of Lemma 4.5, we need one preliminary lemma, which
shows that a variation of axiom I5 holds.

Lemma 4.6: (a121+ - -+ agpxg > ¢) & (dayxy + - - - + dagzy, > de) is provable, if d > 0.
Proof: The following formula is an instance of axiom I5:

(d(—a))zr + -+ d(—ap)zr > d(—¢)) & ((—a1)x1 + - - + (—ap)zr > —c).

By taking the contrapositive and using the fact that ¢ > ¢ is an abbreviation for =(—¢ >
—c), we see that the desired formula is provable. 1

Since we are considering case (3b) of Lemma 4.5, we know that some o is strictly
positive; without loss of generality, assume that o, is strictly positive. For 1 <5 <s—1,
let us replace the “>” in the jth inequality involving “>” in (15) by “>”. Again, this
is legal by 16. As before, either by axiom I5 or by Lemma 4.2, we can multiply the j*®
inequality formula in the system (15) by «; (for 1 < j < r), and multiply each of the next
s — 1 inequalities that result when we replace > by > by o, j =1,...,s—1, respectively.
Finally, by Lemma 4.6, we can multiply the last inequality in (15) by «, (which is strictly
positive, by assumption). This results in the following system of inequalities:

a1a1% + -+ a1 T, >

Qprldr121 + -+ Qplp Ty > e
! ! 1w ! !
—ajah Ty — s —Qhay T, > —agc (16)
! ! ! ! ! !
_as—las—l,lxl - as—las—l,nxn Z _as—lcs—l
_ 1 . 1 > _ ! !
oLal aLal Ty a.cl

Let us denote the last inequality (the inequality involving “>") in (16) by g. Let a{z; +
-+« 4+ a’z, > d be the result of “adding” all the inequalities in (16) except g. This
inequality is provable from f using I4. Since aA+a’A’ = 0, we must have that oa] ; = a7,
forj =1,...,n. Sotheinequality g is (—ajz1—---—allz, > —alcl). Since ab+a’t’ > 0, it
follows that —al¢, > —d. Hence, the formula g = (—afzq—---—alx, > —d) is provable
using I7 and propositional reasoning (there are two case, depending on whether —a/.¢, =
—dor —alc, > —d). Now —azy—---—a"x, > —d is equivalent to a{z,+---+a’z, < d.
But this contradicts a{zy + - -+ + al’z,, > d, which we already showed is provable from

f. Tt follows by propositional reasoning that —f is provable, that is, f is inconsistent, as
desired.

Since we have shown that assuming f is unsatisfiable leads to the conclusion that f
is inconsistent, it follows that if f is consistent then f is satisfiable. I
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4.2 Small model theorem

A “model” for an inequality formula is simply an assignment to variables. We think of
an assignment to variables as “small” if it assigns a nonzero value to only a small number
of variables. We now show that a satisfiable formula is satisfiable by a small assignment
to variables.

As we did with weight formulas, let us define the length |f] of an inequality formula
f to be the number of symbols required to write f, where we count the length of each
coefficient as 1. We have the following “small model theorem”.

Theorem 4.7: Suppose f is a satisfiable inequality formula. Then f is satisfied by an
assignment to variables where at most | f| variables are assigned a nonzero value.

Proof: Asin the completeness proof, we can write f in disjunctive normal form. It is easy
to show that each disjunct is a conjunction of at most |f| basic inequality formulas and
their negations. Clearly, since f is satisfiable, one of the disjuncts is satisfiable. The result
then follows from Lemma 4.8 below, which is closely related to Lemma 2.5. Lemma 2.5
says that if a system of r linear equalities and /or inequalities has a nonnegative solution,
then it has a nonnegative solution with at most r entries positive. Lemma 4.8 below, by
contrast, says that if the system has a solution (not necessarily nonnegative), then there
is a solution with at most r variables assigned a nonzero (not necessarily positive) value.

Lemma 4.8: [If a system of r linear equalities and/or inequalities has a solution, then
it has a solution with at most r variables assigned a nonzero value.

Proof: By the comment after Lemma 2.5, we can pass to a system of equalities only.

