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Abstract

We extend the notion of “only knowing” introduced by Halpern and Moses [11] to many
agents and to a number of modal logics. In this approach, “all an agent knows is o” is true
in a structure M if, in M, the agent knows o and has a maximum set of “possibilities”.
To extend this approach, we need to make precise what counts as a “possibility”. In the
single-agent case, we can identify a possibility with a truth assignment. In the multi-agent
case, things are more complicated. We consider three notions of possibility (all related). We
argue that the first is most appropriate for non-introspective logics, such as K,, T,, and
S4,,, the second is most appropriate for K45, and KD45,,, and the last is most appropriate
for S5,,. With the appropriate notion of possibility, we show that are reasonable extensions
in all cases.

Our results also shed light on the single-agent case. It was always assumed that one of
the key aspects of Halpern-Moses approach in the single-agent case was its use of S5, rather
than K45 or KD45. Our results show that the notion is better understood in the context
of K45 (or KD45). In the single-agent case, the notion remains unchanged if we use K45
instead of S5. However, in the multi-agent case, there are significant differences between
K45 and S5. Moreover, in some sense, the K45 variants behave better: all results proved
for the single-agent case extend more naturally to the multi-agent case of K45 than to the

multi-agent case of S5.
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1 Introduction

Halpern and Moses [11] introduced a notion of “only knowing”, in an effort to charac-
terize the state of an agent that has been told only a finite number of facts. Suppose
that « is the conjunction of what the agent has been told. What else does an agent
who has been told only a know? It is not just the logical consequences of a. For
example, if « is the primitive proposition p, then the agent does not know ¢, where ¢
is some other primitive proposition. But if the agent is introspective, then the agent
knows that he does not know gq.

Halpern and Moses give a number of (provably equivalent) characterizations of
what it means for an agent to “only know a”, assuming that there is only one agent
in the system, and that agent’s knowledge is characterized by the modal logic S5.
The latter means that the agent does not know false facts, and that the agent has
complete introspective power regarding his own knowledge.

As pointed out by Halpern and Moses, extending the definitions of “only knowing”
to the multi-agent case is quite subtle. They sketched arguments showing why none of
the obvious ways of extending the definitions used in the single-agent case would give
reasonable answers in the multi-agent case. In this paper, we show how the definitions
can be generalized to the multi-agent case. Moreover, we extend the definitions to
other logics besides S5.

To make the notion of “knowing only a” precise, we need to consider the Kripke
structure where the agent knows a and has a maximum set of “possibilities”. While
the notion of “possibility” is straightforward in the single-agent case—it can be iden-
tified with a truth assignment—it becomes more subtle once we have many agents
in the picture. Indeed, we argue that the right notion depends on the logic we are
considering. We use three different notion of “possibility”: one for K, T, and S4, one
for K45 and KD45, and one for Sh. The reasons we do this highlight the differences
between logics with negative introspection and those without, and the added com-
plexities involved with S5, which has both negative introspection and the veridicality
property: only true things are known.

Our results also shed light on the single-agent S5 case. For example, it was always
viewed as significant that the HM (Halpern-Moses) notion of only knowing was based
on S5, while a different notion of only knowing considered by Levesque [19] is based
on K45. In fact, our results show that the HM notion is better understood in the
context of K45. Indeed, in the single-agent case, the HM notion remains unchanged
if we use K45 (or KD45) instead of S5. However, in the multi-agent case, there are
significant differences between K45 and S5. Moreover, as we show here, all the results
proved by Halpern and Moses for the single-agent case extend more naturally to the
multi-agent case for K45 and KD45 than they do for S5.

The key technical tool we use to define our notions of possibility, the w-tree, is
closely related to the tools used in a number of other papers that have attempted
to define HM-like notions of only knowing for many agents: the knowledge structures
defined by Fagin, Halpern, and Vardi [4], which were also used by Vardi [24], the nor-
mal models defined by Parikh [21], and the use of amalgamation by Jaspars [15]. As
we shall see, our approach seems to allow for much more efficient decision procedures.

The rest of this paper is organized as follows. In the next section, we present a brief
review of the relevant details of modal logic. In Section 3, we discuss general issues



concerning the definition of “only knowing” in the multi-agent case. In Section 4, we
define only knowing for (multi-agent) K, T, and S4, in Section 5, we do it for (multi-
agent) K45 and KD45, and in Section 6, we do it for S5. In Section 7 we consider
some complexity issues. We conclude in Section 8 with some further discussion of the
notion of only knowing.

2 A brief review of modal logic

We briefly review some standard notions of modal logic here. Further details can be
found in, for example, [2, 12, 13]. We recommend that even the reader familiar with
modal logic scan this section, since it also introduces some notation that is used in
the remainder of the paper.

In this paper we focus on six logics, three that do not have negative introspection,
K,, T, and S4,,, and three that do, K45,, KD45,,, and S5,.' In the remainder of
this paper, when we speak of a modal logic S, we are referring to one of these six
logics; we refer to K45,,, KD45,, and S5, as introspective logics, and K,,, T,,, and S4,
as non-introspective logics (despite the fact that positive introspection holds in S4,,).

The language we use for all these logics is propositional logic augmented by the
modal operators K1, ..., K,, where K;¢ can be read “agent ¢ knows (or believes) ¢”.
We denote this language £,,.

Consider the following collection of axioms, which hold for each agent i:

All instances of axioms of propositional logic

(Kigo A I{Z’(QD = ¢)) = K;¢

P.

K.

T. K;p = ¢
4. Kip = KK
5.

-Kip = K;—K;p
D. —K;false
and rules of inference:
R1. From ¢ and ¢ = ¢ infer ¢
R2. From ¢ infer K;p.

The axioms 4 and 5 are called the positive introspection ariom and negative iniro-
spection aztom, respectively. They are appropriate for agents that are sufficiently
introspective so that they know what they know and do not know.

We get various systems by combining some subset of K, T, 4, 5, and D with P,
R1, and R2. In particular, we get K, by combining K with P, R1, and R2, T,, by
adding T to these axioms, S4, by adding 4, S5, by adding 5, K45,, by deleting T
from S5,,, and KD45,, by adding D to K45,,. Other modal logics can be constructed
by considering different combinations of axioms.

IThe subscript » in all these logics is meant to emphasize the fact that we are considering the
n-agent version of the logic. We omit it when considering the single-agent case.



We give semantics to all these logics by using Kripke structures. A Kripke struc-
ture is a tuple (W, 7, K1,...,Ky), where W is a set of worlds, = associates with
each world a truth assignment to the primitive propositions, so that w(w)(p) €
{true, false} for each world w and primitive proposition p, and K1, ..., K, are bi-
nary accessibility relations. We use the notation KM when we want to refer to the K;
relation in the structure M; similarly, we use W™ and 7. We omit the superscript
M if it is clear from context. We define K;(w) to be {w' : (w,w’) € K;}. Thus, K;(w)
is the set of worlds agent ¢ considers possible in world w.

Recall that a binary relation X on W is reflezive if (w,w) € K for all w € W,
transitive if (u,v) € K and (v,w) € K implies (u,w) € K, Euclidean if (u,v) € K
and (u,w) € K implies (v,w) € K, and serial if for all w € W, there is some w’
such that (w,w’) € K. Let M be the class of all Kripke structures. We restrict
M by using superscripts r, s, ¢, and e, to denote reflexive, serial, transitive, and
Euclidean structures, respectively. Thus, M"™ denotes the class of all structures
where the K; relations are reflexive and transitive knowledge, M®*! denotes the class
of all structures where the K; relations are Euclidean, serial, and transitive, and so
on.

A situation is a pair (M, w) consisting of a Kripke structure and a world w in
M. We give semantics to formulas with respect to situations. If p is a primitive
proposition, then (M, w) |= p if 7™ (w)(p) = true. Conjunctions and negations are
dealt with in the standard way. Finally,

(M, w) | Ko iff (M,w') | a for all w’ € KM (w).

Thus, agent ¢z knows « exactly if « 1s true in all situations that the agent considers
possible.

It is well known that there is a close connection between conditions placed on K
and the axioms. In particular, T corresponds to the K;s being reflexive, 4 to the K;s
being transitive, 5 to the K;s being Euclidean, and D to the K;s being serial. Thus,
we get the following result (see [2, 12] for proofs):

Theorem 1 K, (resp. T,, S4,, KD45,, K45,, S5,) is a sound and complete ax-
iomatization for the language £,, with respect to M (resp., M", M™ Mt M*
Mret).Q

An 8§ situation (for S € {Ky, Ty, S4,, K45,, KD45,,S5,}) is a situation (M, w)
where M satisfies the appropriate restriction; thus, for example, (M,w) is a S4,
situation if M € M™. We write =5 ¢ if the formula ¢ is true in all S situations. By
Theorem 1, for a formula ¢ € £, we have =g ¢ iff ¢ is provable in S.

It is well known (again, see [2], [13], or [12]) that in the single-agent case of
KD45,,, K45,, and S5,, we can consider a simpler class of structures. We define
a K45 situation to be a pair (W, w), where W is a set of truth assignments that,
intuitively, characterize the worlds the agent considers possible, and w i1s a truth
assignment that, intuitively, characterizes the “real world”. A KD45 situation is a

2The more common characterizationis that S5, is sound and complete with respect to the class of
structures where the K;s are equivalence relations. However, as observed in [12], K is an equivalence
relation iff K is reflexive, Euclidean, and transitive. Thus, M”¢! in fact consists of precisely those
structures where the K;s are equivalence relations. Moreover, it is easy to see that reflexive and
Euclidean relations must be transitive, so that M”€ is identical to M7¢?,



K45 situation (W, w) such that W # 0. An S5 situation (W, w) is a K45 situation
such that w e W.

We again give semantics to formulas with respect to situations. If p is a primitive
proposition, then (W, w) & p if p is true under truth assignment w. Conjunctions
and negations are dealt with in the standard way. Finally,

(W,w) E Ka iff (W,w') £ o for all w’ € W.3

Tt is well known [13] that a formula is provable in K45 (resp. KD45, S5) if and only
if it is true in all K45 (resp. KD45, S5) situations.

