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Abstract

A mediator can help non-cooperative agents obtain an equilibrium that may otherwise not
be possible. We study the ability of players to obtain the same equilibrium without a mediator,
using only cheap talk, that is, nonbinding pre-play communication. Previous work has considered
this problem in a synchronous setting. Here we consider the effect of asynchrony on the problem,
and provide upper bounds for implementing mediators. Considering asynchronous environments
introduces new subtleties, including exactly what solution concept is most appropriate and
determining what move is played if the cheap talk goes on forever. Different results are obtained
depending on whether the move after such “infinite play” is under the control of the players or
part of the description of the game.

1 Introduction

Having a trusted mediator often makes solving a problem much easier. For example, a problem
such as Byzantine agreement becomes trivial with a mediator: agents can just send their initial
input to the mediator, and the mediator sends the majority value back to all the agents, which
they then output. Not surprisingly, the question of whether a problem in a multiagent system that
can be solved with a trusted mediator can be solved by just the agents in the system, without
the mediator, has attracted a great deal of attention in both computer science (particularly in the
cryptography community) and game theory. In cryptography, the focus has been on secure multi-
party computation [Goldreich, Micali, and Wigderson 1987; Yao 1982]. Here it is assumed that each
agent ¢ has some private information z;. Fix functions fi, ..., fn. The goal is to have agent ¢ learn
fi(z1,...,zy) without learning anything about z; for j # i beyond what is revealed by the value
of fi(x1,...,z,). With a trusted mediator, this is trivial: each agent i just gives the mediator its
private value x;; the mediator then sends each agent ¢ the value f;(x1,...,z,). Work on multiparty
computation provides conditions under which this can be done in a synchronous system [Ben-Or,
Goldwasser, and Wigderson 1988; Goldreich, Micali, and Wigderson 1987; Shamir, Rivest, and
Adelman 1981; Yao 1982] and in an asynchronous system [Ben-Or, Canetti, and Goldreich 1993,;



Ben-Or, Kelmer, and Rabin 1994]. In game theory, the focus has been on whether an equilibrium
in a game with a mediator can be implemented using what is called cheap talk—that is, just by
players communicating among themselves.

In the computer science literature, the interest has been in performing multiparty computation in
the presence of possibly malicious adversaries, who do everything they can to subvert the compu-
tation. In contrast, in the game theory literature, the assumption is that players have preferences
and seek to maximize their utility; thus, they will subvert the computation iff it is in their best
interests to do so. In [Abraham, Dolev, Gonen, and Halpern 2006; Abraham, Dolev, and Halpern
2008] (denoted ADGH and ADH, respectively, in the rest of the paper), it was argued that it is
important to consider deviations by both rational players, who have preferences and try to max-
imize them, and players that we can view as malicious, although it is perhaps better to think of
them as rational players whose utilities are not known by the mechanism designer (or other play-
ers). ADGH and ADH considered equilibria that are (k,t)-robust; roughly speaking, this means
that the equilibrium tolerates deviations by up to k rational players, whose utilities are presumed
known, and up to t players with unknown utilities. Tight bounds were proved on the ability to
implement a (k, t)-robust equilibrium in the game with a mediator using cheap talk in synchronous
systems. These bounds depend on, among other things, (a) the relationship between k, t and n, the
total number of players in the system; (b) whether players know the exact utilities of the rational
players; and (c) whether the game has a punishment strategy, where an m-punishment strategy is
a strategy profile that, if used by all but at most m players, guarantees that every player gets a
worse outcome than they do with the equilibrium strategy. The following is a high-level overview
of results proved in the synchronous setting that will be of most relevance here. For these results,
we assume that the communication with the mediator is bounded, it lasts for at most N rounds,
and that the mediator can be represented by an arithmetic circuit of depth c.

R1. If n > 3k + 3t, then a mediator can be implemented using cheap talk; no punishment strategy
is required, no knowledge of other agents’ utilities is required, and the cheap-talk protocol
has bounded running time O(nNc¢), independent of the utilities.

R2. If n > 2k + 3t, then a mediator can be implemented using cheap talk if there is a (k + t)-
punishment strategy and the utilities of the rational players are known; the cheap-talk protocol
has expected running time O(nNe¢). (In R2, unlike R1, the cheap-talk protocol may be
unbounded, although it has finite expected running time.)

In ADH, lower bounds are presented that match the upper bounds above. Thus, for example, it is
shown that n > 3k + 3t is necessary in R1; if n < 3k + 3¢, then we cannot implement a mediator in
general if we do not have a punishment strategy or if the utilities are unknown. The proofs of the
upper bounds make heavy use of the fact that the setting is synchronous. Here we consider the
impact of asynchrony on these results. Once we introduce asynchrony, we must revisit the question
of what it even means to implement an equilibrium using cheap talk. Notions like (Bayesian)
Nash equilibrium implicitly assume that all uncertainty is described probabilistically. Having a
probability is necessary to talk about an agent’s expected utility, given that a certain strategy
profile is played. If we were willing to put a distribution on how long messages take to arrive and
on when agents are scheduled to move, then we could apply notions like Nash equilibrium without
difficulty. However, it is notoriously difficult to quantify this uncertainty. The typical approach
used to analyze algorithms in the presence of uncertainty that is not quantified probabilistically is



to assume that all the non-probabilistic uncertainty is resolved by the environment according to
some strategy. Thus, the environment uses some strategy to decide when each agent will be allowed
to play and how long each message takes to be delivered. The algorithm is then proved correct
no matter what strategy the environment is following in some class of strategies. For example, we
might restrict the environment’s strategy to being fair, so that every agent eventually gets a chance
to move. (See [Halpern and Tuttle 1993] for a discussion of this approach and further references.)

We follow this approach in the context of games. Note that once we fix the environment’s strategy,
we have an ordinary game, where uncertainty is quantified by probability. In this setting, we
consider ex post equilibrium. A strategy is an ex post equilibrium if it is an equilibrium no matter
what strategy the environment uses. Ex post equilibrium is a strong notion, but, as we show by
example, it can often be attained with the help of a mediator. It is arguably the closest analogue
to Nash equilibrium in an asynchronous setting.

Another issue that plays a major role in an asynchronous setting is what happens if the strategies
of players result in some players being livelocked, talking indefinitely without making a move in
the underlying game, or in some players being deadlocked, waiting indefinitely without moving in
the underlying game. We consider two approaches for dealing with this problem. One is called the
default-move approach. In this approach, as part of the description of the game, there is a default
move for each player which is imposed if that player fails to explicitly make a move in the cheap-talk
phase. Aumann and Hart [2003] considered a different approach, which we henceforth call the AH
approach, where a player’s strategy in the underlying game is a function of the (possibly infinite)
history of the player in the cheap-talk phase. We can think of this almost as if the player writes
a will, describing what he would like to have done (as a function of the history) if the game ends
before he has had a chance to move.

We believe that both the AH approach and the default-move approach are reasonable in different
contexts. The AH approach makes sense if the agent can leave instructions that will be carried out
by an “executor” if the cheap-talk game deadlocks. But if we consider a game-theoretic variant
of Byzantine agreement, it seems more reasonable to say that if a malicious agent can prevent an
agent from making a move in finite time, the agent should not get a chance to make a move after
the cheap-talk phase has ended.

Our results show that, in the worst case, the cost of asynchrony is an extra k + t in the bounds
on n, but we can sometimes save k or even k + t if there is a punishment strategy or if we are
willing to tolerate an € “error”. For example, with both the AH approach and the default-move
approach, if the utilities are not known, we can implement a mediator using asynchronous cheap
talk if n > 4k + 4¢. Thus, compared to R1, we need an extra k + t. However, if we are willing
to accept a small probability of error, so that rather than implementing the mediator we get only
an e-implementation, and are also willing to accept e-(k,t)-robustness (which, roughly speaking,
means that players get within e of the best they could get), then we can do this if n > 3k + 3t,
again, using both the AH approach and the default-move approach.

Just as in the synchronous case, we can do better if we assume that there is a punishment strategy
and utilities are known (as in R2). Specifically, with the AH approach, we can implement a mediator
if n > 3k + 4t (compared to n > 2k + 3t in the synchronous case), and can e-implement a mediator
if n > 2k 4+ 3t. We use the punishment to deal with deadlock. If a good player is waiting for a
message that never arrives, then the waiting player instructs his executor to carry out a punishment
in his will. Having a punishment does not seem to help in the default-move approach unless the



default move is a punishment; if it is, then we can get the same results as with the AH approach.

If there is a punishment strategy, these results significantly improve those of Even, Goldreich,
and Lempel [1985]. They provide a protocol with similar properties, but the expected number of
messages sent is O(1/¢); with a punishment strategy, we show that a bounded number of messages
can be sent, with the bound being independent of e.

The rest of this paper is organized as follows. In Section 2, we review all the relevant definitions. In
Section 3, we review the definitions of the solution concepts from ADGH that we use. In Section 4
we state our results carefully. In Section 5, we discuss the security-theoretic notion of ¢-bisimulation
needed in our proofs, and state results from a companion paper [Geffner and Halpern 2018] regarding
t-bisimulation. We outline the proofs of our main theorems in Section 6, and conclude in Section 7.

2 Definitions

Asynchronous games, mediator games, and cheap talk: We are interested in implementing
mediators. Formally, this means we need to consider three games: an underlying game T', an
extension I'y of I with a mediator, and an extension I' ¢ of I with (asynchronous) cheap talk. We
assume that I' is a normal-form Bayesian game: each player has a type t taken from some type
space T;, such that there is a commonly known distribution on 7 C 77 x --- X T, the set of types;
each player i chooses an action a € A;, the set of actions of agent ¢; player ¢’s utility u; is determined
by the type profile of the players and the actions they take. A strategy for player ¢ in the Bayesian
game is just a function T; to A;, which tells player ¢ what to do, given his type. If A = A1 x---x Ay,
then a strategy profile & = (01, ..., 0y, ) can be viewed as a function & : T — A(A) (where, as usual,
A(X) denotes the set of probability distributions on X).