Hence, let Az = b represent a satisfiable system of linear equalities, where A has r
rows; we must show that there is a solution where at most r of the variables are assigned
a nonzero value. Since Az = b is satisfiable, it follows that b is in the vector space V
spanned by the columns of A. Since each column is of length r, it follows from standard
results of linear algebra that V' is spanned by some subset of at most r columns of A. So
b is the linear combination of at most r columns of A. Thus, there is a vector y* with at
most r nonzero entries where Ay* = b. This proves the lemma. I

4.3 Decision procedure

As before, when we consider decision procedures, we must take into account the length
of coefficients. Again, we define || f|| to be the length of the longest coefficient appearing
in f, when written in binary, and we define the size of a rational number a/b, where a
and b are relatively prime, to be the sum of lengths of ¢ and b, when written in binary.
We can then extend the small model theorem above as follows:
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Theorem 4.9: Suppose f is a satisfiable inequality formula. Then f is satisfied by an
assignment to variables where at most |f| variables are assigned a nonzero value, and
where the value assigned to each variable is a rational number with size O(|f|||f] +

|1 1og(111))-

Theorem 4.9 follows from the proof of Theorem 4.7 and the following simple variation
of Lemma 4.8, which can be proven using Cramer’s rule and simple estimates on the size
of the determinant.

Lemma 4.10: [f a system of r linear equalities and/or inequalities with integer coef-
ficients each of length at most { has a solution, then it has a solution with alt most r
variables assigned a nonzero value, and where the size of each member of the solution is

O(rl 4 rlog(r)).
As a result, we get

Theorem 4.11: The problem of deciding whether an inequality formula is satisfiable in
a measurable probability structure is NP-complele.

Proof: For the lower bound, a propositional formula ¢ is satisfiable iff the inequality
formula that is the result of replacing each propositional variable p; by the inequality
x; > 0 1s satisfiable. For the upper bound, given an inequality formula f, we guess a
satisfying assignment to variables for f with at most | f| variables being assigned a nonzero
value, such that each nonzero value assigned to a variable is a rational number with size
OUfINFN + 1f1Tog(|f]). We then verify that the assignment satisfies the inequality
formula. 1

5 Reasoning about conditional probability

We now turn our attention to reasoning about conditional probability. As we pointed out
in the introduction, the language we have been considering is not sufficiently expressive
to allow us to express statements such as 2w(pz | p1) + w(p1 | p2) > 1. Suppose we extend
our language to allow products of terms, so that formulas such as 2w(p;)w(pz) > 1 are
allowed. We call such formulas polynomial weight formulas. To help make the contrast
clearer, let us now refer to the formulas we have been calling “weight formulas” as “linear
weight formulas”. We leave it to the reader to provide a formal syntax for polynomial
weight formulas. Notice that by clearing the denominators, we can rewrite the formula
involving conditional probabilities to 2w(p1 A p2)w(ps2) + 2w(p1 A p2)w(pr) > w(pr)w(pz2),
which is a polynomial weight formula.®

6 Actually, it might be better to express it as the polynomial weight formula w(p;) # 0 A w(ps) # 0 =
(2w(p1 A p2)w(p2) + 2w(p1 A p2)w(pr) > w(pr)w(pz)), to take care of the case where the denominator is
0.
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In order to discuss decision procedures and axiomatizations for polynomial weight
formulas, we need to consider the theory of real closed fields. We now define a real closed
field. All of our definitions are fairly standard (see, for example, [Sho67]). An ordered
field is a field with a linear ordering <, where the field operations 4+ (plus) and - (times)
respect the ordering: that is, (1) < y implies that  + z < y + 2, and (2) if z and y
are positive, then so is x - y. A real closed field is an ordered field where every positive
element has a square root and every polynomial of odd degree has a root. Tarski showed
[Tarb1, Sho67] that the theory of real closed fields coincides with the theory of the reals
(under +, -, < and constants 0,1, —1). That is, any first-order formula that involves only
+,-,<,0,1, —1 is true about the real numbers if and only if it is true of every real closed

field.

Tarski [Tarb1] showed that the decision problem for this theory is decidable. Ben-
Or, Kozen, and Reif [BKR86] have shown that the decision problem is decidable in
exponential space. Fischer and Rabin [FR74] prove a nondeterministic exponential time
lower bound for the complexity of the decision problem. In fact, Fischer and Rabin’s
lower bound holds even if the only nonlogical symbol is + (plus). Berman [Ber80] gives a
slightly sharper lower bound in terms of alternation. Canny [Can88] has recently shown
that the quantifier-free fragment is decidable in polynomial space.