3 “Only knowing” in the multi-agent case

The intuition behind the HM notion of “all I know” in the single-agent case is straight-
forward: In each world of a (Kripke) structure, an agent considers a number of other
worlds possible. In the case of a single agent whose knowledge satisfies S5 (or K45 or
KD45), as we observed in Section 2, we can identify a world with a truth assignment,
and a structure with a set of truth assignments. The more worlds an agent considers
possible, the less he knows. We take (W, w) to be a situation where « is all that is
known if (1) (W, w) = Ka (so that the agent knows «) and (2) if (W', v') £ Ke,
then W' C W. If there is no situation (W, w) satisfying (1) and (2), then « is said to
be dishonest; intuitively, it cannot then be the case that “all the agent knows” is a.
A typical dishonest formula is KpV Kq. To see that this formula is dishonest, let W,
consist of all truth assignments satisfying p, let W, consist of all truth assignments
satisfying ¢, and let w satisfy pAg. Then (W,,w) E KpVKgq, and (W,,w) E KpVKq.
Thus, if KpV Kq were honest, there would have to be a situation (W, w’) such that
(W,w'") E KpV Kqand W D W, UW,. It is easy to see that no such situation exists.

Notice that in the case of one agent, it does not matter if we consider S5, KD45,
or K45 when speaking of honesty. If a formula that is not equivalent to false is honest
with respect to one of these logics, then it is honest with respect to the other two.*

We want to extend this intuition to the multi-agent case and—in order to put
these ideas into better perspective—to other modal logics. There are philosophical
problems involved in dealing with a notion of “all T know” for the non-introspective
logics. What does it mean for an agent to say “all I know is a” if he cannot do
negative introspection, and so does not know what he doesn’t know? Fortunately,
there is another interpretation of this approach that makes sense for arbitrary modal
logics. Suppose that a says to b, “All ¢ knows is @” (where ¢ is different from a and b).
If b knows in addition that ¢’s reasoning satisfies the axioms of modal logic S, then it
seems reasonable for b to say that ¢’s knowledge is described by the “minimal” model
satisfying the axioms of S consistent with K., and for b to view a as dishonest if
there is no such minimal model.

This suggests that making sense of “all T know” (or “all agent i knows”) reduces
to defining what it means for a model to be “minimal”. Once we consider multi-
agent logics, or even nonintrospective single-agent logics, we can no longer identify a

3When dealing with logics like K45, where only one agent is involved, we typically do not subscript
the K operator, writing, for example, K« rather than K;«.
4Note that false is honest with respect to K45 but not with respect to KD45 or S5.



possible world with a truth assignment. It is not just the truth assignment at a world
that matters; we also need to consider what other worlds are accessible from that
world. This makes it more difficult to define a reasonable notion of minimality. To
deal with this problem, we define a canonical collection of “possibilities”, i.e., objects
that an agent can consider possible. These will act like the possible truth assignments
in the single-agent case.

What properties should we expect the sets of possible objects to have? It seems
reasonable to expect that they satisfy the following two conditions:

1. The determination condition: The agent’s set of possibilities should determine
his knowledge. That is, if agent 7 has the same set of possibilities in (M, w) and
in (M',w'), then (M, w) | K;p iff (M',w') || K; for all formulas ¢.

2. The union condition: If in some situation (M7, wy) agent i’s set of possibilities is
Py, and in some other situation (M2, w2) agent #’s set of possibilities is Py, then
there should be some situation (Msz, w3) where the agent’s set of possibilities
contains Py U Ps.

These conditions are certainly quite weak. For example, we might hope for a converse
to the first condition, but this is too much to expect given the lack of expressive power
of the modal logics we are considering. For example, consider the single-agent case.
If we take the notion of “possibility” here to be a truth assignment, then clearly these
two conditions hold. But now suppose we have infinitely many primitive propositions,
say pi1,p2,-.. Let Wi consist of all truth assignments to these propositions, and let
Wy consist of all truth assignments except the one that makes all of the propositions
true. Tt is easy to check (by induction on the structure of ¢) that for all formulas
¢ and any truth assignment w € Wy, we have (W, w) | K;¢ iff (Wy,w) E Kip.
Thus, what the agent knows does not determine the set of possibilities in this case.
We might also hope to have the second condition hold with equality, but, as we shall
see, this too turns out to be too much to expect in general (although it does hold for
K, and the introspective logics).

Despite their apparent weakness, the determination and union conditions do serve
as useful guidelines for our constructions. Among other things, they are sufficient
to show that we cannot use truth assignments as our notion of possibility in the
multi-agent case, or even in the single-agent case for K, T, and S4, since this would
violate the determination condition. For example, the set of truth assignments agent
1 considers possible clearly does not determine whether K1 Ksp holds.

Notice that these two conditions may hold for a notion of possibility with respect
to one logic and not another. Indeed, we use three different notions of possibility in
this paper, one for K,,, T,,, and S4,,, another for K45,, and KD45,,, and yet another
for S5,,. While the notions of possibility we use satisfy the union and determination
conditions for each of these logics, it is not clear that these are the only choices that
could have been made. There may be other notions of possibility that satisfy these
conditions that are not isomorphic to the ones we use (for an appropriate notion of
isomorphism). While we believe that we have made the “right” choices, there is no
theory yet to support this. We defer further discussion of this issue to Section 8. In
the next three sections, we define these three notions of possibility, and show how
they can be used to define “only knowing”.



4 “Only knowing” for K,, T,, and 5S4,

In this section, we focus on the logics K,,, Ty, and S4,,. We start by defining a notion
of possibility for these logics.

Fix a finite set ® of primitive propositions and agents 1,...,n.5 We define a
(rooted, directed, and labeled) k-iree (over ®) by induction on k: A O-tree consists
of a single node, labeled by a truth assignment to the primitive propositions in ®.
A (k + 1)-tree consists of a root node r labeled by a truth assignment, and for each
agent i, a (possibly empty) set of directed edges labeled by ¢ leading from r to roots
of distinct k-trees.® We say a node w' is an i-successor of a node w in a tree if there is
an edge labeled i leading from w to w’. The depth of a node in a tree is the distance
of the node from the root.

An w-tree T, is a sequence (Ty, T4, ...), where T}, is a k-tree, for k = 0,1,2,....
Notice that consecutive elements Ty and Tr41 in the sequence may be completely
unrelated. Of course, in the w-trees that we shall be interested in, 7} will be in a
precise sense a projection of Ty ;1. However, it turns out to be unnecessary to make
this requirement in the general definition, and it would complicate the definition
unnecessarily.

We remark that w-trees are closely related to the knowledge structures of [4, 5].
In a precise sense, an w-tree can be viewed as a way of representing a knowledge
structure. Since the details of the comparison are beyond the scope of this paper, we
do not pursue this connection here. They are also much in the spirit of Parikh’s normal
models [21]. More generally, the use of tree-like structures is quite standard in modal
logic. They have played a role in many contexts in modal logic, including complexity-
related arguments [12, 16] and completeness proofs (for example, the subordination
frames and tree frames used in completeness proofs in [14] are treelike). Hughes and
Cresswell also introduce a technique of amalgamation of structures into what can be
viewed as one treelike structure. Amalgamation is used by Jaspars [15] in his analysis
of only knowing for S4.

We now show that with each situation we can associate a unique w-tree. We start
by going in the other direction. We can associate with each k-tree 7' (k # w) a Kripke
structure M (7T) in a straightforward way: the nodes of T' are the possible worlds in
M (T), the accessibility relation ICZM(T) consists of all pairs (w, w') such that w' is an
t-successor of win 7', and WM(T)(UJ) is determined by the truth assignment labeling w.

We define the depth of a formula by induction on structure. Intuitively, the depth
measures the depth of nesting of the K; operators. Thus, we have depth(p) = 0 for a
primitive proposition p; depth(—¢) = depth(p); depth(eAy) = max(depth(p), depth(v));
depth(K;) = 1+ depth(p). If M and M’ are (arbitrary) structures, w is a world
in M, and w' a world in M’, then we say that (M,w) and (M’ ,w') are equiva-
lent up to depih k, and write (M, w) =5 (M',w'), if, whenever ¢ is a formula with
depth(p) < k, we have (M, w) = ¢ ift (M',w') E ¢. We say that (M, w) and (M', w")
are equivalent, and write (M, w) = (M',w'), if (M, w) = (M',w') for all k. Finally,
we say that (M,w) and (M’ ,w') are i-equivalent, and write (M,w) =! (M’ w'), if
(M,w) E Ko iff (M',w") E K;p for all formulas ¢. Thus, equivalent situations

5As we shall see below, the assumption that ® is finite makes some of our results a little simpler
to state, but all our results hold (occasionally with minor modifications) even if ® is infinite.
6Since we are allowing a node to have no successors, any k-tree is also a (k + 1)-tree.



agree on all formulas, while i-equivalent situations agree on all formulas of the form
K;¢. For convenience, if wq is the root of T', we take M (T) |= ¢ to be an abbreviation
for (M(T),wo) = ¢, and write (M, w) = M(T) rather than (M, w) = (M(T'), wp).

Proposition 2 For each situation (M, w) and all k, there is a unique k-tree Tas o &
such that (M, w) = M(TJ\/Lu}Jk).7

Proof We construct Ths . 1 for each world w € wM by induction on k. For each
world w, we take Tas 0 to consist of a single node, labeled by the truth assignment
at w. Clearly (M, w) =¢ M(Tnw,0) for all worlds w € wM.

Suppose inductively that for each world w € W™ we have constructed a tree
Tarw i such that (M, w) =¢ M(Tar,w,5) and shown that it is the unique tree with this
property. We construct Tz p41 as follows. We take the root of Ths w141 to be a
node labeled by the truth assignment at w. For each world w’ such that (w,w’) € K;,
we construct an edge labeled ¢ to the root of Tas ¢ 5. This may not give us a (k+1)-
tree, since there may be worlds w’ and w' such that both (w,w’) and (w, w) are in
Ki, and Tarw x and Tarwe i are identical. We obtain the (k + 1)-tree Thrw k41 by
deleting duplicate k-xrees.