The basic notions of a game with a mediator, a cheap-talk game, and implementation are standard
in the game-theory literature. However, since we consider them in an asynchronous setting, we
must modify the definitions somewhat.

We first define asynchronous games. In an asynchronous game, we assume that players alternate
making moves with the environment—first the environment moves, then a player moves, then the
environment moves, and so on. The environment’s move consists of choosing a player i to move
next and a set of messages in transit to ¢ that will be delivered just before i moves (so that i’s
move can depend on the messages i receives). The environment is subject to two constraints: all
messages sent must eventually be delivered and, for all times m and players i, if 4 is still playing
the game at time m, then there must be some time m’ > m that 7 is chosen to move. We can
describe an asynchronous game by a game tree. Associated with each non-leaf node or history is
either a player—the player whose move it is at that node—or the environment (note that both the
players and the environment can use probabilistic strategies). The nodes where a player i moves are
further partitioned into information sets; intuitively, these are nodes that player ¢ cannot tell apart.
We assume that the environment has complete information, so that the environment’s information
sets just consist of the singletons. A strategy for player i is a (possibly randomized) function from
1’s information sets to actions; we can similarly define a strategy for the environment. We can
essentially view the environment strategy as defining a scheduler (and thus we sometimes refer to
an environment strategy as a scheduler).



For our results, we start with an n-player Bayesian game I' in normal form (called the underlying
game), with {1,... ,n} being the set of players, and then consider two games that extend I'. A
game I"” extends I if the players have initial types from the same type space as I', with the same
distribution over types; moreover, in each path of the game tree for I', the players send and receive
messages, and perform at most one action from I'. In a history where each player makes a move
from T', each player gets the same utility as in I' (where the utility is a function of the moves
made and the types). That leaves open the question of what happens in a complete history of T”
where some players do not make a move in I'. As we suggested in the introduction, we consider
two approaches to dealing with this. In the first approach, we assume that the description of I"
includes a function M; for each player ¢ that maps player i’s type to a move in I'. In an infinite
history h where ¢ has type ¢ and does not make a move in I', ¢ is viewed as having made move
M;(t). We can then define each player’s utility in h as above. This is the default-move approach.
In the AH approach, we extend the notion of strategy so that ¢’s strategy in I"” also describes what
move ¢ makes in the underlying game I' in any infinite history h where ¢ has not made a move in
I". In the AH approach, i’s move in h is under ’s control; in the default-move approach, it is not.

Given an underlying Bayesian game I' (which we assume is synchronous—the players move simul-
taneously), we will be interested in two types of extensions. A mediator game extending T' is an
asynchronous game where players can send messages to and receive messages from a mediator (who
can be viewed as a trusted third party) as well as making a move in I'; “good” or “honest” players
do not send messages to each other, but “bad” players (i.e., one of the k rational deviating players
or one of the ¢ “malicious” players with unknown utilities) may send messages to each other as well
as to the mediator. We assume that the space of possible messages that can be sent in a mediator
game is fixed and finite.

In an asynchronous cheap-talk game extending I', there is no mediator. Players send messages
to each other via asynchronous channels, as well as making a move in I'.  We assume that each
pair of agents communicates over an asynchronous authenticated private channel, so the adversary
cannot eavesdrop on conversations between the players, and players can identify the sender of each
message. Finally, we assume that in both the mediator game and the cheap-talk game, when a
player is first scheduled, it gets a signal that the game has started (either an external signal from
the environment, or a game-related message from another player or the mediator).

Implementation: In the synchronous setting, a strategy profile ¢ in a cheap-talk game I'or
extending an underlying game I' implements a strategy & in a mediator game 'y extending I' if
o and & correspond to the same strategy in I'; that is, they induce the same function from 7~
to A(A). The notion of implementation is more complicated in an asynchronous setting, because
the probability on action profiles also depends on the environment strategy. Because I'cr and I'y
are quite different games, the environment’s strategies in I'cp are quite different from those in I'y.
So we now say that ¢ implements & if the set of distributions on actions profiles in I'" induced
by & and all possible choices of environment strategy is the same as that induced by & and all
possible choices of environment strategy. More precisely, let S/ and Spv . denote the the set of
environment strategies in I'" and I'”, respectively. A strategy o. € Srv. and a strategy profile &
for the players in I together induce a function (&, 0.) from T to A(A). A strategy profile ¢’ in T”
implements a strategy profile " in I if {(¢",0)) : 0, € Spv o} = {(6",0)) : 0! € Spr}. Since the
outcome that arises if the players use a particular strategy may depend on what the environment
does, this says that the set of outcomes that can result if the players use ¢’ is the same as the set
of outcomes that can result if the players use &”.



For some of our results, we cannot get an exact implementation; there may be some error. Given two
discrete distributions m and 7’ on some space S, the distance between m and 7', denoted dist(m, '),
is at most € if > _¢[m(s) — 7'(s)] < e. As we observed earlier, in the mediator game and the
cheap-talk game, a strategy profile & for the players and a strategy o, for the environment together
induce a mapping from type profiles to A(A). We lift the notion of distance to such function by
defining dist((7,0.)), (67, 0L)) = maxger dist((F, 0.) (%), (67, 0L)(Z)). Say that & e-implements 7"

if

e for all o), € Spv . there exists 0 € Spw, such that dist((&,07), (0", 0”)) < € and

e for all 0/ € Spv . there exists o, € Sy such that dist((¢”,0)), (5", 0.)) <e.

Note that ¢/ implements ¢ iff 6/ 0-implements &”.

The notion of implementation is quite strong. For example, if ¢ involves fewer rounds of com-
munication than ¢, there may be far fewer distinct schedulers in the game involving ¢’ than in
the game involving ¢”. Thus, we may not be able to recover the effect of all possible schedulers.
(Indeed, for some of our results the implementation needs to be quite long precisely in order to
capture all possible schedulers.) This suggests the following notion: a strategy profile & in I
weakly implements a strategy profile ¢ in I' if {(¢’,0)) : 0, € Spr e} C {(6”",07) : 6! € Spr e}
Thus, if ¢/ weakly implements ¢, then every outcome of &’ is one that could also have arisen with
", but the converse may not be true. Specifically, there may be some behaviors of the environment
with ¢” that cannot be simulated by ¢’. As we shall see, this may actually be a feature: we can
sometimes simulate the effect of only “good” schedulers. In any case, note that in the synchronous
setting, implementation and weak implementation coincide. We can also define a notion of weak
e-implementation in the obvious way; we leave the details to the reader.

Termination: We will be interested in asynchronous games where, almost surely, the honest
players stop sending messages and make a move in the underlying game. In the mediator games
that we consider, this happens after only a bounded number of messages have been sent. But even
with this bound, there may not be a point in a history when players know that they can stop
sending messages; although a player ¢ may have moved in the underlying game, ¢ may still need
to keep checking for incoming message, and may need to respond to them, to ensure that other
players can make the appropriate move.

For some of our results, we must assume that, in the mediator game, there comes a point when
all honest players know that they have terminated the protocol; they will not get further messages
from the mediator and can stop sending messages to the mediator, and should make a move in
the underlying game if they have not done so yet. For simplicity, for these results, we restrict the
honest players and the mediator to using strategy profiles that have the following canonical form:
Using a canonical strategy, player ¢ may send a message to the mediator whenever it is scheduled,
as long as ¢ has not received a message from the mediator containing “STOP”. If player i gets a
message from the mediator that includes “STOP”, then i makes a move in the underlying game
and halts. We assume that, as long as the honest players and mediator follow their part of the
canonical strategy profile, there is a constant r such that, no matter what strategy the rational and
malicious players and the environment use, the mediator sends each player ¢ at most r messages
in each history, and the final message includes “STOP”. We conjecture that the assumption that
players and mediator are using a strategy in canonical form in the mediator game is without loss



of generality; that is, a (k,t)-robust strategy profile in a mediator game I'y can be implemented by
a (k,t)-robust strategy profile in I'y that is in canonical form.

3 Solution concepts

In this section, we review the solution concepts introduced in ADGH and extend them to asyn-
chronous settings.

Note that in an asynchronous game I', the utility of a player ¢ can depend not only on the strategies
of the agents, but on what the environment does. Since we consider an underlying game, a mediator
game, and a cheap-talk game, it is useful to include explicitly in the utility function which game is
being considered. Thus, we write u;(I", &, 04, 0¢, &) to denote the expected utility of player i in game
I" when players play strategy profile &, the mediator plays o4, the environment plays o, and the
type profile is Z. We typically say “input profile” rather than “type profile”, since in our setting,
the type of player 7 is just ¢’s initial input. Note that if I" is the underlying game, the o, component
is unnecessary, since the underlying game is assumed to be synchronous. We occasionally omit the
mediator strategy o4 when it is clear from context.

Given a type space T, a set K of players, and @ € T, let T(Zx) = {@' : @ = Zx}. U Tis a
Bayesian game over type space T, & is a strategy profile in I'; and Pr is the probability on the type
space T, let
wi(l, 3,00, %x) = >, Pr(@ | T(ix)) (T, 5, 00,7).
Z'eT (k)

Thus, u;(T', 7, 0., Tx) is i’s expected payoff if everyone uses strategy & and type profiles are in

T(Zk)-

k-resilient equilibrium: In a standard game, a strategy profile is a Nash equilibrium if no
player can gain any advantage by using a different strategy, given that all the other players do not
change their strategies. The notion of k-resilient equilibrium extends Nash equilibrium to allow for
coalitions.

Definition 3.1. & is a k-resilient equilibrium (resp., strongly k-resilient equilibrium) in an asyn-
chronous game T if, for all subsets K of players with 1 < |K| < k, all strategy profiles Tx for the
players in K, all type profiles & € T, and all strategies o of the environment, u;(T', (6_k, Tk ), 0, Tx) <
ui(T, &, 0c, Tx) for some (resp., all) i € K.*

Thus, & is k-resilient if, no matter what the environment does, no subset K of at most k players
can all do better by deviating, even if they share their type information (so that if the true type is
Z, the players in K know ¥k ). It is strongly k-resilient if not even one of the players in K can do
better if all the players in K deviate.