We do not know a sound and complete axiomatization for polynomial weight formulas.
For this reason, we shall extend later to allow first-order quantification, which will enable
us to obtain a complete axiomatization in a larger language. However, we do have small
model theorems and decision procedures, which we now describe.

5.1 Small model theorems

Despite the added expressive power of the language, we can still prove small model
theorems along much the same lines as we proved them in the case of linear weight
formulas.

Theorem 5.1: Suppose [ is a polynomial weight formula that is satlisfied in some mea-
surable probability structure. Then [ is satisfied in a structure with alt most |f| states
where every set of stales is measurable.

Proof: Let f be a polynomial weight formula which is satisfied in some measurable
probability structure, say M = (S, X, p, 7). Let ¢1,...,¢r be the propositional formulas
that appear in f. Clearly & < ||f]|. Let ¢; = p(pM), for 1 < i < k. As before,
assume that {p1,...,p,} includes all of the primitive propositions that appear in f, and
let 61,...,69n be the n-atoms. Let F' be the following set of equalities and inequalities,
where we think of each w(¢) as a variable:

w(by) + -+ w(byn) = 1
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Z w(é) =

§€Atn(¢1)

Z w(éd) = ¢

€ Atn (k)

Since f 1s satisfiable in a measurable probability structure, this system F' has a nonneg-
ative solution. Hence, by Lemma 2.5, there is a solution with at most k£ + 1 of the w(6)’s
positive. As in the proof of Theorem 2.4, this gives us a structure that satisfies f with
at most | f| states where every set of states is measurable. I

Note: We could have proven Theorem 2.4 with the same proof we just gave. However,
the proof would not generalize immediately to proving Theorem 2.6.

Theorem 5.2: Let f be a polynomial weight formula that is satisfied in some probability
structure. Then it is salisfied in a structure with at most |f|* states, and with a basis of
size al most | f|.

Proof: The proof of this theorem is obtained by modifying the proof of Theorem 3.9 in
the same way as the proof of Theorem 5.1 is obtained by modifying the proof of Theorem
2.4. 1

5.2 Decision procedures

In Sections 2 and 3, we were able to obtain decision procedures for linear weight formulas
by extending the small model theorems to show that not only are there small models,
but there are small models where the probabilities have a “small” length. Such a result is
false for polynomial weight formulas (consider 2w(p)w(p) = 1). Hence, in order to obtain
a decision procedure in this case, we use a different technique for deciding satisfiability:
We reduce the problem to a problem in the quantifier-free theory of real closed fields,
and then apply Canny’s decision procedure.

Theorem 5.3: There is a procedure that runs in polynomial space for deciding if a
polynomial weight formula is satisfiable in a measurable probability structure.

Proof: Let f be a polynomial weight formula, where the distinct primitive propositions
that appear in f are py,...,p,. Let é1,...,62n be the n-atoms, and let T' be a subset of
the n-atoms, with at most |f| members. Assume that the members of T' are precisely
Birye vy iy, where ip < -+ < 4. Let xq,..., 2, be variables (as many variables as the car-
dinality of 7"), where intuitively, z; will correspond to w(é;,)). Let fr be the conjunction
of x14--- 4z, = 1 with the result of replacing each term w(p) of f by Z(SiJEAtn((P) zj. By

Theorem 5.1, it is easy to see that f is satisfiable in a measurable probability structure

35



iff for some T" with at most | f| members, fr is satisfiable over the real numbers (that is,
iff there are real numbers z7, ..., z} such that the result of replacing each variable z; by
x} is true about the real numbers). It is straightforward to verify that |fr| is polynomial
in | f|, where |fr| is the length of fr, and again we count the length of each coefficient
as 1.