We defer the proof that (M,w) =41 M(Tarwr+1) and that Tar k41 is the
unique tree with this property to the appendix, where the proof of all other technical
results can also be found.

Let Tarw be the w-tree (Tarw o0, ThMw,1, Trw,2,--.). As an immediate corollary
to Proposition 2, we get that two situations that are associated with the same w-tree
are equivalent.

Corollary 3 Tarw = T o iff (M, w) = (M',w').

Thus, Thr,w can be viewed as providing a canonical way of representing the situation
(M, w) in terms of trees.

We use w-trees as a tool for defining what agent i considers possible in (M, w).
Thus, we define i’s possibilities at (M, w) for § € {K,, Ty, S4,}, denoted Possf(M, w),
to be {Tarw : (w,w’") € K;}. The following two propositions say that this notion of
possibility does satisfy the two requirements we made. The first says that the deter-
mination condition holds, while the second says that the union condition holds.

Proposition 4 If § € {K,,, T,,,S4,} and Possf (M, w) = Possf(M’, w'), then (M, w)
(M’ w").

Proposition 5 For § € {K,,T,,S4,}, all agents 7, and all S situations (M, w1) and
(M3, ws), there is an S situation (Mz, w3) such that Possf(Mg, w3) D Possf(Ml, wi)U
Possf(Mg, ws).

The proof of Proposition 5 in the appendix shows that we can have the union condition
hold with equality in the case of K,. It is not hard to see that it cannot hold with

"We remark that the uniqueness here depends on the fact that the set ® of primitive propositions
which forms the basis of the language is finite. If ® is infinite, the construction in the proof gives us a
way of constructing a canonical tree Tpy ., such that (M, w) = M(Tps,,x). All our later results go
through even if @ is infinite, using this canonical tree. However, as we shall see later in this section,
we have another way of dealing with the case that ® is infinite.



equality for T, and S4,,. For example, suppose M; consists of only one world, w,
such that p is true at wy and (w1, w1) € /C{Ml. Similarly, suppose that M5 consists of
only one world, ws, such that —p is true at ws and (wq, wa) € IC{V[? Now suppose that
(M, ws) is a Ty, situation such that Poss‘f(Mg, wz) D Poss‘f(Ml , wl)UPoss‘f(Mz, ws).
This means that agent 1 must consider at least two worlds possible in w3, one in
which p holds and one in which —p holds. It is thus easy to see that Ty, ., can be in
neither Poss‘f(Ml, w1 ) nor Poss‘f(Mz, ws). Since (M3, w3) is a Ty, situation, it follows
that Tar, w, € Poss‘f(Mg,wg). It follows that Poss‘f(Mg,wg) + Poss‘f(Ml,wl) u
Poss‘f(MQ,uQ). We remark that in the next section, we show that this notion of
possibility does not satisfy even this weak union condition for the introspective logics.

Intuitively, for @ to be i-honest, there should be a situation (M, w) for which i has
the maximum number of possibilities. Formally, we say that « is S-i-honest if there
is an § situation (M, w), called an S-i-mazimum situation for a, such that (M, w) =
K;a, and for all § situations (M',w"), if (M',w") |E K;a, then Possf(M’,w’) C
Possf(M, w). If a is S-i-honest, we say that agent ¢ knows § if all he knows is «, and
write ajs 8, if (M, w) | K;B for some S-i-maximum situation (M, w) for a.® So far
we have defined S-i-honesty and }'v; only for § € {K,,, T,,S4,}; as we shall see, the
definitions carry over without change to other modal logics S, once we define Possf
for these logics. '

How reasonable are our notions of honesty and |~5? The following results give us
some justification for these definitions. The first gives us a natural characterization
of honesty.

Theorem 6 If S € {K,,T,,S4,}, then the formula a is S-i-honest iff (a) K;« is
S-consistent and (b) for all formulas ¢1, ..., ¢k, if Es Kia = (Kje1 V...V K@),
then s Kja = K;p; for some j € {1,...,k}.

This characterization of honesty is similar in spirit to what was called by Lemmon
and Scott [18] the rule of disjunction. A modal logic S satisfies this rule if =g
Kip1 V... Kijpy implies Es ¢; for some j € {1,...,n}. In [14] it is shown that K,
T, and S4 satisfy this rule. The technique used, amalgamation, is the basis for our
proof of Theorem 6. We remark that it is quite easy to show that K45, KD45, and
S5 do not satisfy this rule (for example, Kp V K—Kp is valid in each of these logics,
even though p is not). Nevertheless, as we shall see, a somewhat analogous property
holds for these logics as well.

It follows from Theorem 6 that a typical dishonest formula in the case of T,
or S4, 1s K;pV K;q, where p and ¢ are primitive propositions. If a is K;p V K;q,
then K;a = (K;pV K;q) is valid in T,, and S4,, although neither K;a = K;p nor
K;a = K;q is valid. However, the validity of K;a = (K;pV K;q) depends on the fact
that K;oa = «. This is not an axiom of K,,. In fact, it can be shown that K;pV K;q
is K,-i-honest. Thus, what is almost the archetypical “dishonest” formula is honest
in the context of K,,. As the following result shows, this is not an accident.

Theorem 7 All formulas are K,,-i-honest.

8There may be more than one S-i-maximum situation for «; two S-i-maximum situations for o«
may differ in what j # ¢ considers possible. However, if (M,w) and (M’,w’) are two S-i-maximum

situations for o, then (M,w) | K;8 iff (M',w’) E K;3. Thus, our notion of }‘vg is well defined.



A set S of formulas is an S-i-stable set if there is some S situation (M, w) such
that S = {¢ : (M,w) E K;p}. We say the situation (M, w) corresponds to the stable
set S. This definition is a generalization of the one given by Moore [20] (which in turn
is based on Stalnaker’s definition [22]); Moore’s notion of stable set corresponds to
a K45-stable set in the single-agent case. (See [7] for some discussion as to why this
notion of stable set is appropriate.) Since a stable set describes what can be known
in a given situation, we would expect a formula to be honest if it is in a minimum
stable set. This is indeed true.

Theorem 8 If S € {K,,, T,,,S4,}, then « is S-i-honest iff there is an S-i-stable set
S% containing o which is a subset of every S-i-stable set containing or. Moreover, if

« is honest, then a3 iff B € 5.

This characterization of honesty is closely related to one given in [11]; we discuss
this in more detail in Section 5. We remark that Jaspars [15] essentially uses the
characterization provided by this theorem as his definition of honesty for S4.

Our next result gives another characterization of what agent ¢« knows if “all agent
¢ knows is @”, for an honest formula «. Basically, it shows that all agent ¢ knows
are the logical consequences of his knowledge of . Thus, “all agent ¢ knows” is a
monotonic notion for the non-introspective logics.

Theorem 9 If S € {K,,T,,54,} and « is S-i-honest, then a}««fgﬁ iff Es Kia =
K.

Up to now we have assumed that ®, the set of primitive propositions, is a finite
set, since w-trees were defined only under this assumption. This turns out not to be
a serious restriction. As we hinted before, we could actually deal directly with the
case that @ is infinite, but it suffices to do the following. Given a formula «, let ¥
be any finite set of primitive propositions that contains all the primitive propositions
that appear in . We then define a to be S-i-U-honest if « is S-i-honest assuming
that W is the set of primitive propositions are involved. If ® is infinite, we say that «
is S-i-honest if a is §-i-U-honest for some ¥ containing all the primitive propositions
that appear in «. By Theorem 6, if a is S-i-W-honest for some choice of ¥, it is S-
i-U-honest for all choices of ¥ (that contain all the primitive propositions appearing

in ). Similarly, we say that ap5@3 if this relation holds for some ¥ containing all
the primitive propositions that appear in @ and #. By Theorem 9, the choice of ¥
does not matter. Thus, all our definitions and results can easily be extended where
® is infinite. We continue to assume that ® is finite, for simplicity, in the next two
sections, but using arguments similar to those above, we can easily extend to the case
that ® is infinite. (We remark that while the assumption that & is finite does not
affect our definitions, it does have an impact on complexity; see Section 7 for details.)

This completes our discussion of the non-introspective logics. It is interesting to
compare our results here to those proved by Vardi [24]. He defines a notion of “all
agent i knows” for S4,,, using the knowledge-structures approach of [4], and proves
Theorem 9 for S4,, in the context of his definition. Given the close connection between
w-trees and knowledge structures, it is not hard to show that our definition of honesty
coincides with his for S4,,. Moreover, w-trees seem to be a better representation for
knowledge and possibility as far as proving complexity results. For example, all



that Vardi was able to show was that honesty was (nonelementary-time) decidable.
In Section 7, we show that in fact deciding whether a formula in S4,,-i-honest is
PSPACE-complete.

5 “Only knowing” for K45, and KD45,

We must take a slightly different approach in dealing with the introspective logics.
The notion of possibility that we used for the non-introspective logics does not satisfy
the union condition in the introspective case. To see this, and the problems it causes,
consider the single-agent case. Suppose ® consists of two primitive propositions, say
p and ¢, and suppose that all the agent knows is p. Surely p should be honest. Indeed,
according to the framework of Halpern and Moses [11], there is a maximum situation
where p is true where the structure consists of two truth assignments: one where both p
and ¢ are true, and the other where p is true and ¢ is false. Call this structure M7, and
let w be the truth assignment that makes both p and ¢ true. Let M5 be the structure
where the only truth assignment is w. Clearly, the agent knows p in M5 as well. It
is not hard to see that T, . and T, . are different. This follows from Corollary 3
since, for example, (M1, w) | = K1q and (M2, w) E K1q. Now suppose we use Poss®
(that is, the notion of possibility Poss® defined in the last section, with S being K) as
our notion of possibility. Tt is not hard to show that there is no § situation (M3, w’)
for 8§ € {K45, K D45, 55} such that Poss\(Ms,w') D Possy (M, w)U Possk (Ms, w).
For suppose there were. What truth assignments does the agent consider possible
at w'? If it is only the one where both p and ¢ are true, then it is easy to see that
PossIf(Ml,w) is not contained in Posslf(Mg,w’). If it is anything else, then it is
easy to see that PossIf(Ml, w) is not contained in PossIf(Mg, w'). The problem is
introspection: the agent knows what truth assignments he considers possible, and
this information is contained in the set of possibilities. We need to factor out this
introspection somehow. In the single-agent case considered by Halpern and Moses [11],
this was done by considering only truth assignments, not trees. We need an analogue
for the multi-agent case.