For some of our results we will be interested in equilibria that are “almost” k-resilient, in the sense
that no player in a coalition can do more than e better if the coalition deviates from the protocol,
for some small e.

! As usual, in the strategy profile (7_, 7x ), each player i € K plays 7; and each player i ¢ K plays o;.



Definition 3.2. For e > 0, & is an e-k-resilient equilibrium (7esp., strongly e-k-resilient equilib-
rium) if, for all subsets K of players, all strategy profiles Tk for the players in K, all type profiles ¥ €
T, and all strategies o, of the environment, we have u;(I', (_k,TK), 0e, Tx) < ui(I', 7, 0¢,Tx) + €
for some (resp., for all) i € K.

Note that we have “< u;(I", &, 0¢, Zx ) +€” here, not “<”; this means that a 0-k-resilient equilibrium
is not a k-resilient equilibrium. However, an equilibrium is k-resilient iff it is e-k-resilient for all
€ > 0. We have used this slightly nonstandard definition to make the statements of our theorems
cleaner.

Robustness: A standard assumption in game theory is that utilities are (commonly) known; when
we are given a game we are also given each player’s utility. When players make decision, they can
take other players’ utilities into account. However, in large systems, it seems almost invariably the
case that there will be some fraction of users who do not respond to incentives the way we expect.
For example, in a peer-to-peer network like Kazaa or Gnutella, it would seem that no rational agent
should share files. Whether or not you can get a file depends only on whether other people share
files; on the other hand, it seems that there are disincentives for sharing (the possibility of lawsuits,
use of bandwidth, etc.). Nevertheless, people do share files. However, studies of the Gnutella
network have shown almost 70 percent of users share no files and nearly 50 percent of responses
are from the top 1 percent of sharing hosts [Adar and Huberman 2000]. It seems important to
design protocols that tolerate such unanticipated behaviors, so that the payoffs of the users who
follow the recommended strategy are not affected by players who deviate, provided that not too
many deviate.

Definition 3.3. A strategy profile & is t-immune in a game I' if, for all subsets T of players with
|T'| < t, all strategy profiles T, all i ¢ T, all type profiles £ € T, and all strategies o. of the
environment, we have u;(L', (G_1,Tr), 0e, Tr) > (T, &, 0c, T7).

Intuitively, ¢ is t-immune if there is nothing that players in a set T of size at most ¢ can do to give
the players not in 7" a worse payoff, even if the players in T share their type information.

The notion of t-immunity and k-resilience address different concerns. For ¢t-immunity, we consider
the payoffs of the players not in K; for k-resilience, we consider the payoffs of players in K. It is
natural to combine both notions. Given a strategy profile 7, let F;;F be the game which is identical
to I' except that the players in T are fixed to playing strategy 77p.

Definition 3.4. & is a (strongly) (k,t)-robust equilibrium in a game I if & is t-immune and, for
all subsets T of players with |T'| <t and all strategy profiles T, (G_r,Tr) is a (strongly) k-resilient
equilibrium of I‘g.

We can define “approximate” notions of t-immunity and (k,t)-robustness analogous to Defini-
tion 3.2:

Definition 3.5. For e > 0, a strategy profile & is e-t-immune in I' if, for all subsets T of players
with |T'| < t, all strategy profiles T, all i ¢ T, all type profiles T € T, and all strategies o, of the
environment, we have w;(I', (&_1,7r), 0e, T1) > ui ([, &, 0¢, 1) — €.

Definition 3.6. For ¢ > 0, & is a (strongly) e-(k,t)-robust equilibrium in T if & is e-t-immune
and, for all subsets T of players with |T| < t and strategy profiles 7p, (6_1,Tr) is a (strongly)
e-k-resilient equilibrium of FZ.



4 Main theorems: formal statements

In this section, we state our results formally. We begin with a result that is an analogue of R1
in the asynchronous setting. We say that a game I" is a utility variant of a game I" if I” and T’
have the same game tree, but the utilities of the players may be different in I" and I”. We use the
notation I'(%) if we want to emphasize that 4 is the utility function in game I". We then take I'(d’)
to be the utility variant of I with utility function .

Two more technical comments before stating the theorems: in the mediator game we can also view
the mediator as a player (albeit one without a utility function) that is following a strategy. Thus,
when we talk about a strategy profile that is a (k,t)-robust equilibrium in the mediator game, we
must give the mediator’s strategy as well as the players’ strategies. We sometimes write &+ oy if we
want to distinguish the players’ strategy profile & from the mediator’s strategy o4. We occasionally
abuse notation and drop the oy if it is clear from context, and just talk about & being a (k, t)-robust
equilibrium.

In general, we do not have a bound on the number of messages sent in our implementation. However,
we can get a polynomial bound if we restrict the mediator to using what we call a responsive strategy.
Roughly speaking, a responsive strategy & + o4 is one where (1) the mediator sends messages only
initially or in response to receiving a message since the last time it moved; (2) if it has received a
message since the last time it was scheduled, it acts just as it would have acted if the message had
been received immediately after the last time it acted (rather than possibly being received after
the mediator was scheduled a number of times without receiving a new message); and (3) there is
a bound C' such that the mediator uses at most C' random bits (which are set to 1 with probability
1/2) in each run; in this case we say that & + o4 has uniformly bounded randomization. See |Geffner
and Halpern 2018] for the formal definition.

Theorem 4.1. IfT' is a normal-form Bayesian game with n players, ¢ + oq4 is a strategy profile for
the players and the mediator in an asynchronous mediator game Iy that extends T, and n > 4k-+4t,
then with both the default-move approach and the AH approach, there exists a strategy profile & or
that implements & + o4 in the asynchronous cheap-talk game I' o such that for all utility variants
Ty(d') of Ta, if & + o4 is a (strongly) (k,t)-robust equilibrium in Ty(d'), then &cor is a (strongly)
(k,t)-robust equilibrium in Top(d'). If o4 is responsive, then the number of messages sent in a
history of dcr is polynomial in n and N, linear in ¢, and independent of u’'.

The proof of Theorem 4.1 uses ideas from the multiparty computation protocol of Ben-Or, Canetti,
and Goldreich [1993] (BCG from now on). Our construction actually needs stronger properties
than these provided by BCG; we show that we can get protocols with these stronger properties in
a companion paper [Geffner and Halpern 2018]; see Section 5 for further discussion.

We can obtain better bounds if we are willing to accept e-equilibrium, using ideas due to Ben-Or,
Kelmer, and Rabin [1994].

Theorem 4.2. If I' is a normal-form Bayesian game with n players, ¢ 4+ o4 is a strateqy profile
for the players and mediator in an asynchronous mediator game Iy that extends I', M > 0, and
n > 3k + 3t, then with both the default-move approach and the AH approach, for all € > 0, there
erists a strategy profile Gor in the asynchronous cheap-talk game U o that e-implements & such
that for all utility variants T'q(d') of T'q bounded by M /2 (i.e., where the range of u; is contained in



[—M/2,M/2]), if &+ 04 is a (strongly) (k,t)-robust equilibrium in Ty(d'), then &cr is a (strongly)
=/

e-(k,t)-robust equilibrium in Uop(@'). If oq4 is responsive, then the number of messages sent in a
history of ot is polynomial in n and N, linear in c, and independent of u'.

If we have a punishment strategy and utilities are known, we can do better with the AH approach.
To make this precise, we need the definition of an m-punishment strategy [Abraham, Dolev, Gonen,
and Halpern 2006] (which generalizes the notion of punishment strategy defined by Ben Porath
[2003]). Before defining this carefully, note that in an asynchronous setting (i.e., in the mediator
game and the cheap-talk game, but not in the underlying game), the utility of players depends on
the environment’s strategy as well as the players’ strategy profile and the players’ type profile.

Definition 4.3. If IV is an extension of an underlying game I, a strategy profile p in T is a k-
punishment strategy with respect to a strategy profile ¢’ in I if for all subsets K of players with
1 < |K| < k, all strategy profiles & in T', all strategies o. for the environment, all type profiles
Z e T, and all players i € K, we have

ui(I", 6", 0e, Zx) > ui(T, (Ok, p-K ), Tk ).

Thus, if g’ is a k-punishment strategy with respect to ¢’ and all but k players play their part of g
in the underlying tame, then all of the remaining players will be worse off than they would be in
I if everyone had played &', no matter what they do in the underlying game.

Theorem 4.4. If ' is a normal-form Bayesian game with n players, & + o4 is a strategy profile
i canonical form with uniformly bounded randomization for the players and mediator in an asyn-
chronous mediator game Ty that extends T, there is a (k + t)-punishment strategy with respect to
0+ o0q, and n > 3k +4t, then with the AH approach, there exists a strategy profile &cr that imple-
ments & + o4 in the asynchronous cheap-talk game T cr, and if & + o4 is a (strongly) (k,t)-robust
equilibrium in Tg, then &cor is a (strongly) (k,t)-robust equilibrium in T cr. If we require only that
dor 18 a weak implementation, then the number of messages in a history of &or is polynomial in
n and linear in c.

Note that in Theorem 4.4, the running time of the algorithm is significantly affected by whether
we want &cr to implement & or whether a weak implementation suffices.

If we assume both that there is a (2k + 2t)-punishment strategy and that utilities are known, we
can get an analogue to R2, but with an € error.

Theorem 4.5. If I is a normal-form Bayesian game with n players, & + oq is a strategy profile
i canonical form with uniformly bounded randomization for the players and mediator in an asyn-
chronous mediator game Ty that extends T', there is a (2k + 2t)-punishment strategy with respect
to ¢ + o4, and n > 2k + 3t, then with the AH approach, for all € > O there is a strategy &cor
that e-implements & in the asynchronous cheap-talk game I'cr such that if & + o4 is a (strongly)
(k,t)-robust equilibrium in Ty, then Gor is a (strongly) e-(k,t)-robust equilibrium in Tcp. If we
require only that Gor is a weak implementation, then the number of messages in a history of G or
s polynomial in n and linear in c.