We would now like to apply Canny’s decision procedure for checking if fr is satisfiable,
but there is one small problem. The formula fr has arbitrary integer coefficients, whereas
the language of real closed fields allows only the constants 0, 1, and —1. Now we could
replace a constant like 17 by 1 +--- 4+ 1 (17 times). This would result in a formula f
that is in the language of real closed fields, but |f7| might be exponential in ||f]|. The
solution is to express 17 as 2* +1, and then write this in the language of real closed fields
as (1+1)-(14+1)-(1+1)-(14+1)+1. Using this technique we can clearly represent any
coefficient whose length is & when written in binary by an expression in the language of
real closed fields of length O(k?). Let f}. be the formula that results by representing the
coefficients of fr in this way. Thus |f}| is polynomial in |f] - || f]|-

The PSPACE decision procedure for satisfiability of f proceeds by systematically
cycling through each candidate for 7', and using Canny’s PSPACE algorithm to decide
if f1 is satisfiable over the real numbers. Our algorithm says that f is satisfiable iff f7 is
satisfiable over the real numbers for some 7'. 11

Theorem 5.4: There is a procedure that runs in polynomial space for deciding whether
a polynomial weight formula is satisfiable in a (general) probability structure.

Proof: Let f be a polynomial weight formula. Assume that {p;,...,p,} includes all of
the primitive propositions that appear in f. Define a partial probability structure to be
a tuple @ = (5, B, x), where S is a set (thought of as a set of states); B = {T1,...,T;}
gives a partition of S, that is, the T;’s are nonempty and pairwise disjoint, and their
union is S (we think of B as being a basis); and 7(s) is a truth assignment for every state
in S, where we assume that =(s)(p) = false for every primitive proposition p that does
not appear in f (note: the analog to LLemma 2.8 holds, so we do not care about primitive
propositions that do not appear in f). Intuitively, a partial probability structure gives all
the information about a probability structure except the measure of the basis elements.
For each propositional formula ¢ over {p1,...,p,}, define V() C {1,...,t} by letting
i € V() iff ¢ is true under the truth assignment =(b) for every b € T;. Intuitively,
if we expanded () to a probability structure M by defining the measure of each basis
element, then the inner measure of ™ would be obtained by adding the measures of
each T; where 1 € V(p). Let x1,...,2; be variables (as many variables as the cardinality
of B), where intuitively, ; corresponds to the measure of T;. Let fg be the conjunction
of z1 + -+ + z, = 1 with the result of replacing each term w(yp) of f by ¥;cv () =i (and
by 0 if V(¢) is empty) and replacing each integer coefficient of f by the appropriate
representation as discussed in the proof of Theorem 5.3. By Theorem 5.2, it is easy to
see that f is satisfiable in a probability structure iff for some “small” partial probability
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structure @ (that is, a partial probability structure @) = (5, B, x) where S has at most
| f|* members and B has at most |f| members), fg is satisfiable over the real numbers. It
is easy to see that if @) is small, then the size of fg is polynomial in | f|-|| f||. The PSPACE
decision procedure for satisfiability of f proceeds by systematically cycling through each
small partial probability structure ), and using Canny’s PSPACE algorithm to decide if
fo 1s satisfiable over the real numbers. Our algorithm says that f is satisfiable iff one of
these fg's is satisfiable over the real numbers. I

6 First-order weight formulas

The basic idea in proving completeness for linear weight formulas was to use the axioms
W1-W4 to reduce the problem to checking validity of a set of linear inequalities, and
then apply the axiom Ineq. In the case of polynomial weight formulas we want to use
a similar technique. In this case, we use W1-W4 to reduce the problem to checking
validity of a formula in the language of real closed fields, and then apply a sound and
complete axiomatization for real closed fields. There is only one difficulty in carrying out
this program: the theory of real closed fields allows first-order quantification over the
reals. Thus, in order to carry out our program, we have to extend the language yet again
to allow such quantification.

We define a basic first-order weight formula to be like a basic polynomial weight for-
mula, except that now we allow variables (intended to range over the reals) in expressions.
Thus, a typical basic first-order weight formula is:

(34 2) - wlp) - w(th A )+ 2 w(h) > 2.

The set of first-order weight formulas is obtained by closing off the basic first-order weight
formulas under conjunction, negation, and first-order quantification (where the quantifi-
cation is over the reals). In order to ascribe semantics to first-order weight formulas,
we now need a pair consisting of a probability structure M and a valuation v, where a
valuation is a function from variables to the reals that gives meaning to the free variables
in the formula. Thus, for example, if M = (S, X, y, 7), then

(M,v) = (34 ) - wl(p) - w( Ap) +2-w(p) > z iff
(3 4+ v(@) ™) (¥ A @) 4 2 (M) > v(2).