We define an i-objective k-iree to be a k-tree whose root has no #-successors. We
define an i-objective w-tree to be an w-tree all of whose components are i-objective.
Given a k-tree T, let T% be the result of removing all the i-successors of the root
of T' (and all the nodes reachable from these i-successors). Given an w-tree T =
(T, Ty,...), let T® = (T§, T, ...). The way we factor out introspection is by consid-
ering #-objective trees. Intuitively, the i-objective tree corresponding to a situation
(M, w) eliminates all the worlds that 7 considers possible in that situation. Notice
that in the case of one agent, the i-objective trees are precisely the possible worlds.

We say a formula is z-objective if it 1s a Boolean combination of primitive propo-
sitions and formulas of the form K, j # i, where ¢ is arbitrary. Thus, ¢ A Ks Kip
is 1-objective, but Kyp and ¢ A Ky1p are not. Notice that if there is only one agent,
say agent 1, then the 1-objective formulas are just the propositional formulas. We
say that the situations (M, w) and (M, w’) are i-objectively equivalent up to depth k,
and write (M, w) E;i (M’ w') if, for all i-objective formulas ¢ with depth(p) < k, we
have (M, w) |E ¢ iff (M',vw') = ¢. Wesay (M,w) and (M', w') are i-objectively equiv-
alent, and write (M, w) =% (M', w') if (M, w) E;i (M', w") for all k. Notice that two

10



situations are equivalent iff they are both i-equivalent and i-objectively equivalent.
That 1s, it is almost immediate from the definitions that

Lemma 10 (M,w) = (M',w') iff both (M, w) =% (M, w') and (M, w) E;i (M’ w").

We now have the following analogue of Proposition 2. Since its proof is almost
identical to that of Proposition 2, we omit it here.

Proposition 11 For each situation (M, w) and all k, there is a unique i-objective
k-tree T such that (M, w) =" M(T'); moreover, T is in fact T, , -

The following corollary follows immediately from Proposition 11, just as Corol-
lary 3 followed from Proposition 2.

Corollary 12 Ti, = Ti, ., iff (M,w) ==% (M’ w').

The notion of possibility we use for K45,, and KD45,, uses i-objective trees rather
than w-trees. For § € {K45,,, KD45,}, we define

Poss? (M, w) = {Tjy .o : (w,w') € K;}.

The following two propositions say that this notion of possibility satisfies the union
and determination condition in the case of K45,, and KD45,,. As we shall see in the
next section, it does not satisfy the union requirement for S5,, (which is why we shall
use a slightly different notion of possibility for S5,,).

Proposition 13 If (M, w) and (M',w') are S situations, S € {K45,,KD45, }, and
Poss‘f(]\i7 w) = Possf(M’,w’), then (M, w) =t (M’ w').

Proposition 14 If § € {K45,,KD45,}, then for all agents i and S situations
(M7, w1) and (Ms, ws), there is an § situation (M3, ws) such that Possf(Mg,wg) =
Possf(Ml, wy) U Possf(Mg, ws).

Notice that for § € {K45,,, KD45, }, Possf(Mg, ws) is actually equal to Possf(Ml, wy)U
Possf(Mg, ws), not just a superset.

Our notion of S-i-honesty and 5 makes perfect sense for S € {K45,,, KD45,}. Of
course, we now use i-objective trees as our notion of possibility. Since i-objective trees
are truth assignments in the single-agent case, it is easy to see that these definitions
generalize those for the single-agent case given in [11].

We now want to characterize honesty and “all agent z knows” for K45,, and KD45,,.
There are some significant differences from the non-introspective case. For example,
if § € {K45,,,KD45,}, then, as expected, the primitive proposition p is S-1-honest.
However, due to negative introspection, =K1q = K;—Kiq is S-valid, so we have
Es Kip = (KiqV K1—Ki1q). Moreover, we have neither |=s Kip = Kiq nor
Es Kip = K1—Kiq. Thus, the analogue to Theorem 6 does not hold.

As the following result shows, the analogue of Theorem 6 holds for K45, and
KD45,, provided we stick to i-objective formulas.

Theorem 15 For § € {K45,,KD45,}, the formula « is S-i-honest iff (a) K;a is
S-consistent and (b) for all i-objective formulas ¢1, ..., ¢, if Fs Kia = (Kijp1 V
...V K;py) then Es K;a = K;p; for some j € {1,...,k}.
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We remark that part (a) is vacuous in the case of K45,, since any formula of the
form K;o must be K45,-consistent.

This result does not hold for S5,,, at least not if we want ¢rue to be S5,-1-honest.
For notice that g5, Kitrue = (K1qV K1 K3 K3K1q). (This follows from the fact
that |=g5, 7" K1q = K1 K2 K3K1q.) However, it is easy to see that g5, Kitrue =
Kiq and I;&SSTL Kitrue = K1 Ko— Ko Kqq.

Theorem 15 is a direct extension of a result in [11] for the single-agent case. Two
other characterizations of honesty and “all I know” are given by Halpern and Moses,
that can be viewed as analogues to Theorems 8 and 9. As we now show, they also
extend to K45, and KD45,,, but not S5,,.

One of these characterizations is in terms of stable sets. The direct analogue of
Theorem 8 does not hold for the introspective logics. In fact, as was already shown
by Halpern and Moses [11] for the single-agent case, any two consistent stable sets are
incomparable with respect to set inclusion. Again, the problem is due to introspection.
For suppose we have two consistent S-i-stable sets S and S’ such that S C S/, and
¢ € S'—S. By definition, there must be situations (M, w) and (M’ w'), corresponding
to S and S’ respectively, for which we have (M, w) [£ K;¢ and (M',w") E K;p. By
introspection, we have (M,w) E K;—=K;p and (M',w") | K;K;p. This means that
-K;p € S and K;o € S'. Since S C S, we must also have =K;p € S, which
contradicts the assumption that S’ is consistent.

We can get an analogue of Theorem 8 if we consider i-objective formulas. Define
the i-kernel of an S-i-stable set .S, denoted ker;(.S), to consist of all the i-objective
formulas in S.

Theorem 16 For § € {K45,,KD45,}, a formula « is S-i-honest iff there is an S-i-
stable set 5% containing o such that for all S-i-stable sets .S’ containing o, we have

ker;(S®) C ker;(S). Moreover, if a is S-i-honest, then a3 iff § € 5.

Theorem 16 does not hold for Sh,, if we want true to be SH,-1-honest. Suppose
that S is an S5,-1-stable set that does not include ¢. Thus, it must include = Kigq.
Since [=g5, K1—K1q = K1K3-K3Kiq, the set S must also contain the objective
formula K- K3K1q. But there is another S5,-1-stable set that contains the formula
K;q and does not contain Ky—K5K1q. This shows that no S5,,-1-stable set that does
not contain ¢ can have a minimum 1-kernel among all stable sets. But surely an S5,,-
1-stable set containing ¢ cannot have a minimum S5,-1-kernel among Sb5,-1-stable
sets, since there 1s an S5,-1-stable set not containing ¢. It follows that there is no
S5,,-1-stable set with a minimum 1-kernel, so ¢rue does not satisfy the characterization
above for honesty in the case of Sh,,. In fact, we can extend this example to show for
no formula « is there an S5,-i-stable set containing o whose i-kernel is a minimum;
we omit details here.

Finally, let us consider the analogue to Theorem 9. For § € {K45,,, KD45,}, it is
not hard to show that if a and 3 are propositional formulas, then we have apg 3 iff
Es Kia = K;(3. Thisisno longer true if @ or § involve modal operators. For example,
we have p}'véﬁKlq even though s Kip = K1—Kiq. This seems reasonable: If all
agent 1 knows is p, then agent 1 does not know ¢ and (by introspection) knows
that he does not know this.® On the other hand, if agent i learns ¢, then he will
know ¢, and (by introspection) knows he knows it; that is, p A q}'v}sKlq. This shows

9Note that there is an implicit assumption here that the agent is aware of all the primitive
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that, in contrast to the non-introspective case, inference from “all agent 7 knows” is
nonmonotonic for § € {K45,, KD45,}.

As shown by Halpern and Moses [11], there is an elegant algorithmic characteriza-
tion of “all agent 7z knows” in the single-agent case. Roughly speaking, the idea is as
follows. To see if a}««lﬁ, if 7 is a propositional formula, we check if s Kia = K.
If 8 is not a propositional formula, then there must be some subformula of 3 of the
form K17, where v is a propositional formula. Let # be the subformula that results
if we replace K17 by true if s K1 = Ki7, and by false otherwise. We now apply
the same procedure to 3’. Ultimately, we end up with a propositional formula, say
B3". We then have a8 iff Fs Kia = K13".