We prove these results using ideas in the spirit of ADGH, but much more care must be taken to deal
with asynchrony. Among other things, we need stronger security guarantees than are traditionally

provided for multiparty communication; see Section 5 for details.
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5 Bisimulation and cotermination

Ben-Or, Goldwasser, and Wigderson [1988] (BGW from now on) and Ben-Or, Canetti, and Gol-
dreich [1993] (BCG from now on) show that if a function f of n inputs provided by n players can
be computed using a mediator, then it can be computed by the players without the mediator and
without revealing any information beyond the function value, even when some of the players are
malicious. BGW deal with the synchronous case and provide a protocol that tolerates up to n/3
malicious players; BCG deal with the asynchronous case and provide a protocol that tolerates up
to n/4. The notion of not revealing any information is made precise by defining a set of ideal dis-
tributions over possible values of the function, and ensuring that the real distribution is identically
distributed to one of those (see BGW and BCG for formal definitions and details).

We can view a mediator game as computing an action profile in the underlying game; the ideal
distributions are the possible distributions over action profiles when the honest players play their
component of the (k,t)-robust equilibrium strategy profile in the mediator game. BCG’s protocol
then essentially gives us a strategy in the cheap-talk game. However, the BCG protocol is not
sufficient for our purposes for two reasons: it does not guarantee that the real protocol is an imple-
mentation of the ideal protocol in the sense of the definition in Section 2 (although it does suffice
for weak implementation), nor does it guarantee that the protocol is a (k, t)-robust equilibrium. To
prove these stronger results, we show that & cr can be constructed so as to satisfy some additional
security properties, which we now define. For some of these definitions, it will be useful to introduce
the notion of adversary. An adversary A is a tuple (T, 7, 0.) consisting of a set T of malicious
players, a strategy 7r for players in T, and a strategy o. for the scheduler. To keep the notation
as simple as possible, we omit the set T" when it is clear from context, just writing A as the pair
(7r,0¢). (Note that 77 is just a tuple of |T'| strategies. We write this tuple as 7r only because we
view it as the strategies played by the players in T in the profile 7.)

Definition 5.1 (¢-bisimulation). Let 7(&, A) be the distribution over outputs when running strategy
7 with adversary A = (1p,0.). Protocol @ t-bisimulates T + g4 if, for all T with |T| <t and inputs

—

xT:

e for all adversaries A = (Tr, 0.), there exists an adversary A" = (T, ol) such that ©(Z, A) and
7' (Z, A’) identically distributed;

e for all adversaries A" = (T, 0l.), there exists an adversary A = (Tr,0.) such that 7(Z, A) and
7' (2, A") are identically distributed.

Note that 0-bisimulation is equivalent to implementation. While implementation considers only
what happens when there is no malicious behaviour, ¢-bisimulation generalizes this notion by taking
malicious behavior into account. For some of our results (specifically, Theorems 4.1 and 4.2), we
use this notion, and show that it is achievable under the conditions of these theorems.

We have required schedulers to eventually deliver each message that is sent. Because we assume that
protocols in the mediator game are bounded, all protocols in the mediator game must terminate.
This means that we can’t hope to simulate a protocol in the cheap-talk game that deadlocks.
(We assume that if the protocol deadlocks, it has a special output that we denote L. Given our
constraints, we can never get an output of L in the mediator game.) To deal with this situation, we
relax this requirement on schedulers somewhat, but only in the mediator game. We take a relazed

11



scheduler to be one that may never deliver some messages. There is no requirement on messages
sent by the players. We can define relazed t-bisimulation just as we defined t-bisimulation, except
that we allow the schedulers ¢/, and o, to be relaxed schedulers. Finally, we define (¢,t’)-bisimulation
just as we defined relaxed t-bisimulation except that o/ and o, must be standard if |T'| < ¢’ (note
that ¢ must be smaller than ).

We need a further property to deal with protocols that involve punishment strategies. For a
punishment strategy to be effective, all the honest players have to play it. In our protocols, the
punishment strategy is played when there is a deadlock (so some players never terminate); that
is, the punishment strategy is in the honest players’ “wills”. Thus, we want it to be the case that
either none of the honest players terminate (in which case the punishment strategy will be effective)
or all of them do; we do not want it to be the case that only some of the honest players terminate.

Definition 5.2 ((¢,¢')-cotermination). A protocol @ (t,t')-coterminates if, for all schedulers o., all
subsets T of at most t players, and all strategy profiles T for the players in T, in all histories of
the protocol (R—r,Tr,0.), either all the players not in T terminate, or at most t' players not in T
do. We say that @ t-coterminates if it (t,0)-coterminates.

For some of our results, we need “approximate” versions of ¢-bisimulation, relaxed t-bisimulation,
(t,t') bisimulation, t-cotermination and (¢,t’)-cotermination, that allow an e probability of error.
For t-bisimulation, relaxed t-bisimulation, and (¢,¢) bisimulation, this means that the distance
between the distribution over outputs in the cheap-talk game and the distribution over outputs
in the mediator game is at most e (where the notion of distance is that used in the definition of
e-implementation in Section 2), while for ¢-cotermination and (¢,t')-cotermination it means that
the property holds with probability 1 —e. We call these properties e-t-bisimulation, relared e-t-
bisimulation, e-(t,t')-bisimulation, e-t-cotermination, and e-(t,t’)-cotermination respectively. In
our companion paper [Geffner and Halpern 2018], we prove the following results:

Theorem 5.3. Given a mediator game 'y extending I' and a strategy profile & + o4 in 'y in
canonical form, there exists a strategy profile o for T'cr such that &or (t,2t + 1)-coterminates
and t-bisimulates (resp., (t,t')-bisimulates) & + o4 if t < n/3 and t < n/4 (resp., 3t +t < n)
respectively. If oq is responsive, then the number of messages sent in a history of @ ot is polynomial
inn and N, linear in ¢, and independent of u'.

Theorem 5.4. Given a mediator game I'g extending I, a strategy profile &+ o4 in 'y in canonical
form, and a real number € € (0,1], there exists a strategy profile Gcp in U'or such that &or €-
(t,t+1)-coterminates and e-t-bisimulates (resp., e-(t,t')-bisimulates) G+ oq if t <n/2 andt <n/3
(resp., 2t +t' < n) respectively. If oq4 is responsive, then the number of messages sent in a history
of Gor 1s polynomial in n and N, linear in ¢, and independent of i’ .

We use the constructions provided by Theorems 5.3 and 5.4 to prove Theorems 4.1, 4.2, 4.4, and
4.5. For Theorems 4.1 and 4.2, we show that these constructions already satisfy all the desired
properties. For Theorems 4.4 and 4.5, (¢t + k, t)-bisimulation and e-(t + k, t)-bisimulation guarantee
that that the only way in which rational and malicious players can make the outcome of the
cheap-talk game different from that of the mediator game is by preventing the honest players from
terminating. However, it is not in the interest of rational players that too many honest players end
in deadlock, since if enough honest players do not terminate, they play the punishment strategy
according to their wills.

12



We then show that the construction for Theorems 5.3 and 5.4 can be easily modified so that &¢r
terminate or none does. It would then seem that to always be in the interest of rational players
that all honest players terminate. Unfortunately, a punishment strategy payoff is worse for rational
players than the equilibrium payoff only in expectation, and thus, depending on the information
rational players receive throughout the game, there might be some situations in which they might
actually want to be punished (we provide a concrete example in Section 6.5). We deal with this
issue by showing that all mediator games can be reduced to a mediator game where the mediator
uses a minimally-informative strategy, so that players receive no information about the outcome
until the very end. This makes the punishment strategy a persistent threat for rational players.

6 Proofs of the main theorems

6.1 Coordination between the environment and malicious players

Before proving the main results, it is useful to understand some of the implication of (k,t)-
robustness, particularly when it comes to the interactions between the environment and the ma-
licious and rational players. The definition of (k,¢)-robustness requires that rational players have
no profitable deviation, no matter what the malicious players and the environment do. It may
seem a priori that the malicious players, the rational players, and the environment all act indepen-
dently, but in fact, we can assume without loss of generality that they are all under the control of
a single adversary. Clearly rational players can coordinate by sending messages to each other. The
malicious and rational players can also coordinate with the environment so that, for example, the
malicious and rational players can act knowing who will be scheduled when and the environment
can schedule rational and malicious players based on their inputs. This follows from the fact that
(k,t)-robustness must hold for all schedulers.

To see that a player ¢ can communicate with the environment, recall that we have assumed that
the message space is finite, say {my,...,my}. Immediately after sending mj, i sends j empty
messages to itself. So, even though the environment cannot read the messages, it will know that
1 sent message mj.2 (Clearly the environment will also know who sent the message, since the
environment delivered the message.) Thus, we can assume without loss of generality that the
rational and malicious players know the environment’s protocol (and thus know when a message
that is sent will be delivered), hence it suffices for the environment to tell the non-honest players
when the kth message is sent, who sent it, and who the intended recipient is. All the non-honest
players i initially send themselves (n+1)? empty messages. If the first message was sent by player
Jj1 to player jo (treating the mediator as player 0 in the mediator game), then the environment
delivers (n + 1)j1 + jo of these empty messages. Then player i sends another (n + 1)? empty
messages, allowing the environment to encode the sender and receiver of the next message, if there
is one.

The fact that the environment and the malicious players can communicate allows us to prove a
tighter correspondence between deviations in the cheap-talk game and deviations in the mediator
game than the one given by t-bisimulation.

2We can encode m; using using fewer messages by having ¢ send message to other agents as well as itself. Our goal
here is not to minimize the number of messages, but to show that communication with the environment is possible.
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Proposition 6.1. Given two protocols @ and 7® and a scheduler oe, if @ t-bisimulates 7, there
exists a function Hy, from strategies to strategies such that Hy (7;) = @ for all i, and for all
adversaries A = (Tp,0.) with |T| < t, there exists a scheduler ol such that for all inputs T, 7(Z, A)
and 7 (Z,(H,, (7r),0.)) are identically distributed (where we extend H,, to strategy profiles by
taking Hy, (T1,...,Tm) = (Hy,(11), .., Hy, (Tim))).