We deal with quantification as usual, so that (M,v) = Vo iff (M,v") |= ¢ for all v’ that
agree with v except possibly in the value that they assign to z. We leave the remain-
ing details to the reader. It would be quite natural to restrict attention to sentences,
i.e., formulas with no free variables. Note that the truth or falsity of a sentence is inde-
pendent of the valuation. We shall usually not bother to do so. Thus, when we say that
a first-order weight formula is satisfiable, we mean that there is a probability structure
M and a valuation v such that (M,v) |= f. Note that a formula f with free variables
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T1,...,x is satisfiable iff the sentence dzq ... dxp f 1s satisfiable. Similarly, f is valid iff
the sentence Vay...Vrf is valid.

We can prove a small model theorem for first-order weight formulas using techniques
identical to those used in Theorems 5.1 and 5.2.

Theorem 6.1: Letl f be a first-order weight formula that is satisfied in some measurable
probability structure. Then f is satisfied in a structure with at most | f| states where every
set of states is measurable.

Theorem 6.2: Let [ be a first-order weight formula that is satisfied in some probability
structure. Then [ is salisfied in a structure with alt most |f|* states, and with a basis of
size al most | f|.

We can also obtain decision procedures for first-order weight formulas by appropri-
ately modifying Theorems 5.3 and 5.4, except that instead of using Canny’s PSPACE
algorithm, we use Ben-Or, Kozen, and Reif’s exponential space algorithm (since the
first-order formulas f1 and fg of the proofs are no longer necessarily quantifier-free).

Theorem 6.3: There is a procedure that runs in exponential space for deciding whether
a first-order weight formula is satisfiable in a measurable probability structure.

Theorem 6.4: There is a procedure that runs in exponential space for deciding whether
a first-order weight formula is satisfiable in a (general) probability structure.

In order to get a complete axiomatization for first-order weight formulas, we begin by
giving a sound and complete axiomatization for real closed fields, which Tarski [Tar51]
proved is complete for the reals. The version we give is a minor modification of that
appearing in [Sho67]. The nonlogical symbols are 4, -, <,0,1,—1.

First-order reasoning:

FO-Taut. All instances of valid formulas of first-order logic with equality (see, for ex-

ample, [End72, Sho67])

MP. From f and f = g infer ¢ (modus ponens)

Reasoning about real closed fields:
F1. VaVyVz((z +y) +z =2+ (y + 2))
F2. Vz(z+0 =z)

F3. Va(z 4+ (—1-2) =0)
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F4. VaVy(z+y =y + )

F5. VaVyVz((z-y) -z =2 - (y - 2))

F6. Va(z-1=1)

F7. Va(z £ 0= Jy(z-y=1))

F8. VaVy(z-y =y - )

F9. VaVyVz(z- (y+ 2) = (z-y) + (2 - 2))
F10. 0 # 1

F11. Va(=(z < z))

F12. VaVyVz((z <y) A (y < z) = (z < 2))
F13. VaVy((z <y)V(z =y) V (y < z))
F14. VaVyVz((z < y) = ((z + 2) < (y + 2)))
F15. VaVy((0<2) A (0 <y)) = (0 < z-y))
F16. Vz((0 < z) = y(y -y = z))

F17. Every polynomial of odd degree has a root

An instance of axiom F17, which would say that every polynomial of degree 3 has a
root, would be

VyoVy1VyaVys((yo # 0) = Jz(yo 2z 2+ y1 -z -+ y2 -z +yz =0))

Axioms F1-F10 are the field axioms, axioms F11-F13 are the axioms for linear orders,
axioms F14-F15 are the additional axioms for ordered fields, and axioms F16-F17 are the
additional axioms for real closed fields. Let us denote the axiom system above by AXgcop.
Then AXpger is a sound and complete axiomatization for real closed fields [Tar51, Sho67].
Let us denote by AXpo-amrgas the result of taking AXgep along with our axioms W1-W4
and one more axiom, F18 below, that lets us replace the integer coefficients that appear
in weight formulas by an expression in the language of real closed fields:

F18. k=14 ---+1 (k times)

(We remark that there is no need to use an efficient representation of integer coefficients
here, as there was, say, in Theorem 5.3, since complexity issues do not arise.) Let us de-
note by AXro the result of replacing W3 in AXro-arpas by W5 and W6.” We now show

“The occurrences of > in an expression such as t; > ¢5 in W1-W6 can be viewed as an abbreviation
for (t2 < t1) V (t1 = t2), which is a formula in the language of real closed fields.
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that AXpo-pmEas is a sound and complete axiomatization for first-order weight formulas
with respect to measurable probability structures, and AXpp is a sound and complete
axiomatization for first-order weight formulas with respect to (general) probability struc-
tures.