We extend this idea to the multi-agent case here. The analogue of formulas like
K1y where v is a propositional formula now becomes what we call a top-level i-
subformula. A top-level i-subformula of a formula 3 is a subformula of 8 of the form
K, which is not in the scope of a modal operator K, j # i, such that ¢ is ¢-objective.
Thus, if ¢ is K; K;p V K; K K;q, its top-level i-subformulas are K;p and K; K; K;q.
We can now generalize the construction as follows:

Definition 17 Given formulas @ and 3, a modal logic S, and an agent i, we define a
finite sequence (Bo, f1, . - ., Om) of formulas and a finite sequence (By, ..., By,) of sets
of formulas as follows. We take (5 to be K;3. Suppose we have defined fy, ..., Gk
and By, ..., By so that By consists of all the top-level i-subformulas of 1. If fi ¢
{true, false}, then we define By 41 to consist of all the top-level i-subformulas of 8 and
define Br41 to be the result of replacing each subformula K;¢ of f; that isin Biy1 by
either true or false, depending on whether or not s K;a = K;p. The construction
ends if 3, € {true, false}. Since each formula in the sequence fq, 31, ... other than
true or false is of the form K;5’, and is shorter than the previous formulas (if we
view true and false as having length 1), it is clear that this construction terminates
after at most || steps. Define A% (a,3) to be the sequence (fo,...,3m) (Where
Bm € {true, false}) and BL(a,B) = UJL;B;. It is easy to see that | B (e, B)| < 18]
Finally, we define D%(a) to consist of all those formulas 3 such that the last formula
in the sequence A% (o, B) is true.!® O

Example 18 Suppose 3 is the formula K; K;pV K; K; K;q. Then, as we observed, K;p
and K; K; K;q are the top-level i-subformulas of K;3; it is easy to see that neither is im-
plied by K;3. Thus, A%%n (B3, B) is the sequence (K; (K; K;pVK; K; K;q), K;(K;(false)V
false), K;(falseVfalse), false), while Bf{%n([)’, B)is {K;p, K; K; K;q, K;(false), K;(falsev
false)}. O

As the following result shows, D%(a) can be viewed as the set of formulas that
agent ¢ knows, given that agent ¢ knows only « (and reasons using modal logic §).

Theorem 19 For § € {K45,,, KD45,}, the formula a is S-i-honest iff K;a is S-
consistent and o € Di(a). If a is S-i-honest, then a3 3 iff B € Di(a).

propositions, even if he does not know them. If the agent is not even aware of the existence of g,
then he will not even know that he does not know ¢g. This intuition is formalized in the logic of
general awareness of [3].

10We remark that this construction of Dg(a) is not identical to that given in [11] if we consider
the single-agent case. We could have used a direct extension of the algorithm given in [11], but the
variant we use here turns out to be easier to work with in the multi-agent case.
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6 “Only knowing” for S5,

As we have seen, the approach to dealing with honesty taken for K45, and KD45,
does not work for S5,,. As we show in this section, a small change in the notion of
possibility solves the problem. First, let us examine why the notion of “possibility”
defined for KD45,, and K45,, is inappropriate for S5,,.

Suppose (M7, w) is an S5y situation such that (My,wq) | KaK1p, and (M2, ws)
is an Shs situation such that (Mz,w2) | —p. Note that since (M7, w1) | K2K1p,
it follows that (M, w;) = p. Now suppose we try to use Poss®**2 as our notion
of possibility. If the union condition held for S5,,, there would be an Sb, situation
(M3, ws) such that P05511{452(M3, wz) D {TJ%lewl,T&%M}. Suppose there were such
a situation. Then agent 1 would have to consider both p and —p possible in this
situation; that is, we would have (M3, w3) = = K1p A = K1-p. Since Fg5, 7 K1p =
K1—=K5Kp, it follows that (M3, w3) = Ki—KyKip. Thus, if (ws,w) € K}, we
have (M5, w) = K2 K1p. But since we must have Tj\lhw1 € POSSI1 452(M3, ws), there

must be some w' € K{‘Ja(wg) such that ijl,wl = TJ!1/I3,w" But it then follows from
Proposition 11 that (M3, w') = K3K1p. This is a contradiction.

The problem here is that in the case of S5,,, what is true in the actual situation
must be considered possible (that is, ¢ = —K;—¢ is valid). This combined with
negative introspection causes our difficulties. In (M7, w;), 2 knows that 1 knows p.
Thus, 1 considers it possible at the actual situation (M7, wy) that 2 knows that 1 knows
p. Tt follows that in any situation (M3, w3) such that Tj‘lhw1 € P05511<452(M3, ws), it
must be the case that 1 considers it possible that 2 knows that 1 knows p; i.e., 1 must
consider it possible that K5 K;p holds. But, in Sh,,, K3 K;p implies K1p, so agent 1
must consider it possible that K;p holds. From the negative introspection property,
it then follows that 1 must know p. This means that in no situation where 1 considers
lel,wl possible can 1 have T]}/Igng among his set of possibilities, at least, under this
notion of “possibility”. This is clearly incompatible with the union property.

To solve this problem, we need to somehow factor out (what the agent considers
possible in) the actual situation when we are constructing an agent’s possibilities. We
now present one way of doing so. Roughly speaking, we construct a tree with nodes
labeled * that represent the actual world (i.e., the root of the tree). Formally, we
define k-#-trees by induction on k: a 0--tree is a O-tree, and a (k + 1)-*-tree consists
of a root r labeled by a truth assignment, and for each agent, a (possibly empty)
set of directed edges labeled by i leading from 7 to roots of distinct k-*-trees or to
a special node labeled *. Intuitively, a node labeled * represents the actual situation
and what is considered possible at the actual situation. We can think of an edge to
a node labeled * as really being a backedge to the root (i.e., the “actual situation”).
We define w-*-trees and i-objective *-trees in the obvious way; we omit the formal
details here. Given a *-tree T, we define the corresponding Kripke structure, which we
continue to denote M (T), just as we did for ordinary trees, except that, as suggested
by the intuition above, there are now no nodes in M(T') corresponding to the nodes
in T labeled by *, and edges in 7T labeled by ¢ to a node labeled * are replaced in
M (T) by edges to the root of 7. (Note that if there are no nodes labeled * in T, so
that T is actually an ordinary tree, then the old definition of M(T) agrees with this
one, justifying our abuse of notation.)

As we are about to show, there is no difficulty proving an analogue to Proposition 2
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that allows us to associate with each situation a unique *-tree. In what sense does the
*-tree help us factor out what the agent considers possible at the actual world? To
make sense of this, it is helpful to extend the language with a family of modal operators
Qf, 1 = 1,...,n, where & is an i-subjective formula, that is, a Boolean combination
of formulas of the form Kj;.'1 Intuitively, Qfgp holds in the situation (M, w) if ¢
holds no matter how we modify i’s accessibility relation at w, provided we do so in
a way that & holds. Thus, the Qf operators gives us a way—in the language—of
factoring out what the agent considers possible in the actual situation. To make this
precise, we say that (M, w) is i-embedded in (M', w'), where M = (W, 7, K1,...,K,)
and M' = (W', @', Kq,...,K},), if (a) W C W', (b) 7'|w =7, (¢) Ki|lwxw = K; for
j=1,...,n, (d) there is no pair (v',v") € K} with v' € W and v" € W' — W for
J=1,...n, (¢e) #'(w") = «'(w), and (f) Kjwl(w’) —{w'} = K;W(w) —{w} for j # 1,
and (g) w' € IC;W(w’) iff w e K;‘J(w). Roughly speaking, this definition forces w’
to look just like w, except that its i-successors may be different. Put another way,
(M',w") is the result of changing what i considers possible when the actual situation
is (M, w), without affecting anything else. Note that (M, w) is i-embedded in itself.
We now define Qf as follows:

(M, w) E Qfg@ if (M',w") |E & = ¢ for all situations (M’, w’) in which (M, w) is --embedded.

Let £9 be the result of extending the language £,, so that it includes the Q; operators,
fori=1,...,n.

Define a Q;-formula to be one of the form Qfgo, where ¢ € L,,. For convenience,
we define depth(Qfgo) = depih(p). Qi-formulas are the analogue for S5, of i-objective
formulas in the case of K45, and KD45,,. For example, it is not hard to show that
Qfgp = ¢ is valid in all K45,, or KD45,, structures if ¢ is i-objective and ¢ is satisfiable.
This is not true for S5,. For example, Q{Q"“eKzKlp is not equivalent to KoK 1p:
We can easily construct a situation in which K3 Kip is true that can be embedded in

a situation where K;p, and hence also K3 K1p, is false. We write (M, w) EkQ’ (M’ w')

if for all @;-formulas ¢ such that depth(p) < k, we have (M, w) | ¢ iff (M',w') |E ¢.
Thus, if (M, w) =Qi (M',w'") then (M,w) and (M',w') agree on all @;-formulas
involving £, formulas of depth at most k.

The following proposition is the analogue to Proposition 2.

Proposition 20 For each S5, situation (M,w) and for all k, there is a unique i-
objective k-*-tree T};", . such that (M, w) EkQ’ M(Ty W &)

Let TJZ\’J*:U) be the w-*-tree (TJZ\"J*:wyo,TJZ\"wayl, ...). Another key property of embed-
dings is stated in the following lemma, whose proof is almost immediate from the
definitions.

Lemma 21 If (M, w) is i-embedded in (M’ w), then TJZ\";w = TJZ‘,’; w-
We can now define our notion of possibility for S5,,. Let
PossZ»SS"(M, w) = {T]i/’l*w, S(w,w') €Ki}

This notion of possibility satisfies our two requirements in the case of S5,.

11 The letter Q was chosen only because most other letters already had relatively well-known modal
operators associated with them.
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Proposition 22 If (M, w) and (M’ w') are S5,, situations such that PossZ»SS"(M, w) =
Possis‘t’"(M’, w'), then (M, w) =t (M’ w').

Proposition 23 For all agents ¢ and S5,, situations (M7, w;) and (Ma, ws), there is
an S5, situation (Msz, w3) such that PossZ»SS“(Mg, wz) = Poss-SS“(Ml, wl)UPossl-SS”(Mz, ws).

K3

Again, our definitions of S-i-honesty and }'vfg now carry over for § = S5,,. We
remark that we restrict the l"'lssn relation to formulas in £, here to simplify the
comparison to previous sections. There is no difficulty extending it to £9 though.
Again, it 1s easy to see that these definitions generalize those for the single-agent case
given in [11].

We now want to characterize honesty and “all agent ¢ knows” for Sh,,. The the-
orems have very much the same flavor as the corresponding results for K45, and
KD45,,, so we just state them here without much comment.