Proof. Since 7 t-bisimulates 7 + g4, for each adversary A = (7r,0.), there exists an adversary
A" = (7}, 0)) such that 7(Z, A) and 7'(Z, A’) are identically distributed for all inputs Z. This
means that, fixing o., there exists a well-defined function H, gj” from strategy profiles to adversaries
such that for all subsets T" with |T'| < t and all strategies 7y for players in 7', there exists a
scheduler o/, such that (7+74)(Z, (Fr, 0¢)) and 7 (&, HI% (7)) for all inputs Z. Given an adversary

A = (7r, 0.), consider the following adversary A" = (77, 0L):

1. The scheduler begins the game by scheduling all players in T' once.

2. Each player i € T sends the description of the strategy 7; to the scheduler o/, the first time it
is scheduled.

3. After receiving the strategies of the players in T, the scheduler computes H%(7r) and
sends each player i € T the (description of) strategy HZ%(7r);, and then switches to using
HE (7).,

4. Each player ¢ € T switches to the strategy sent by the scheduler after receiving it.

Consider the function H,, that maps 7; to 7/ if 7; # m; and maps 7; to 7, (note that H,, is well
defined, since 7] does not depend on the strategy of other players in T') and a scheduler o that
acts like o/ except that at step 1, it schedules only the players i in T such that 7; # m;. We have
by construction that (%, A) = # (%, H2% (7r)) and therefore that #(%, A) = #(Z, (He, (7r), 07)),
as desired. O

Proposition 6.1 implies that we can assume without loss of generality that individual deviations in
the mediator game correspond to individual deviations in the cheap-talk game and vice-versa. An
analogous result holds for e-t-bisimulation:

Proposition 6.2. Given two protocols @ and © and a scheduler o., if ® e-t-bisimulates 7, there
exists a function H,, from strategies to strategies such that Hy (7;) = @, for all i, and for all
adversaries A = (7r,o.) with |T| < t, there exists a scheduler o, such that for all inputs Z, the
distance between the distributions @(Z, A) and @ (&, (H,, (Tr),0L)) is at most € (where the notion
of distance is that used in the definition of e-implementation in Section 2).

As we show next, since the scheduler can collude with malicious players, t-immune strategy profiles
satisfy an even stronger condition: deviations by players in a set 7" with |T'| < ¢ do not make things
worse for the non-deviating players even if the environment colludes with the players in 7.

Proposition 6.3. If & is t-immune, then for all sets T of players with |T| < t, strategies o. and o,
for the environment, strateqy profiles Tr for the players in T, input profiles T and ', and players
i¢ T, we have

ui(rcb (E—TvFT)¢O-:3af/7“) > Ui(rd,o_", Jeva)' (1)
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Proof. Clearly, if (1) holds for all o, 0., #, and Z’, then & is t-immune. For the converse, suppose
by way of contradiction that c_r’ is t-immunte but for some T, 7, o, o., and i ¢ T, (1) does not
hold. Consider a scheduler ¢” that acts just like o., except that if some player i sends a message
to itself it acts like 0. Then players in T can effectively decrease i’s payoff with scheduler o/ by
sending a message to themselves and playing as if they had input #7.; that is, there is a strategy
7 such that

~
<

’LLZ(Fd, (O_: Taﬁ%))aeafT)
= UZ(Pd, (5: Tu?T)7oéaf{]“)
< (T, 7,0, 77)
- ’U,Z(Fd,a:, 02/7 HT)7
contradicting the assumption that & is t-immune. O

A similar argument shows that (k,t)-robust strategy profiles satisfy a correspondingly stronger
condition, made precise in the following proposition:

Proposition 6.4. A strategy profile & is (k,t)-robust (resp., strongly (k,t)-robust) if and only if it
is t-immune and for all disjoint sets K and T with 1 < |K| < k and |T| < t, all strategy profiles
T, Tr, and Ty, for the players in K and T, respectively, all environment strategies o. and o, and
all input profiles ¥ and &', we have that

ui(Ta, (
< (T, (

— —
—(KUT)>» TK, TT)

T gur))
(KUT) 9
—(KUT)> T Tp)s 06, @)

c
7 x (KUT))

6
/
e’
for some i € K (resp., for alli € K ).

Proof Again it is clear that if (2) holds for all K and T with 1 < |K| < k and |T| < 't, all T, 71,
T, &, and &', and some (resp., all) i € K, then & is (k, t)-robust (resp., strongly (k,t)-robust).

For the converse, assume by way of contradiction that & is (k, t)-robust, but for some disjoint sets K
and T' with 1 < |K| < k and |T'| < t, Tk, 7r, Tp, &, and &', and all i € K, (2) does not hold. Again,
we use the fact that the rational players can effectively communicate with malicious players and
with the scheduler. Consider a scheduler o/ that acts like o, unless some player sends a message to
itself, in which case it acts like o/, and a strategy profile 77/ in which each player ¢ € T" acts as if it
was using strategy (7r);, except that it switches to (7/); and acts as if it has input ] if it receives
a message from a ratlonal player (i.e., a player in K) asking it to do so. Then, given input profile
@, strategy profile 77 for T, and scheduler ol player i can gain by sending a message to itself and
sending a message to players in T asking them to follow 77, and to act is if they have input &7, and
by having players in K play 7k as if they had input 2, rather than playing &. This contradicts
the assumption that & is (k,t)-robust. The argument for strong (k,t)-robustness is analogous. [

Another property interesting in its own right that follows from this argument is that (k,t)-robust
strategies must be scheduler-proof: the expected payoff for all players is the same regardless of the
scheduler:

Corollary 6.5. If & is (k,t)-robust for some k > 1, then for all sets T with |T| < t, strategy profiles
Tr for the players in T, environment strategies o. and o, input profiles ¥, and players i ¢ T, we
have ui(F, (E_T, 7?T>7 Oe¢c, fT> = ui(F, (E_T, 7_"T), Jé, fT)
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We have analogous strengthenings of e-t-immunity and e-(k,t)-robustness, which are stated next.
The proofs are essentially identical to that of Proposition 6.3 and 6.4 respectively, so we omit them
here.

Proposition 6.6. If ¢ > 0 and & is e-t-immune in game I', then for all sets T of players with
|T| <t, strategy profiles Tr for the players in T, environment strategies o and o, input profiles T
and T, and players i ¢ T, we have that

ui(F, (E_T, ?T), Ué, f/T) > ui(l“, 7,0, fT) — €.
Proposition 6.7. A strategy profile & is e-(k,t)-robust (resp., strongly e-(k,t)-robust) in game T’
if and only if it is e-t-immune and, for all disjoint sets K and T of players with 1 < |K| < k and

|T| <t, all strategy profiles Tk, Tp, and Tr for players in K and T, respectively, all environment
strategies o and ol,, and all input profiles T and T', we have that

ul(F7 (O_:—(KUT)v FK» 7_:7,“)7 0-27 fl(KUT)) < uz(Fa (&—T7 7__:T)v Oe, j:T) +€

for some i € K (resp., for alli € K ).

It will be useful for our later results that we can actually improve on the bound of € in Proposi-
tions 6.6 and 6.7.

Proposition 6.8. If & is an e-t-immune strategy in a finite game ', then there exists ey with
0 < eg < € such that for all sets of players T with |T| < t, strategy profiles Tr for the players in T,
environment strategies o. and o, input profiles ¥ and &', and players i ¢ T, we have that

ui(F, (&_T,FT), O’é,f’T) > ui(F,E, Ue,a_fT) — €.

Proof. Since, by Proposition 6.6, for each choice of 7r, o, and o, we have

Uz‘(ry 7, O'eva) - ui(ra (5—T77?T)a O';,f/T) <6,

Q

and the space of player strategy profiles, environment strategies, and input value profiles is compact,
if we take the sup of the left-hand side over all choices of strategy profiles 7, environment strategies
oe and o/, and input profiles Z and 77, it takes on some maximum value €; < ¢y. We can then take
€0 = (e+€1)/2. O

Using Proposition 6.7, we get a similar result for e-(k, t)-robustness. The proof is analogous to that
of Proposition 6.8.

Proposition 6.9. If T is a finite game and & is a e-(k,t)-robust strategy (resp., strongly e- (k,t)-
robust strategy) in I'q, then there exists ey with 0 < €y < € such that for all disjoint sets K and T
of players with 1 < |K| < k and |T| < t, all strategy profiles Tic, Tr and Ty for players in K and
T, respectively, all environment strategies o. and o, and all input profiles T and &', we have that

=/

wi (T, (6 (kur)s i 1), Oes T o)) < wil 0, (G-, T1), 06, T1) + €0

for some i € K (resp., alli € K ).
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6.2 Constructing a protocol that {-coterminates

If t < n/3 we can get an an analogue of Theorems 5.3 and 5.4 by replacing (¢, 2t + 1)-cotermination
by t-cotermination and e-(¢,¢ + 1)-cotermination by e-t-cotermination respectively. We sketch the
construction for ¢-cotermination; an analogous construction achieves e-t-cotermination.

Consider a protocol &, in which players play just as in &cr except that, whenever an honest
player ¢ terminates in &¢or, it instead broadcasts an ‘OK’ message to all players and waits until it
receives 3t + 1 ‘OK’ messages before it terminates in 6. Note that if an honest player terminates
in &, then at least 3t + 1 players must have broadcast an ‘OK’ message in this history of &, of
which at least 2t + 1 are honest. Thus, at least 2t + 1 players terminate in the corresponding history
of &or. Since dor (t, 2t + 1)-coterminates, it follows that all players not in 7" must terminate with
Gcr, and hence all players not in 7" send an ‘OK’ message (and terminate) with &/,

It remains to show that &, still (¢,¢')-bisimulates & + ogq if 3t +¢' < n. Clearly, it still relaxed
t-bisimulates & + g4, so we just have to show that all players are guaranteed to terminate in the
presence of at most ¢’ malicious players. However, in this case, by assumption, all honest players
are guaranteed to terminate in &cr, and thus all honest players are guaranteed to eventually send
an ‘OK’ broadcast in ¢/p. Since n —t' > 3t + 1, this guarantees that there will be at least 3t + 1
‘OK’ broadcasts and all honest players will eventually terminate, as desired.

Note that this construction requires players a reliable broadcast protocol, and thus can be done
only if n > 3(t + k). To prove Theorem 4.5 we require different techniques.