Theorem 6.5: AXpo-pmpas is a sound and complete axiomatization for first-order weight
formulas with respect to measurable probability structures.

Proof: From what we have said, it is clear that AXpo-prpas is sound. To show com-
pleteness, we carry out the ideas sketched at the beginning of this section: namely, we
reduce a first-order weight formula to an equivalent formula in the language of real closed
fields. Assume that f is a first-order weight formula that is unsatisfiable with respect to
measurable probability structures (that is, there is no measurable probability structure
that satisfies it). Let pq,...,p, include all of the primitive propositions that appear in
f,and let é1,...,03n be the n-atoms. Let xq,..., 222 be new variables, where intuitively,
x; represents w(6;). Let f’ be Jzq...Jxong, where g is the conjunction of:

Tyt xen =
ry > 0
(17)
Ton > 0

along with the result of replacing each w(p) in f by 325, z; (and by 0 if ¢ is equivalent
to false) and replacing each integer coefficient k in f by 1 4 ---+ 1 (k times). It is easy
to see that since f is unsatisfiable with respect to measurable probability structures, it
follows that f’ is false about the real numbers. By Tarski’s result on the completeness of
AXger, it follows that —f’ is provable in AXgcr. By making use of Lemma 2.3 (which
again holds, by essentially the same proof), it is not hard to see that —f is provable in
AXrpo-mEas. The straightforward details are omitted. I

To prove completeness of AXpp in the general (nonmeasurable) case, we need a
lemma, which is completely analogous to Theorem 3.7. Let f be a first-order weight
formula, where {pi,...,p,} includes all of the primitive propositions that appear in f,
and let pq,..., pyan be the n-regions. Let 1,..., 25 be new variables (one new variable
for each n-region), where intuitively, z; corresponds to w(p;). Let f be the result of
replacing each w(y) in f by z;, where p; is the n-region equivalent to ¢. Let f be
A (x1 = 0) A (29 = 1) A “Nz > 07, where “Na > 0”7 is the conjunction of the
inequalities Nz > 0.

Lemma 6.6: Lel [ be a first-order weight formula. Then [ is salisfied in some probabilily
structure iff f is satisfiable over the real numbers.
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Proof: The proof is virtually identical to that of Theorem 3.7. For example, if f is
satisfiable over the real numbers, then let z* = z7,...,23,,» be real numbers such that
the result of replacing each z; in f by x7 is true about the real numbers. The proof of
Theorem 3.7 shows how to use z* to build a probability structure that satisfies f. I

Theorem 6.7: AXpo is a sound and complete axiomatization for first-order weight
formulas with respect to (general) probability structures.

Proof: Again, it is clear that AXpp is sound. To show completeness, assume that f is
an unsatisfiable first-order weight formula (that is, there is no probability structure that
satisfies it). Let f’ be Jxy...Jxgen f By Lemma 6.6, f’ is false about the real numbers.
By Tarski’s result again on the completeness of AXgop, it follows that = f’ is provable in
AXper. As before, it is therefore not hard to see that —f is provable in AXpp. Again,
the straightforward details are omitted. I

We close this section with a few remarks on how these results relate to those ob-
tained in [Bac90] and [AH94, Hal90]. In Bacchus’ language it is possible to represent
probabilities of first-order formulas. However, while we place probabilities on possible
worlds here, Bacchus instead places the probability on the domain. Thus, (using our
notation), he would allow a formula such as Va(w,(P(z,y)) > 1/3), which should be
read “for all x, the probability that a random y satisfies P(z,y) is at least 1/3.” In
addition, first-order quantification over probabilities is allowed, as in a formula of the
form IrVy(w,(P(z,y)) > r). Thus we can view Bacchus’ language as an extension of
first-order weight formulas, where the arguments of the weight function are first-order
formulas rather than just propositional formulas. There is an additional technical differ-
ence between our approach and that of Bacchus. Bacchus’ “probabilities” do not have
to be real valued; they can take values in arbitrary ordered fields. Moreover, Bacchus
requires his probability measures to be only finitely additive rather than countably ad-
ditive; thus they are not true probability measures. Bacchus does provide a complete
axiomatization for his language. However, a formula that is valid when the probabilities
take on real values is not necessarily provable in his system, since it may not be valid
when probabilities are allowed to take values in arbitrary ordered fields. On the other
hand, Bacchus’ axioms are all sound when probability is interpreted in the more standard
way and, as Bacchus shows, they do enable us to prove many facts of interest regarding
the probability of first-order sentences.