Theorem 24 The formula « is Sh,-i-honest iff (a) K;a is S5,-consistent and (b) for
all Q;-formulas 1, ..., ¢, if g5, Ko = (Kije1V.. VE;pp) then g5, Ko = K@)
for some j € {1,...,k}.

Notice that although we have |=g5, Kitrue = (K1qV K1 K3—K3K1q), we do not
have g5, Kitrue = (Kleltrueq v KlQ{(ltruelﬁ—'Kﬂ(lq), so the counterexample
to Theorem 15 does not apply here.

A set S of formulas is a S5,,-i-Q-stable set if there is some S5, situation (M, w)
such that S = {p € L : (M, w) | K;p}. Define the Q-kernel of an S5,-i-Q-stable
set S, denoted keriQ(S), to consist of all the @;-formulasin S.

Theorem 25 A formula « is S5,,-i-honest iff there is an S5,-i-()-stable set S® con-
taining « such that keriQ(S“) C keriQ(S). Moreover, if « is S5,-i-honest, then, for all

B E Ln, apyy B iff €S

Finally, we recursively define a set Df:?(a) of formulas in £, as follows:

p € Dh(a) iff [ss, Kia = K;Q5* ¢,

where £, is the conjunction of Kji for all subformulas K;4 of ¢ such that ¢ € Dé?(a)
and —K;y for all subformulas K;v of ¢ for which ¢ ¢ Dg(a). (We take &, to be

K;true if there are no i-subjective subformulas of ¢.) Then we have:

Theorem 26 The formula « is S5, -i-honest iff K;a is S5,,-consistent and o € Dg(a).
If @ is S5,-i-honest, then al"'lssnﬂ iff g e Dég(a).

We close this section by briefly comparing our approach to defining “all I know” for
S5, to two others that have appeared in the literature. Fagin, Halpern, and Vardi [4]
define a notion of i-no-information extension that can also be viewed as characterizing
a notion of “all agent ¢ knows” in the context of Sb,,. However, it is defined only for a
limited set of formulas.'? It can be shown that these formulas are always S5,,-i-honest

12Roughly speaking, these are the formulas that, in the terminology of [4], characterize finite
knowledge structures.
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in our sense, and, if « is one of these formulas, we have al"'lssnﬂ iff B 1s true in the
i-no-information extension of «. The fact that these two independently motivated
definitions coincide (at least, in the cases where the i-no-information extension is
defined) provides further evidence for the reasonableness of our definitions.

Parikh [21] defines a notion of “all that is known” for S5, much in the spirit of
the definitions given here. Among other things, he also starts with k-trees (he calls
them normal models), although he does not use i-objective trees. However, rather
than focusing on all that some fixed agent ¢ knows as we have done, Parikh treats
all agents on an equal footing. This leads to some technical differences between the
approaches. His approach also does not lend itself well to proving complexity results.
He was also able to obtain only nonelementary-time algorithms for deciding whether
a formula was honest in his sense. As we shall see in the next section, we can do much
better.

7 Complexity issues

We now characterize the complexity of computing honesty and “all i knows”.

Theorem 27 For S € {T,,54, : n > 1} U {K45,,, KD45,,,S5,, : n > 2}, the problem
of computing whether « is S-i-honest is PSPACE-complete.

Of course, the problem of computing whether « is K,-i-honest is trivial: the answer
is always “Yes”.

Theorem 28 For S € {K,,T,,S4, : n > 1} U {K45,,, KD45,,,S5,, : n > 2}, if a is
S-i-honest, then the problem of deciding if a3 is PSPACE-complete.

The requirement that n > 2 for the introspective logics is necessary. While
PSPACE is, of course, still an upper bound if n = 1, we can do better. How much
better we can do depends on whether ® (the set of primitive propositions) is finite
or infinite. This issue was not relevant in the context of Theorems 27 and 28; as
our proof shows, the PSPACE result holds as long as ® has even a single primitive
proposition. It does make a difference, however, in the case of K45, KD45, and S5.
In these cases, if ® is finite, the problems we are interested in are decidable in poly-
nomial time. On the other hand, if @ is infinite, then the relevant complexity class
turns out to be Ag’bg(n).l?’ The complexity class A} consists of all languages L such
that membership in L can be decided by a Turing machine that runs in polynomial
time, but is allowed to make queries to an NP oracle. The complexity class Ag’bg(n)
consists of those languages in A} such that on an input of size n, the NP oracle is
queried at most log(n) times. It is easy to see that Ag’bg(n) C PSPACE. Tt is

conjectured that the containment is strict, but this has not yet been proved. Using
recent results of Gottlob [6], we can show

13The situation here is analogous to the satisfiability problem for these logics. As shown in [9],
in the case of Ky, Ty, and S4,,, the satisfiability problem is PSPACE complete even if n = 1 and
® contains only one primitive proposition. Similarly, we get PSPACE completeness for the satisfi-
ability problem for K45,, KD45,, and S5, as long as n > 2, even if ® contains only one primitive
propositions. However, for K45, KD45, and S5 (where there is only one agent), the satisfiability
problem is NP-complete if ® contains infinitely many primitive propositions, and in polynomial time
if ® contains a finite number of primitive propositions.
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Theorem 29 Suppose § € {K D45, K45, S5}. If ® (the set of primitive propositions)
is finite, then the problem of deciding whether « is S-1-honest and the problem of
deciding whether a}'v‘lgﬁ for an §-1-honest « are both decidable in polynomial time.

Jog(n
AP g(n)

If @ is infinite, these problems are both -complete.

8 Discussion

We have extended the HM notion of only knowing to (the multi-agent case of) a
number of modal logics. The key tool was an appropriate canonical representation of
the possibilities of the agents. Such a canonical representation should also be useful
in other applications where we need to characterize the set of possibilities of an agent,
such as in extending Levesque’s notion of only knowing to multiple agents. (See [8] for
a discussion of how this can be done, and [17] for an alternative approach; a synthesis
can be found in [10].)

Despite its attractive properties, there is still an element of ad hockery to our
approach.!* For example, for the non-introspective logics, we used w-trees to define
the notion of what agent ¢ considers possible, for K45, and KD45,,, we used z-objective
w-trees, and for Sb,, we used i-objective w-*-trees. In general, it is clear that the
notion of “all I know” is a function of the notion of possibility. We could, for example,
define a notion of “all I know” for K45, and KD45, using w-trees. The reason we
did not, as we argued above, is that this definition would result in a rather strange
notion of “all I know”, with quite counterintuitive properties. This observation, of
course, raises a number of questions.

e Can we get some kind of a correspondence between properties of “all I know”
and properties of the notion of possibility? We conjecture that conditions like
the union condition and the determination condition will be necessary to get a
reasonable notion of “all I know”.

e We required that our notion of possibility satisfy the union condition and the
determination condition. Are these conditions sufficient to determine the no-
tion of “possibility” uniquely for a given logic? If not, can we find additional
reasonable conditions that do determine it uniquely?

e Do the results we have proved for the logics we have considered hold for any
notion of possibility that satisfies the union condition and determination condi-
tion?

Although the notion of possibility used for S5,, seems rather complicated, it may well
be that it (or something like it) is forced by some natural requirements. It would be
comforting to have a framework in which this can be made precise.

The notion of “possibility” arises in a number of contexts. For example, it can also
be used to extend Levesque’s notion of “only knowing” to many agents [8, 10]. For
another example, consider the approaches to modal logics of normality or plausibility
such as that of Boutilier [1], which have thus far only been defined in the single-agent
case. Boutilier’s semantics involves placing an ordering on (all) worlds. If we try to

14We thank Grisha Schwarz for forcing this issue to our attention.



extend his intuitions to the multi-agent case, we may well need to place an ordering
on “possibilities”. Thus, it would be useful to have a general theory of what counts
as a “possibility”. As shown in [10], the situation is in fact even more complicated.
What matters is not only what counts as an individual possibility, but what sets of
possibilities an agent can consider possible. We leave further consideration of these
issues to future work.

A Proofs for Section 4

Proposition 2: For each (M, w) and all k, there is a unique k-tree Tarw i such that
(M, w) =5 M(Tr,w,1)-

Proof Recall that it remains to show that (M, w) =p41 M (Tr,w k+1) and that
Taw,k+1 i1s the unique tree with this property. Assume inductively that we have
shown that for all situations (M’ ,w'), we have (M’ w') = M(Ta+ w' k), and that
Tar: w18 the unique tree with this property. To show that (M, w) =g41 M (Thw k+1),
given a formula ¢ such that depth(¢) < k + 1, we must show that (M, w) E ¢ iff
M (Tprw k+41) E . We proceed by induction on the structure of ¢. If ¢ is a primitive
proposition, the result follows since the truth assignment at the root of Tas o 141 is the
same as that at w. If ¢ is a negation or a conjunction of two other formulas, then the
result follows immediately from the induction hypothesis. Finally, if ¢ 1s of the form
K;, then we must have depth(y) < k. Suppose (M, w) = K;9. Let wg be the root
of Ths,w k+1, and suppose that w; is an i-successor of wg. Then our construction as-
sures us that wy is the root of a subtree Thr w1 of Tarw k41 and (w,w’) € K;. Since
(M,w") = ¢, by the induction hypothesis, it follows that M (Tarwx) = . Since
M(Tarwe i) is a subtree of M(Thw k+1), it follows that (M (Tarw r41), w1) E 9.
Thus, (M(TM,U),IH-l), wo) ': [{21/)

For the converse, suppose that (M, w) = —K;9. Thus, for some w’ with (w, w') €
K;, we have (M,w') = —t. By construction, there must be an edge labeled 7 in
Tarw,k+1 from w to a node which is the root of Ty 4 . Using the induction hy-
pothesis just as in the previous paragraph, we get that M (Tar ' x) FE —%, and so
M (Tarw k+1) E - K. This completes the inductive proof.

