Presburger Arithmetic With Unary Predicates is
I1; Complete*

Joseph Y. Halpern
IBM Almaden Research Center
San Jose, CA 95120

halpern@almaden.ibm.com

Abstract: We give a simple proof characterizing the complexity of Pres-
burger arithmetic augmented with additional predicates. We show that Pres-
burger arithmetic with additional predicates is II1 complete. Adding one
unary predicate is enough to get I} hardness, while adding more predicates
(of any arity) does not make the complexity any worse.

*This paper is essentially identical to one that appears in Journal of Symbolic Logic 56, 1991, pp.
637-642.

1 Introduction

Presburger arithmetic, the theory of the natural numbers with addition, was shown to be
decidable in 1929 by Presburger, using quantifier elimination (see [End72] for a proof).
Fischer and Rabin showed that it was actually decidable in double-exponential time
[FR74]; a more precise characterization of its complexity was given by Berman [Ber80].
Adding unary predicates to the language makes it significantly more expressive. For
example, with a unary predicate P, the following formula expresses the fact that P(n)
holds if and only if n is a perfect square. It uses the fact that the difference between
consecutive squares keeps increasing by 2, so that (k+2)* — (k+1)* = (k+1)* — k* + 2.

P(0O) A P(1) AVndm[m > n A P(m)] A
an,ng,ng[P(nl) N P(ng) A P(ng) Any <ng <nsh
Vm[n < m < ngVny <m<ng=-P(m)] = ng—ny=ny—ny +2|.

Once we can express perfect squares, it is not hard to show that we can also express
multiplication (since 2mn = (m + n)? — m? — n*). That is, if we had a ternary predicate
@ in the language, we could force Q)(my, my, m3) to hold iff my = my x ms. Thus, with
a ternary predicate, we can easily get undecidability.

Given this observation, it is perhaps not surprising that the additional expressive
power we can gain with unary predicates also comes at a cost. Presburger arithmetic with
unary predicates was shown to be undecidable in [GST4]. In this paper, we completely
characterize the complexity of Presburger arithmetic augmented by additional functions
and predicates. We show that if we add even one unary predicate, then the validity
problem for the resulting language is 11} complete (i.e., the set of formulas in the resulting
language that are valid when interpreted over the natural numbers is a II} complete set).
However, adding more function and predicate symbols does not make things any worse;
the validity problem remains in II} no matter how many function and predicate symbols
we add to the language.

In the next section we provide all the necessary definitions to make this paper self
contained. We give the upper and lower bound proofs in Section 3.

We remark that Alur and Henzinger recently obtained an independent proof that
Presburger arithmetic augmented by unary predicates is I13-complete, although they did
not show that it sufficed for the lower bound to have only one unary predicate [AH89].!
On the other hand, their proof shows that we do not even need the full power of addition
to obtain II}-hardness; it suffices to have multiplication by two. We also remark that
the result of this paper is used in [AH94] to prove undecidability of a first-order logic for
reasoning about probability.

1Originally, they only had an undecidability result. Once they learned about the result of Harel,
Pnueli, and Stavi described in Theorem 3.2 below through conversations with Moshe Vardi and the
author, they were able to use their techniques to prove IT}-completeness.

2 Definitions

Let £, the language of Presburger arithmetic, be the first-order language with equal-
ity, with non-logical symbols {0,1,4}. If ® is a collection of (uninterpreted) function
and predicate symbols, then £(®) is the result of augmenting £ with the function and
predicate symbols in ®. Presburger arithmetic i1s intended to be interpreted over the
natural numbers, where 0 and 1 are to be interpreted as 0 and 1, respectively, and +
is interpreted as addition. Notice that x < y is definable as 3z(y = x + z); henceforth
we proceed as if < is in the language. We also take + — y = z to be an abbreviation for
z = y+z. Finally, we take k to be an abbreviation for 14 --- +1 (k times); other similar
abbreviations are also used in the paper.

As mentioned in the introduction, the validity problem for Presburger arithmetic, that
is, the validity problem for the language L£(0), is decidable, while the validity problem
for L(®), for ® containing at least one unary predicate, is known to be undecidable. (We
remark that if ® contains only constant symbols, then it is easy to show that the validity
problem for £(®) remains decidable; adding fresh constant symbols to the language does
not make the complexity any worse.)