More recently, in [Hal90], two first-order logics of probability are presented. One,
in the spirit of Bacchus, puts probability on the domain while the other, more in the
spririt of our approach here, puts probability on the possible worlds. It is shown that
these ideas can be combined to allow a logic where we can reason simultaneously about
probabilities on the domain and on possible worlds. In all cases, the probabilities are
countably additive and take values in the reals. In [AH94] it is shown that in general the
decision problem for these logics is wildly undecidable (technically, it is TI-complete).
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However, in some special cases, the logic is decidable; complete axiomatizations for these
cases are provided in [Hal90].

7 Dempster-Shafer belief functions

The Dempster-Shafer theory of evidence [Sha76] provides one approach to attaching
likelihoods to events. This theory starts out with a belief function (sometimes called a
support function). For every event A, the belief in A, denoted Bel(A), is a number in
the interval [0, 1] that places a lower bound on likelihood of A. Shafer [Sha76] defines a

belief function (over S) to be a function Bel: 925 [0, 1] (where, as usual, 929 is the set
of subsets of 5), that satisfies the following conditions:

),
B1. Bel()) =0
B2. Bel(S) =1
B3. Bel(A1U...UA,) > Yrca. oz~ DIF Bel(Nies As).

Property B3 may seem unmotivated. Perhaps the best way to understand it is as
an analogue to the usual inclusion-exclusion rule for probabilities [Fel57, p. 89], which
is obtained by replacing the inequality by equality (and the belief function Bel by a
probability function g). In particular, B3 holds for probability functions. In [FH91] it is
shown to hold for all inner measures induced by probability functions. Thus, every inner
measure is a belief function. The converse is almost true, but not quite. It turns out that
roughly speaking, the converse would be true if the domain of belief functions and inner
measures were formulas, rather than sets. We now give a precise version of this informal
statement.

By analogy with probability structures, let us define a DS structure (where, of course,
“DS” stands for Dempster-Shafer) to be a tuple D = (S, Bel, 7), where Bel is a belief
function over S, and as before, 7 associates with each state in S a truth assignment on
the primitive propositions in ®. For each propositional formula ¢, we define " just
as we defined ™ for probability structures M. Let M = (S, X, u,7) be a probability
structure. Following [FH91], we say that D and M are equivalent if Bel(oP) = (™)
for every propositional formula .

For the purposes of the next theorem, we wish to consider probability structures and
DS structures where there are effectively only a finite number of propositional variables.
Let us say that a probability structure M = (S, X', p, #) or a DS structure D = (S, Bel, x)
is special if 7(s)(p) = false for all but finitely many primitive propositions p and for every
state s.

Theorem 7.1: [FH91]

1. For every special probability structure there is an equivalent special DS structure.
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2. For every special DS structure there is an equivalent special probability structure.

It follows immediately that AX is a sound and complete axiomatization for linear
weight formulas with respect to DS structures (i.e., where w(y) is interpreted as the
belief in ¢).® Similarly, AXro is a sound and complete axiomatization for first-order
weight formulas with respect to DS structures. All of our decision procedures carry over
immediately. Thus, for linear weight formulas, the complexity of the decision problem
with respect to DS structures is NP-complete; for polynomial weight formulas, there
is a polynomial space procedure for deciding satisfiability (and validity), and for first-
order weight formulas, there is an exponential space procedure for deciding satisfiability
(and validity). Let W6’ be the following axiom, which is obtained directly from Shafer’s
condition B3 above in the obvious way.

W6 w(er V... Vo) > Yrca (=D w(Aer 00).

In the remainder of this section, we show that we could just as well have used W6’
as W6 throughout this paper. Let AX' (respectively, AX%) be the axiom system that
results when we replace W6 in AX (respectively, AXzo) by W6'.