6.3 Proof of Theorem 4.1

By Theorem 5.3, if n > 4k + 4t, there exists a strategy profile Gcp that (k + t)-bisimulates & 4 04.
It is immediate from the definition of (k + t)-bisimulation that &¢7 implements & + 4. Since the
probability of deadlock is 0, what the players do in case of deadlock is irrelevant, so this approach
works both in the case of the AH approach and the default-move approach. It remains to show
that, for each utility variant T'y(a@') of T'y, if &+ 04 is a (strongly) (k, t)-robust equilibrium in T'4(a’),
then Gop is a (strongly) (k,t)-robust equilibrium in T'¢p(@’). We start by showing that dor is
t-resilient in T o (o).

Given T with |T| < t, 7r, and o, by Theorem 5.3 and Proposition 6.1, there exists a function H,,

from strategies to strategies and a scheduler ¢/, such that for all input profiles Z,

w;(Cer(@), ((Ger)-1,T7), Oc, T)
= u;(Fd(ﬁ,), (E*Tv Hae (?T))a Uclzv j)

for all players i. There also exists a scheduler ¢/ such that

u;(FCT(ﬁ/)v ECTa Je/zv j) = U{L(Fd(ﬁl)v 5:’ 0-4/3,7 f)

Since & is t-immune, for all i ¢ T' we have that

(Tor(@), ((Gor)-1:7Tr), 0c, T1)
i Fd(ﬁ/)a (0_:—Ta HO’e (?T))7 Jéa fT)
(Ty(d'),d, 0", Z1) [by Lemma 6.3]
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Therefore, &cr is t-immune.

To show (strong) (k,t)-robustness, taking 7r, o, and o, as above, suppose that K is a set of
players disjoint from 7" such that |K| < k, and the players in K play 7x. By Theorem 5.3 and
Proposition 6.1, there exists o} and H,, such that

Uy (FCT(U)7((UCT) (KUT)’FK)FT)vo-E)f)
= w(Ta(@), (- (xur), Ho (7K ), Hoo (1)), 02, £ (1c0))

for all players i. By Corollary 6.4, if & + o4 is (k,t)-robust (resp., strongly (k,t)-robust) in T'y4(d’),

then / L B B B
wy(La(@"), (0 (xur) Hoo (k) Hoo (T1)), 02, Z(kUT))
< u;(rd(ﬁ/)7 (E—TaHUe (7__'T>),0'é,fT)

for some (resp., all) i € K. For those i € K for which this inequality holds, we have

u;(FCT(ﬁ/)>((ECT) (KUT))TK7TT)7O-€7£(KUT))
= w(La(@), (0 (xur)s Hoo(Tk)s Ho  (T1)), 0%, Z(xuT))
< u;(rd(ﬁ/)7(E—TaH (TT>)vO—éafT)
= w(Lor(@), ((For)-1,0e, TT).

It follows that &cr is (strongly) (k,t)-robust in T'cr(d).

6.4 Proof of Theorem 4.2

The proof of Theorem 4.2 is essentially the same as that of Theorem 4.1, except that we now use
Theorem 5.4 instead of Theorem 5.3. By Theorem 5.4, for all € € (0, 1], there exists a protocol & ¢t
that e-(t 4 k)-bisimulates ¢ and the expected number of messages sent is polynomial in n and N,
and linear in c¢. It follows that &7 €/-implements & and has at most a probability € of deadlock.
We next show that the can make € sufficiently small so that the question of whether we use AH
approach or the default-move approach becomes irreievant.

We now prove e-(k, t)-robustness. Suppose that & 4 o4 is a (strongly) e-(k, t)-robust equilibrium in
the utility variant I'y(@’) of T'y. We show that &¢r is e-t-immune in T'op(@'). Since For e(t + k)-
bisimulates &, for all inputs £ we can associate histories in the mediator game and histories in the
cheap-talk game in such a way that the set of histories where the outcomes differ has probability at
most €. Since all utilities are in the range [—M/2, M/2], by assumption, the maximum difference
in utility between two outcomes in the underlying game is M. Thus, by Proposition 6.2, there
exists an environment strategy o, and a function H,_ from strategies to strategies such that for all
input profiles Z, we have

w,(Cor (@), ((Gor)-1,71), 00, T)
> u'(Fd(u’ ,(O‘ T)HO'E(FT))ao-eyfT) — M

for all i ¢ T. Theorem 5.4 also guarantees that there exists an environment strategy o/ such that

—

ui(Cor (@), Gor, oh, 1) < ui(Ty(@), &, 02, 1) + € M.
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Since & is e-t immune in T'y(@’), by Proposition 6.8, there exists a value ¢y with 0 < ¢y < € such
that

u;(FCT(ﬁ,)’ ((0_:CT)*T7 7_—%)7 O'é7 j‘T)
> ug(Fd(ﬁ’), (5:—T; ng (FT)), Oe¢, fT) — €M
> ug(Fd(ﬁ’), g, U,e/, _'T) — €y — €M
> w(Ler(@),cr, oL, Tr) — €0 — 2/ M

If we take ¢ = (e — €)/2M, this shows that ¢or is (€, t)-immune with both the AH approach and
the default-move approach.

To show (strong) e-(k,t)-robustness, keeping T', 71, H,,, o, and o, as above, for all sets K of
players disjoint from 7" with 1 < |K| < k and strategy profiles 7k, there exists an environment
strategy o) and a value €y with 0 < ¢y < € such that for all input profiles Z, if &+ o4 is (k, t)-robust
(resp. strongly (k,t)-robust), then

wi(Cor (@), ((Gor)—(kur))s Ti s TT), 00y T(kUT))
< wy(Tg(w )7(5—(KU ), Ho (7K ), Hae(TT)) e, F(kur)) + €M
< (L"), (61, Hs. (1)), 00, 1) + €0 + € M [by Proposition 6.9]
< w(Leor(@),(Gor)-1,7),0c, Tr) + €0 + 26’ M [by Theorem 5.4].

for some (resp., for all) i € K. This shows that if we take ¢’ := (e — €9)/2M, then dor is e (k, t)-
robust (resp., strongly (k,t)-robust). Note that this argument works for both the AH approach
and the default-move approach since it does not depend on the actions played in deadlock.

6.5 Proof of Theorem 4.4

The proof of Theorem 4.4 is similar in spirit to that of Theorem 4.1. The main problem we have to
deal with is that of ensuring that rational players participate. To force participation, we have the
honest players put the punishment strategy in their “wills”, so that if &cr ends in deadlock, the
rational players will be punished. By the arguments given in Section 6.2, we can assume without
loss of generality in this proof that the implementation given by Theorems 5.4 (¢ + k)-coterminates,
and thus either all honest players terminate or they all play the punishment strategy. Unfortunately,
a naive implementation of this approach does not work, as the following example shows.

Consider an underlying game I' for n > 3k players where the set of actions is A := {0,1, L}. If
at least k 4+ 1 players play L, all players get a payoff of 1.1; if k£ or fewer players play L and all
players play either 0 or L, then all players get a payoff of 1; if k or fewer players play | and all
players play either L or 1, then all players get a payoff of 2; otherwise, all players get 0. Let I'y be
an extension of I' with a mediator. Suppose that the mediator d uses the following strategy: The
mediator d chooses a,b € {0, 1} uniformly at random. Then d sends the message a + bi (mod 2) to
player i (the same a and b are used in all these messages). Finally, d sends the message “output b;
STOP” to all players (so the strategy is in canonical form).

Let o; be the strategy where player i ignores the message a + bi and plays b after receiving the
message “output b”. It is easy to check that & is a k-resilient equilibrium in the mediator game,
and gives players an expected payoff of 1.5. Moreover, playing L is a k-punishment strategy with
respect to &, since if all but k players play L, then everyone gets a payoff of 1.1 (since at least k+ 1
players play L), which is less than 1.5.
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The naive approach to implementing the mediator does not work for this game, at least with the
punishment strategy L. For example, suppose that after receiving the messages a + bi (mod 2),
the rational players communicate with each other. Moreover, suppose that the set K of rational
players includes 7 and j such that ¢ — j is odd. Then the rational players can compute b. If b = 0,
they actually prefer their payoff with the punishment strategy to their payoff with ¢op. Thus, they
will stop sending messages. The simulation will not terminate, so the punishment strategy in the
players’ wills will be applied, making the rational players better off. Thus, we cannot simulate the
mediator with this approach. Of course, there are punishment strategies in this game that would
lead to cooperation (e.g., randomizing between 0 and 1). Nevertheless, this example shows that
using an arbitrary punishment strategy may not suffice to force the rational players to cooperate.

The problem here is that the mediator tells each player ¢ what a+b: is. We do not want the mediator
to send such unnecessary information. But what counts as unnecessary? We make “unnecessary”
precise by showing that, for each strategy profile ¢ + o4 of a mediator game, we can construct a
strategy ¢™ + o' that implements & + 04 and leaks no information. More precisely, there exists
a function f from strategy profiles to strategy profiles such that, for all strategy profiles & + oy,
f(G+04) implements 6+o04 and essentially all the mediator sends each player when playing f(6+o4)
is the action to play in the underlying game. (If we require only weak implementation, then this is
exactly the case; for implementation, the messages can also include a round number.) Moreover, if
&+ o4 is (k,t)-robust (resp., strongly (k,t)-robust, e-(k,t)-robust, strongly e-(k,t)-robust), then so
is f(6 + 04). The construction of f proceeds as follows:

Let D(Z, 0.) be the distribution over action profiles in the underlying game that when playing &+oy4
with input & and scheduler .. The intuition behind the construction of 6™ + o' := f(d + 04)
is that all players send their input to the mediator, the mediator waits until it receives messages
from at least n — k — t players, then simulates the game using the inputs sent by the players,
and sends back to each player what they would have played in the simulation. However, to get
an implementation of & + o4, the scheduler that the mediator uses in its simulation must depend
somehow on the actual scheduler and must be chosen in such a way that, for a given input profile
Z, all distributions in {D(Z, o¢)}+, are possible.