For uniqueness, it suffices to show that if all &', if 7" and 7" are distinct k’-
trees, then M(T)#%, M (T'). We prove this result by induction on k'. If ¥’ = 0,
this is immediate from the fact that if 7" and 7" are distinct O-trees, then the truth
assignments labeling the roots of 7' and 7" must be different. If £’ > 0 and 7" and 7’
are distinct m-trees, with roots w and w’ respectively. Either the truth assignments
labelling w and w’ must be different, or for some agent ¢, the set of subtrees of T
rooted at the i-successors of w must be different from the set of subtrees of 7" rooted
at the i-successors of w’. In the former case, the result is immediate. In the latter
case, we can assume without loss of generality that there is some #-successor v of w
such that the subtree of T rooted at v is different from all the subtrees rooted at
i-successors of w’. Let T1,...,T,, be the subtrees of T" rooted at i-successors of w’,
and let T, be the subtree of 7" rooted at v. Since all these subtrees are k' — 1-trees,
it follows from the induction hypothesis that there are formulas ¢1, ..., ¢, such that
depth(p;) < k' — 1, M(T,) E ¢i, and M(T;) E -, for i = 1,...,m. Tt now
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follows that M(T) = = K;=(¢1 A...om) and M(T") E K;=(p1 A ... A @m). Thus
M(T)2, M(T").*°

Proposition 4: If § € {K,,T,,S4,} and Possf(M,w) = Possf(M’,w’), then
(M, w) =t (M’ w').

Proof Suppose that (M,w) #' (M’ ,w'). Then, without loss of generality, there
exists a formula ¢ such that (M,w) E K;p and (M',w') = —K;p. But then
there must exist a world w” such that (w',w") € ICZMI and (M',w') = —p. Since
(M,v) = ¢ for all v such that (w,v) € KM, it follows from Corollary 3 that

Tarrwn & Poss? (M, w), although by definition Ths v € Poss? (M’ w'). Thus,
Poss‘f(]\i7 w) # POSS;-S (M, w").

Proposition 5: For § € {K,,,T,,S4,}, all agents i, and all S situations (M1, w1)
and (M, ws), there is an S situation (M3, w3) such that Possf(Mg, wz) D Possf(Ml, wi)U
Possf(M2, ws).

Proof Given § situations (M7, w;) and (M, w2) we want to show that there exists
an § situation (Msz, w3) such that Possf(Mg, w3) D Possf(Ml, wy)U Possf(Mg, ws).
Observe that, without loss of generality, we can assume that WM™t and WMz are
disjoint. We take W™z to be WM U WMz U {ws}, where w3 is a new world not in
WMiyWMz We define m™3(w) = aMi(w)if w € WMi for j = 1,2 (here we are using
the fact that W#1 and W™= are disjoint). The definition of 73 (w3) is irrelevant.
We define /C;M"’ = /C;Ml U /ij U {(ws3,w3)} for j # i, and define KM = KM U
/CZM2 U {(ws, wz)}U({ws} x (ICle(wl) UIC;M2(1U2))). Thus, /CZM3 is the least Euclidean,
transitive relation that includes IClMl UICZM2 and (ws, w') for w’ € IClMl(wl)UICZJ»m(UJQ).
In the language of [14], (M3, w3) is an amalgamation of (My,w1) and (M3, w2). We
leave it to the reader to check that with these definitions, (M35, w3) is an S situation
(our requirement that (ws, ws) € K; was precisely to take care of the possibility that
S is T or S4) and that Possf(Mg, wz) D Possf(Ml, wy) U Possf(M2, ws).

Notice that if § is T,, or S4,,, then the assumption that (ws,ws) € K; is nec-
essary (otherwise M3 would not be an S-structure). This means that Timsws) €
Possf(Mg, wg), which in turn means that Possf(Mg, wsz) may be a strict superset of
Possf(Ml, wy) U Possf(MQ, ws). As we showed in the main text, this is unavoidable.
On the other hand, if § = K,,, we do not need the assumption that (ws,ws) € K;.
So, for K,,, we can assume that Possf(Mg, wz) = Possf(Ml, wy) U Poss‘f(M2, ws).

Theorem 6: If S € {K,,T,,54,}, then the formula o is S-i-honest iff (a) K;a is
S-consistent and (b) for all formulas @1, ..., ¢k, if Fs Kia = (Kip1 V...V K;jpr),
then =5 Kija = Kjpj for some j € {1,...,k}.

15This part of the proof fails if ®, the set of primitive propositions, is infinite, since we can no
longer assume that there are only finitely many distinct subtrees rooted at i-successors of w’. If
there are infinitely many subtrees, we would need an infinitary formula to distinguish M (7') from
M(T'), and such formulas are not in our language.
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Proof Let § € {K,,T,,S4,}. For the “only if” direction, suppose that « is S-i-
honest. Thus, there is an § situation (M, w) such that (M, w) = K;«, and for all S
situations (M', w’), if (M',w") = K;a, then Possf(M’,w’) C Possf(M,w). Clearly
K;a must be S-consistent. Now suppose that s Kia = (K;o1 V...V K;@p).
To obtain a contradiction, suppose K;a A =K;p; is S-consistent for j = 1,...,k.
This means that there is some S situation (M;, w;) such that (M;,w;) E K;a and
a world w} such that (w;,w}) € K; and (Mj,w}) & —pj, for j = 1,...,k. By
assumption, Tijwg_ = Possf(M,w). Thus, there is a world w' € WM such that
(w,w') € KM and Tys = TMj’w;. It follows from Corollary 3 that (M, w’) E —g;.
Hence, (M, w) E —K;p;, for j = 1,..., k. But this contradicts the assumption that
Es Kia = (K;01 V...V K;pp). Thus, we must have s K;ja = K;p; for some
Jje{l, ...k}

For the converse, suppose K;« satisfies conditions (a) and (b) in the theorem. Let
F' consist of all subformulas of « of the form K such that K;a A= K;1) is S-consistent.
From condition (b), it follows that it cannot be the case that =5 K;a = (VwEF K;).
Thus, there is an S situation (Mg, wy) such that (My, w,) E Ko A /\wEF =K.

We now construct an S-i-maximum situation (M7 w,) for K;a as follows: In-
tuitively, we want to start with all situations satisfying K;« and “glue” them together
appropriately, as was done in the proof of Proposition 5. The problem is that we can-
not talk about the “set” of situations satisfying K;c; it is not a set (it is too large).
In fact, for our purposes, it would suffice to consider only situations with countably
many worlds, but rather than proving this formally, we take AV, to be a set of situa-
tions including (M, we) such that each situation (M, w) € N, satisfies K;a and, if
= Poss}S (M', w") for some situation (M’, w') satisfying K;a, then T € Possf(]\l7 w)
for some situation (M, w) in N,. Roughly speaking, we take M7*®* to consist of the
union of all the situations (M, w) in N,. In more detail, observe that without loss
of generality, we can assume that if (M, w) and (M’ w’) are two situations in Ny},
then the worlds in W™ and WM are disjoint. We take the worlds in M to con-
sist of the union of all the worlds in WM for each situation (M, w) in N,. We define

M (w) = aM(w') if w' is a world in WM for some (M, w) € N,,. We define IC;M‘T’MI
to be the union of the /C;M relations for the situations (M, w) € N,. In addition, if
(w,w’) € KM for some situation (M, w) in N,, then we add the pair (w,,w’) to
ICZM;MI. Thus, in M7**, the set of worlds considered possible by agent ¢ in w, is the
union of all the worlds considered possible by agent ¢ in any situation in A,. Again,
we can view (M7 w,) as an amalgamation of the situations in N,. We leave it to
the reader to check that with these definitions, (M7'*" w,) is an § situation.

We now want to show (M7 w,) E K;a. We actually prove a stronger claim: We
show that if (M, w) is a situation in N, and w’ is a world in W¥ | then (M, w’) = 3
iff (M2%" w') |= B for every subformula 8 of K;a. The proof is by induction on
the structure of 4. Given our construction of MJ**" as the “union” of the situations
in Ny, the proof is completely straightforward except if 3 is of the form K;3’ and
W = Wq. Suppose (M w,) | K;f; we want to show that (M,,ws) E K; 3. If
(wa,w') € /CZM", then (wq,w') € ICZM‘TGI by construction. Since (M7*" wy) = K; 7,
it follows that (M7** w') = 8. By the induction hypothesis, we have (M,, w") E 7.
Tt follows that (My,we) = K;B'. For the converse, suppose that (Mg, we) = K; 7.

From the choice of My, it follows that =5 K;a = K; . Suppose (wq, w') € ICZM“‘
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We want to show that (M2* w') |= #'. From the construction of ICZMZ‘MI, it follows
that there is a situation (M, w) in NV, such that (w,w') € KM. Since (M,w) | K;a,
we must also have (M, w) = K; 8. Thus, (M,w") = 5. By the induction hypothesis,
we get (M2 w') |= (' as desired. Thus, (MJ*, w,) = K;3'. This completes the
inductive proof. In particular, we get that (M7 w,) E K;a.

Tt remains to show that (M2*" w,) is an S-i-maximum situation for K;a. Sup-
pose (M',w') = K;o. We must show that Poss? (M, w') C Posss (M7 w,). Sup-
pose T' € Possf(M’, w’). By construction, there must be some situation (M, w) € N,
such that T' € Possf(M,w). Thus, there is some world w’ with (w,w’) € KM such
that T = Tar. Our proof above shows that (M,w') = (M2'*",w'). Thus, by
Corollary 3, Tafw = Thamaes o = T. Again, by construction of MJ*%", we have

(wo,w') € ICZM‘TM. It thus follows that T" € Possf(M&””, W), as desired.

From the proof of Theorem 6, we get the following corollary, which will be useful
in our later complexity results.

Corollary 30 If S € {K,,T,,S4,}, then the formula « is S-i-honest iff (a) K;« is
S-consistent and (b’) for all formulas ¢4, . .., ¢ such that K;¢; is a subformula of «,
for j=1,...,k, if Es Kja = (Kijp1 V...V K;pyp), then s K;ja = K;p; for some
Jje{l, ...k}

Proof The “only if” direction follows immediately from Theorem 6. For the “if”
direction, observe that in the proof that « is honest, we did not use the full strength
of clause (b) in the statement of Theorem 6; rather it sufficed to consider subformulas
of a of the form K;p.