Theorem 7.2: The axiom system AX (respectively, AXrpo) is equivalent to the aziom
system AX' (respectively, AX%o).

Proof: For convenience, we restrict attention to AX, since the proof is essentially iden-
tical in the case of AXzgo. We first show that if f is an instance of axiom W6', then [ is
provable in AX. Assume not. Then = f is consistent with AX. By completeness (Theorem
3.8), there is a probability structure that satisfies =f. So by Theorem 7.1, there is a DS
structure that satisfies = f. However, this is impossible, since it is easy to see that every
DS structure satisfies every instance of axiom W6'.

Now let f be an instance of axiom W6; we must show that f is provable in AX'. Let

f be

r

> > (=) w(p') > 0, (18)

t=1 p’ asize t subregion of p

where p is the size r region 61 V-V é,, and r > 1. If r = 1, then (18) says w(é1) > 0,
which is a special case of axiom W1. Assume now that r > 2. Define @;, for 1 < <r,
to be the disjunction of each of é1,...,6, except §;. Rewrite W6’ as

wier V... Ve)+ Y (=D A ¢) > 0. (19)

IC{1,....r}, I#£0 iel

8We can restrict attention to special structures because of Lemma 2.8, which implies that if we are
concerned with the validity of a formula f, then we can restrict attention without loss of generality to the
finitely many primitive propositions that appear in f. In [FH91], attention was restricted to structures
where there are only a finite number of primitive propositions, which is equivalent to considering special
structures.
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We now show that (18) and (19) are equal, term by term. First, the w(p: V...V ¢,)
term of (19) is equal to w(p), since @1 V...V ¢, is equivalent to p. This corresponds
to the term of (18) where ¢t = r and p’ = p. Now consider the term of (19) where the
distinct members of I are precisely #1,...,¢,. It is straightforward to verify that A;c; @i
is equivalent to the t-subregion p’ of p which is the disjunction of each of é1,..., 6, except
8iyy---y0i,, where t = r — 5. So the term (—1)Thw(A;z; ;) equals (—1)*w(p’), which
equals (—1)"""w(p’), a term of (18). The only term of (19) that does not match up with
a term of (18) occurs when [ = {1,...,r}; but then A;c;¢; is equivalent to false, so
w(A;jervi) = 0. Otherwise, there is a perfect matching between the terms of (18) and
(19). It follows easily that (18) is provable in AX'. I

8 Conclusions

We have investigated a logic for reasoning about probability, both for cases where propo-
sitions necessarily represent measurable sets and for the general case. We have provided
complete axiomatizations and decision procedures for a number of variants of the logic.

We were surprised both to be able to get fairly elegant complete axiomatizations for
so rich a logic, and to be able to prove that the satisfiability problem for the linear case is
in NP. This is certainly the best we could have hoped for, since clearly the satisfiability
problem for our logic is at least as hard as that of propositional logic. We remark that
in [GKP88, Kav89] there is some discussion of subcases of the decision procedure for the
measurable case that can be handled efficiently. It would be of interest to have further
results on easily decidable subcases of the logic, or on good heuristics for checking validity.

While the focus of this paper is on technical issues—axiomatizations and decision
procedures—it is part of a more general effort to understand reasoning about knowledge
and probability. In [FH91] we consider the issue of appropriate models for reasoning about
uncertainty in more detail, and compare the probabilistic approach to the Dempster-
Shafer approach. In [FH94], we consider a logic of knowledge and probability that allows
arbitrary nesting of knowledge and probability operators. In particular, we allow higher-
order weight formulas such as w(w(p) > 1/2) > 1/3. (See also [Gai86] for discussion
and further references on the subject of higher-order probabilities.) We are again able
to prove technical results about complete axiomatizations and decision procedures for
the resulting logics extending those of this paper. There is also a general look at the
interaction between knowledge and probability. The paper [HT93] focuses on knowledge
and probability in distributed systems. Finally, [AH94, Hal90] consider issues of reasoning
about probability in a first-order context.

We feel that there is far more work to be done in this area though, particularly in
understanding how to model real-world phenomena appropriately. We expect that our
formalization will help provide that understanding.

Acknowledgments: We are grateful to Moshe Vardi for his valuable suggestion that led
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