More precisely, the construction proceeds as follows: player ¢ uses strategy o.", according to which
i sends input x; to the mediator, waits for the mediator’s message msg; (which we take to be an
action for player i), and then plays action msg;. The mediator’s strategy o' consists of waiting
until the first turn £ at which there exists a subset S of at least n — k — ¢ players such that the
mediator has received exactly one message s; from each player i € S, and s; is a possible input of
player i. What the mediator does next depends on whether |S| =n or |S| < n.

If |S| < n, the mediator simulates & + o4 assuming that each player ¢ in S has input s;, and that the
scheduler schedules players in S and the mediator in round-robin fashion and delivers all messages
immediately after they are sent (note that such a scheduler exists even with the constraint that
all players must be eventually scheduled, since the scheduler can schedule players not in S after
the mediator terminates). The mediator then sends to each player i they action that i plays in its
simulation. For future reference, we denote the scheduler used in this simulation by o2 .

If |S| = n, the mediator proceeds as follows: Let 2 be the set of deterministic schedulers, and
let D% := soetD(T,0c)}. Since each player uses a finite amount of randomization in ¢ + g,
for all inputs &, deterministic schedulers o., and action profiles @, the probability that players
play action profile @ in the underlying game when playing & + o4 with input Z and scheduler
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0e is a rational number. Since there are finitely many possible action profiles in the underlying

game, D is countable. Thus, there exists a set {Uéf’l),agf’Q), ...} of schedulers such that DT =

{D(Z, af;f’”), D(z, Jg’Q)), ...}. The mediator simulates &+ 0,4 assuming that each player ¢ has input

s; and that the scheduler is 0'£§7£) (recall that ¢ is the turn at which the mediator receives the required
number of messages). If D7 is finite, it performs the simulation with scheduler U£S7e( mod [D%)))

instead.

Lemma 6.10. ¢™ + o} implements ¢ + oq and is (k,t)-robust.

Proof. First note that it suffices to prove this result for deterministic schedulers. This follows from
the fact that all randomized schedulers can be written as a (possibly infinite) linear combination of
deterministic schedulers. By construction, for all inputs & and all deterministic schedulers & (under
the assumption that no agents deviate). To prove the converse, given a deterministic scheduler o,
for 3404, we have that D(F, 0.) € D¥, and thus there exists k € N such that D(#, 0.) = D(, ag’k)).
Consider a scheduler ¢, in 6" + o7} that schedules all honest players consecutively, then schedules
the mediator £ — 1 times, then delivers all messages sent by the players to the mediator, and then
schedules the mediator again. By construction, in this scenario, the mediator simulates &+ o4 with
input profile # and scheduler o k) Therefore (6 +04)(&, 0¢) and (6™ + 07")(Z, o)) are identically
distributed.

To see that ™+ is t-immune, suppose, by way of contradiction, that it is not. Thus, there must
exist an adversary A = (T, 7r, 0¢) with |T'| < t and an input profile & such that u; (6™ +o0}", A, %) <
wi(Om + 0, @, 0c) for some i ¢ T. We can assume without loss of generality that A is deterministic.
When playing ¢ + o' with adversary A and input profile Z7, the first round m by which the
mediator receives messages of the right form from a subset S of at least n — k — ¢ players, the set S
and the values s; used in the mediator’s simulation are uniquely determined. Consider an adversary
A= (T,7},0.) in & + o4 where each player ¢ € T acts as if it was an honest player with input s;.
while the scheduler acts like o2 if |S| < n, and like 07" otherwise. However, if a; is the action that
1 would have played if it was honest and had input s;, instead of playing a;, ¢ plays what it would
have played in ¢™ + 0" if it had received message a; from the mediator. By construction, for all
inputs &, (6 + 0q)(Z, A) and (6™ + o]')(Z, A’) are identically distributed. This implies that

ul(E + 04, A/, f) < uz(ﬁ + 04, T, Ug)
for some scheduler ¢/, which contradicts the assumption that & + o4 is t-immune.

The argument that ¢™ + o is (k,t)-resilient is analogous, and left to the reader. O

Thus, without loss of generality, we can assume that the players and mediator use such a strategy
profile. We call f(& + o4) the minimally-informative strategy corresponding to & + o4. More
generally, we say that ¢ + o))" is a minimally-informative strategy if 6 + 0)]' = f(G + 0q) for
some strategy profile & + o4.

Since we consider only mediator games in canonical form, this guarantees termination for all honest
players regardless of what the rational and malicious players do, provided that the scheduler is
standard (i.e., not relaxed). However, once we allow relaxed schedulers, there is a possibility of
deadlock. We assume for the purposes of the proof that we use the AH approach in the mediator
game, and have the players play the punishment punishment strategy in their wills. Since o
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guarantees t-cotermination for ¢ < n/3, it follows that in the cheap-talk game, either all honest
players terminate or all honest players play the punishment strategy. This guarantees that the
players get the same payoff in corresponding histories in the mediator game and the cheap-talk
game.

The next step in proving Theorem 4.4 is to show that rational players playing with a relaxed sched-
uler cannot get an expected payoff that is higher than their expected payoff when they play such a
minimally-informative (k,t)-robust equilibrium strategy with a standard scheduler. Although this
property does not hold in general, it does hold when a certain degree of cotermination (which is
provided by Theorems 5.3 and 5.4) is guaranteed and there exists a punishment strategy. Under
these conditions, the rational players do not want too many honest players to fail to terminate,
because the honest players that do not terminate will play the punishment strategy.

To state this more precisely, we need to introduce a little more notation. Bisimulation guaran-
tees that for each strategy 74 that the adversary can play in the cheap-talk game, there exists a
corresponding strategy 7/ in the mediator game that leads to the same outcome for all players,
regardless of the input. Since the strategy &cr provided by Theorems 5.3 and 5.4 coterminates
(with the parameters of cotermination depending on the theorem), this imposes a constraint on 7/
that is captured in the following definition:

Definition 6.11. Given a strategy profile &, a scheduler o., and a subset T of players, (&, 0¢)
T-t-coterminates if, for all input profiles &, in every history of (&, 0., %), either all players not in
T terminate or less than t do. We say that (&, 0.) eT-t-coterminates if this property holds with
probability 1 — €.

Proposition 6.12. If e > 0, & + 04 is a minimally-informative e-(k,t)-robust (resp., strongly e-
(k,t)-robust) equilibrium in a mediator game Iy for which a (2k + 2t)-punishment strategy exists,
op is a relaxed scheduler, K and T are disjoint sets of players with 1 < |K| < k and |T| < 't, and
T(kuT) 8 a strategy profile for the players in K UT such that (G_(xur), T(kur), oB) €-(K UT)-
(t + k + 1)-coterminates, then there exists a value €9 < € such that for all standard schedulers o
and all input profiles X, we have that

ui(Ta, (F_(kur)s T(kUT))> OB Z(KUT))
< u(Tq, (G_7,7r),0c, T1) + €0 + €M

for some (resp., for all) i ¢ T.

To prove Proposition 6.12, we first show that all strategy profiles can be approximated by a profile
where there is a uniform bound on the amount of randomness used by an adversary.

Definition 6.13. Given a strategy profile &, an adversary A = (Tr, o¢) is N-bounded with respect
to & if, for all inputs and all histories, the number of random coin tosses performed by a player in
T or the scheduler o. when players in T play Tr, the remaining players play &, and the scheduler
plays o, is bounded by N.

Lemma 6.14. For all strategy profiles &, adversaries A = (Tr,0g), and € > 0, there exists an
adversary A" = (T}, 0%) and an N > 0 such that A" is N-bounded with respect to & and, for all
input profiles T, the distance between the distributions O(d, A, ) and O(&, A',T) is at most €.
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Proof. Fix € > 0. Let AN = (#¥,0¥) be the adversary that plays (7r, o), except that all players
1 € T and the scheduler act as if all the coin tosses after the Nth coin toss are tails. By construction,
for all input profiles Z, we have

lim d(O(G,A,7),0(d, AN, %)) =0,

N—o00
where d(-,-) denotes the distance between distributions. Thus, there exists an integer Nz such
that d(O(7, A, ), 0(&, AN, %)) < e. Since there are only finitely many input profiles, we can take
N = maxz(N%) to get the desired result. O

Proof of Proposition 6.12. First assume that
A := (T(kur),0E) is N-bounded with respect to & for some N > 0. Let 7/ be the strategy where
1 € K UT begins by tossing N random coins, it then communicates the outcome of the coin tosses
and its input to the adversary (using the communication scheme described in Section 6.1). Player
1 then plays 7; using the outcome of the coin tosses whenever it needs to randomize. The scheduler
o, acts like o except that it does not deliver any message that a player j € (K UT) sends with
7; that is not also sent with 7;. (Note that for j to commuicate its initial state and randomness to
the scheduler does not actually require j to send messages to the scheduler. It just sends messages
to itself, which do not have to be delivered.) By construction, we have that

ui(Ca, (G_(kur)> T(KUT)): OB
a

- ui(rda( f(KUT)aT(KUT))aoJEa

(KUT))
(KUT))-

2 &

We can view the adversary’s strategy (7_"(’ KUT)» o;) as a convex combination of (possibly infinitely
many) deterministic strategies (F(*KuT), 0%,). The construction of minimally-informative strategies
guarantees that the number of honest players that terminate when running (I'y, (6_(xur), f’E“KuT)),
O Z( KuT)) depends only on the scheduler and the inputs and randomization performed by players
in K UT. Thus, given the input profile Zxy7) of players in K U T, we can classify each of the
deterministic strategies (%?KuT), o) into the following three categories depending on how many
honest players terminate (which, by our constraints on relaxed schedulers, must be the same in
every history of (¢_(xur), Tkur> OF)):

A. all honest players terminate;

B. n — 2t — 2k or more honest players do not terminate;

C. at least one but fewer than n — 2t — 2k honest players do not terminate.
Consider a scheduler o)/ that acts just like 0/, as long as the history is consistent with a history of
(F_(kur)> Tieu> 0), until there comes a point when it is clear that some honest players will not
terminate. If such a point comes, or if the history is inconsistent with a history of (G_xur), Tiur

then o/ delivers all undelivered messages and from then on delivers all messages immediately. in
more detail, o/ just like o/; until one of the following conditions holds:

e A player in K UT does not communicate its initial state and the outcome of N coin tosses
to the scheduler.
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e The scheduler ¢/ can tell that what has happened thus far is inconsistent with the information
sent by the players in K U T, assuming that they are using 7y and the remaining players
are using J_(gur)-

e It follows from the information sent by the players in K U T that, with (o_xur), TkuT, %),
some honest player will not terminate.

e All honest players terminate.