We now briefly review the definition of II}; the interested reader should see [Rog67] for
more details. Formulas of second-order arithmetic with set variables consist of formulas
of first-order arithmetic (that is, in the language with constant symbols 0 and 1, together
with the function symbols + and x) augmented with expressions of the form z € X,
where z 1s a number variable and X is a set variable, together with quantification over
set variables and number variables. A sentence is a formula with no free variables.
Second-order arithmetic with set variables is a very powerful language. For example, the
following (true) sentence of the language expresses the law of mathematical induction
over the natural numbers:

VX(0e XAVe((ze X Dax+1€X)DVa(ze X))

A I} formula (resp. X} formula) of second-order arithmetic with set variables is one
of the form VX;...VX,¢ (resp. 3X;...3X,), where ¢ is a formula of second-order
arithmetic with set variables that has no quantification over set variables. A set A of
natural numbers is in IT7 (resp. X}) if there is a Il formula (resp.] sentence) ¢(z) with
one free number variable z and no free set variables such that a € A iff ¢)(a) holds. II}
hardness and completeness are defined in the obvious way (the reduction is via one-one
recursive functions). It is well-known that IIj-hard sets are not recursively enumerable

(see [RogbT7]).

3 Upper and lower bound proofs

In this section we prove the II; completeness result.

Theorem 3.1:
(a) The validity problem for L(®) is in 115 for all choices of ®.

(b) If ® contains at least one unary predicate, then the validity problem for L(®) is 11}
hard.

Proof: The upper bound proof is almost immediate from the definition of II]. Suppose
for ease of exposition that ® consists only of predicates. (This is without loss of gener-
ality, since we can always replace a k-ary function by a (k + 1)-ary predicate.) Given a
formula ¢ in £(®) with predicate symbols Py, ..., P, we can translate it to a formula
of arithmetic with set variables Xy, ..., X,, by simply replacing subformulas of ¢ of the
form Pi(z1,...,2%) by (z1,...,25) € X;, where (z1,..., k) is a recursive encoding of a
sequence as a natural number (see [Rog67] for examples of such encodings); we assume
that the encoding is such that a sequence of length k can be distinguished from one
of length &' for k' # k. Let ¢’ be the result of this translation. Clearly ¢ is valid iff
VXi...X,¢ is true. This shows that the validity problem for £(®) is in II;.

For the lower bound, we prove that the satisfiability problem for £(®) is X}-hard.
We need the following result, due to Harel, Pnueli, and Stavi [HPS83]. We say that a
nondeterministic Turing machine A is recurrent if, when started on the empty tape, A has
an infinite computation that reenters its start state infinitely often. Let Ag, A1, A,,... be

a recursive enumeration of the nondeterministic Turing machines with one tape, infinite
to the right.

Theorem 3.2: ([HPS83]) The set {n|A,, is recurrent} is ¥} complete.

Given a Turing machine A, we now show how to effectively construct a formula @ in
L({P}), where P is a unary predicate, such that ¢ is satisfiable iff A is recurrent. Once
we do this, it will follow from Theorem 3.2 that the satisfiability problem for Presburger
arithmetic augmented with one unary predicate is X{ hard.

Suppose A uses tape alphabet I' and has state space (). We use the special symbol
b to denote the blank symbol and § to separate between consecutive IDs (instantaneous
descriptions of the Turing machine), where b,$ ¢ (I' U Q). Let C'D (for cell descriptor)
be 'U (I' x Q) U {b,$}. (As usual, we use a pair (7,¢) € I' X @ to denote that A is in
state ¢ with its head reading symbol v.) We first assume we have many unary predicates,
one predicate P. corresponding to each ¢ € C'D, and then show how to reduce to one. A
computation looks like a sequence of 1Ds separated by $’s: $1D;$1D,$1D3$. .., where ID;
is in turn a finite sequence of cell descriptors ¢icy ... ¢;,. We can encode this computation
by forcing P.(n) to be true iff the symbol on the n'® cell of the computation is ¢. We do
this using the following formulas @1, ..., @s:

e The formula ¢; guarantees for all n, P.(n) holds for exactly one ¢ € C'D:

o1 =aet ¥n(\/ (Pe(n) A]\ =Pa(n)))

c,deCD d#c

e The formula ¢, guarantees that the distance between consecutive $’s always in-
creases by one:

©2 =def VN1, n2((n1 < na A Pg(ny) A Ps(na) AVm((ng <m < ny) = —Pg(m))) =

Am'((m' —ny = ng —nqy + 1) A Ps(m') AVYm"((ny < m” <m') = =FPs(m"))))

e The formula @3 guarantees that the machine “starts right”, on a blank tape in the
start state go:

@3 =det P5(0) A Py g0)(1) A P5(2)

o We next want to say that successive steps of the computation proceed according to
the transition rules of the Turing machine. It is well known that we can characterize
a Turing machine by giving a function which, given three consecutive cells in an 1D,
describes the set of possible corresponding three cells in the next ID. Thus, given
the Turing machine A and ¢, j, k € C'D, there is a function N such that N(z,7, k) =
{{c,d,e)| if (1,7, k) describes three consecutive cells in a given ID then (¢, d,) is a
possible description of the corresponding cells in the next ID}. Note that N(z, s, k)
is a finite set for each triple (7,7, k). We can talk about corresponding cells in two
consecutive IDs by using the distance between consecutive $’s as a yardstick.

pa =det V1, LA jreop,jzs(Fi(n) A Pi(nt1) A Pr(n+2) A
dmy, ma(my1 < n < mg) A (mg =my +) A Ps(mq) A Pg(ma) A
Vm'(my < m' < my = —FPy(m'))]) =
ViedeyenGin(Le(n +€) A Py(ntl+1) A Po(n+(+2))]

e Finally, we need to say that A returns to the start state infinitely often. This is
the job of ps:

©5 =def VRIM(m > n A (\/ P(wzo)(m)))-
~vel

Let oo = @1 A... Aps. We leave it to the reader to check that ¢4 is satisfiable iff there
is a recurrent computation of A. From Theorem 3.2, it follows that the satisfiability
problem for £(®) where ® contains an infinite collection of unary predicates is ¥ hard,
and hence the validity problem is II} hard.

We conclude by briefly sketching how we can encode the computation of A given only
one unary predicate, rather than a collection of them. Suppose the proof above actually
uses k predicates to encode the computation of A. For simplicity, call these predicates
Py,...,P.. We can think of the infinite sequence of cell descriptors that describes a
computation of A as an infinite word w written in a language with k£ symbols: Py, ..., P.
Corresponding to w we consider an infinite word w’ in a language with only two symbols,
0 and 1; both w and w’ are intended to encode the same computation. Conceptually, we
think of w’" as being partitioned into blocks of size k£ + 4. The last 4 symbols of each such

block always contain the string 0110; this string marks the end of the block. The first &
symbols of the block contain exactly one 1, all the rest being 0s. Intuitively, symbol z in
the m™ block of w’ is 1 iff the m™ symbol in w is P;.

If we use the truth and falsity of P(n) to denote that the n'® symbol is 1 or 0,
respectively, then the following formula says that w’ is divided up into blocks of size
k + 4 in the appropriate way:

“P(k)ANP(k+1)AP(k+2)AN=P(k+3)A
Vn[(P(n)A P(n+1)) & (P(n+k 4+ 4) A P(n+k +5))] A
Vn[P(n+k+1)APn+k+2)=
dm[n <m<n+k)APm)AVR[((n <m' <n+k)Am'#m)= -P(m')]]]

It is now straightforward to translate s, ..., @5 to hold with respect to this encoding
of the computation. (There is no need to translate ¢1; we have already forced it to be the
case that precisely one predicate holds for each block.) We leave details to the reader.
This completes our proof. 1

We remark that a minor extension to this proof shows that arithmetic (with 4+ and
x) augmented by unary predicates is also II} complete. Clearly, our Il lower bound
applies. The upper bound follows by the same argument.

Acknowledgements: I'd like to thank Martin Abadi and Moshe Vardi for discussions
on this proof. I'd also like to thank Herbert Enderton, Jeanne Ferrante, Bill Gasarch,
Yuri Gurevich, Harry Lewis, Albert Meyer, Larry Stockmeyer, and Moshe Vardi for help

in my efforts to track down previous undecidability results on Presburger arithmetic. I’d
particularly like to thank Mark Pleszkoch, who dug up the [GS74] result.

References
[AH89] R. Alur and T. A. Henzinger. A really temporal logic. In Proc. 30th IEEE
Symp. on Foundations of Computer Science, pages 164169, 1989.

[AH94] M. Abadi and J.Y. Halpern. Decidability and expressiveness for first-order logics
of probability. Information and Computation, 112(1):1-36, 1994.

[Ber80] L. Berman. The complexity of logical theories. Theoretical Computer Science,
11:71-77, 1980.

[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

[FR74] M. J. Fischer and M. O. Rabin. Super-exponential complexity of Presburger
arithmetic. In R. M. Karp, editor, Complezity of Computation, SIAM-AMS
Proceedings, Vol. 7, pages 27-42, 1974.

5

[GST4] S. Garfunkel and J. H. Schmerl. The undecidability of theories of groupoids
with an extra predicate. Proc. AMS, 42(1):286-289, 1974.

[HPS83] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular
programs. Journal of Computer and System Sciences, 26(2):222-243, 1983.

[Rog67] H. Rogers, Jr. Theory of Recursive Funclions and Effective Computability.
McGraw-Hill, New York, 1967.