Note that, by construction, one of these one of these conditions must hold in every history. For if
the mediator and honest players play a minimally-informative strategy, then the honest players do
not randomize, and the mediator randomizes only with regard to the message it sends along with
a STOP message. Moreover, an honest player terminates iff it gets a STOP message. Whether it
gets one is determined by the scheduler’s strategy, and the input of and randomization used by
the players in K UT. If the players in K UT use Txyur, then the scheduler can determine as soon
as it has received the input and the coin tosses of the players in K UT" which honest players will
terminate. Similarly, the scheduler can determine exactly when each honest player that terminates
does so. In any case, once one of these conditions holds, the scheduler ¢/, delivers all of the messages
not yet delivered, and from then on delivers messages immediately after they are sent. Thus, o7, is
guaranteed to be standard.

Suppose that (%?KuT),U*E) is a deterministic strategy in the support of (7 7( KuT),O'E) that is in
category A. Then, o, and o, are indistinguishable when the players in K U T play 7 T(kuT)" Thus,
if & + 04 is a minimally-informative e-(k, t)-robust (resp., strong e-(k,t)-robust) equilibrium, then
there exists a value € < e such that

ui(La, (G—(xur), Txeury)» Ok F (o))
= u;(]‘_‘d’(E KUT)vﬁ*KuT))aaévj(KUT))
o_

< uy(Tq,(G-1,77),0¢,T1) + € [by Proposition 6.9]

for some (resp., for all) i € K.

If (7 T(ku) U*E) is in category B, then again we have that if ¢ + o4 is a minimally-informative

e-(k,t)-robust (resp., strong e-(k,t)-robust) equilibrium, there exists a value € < € such that

(Fd, (o (KUT)>» KUT)% o5 f(KuT))
< uy(Tq, 7,00, Tkur)) [by definition of (2¢ + 2k)-punishment strategy]
< (g, (G_1,7T), 0, Z1) + € [by Proposition 6.8]

for some (resp., for all) i € K.

Since (G_(xur), T(kuT), B) (K UT)-(t + k + 1)-coterminates, the probability that the strategy
played by players in K UT is in category C is at most €. In this case, the payoff for each player is
bounded by M. Using a compactness argument analogous to that of Proposition 6.8, there exists a
value €y < € such that ¢ < ¢g for all deterministic relaxed adversaries (%EKKUT)’ 07,) in the support
of (ﬂKuT)v o) in categories A and B, and all inputs Z(xyr). So
ui(Tq, (G (kur),; T(xur)) O T(kuT))
< wy(Lq, (G-7,7r),0c, T1) + €0 + €M,
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and therefore, if & + 04 is a minimally-informative e-(k,t)-robust (resp., strong e-(k,t)-robust)
equilibrium, then
ui(Ta, (F_(kur)s T(KUT)): OB T(KUT))
< u;(l“d, (5’!]’, FT), O¢, fT) +€g + eM

for all inputs Z(xur), all standard schedulers o, all strategies T(xur), and for some (resp., for all)
ig¢T.

It remains to prove the result in the case that A is not N-bounded with respect to & for some
N. Fix € > 0 and let A” be an N-bounded ¢-approximation of A with respect to & given by
Lemma 6.14. Then, by the previous argument

u; (Fd7 (637(KUT)7 71’(](uT))7 0/1,7,‘7 f(KUT))
< u'/i(rcb (O_:—Ta 7?T)7 Oe, fT) + €0 + EMa

and by Lemma 6.14 it follows that

ui(Ta, (F_(kur)s T(KUT)): OB Z(KUT))
< ug(rdv (&—TaFT)v Uwa) + €g + eM + M

for all input profiles #(xr), standard schedulers o., and strategy profiles 7( k), and some (resp.,
all) ¢ ¢ T. Since this inequality holds for all ¢ > 0, the result follows. O

An analogous argument can be used if we have an (k,t)-robust equilibrium (not just an e-(k,t)-
robust equilibrium):

Proposition 6.15. If & + o4 is a minimally-informative (k,t)-robust equilibrium in a mediator
game Tg(u}) for which a (k + t)-punishment strategy exists, og is a relazed scheduler, T and K
are disjoint sets of players with |T| <t and 1 < |K| < k, and T(gur) is a strategy profile for
the players in K UT such that (0_(xur), T(kur), 0r) (K U T)-coterminates, then there exists a
(standard) scheduler o, such that for all input profiles & and all i ¢ T,

u;(La, (

, (F_(kur), T(KUT))> Tds OB, T(KUT))
< wi(Tg, (

o_
G_7,77),0d,0¢, ZT).

=/

Returning to the proof of Theorem 4.4, we can now prove (strong) (k, t)-robustness. Let I'y(@’) be a
utility variant of I'y such that &+ 'y is a (k, t)-robust equilibrium of T'4(’), let o be a scheduler in
Ler(i), and let K and T be disjoint subsets of players with 1 < |K| < k and |T'| < t, respectively,
such that 3k + 4t < n. Let Tx and 7p be strategy profiles for players in K and T, respectively.
By Theorem 5.3 and Proposition 6.1, there exist a function H,, and a relaxed scheduler og in the
mediator game such that

wi(Cor (@), (For)—(kur), TK TT)s Oy T(KUT))
= u(Tg(@), (G- (kur), Hoo(Ti ) Hoo (TT)), 0, 0B, T (kUT))

for all ¢ ¢ T and all input profiles Z. We can assume without loss of generality that (&,04) is
minimally informative. Thus, by Proposition 6.15, there exists a standard scheduler ¢/, such that
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Finally, by Theorem 5.3, if & is (k,t)-robust (resp., strongly (k,t)-robust), then there exists a
standard scheduler ¢/ such that

wi(Tor ()
= u(La(@), (
ui(Ta(@), (

for some i € K (resp., for all i € K). Therefore,

7(<5 ) T7FT)aUeafT)
T Ue (7r)), 04,00, Zr) [by Theorem 5.3]
H, (7r)),04,0.,Zr) [by Corollary 6.5]

a_
o_r

wy(Cor (@), ((Gor)—(kur), Tk, T1), Oes T(kUT))
< u;(FCT(ﬁ,)ﬂ ((O_"CT)*Ta FT); Oec, fT)a

as desired. O

We remark that, with a little more effort, we can show that the minimally-informative strategy
profile f(& + 04) that implements & 4 o4 is actually a (¢ + k)-bisimulation of & + o4. Moreover, the
strategy profile that implements f(&'+0,) in the cheap-talk game preserves all the properties of the
cheap-talk equilibrium in Theorem 4.4. Thus, under the conditions of Theorem 4.4, we can get a
strategy profile in the cheap-talk game that (¢ + k, t)-bisimulates a strategy profile in the mediator
game.

6.6 Proof of Theorem 4.5

To prove Theorem 4.5, we use an analogous strategy to that used to prove Theorem 4.4, using
Theorem 5.4 instead of Theorem 5.3. The same argument as that used in the proof Theorem 4.2
shows that for all €’ € (0, 1] there exists a protocol &¢r that €-implements & + o4 and that For is
(e, t)-immune.

To prove (strong) e-(k,t)-robustness, fix an adversary A = (7, 7r, o) for subsets K, T such that
1<|K|<E,|T|<tand KNT = (. By Theorem 5.4 and Proposition 6.2, there exists a function
H,, from strategies to strategies and a relaxed scheduler og such that, for all input profiles &,

wi(Tor, ((For)—(xur)s T, T1)s O, T(kUT))
< ui(Ta, (G_(kur), Hoo(TK), Hoo (7)), 04, 0B T(kUT)) + €M

for all 7 € K.
By Theorem 5.4, there exists a standard scheduler o/ such that

w(Ter, (Gor)-1,T1), 0c, 1)
> ui(Fd, (O_"_T, ng(FT)), Ud,O'é, fT) — € M.

Thus, there exists some ¢y < € such that if &y is (k,t)-robust (resp., strongly (k,t)-robust), then

uwi(Tor, ((For)—(xur)s T, 71)s Oes T(UT) )
< u(Tg, (0= KUT) Ho,(Tx), Hyo (7)), 04, 0, T(kuTy) + € M
< wi(Ty, (G—p, Ho (T1)),04,0L, 1) + €0 + 26 M [by Proposition 6.12]
< ul(FCTa((O-CT) T7TT)7a-6afT) +€0+36/M

for some i € K (resp., for all i € K). Therefore, taking ¢ = (e — €y)/3M, we have that dor is a
e-(k, t)-robust equilibrium (resp., strongly (k,t)-robust equilibrium) for T .
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Again, as was the case for Theorem 4.4, with a little more effort we can show that under the
conditions of Theorem 4.5, we can get a strategy profile in the cheap-talk game that e-(¢ + k, t)-
bisimulates a strategy profile in the mediator game.

7 Conclusion

We have extended the results of ADGH on implementing mediators to the asynchronous setting.
This setting raises a number of new subtleties, particularly regarding how to define utilities in a
game where players do not terminate. Since many real-world applications are asynchronous, and
thinking in terms of mediators in this setting provides much simpler approach to designing efficient
mechanisms, having a “compiler” that can translate solutions with a mediator to one without a
mediator can be quite useful in principle.

There are still a number of questions that remain open. The most obvious ones involve lower
bounds. Lower bounds that match the upper bounds of ADGH in the synchronous setting were
proved by Abraham, Dolev, and Halpern [2008]. Can we provide analogous lower bounds here?
In addition, we have considered only non-cryptographic setting; ADGH also provided bounds for
the setting where players were polynomially-bounded and could use cyrptographic tools. To what
extent do things change in this setting in the asynchronous case?
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