Theorem 7: All formulas are K,,-i-honest.

Proof Consider any formula a.. Clearly Ko is satisfiable in the K,, situation (M, w)
where w is the only world in WM and KM is the empty relation. Thus K;a is K-
consistent. Next, suppose that g, Kia = (K;¢1V...K;pr) and suppose, by way of
contradiction, that K;a A ~K;p; is K,-consistent for j = 1,..., k. Thus, there must
be a K, situation (M;,w;) such that (M;,w;) E K;a A =K;p;. We now proceed
much in the spirit of the proof of Theorem 6. Again, without loss of generality,
we can assume that if 1 < j < j/ < k, then WM and W™ are disjoint. We
take WM = {w}u (U;ﬂ:1 WMi) where w is a fresh world that does not appear in
U§:1 WMi. We define 7™ (w') = #Mi(w') if w' € WMi; the definition of 7 (w) is
irrelevant. For j/ # i, define IC;‘,J to be U}“IllC?,Jj. Finally, we define KM to consist of
the union of the /CZMj relations together with (w, w') for each world v’ € U}“IIICZMj (w;).
It is easy to show that for a world w’ € Wi we have (M;,w') = (M, w'). Since
(Mj,w;) E Kija A =K;pj, it is easy to see that (M, w') | —; for some w' such
that (w;,w’) € /CZMj. By construction, (w,w’) € KM, so (M, w) E —K;p;. Tt is also
easy to see that (M, w) | K;a. Thus, (M,w) E K;a A =K;p1 A ... A-K;pp. This
contradicts the assumption that Fx, K;a = (K;o1 V...V K;pr). Tt follows that
if Fx, Kia = (Kjp1 V...V K;pp), then EFx, K; = K;p; for some j € {1,... k}.
From Theorem 6, it follows that « is K,-honest.

22



Theorem 8: If S € {K,,, T,,S4,}, then « is S-i-honest iff there is an S-i-stable set
S containing o which is a subset of every S-i-stable set containing a. Moreover, if

o 1s honest, then apspB iff B € S*.

Proof Suppose a is S-i-honest. Then, by definition, there is an S-i-maximum sit-
uation for a, say (Mg, wq). Let S* = {¢ : (My,ws) E Kip}. Clearly S is
an S-i-stable set containing a. Let S be any other S-i-stable set containing a.
Suppose ¢ ¢ S. Let (M,w) be an § situation (M, w) corresponding to S; we
must have (M, w) | K;a A =K;p. Thus, there is a world w’ € WH such that
(w,w') € KM and (M,w') | —¢. Since (M,,w,) is an S-i-maximum situation,
T € Possf(Ma, w,). Thus, there is some world u such that (w,,u) € KM and
Tar,w = Tarwe. By Corollary 3, we have (M,,u) E —¢. Thus, (M, ws) E —K;e.
This means that ¢ ¢ S*. Thus, we have shown that S* is indeed a subset of every
S-i-stable set containing a. Moreover, it is clear from this argument that a3 iff
B e S

For the converse, suppose that there is an S-i-stable set S® containing « which is
a subset of every S-i-stable set containing «. Clearly K;a is S-consistent, since it is
satisfied in every § situation corresponding to S®. We want to show that a is S-i-
honest. Suppose that |Fs Ko = (K1 V...V K;pp). It follows that every S-i-stable
set containing o must contain one of ¢1, ..., pg. In particular, this is true of S®. So
we can suppose without loss of generality that ¢; € S*. By definition of S%, this
means that ¢y is in every S-i-stable set containing a. We must have =5 K;a = K;p1,
for if K;ae A= K71 were S-consistent, there would be an S situation (M, w) such that
(M,w) E Kija A=K;p1. But then S = {f : (M,w) E K;B} is an S-i-stable set
containing a and not ¢1, a contradiction. It now follows from Theorem 6 that « is
honest.

Theorem 9: If S € {K,, T,,54,} and « is S-i-honest, then a}’v‘is[)’ iff Es Kia =
Kif.

Proof Suppose « is S-i-honest. Clearly if =5 K;a = K;3, then oz}'vgﬁ. For the
converse, suppose that K, A =K;3 is S-consistent. It follows that there is an S-i-
stable set containing & and not 3. From Theorem 8, it follows that it is not the case

that a}««fgﬁ.

B Proofs for Section 5

Proposition 13: If (M, w) and (M',w') are S situations, S € {K45,,, KD45,}, and
Poss‘f(]\i7 w) = Possf(M’,w’), then (M, w) =* (M', w').

Proof Suppose the hypotheses of the proposition hold and the conclusion does not.
Then, without loss of generality, there exists a formula ¢ such that (M, w) | K;¢ and
(M'",w") |E = K;p. Without loss of generality, we can assume that ¢ is the formula
of minimum depth with this property, so that for all formulas ¢ with depth(v) <
depth(p), we have (M, w) £ K;¢ iff (M',w') | K;%. Using the following equiva-

lences, it is not hard to show that ¢ must be an z-objective formula:
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o s Ki(pr Ap2) & (Kipr A Kipa)
o =5 Ki(p1 V Kipz) & (Kip1 V Kipa)
o =5 Ki(p1 VKijps) & (Kijpr V1 K;p2)

° ':S Kigo < I{i[(igo

':5 —|Kifalse = (_UKZ'QD f=4 KZ'—Jng).

But then there must exist a world w” such that (w,w”) € KM and (M’ w") = —¢.
Since (M,v) | ¢ for all v such that (w,v) € /CZM, it follows from Corollary 12
that Tﬁm w ¢ Poss (M w), although by definition Tj, wr € Poss (M',w"). Thus,

Possy (M, w) # Posss (M', w').

Before proving Proposition 14, we need one technical result. For the purposes
of this appendix, define a situation (M, w) to be i-special if for all j # i and all
w' € WM we have KM (w) N K;(w') = 0. Thus, (M, w) is i-special if the i-successors
of w are not j-successors of any other world, for j # i. The following result says that
for K45,, and KD45,,, we can restrict attention to i-special situations without loss of
generality.

Lemma 31 If § € {K45,,, KD45, }, then for all S situations (M ) and all agents 7,

there exists an i-special situation (M’,w’) such that (M, w) = ( ,w').

Proof Given (M,w) and i, we construct (M’ w’) as follows. Let W; be a disjoint
copy of KM(w) U {w}. More formally, W; is a set of worlds that do not appear in
WM of the same cardinality as KM (w) U {w}. Let e be a 1-1 function from W; to
Ki(w)U{w}. Suppose w' is the world in W; such that e(w’) = w. Let W’ be WM UW;.
Extend e to all of W’ by defining e(v) = v for v € W. (Of course, e is no longer 1-1.)
Let M' = (W', K}, ... K}, "), where Ki(v) = K;(e(v)) if elther J#iorv g W,
Ki(v) = W; for v E W;, and 7'(v) = w(e(v)). By construction, (M', w') is i-special.
A straightforward induction on structure of formulas shows that for all formulas ¢
and all v € W', we have (M',v) = ¢ iff (M,e(v)) |E ¢. Since e(w’) = w, it follows
that (M, w) = (M',w").

Proposition 14: If § € {K45,,,KD45,}, then for all agents i and S situations
(Ml,wl) and (M, wo), there is an S situation (Ms,ws) such that Possf(Mg,wg) =
Poss (Ml,wl)UPoss (M, ws).

Proof Given & situations (M7, w;) and (M, w2) we want to show that there exists
an § situation (Msz, w3) such that Poss (M3, ws) = Poss (My,w )UPoss (M, ws).
Recall that in Proposition 5 we defined a situation (Mg, w3) such that I/VM3 = WMy
WM U{wg} and /CM3 wz) = /wal(wl)U/C{m( 12), and showed that Poss (M3, ws) D
Poss (M, wl)UPoss (M3, wq), for § € {K,, Ty, S4,}. We might hope that a similar
constructlon would work here. The naive construction does not quite work, since /CZME’
will not be Euclidean if ICZJ-VIl(wl) and ICZM2(w2) are both nonempty: If v; € ICfMl(wl)
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and vy € ICfm(wz), then the construction has the property that both v; and wvs
are in ICZME’(wg). Euclideanity then requires that (vi,vs) € /CZJ»V["’, which does not
follow from our construction. This means that (Msz,ws) is not an S-situation, for
S € {K45,,,KD45,}.

This problem is easily fixed, by appropriately modifying the ICZM relation so that
it is Fuclidean. However, doing this may cause problems if M; and M, are not i-
special. For example, suppose that w' € IClMl(wl) n K;‘Jl(w’) for some j # i. Since

3

/CZM3 is Euclidean, we must have /CZJ»MS(U)I) = ICZMS(wl). Moreover, by construction,
KM3(wy) # KM (wy). Thus, Tﬁda,w' # Tf\ﬂ,wh Both have a j-successor of the root
corresponding to w’, but the i-successors of this j-successor must be different in the
two trees. It follows that Possf(Mg,wg) will be incomparable to Possf(Ml,wl),
rather than being a superset of it.

We can get around this problem by assuming that (M7, wy) and (M, w2) are both
i-special. (If not, then by Lemma 31, we can find i-special situations (M, w}) such
that (M;,w}) = (Mj,w;), for j = 1,2. Since equivalent situations have the same set
of possibilities, we can use these instead.) Asin Proposition 5, we now define (M3, w3)
so that WHMs = WM gy WMz y {ws} and /C;M3 = /Cjwl UIC;M2 for j # 7. We define
KM = KUY (i, 0) - u € (s} UK (1) UK (13), 0 € KM ()UK M ()}
We leave it to the reader to check that with this definition, (M3, ws) is an S-situation
and Possf(Mg, wz) = Possf(Ml, wy) U Possf(Mz, wa).

Theorem 15: For S € {K45,,KD45, }, the formula o is S-i-honest iff (a) K;a is
S-consistent and (b) for all i-objective formulas ¢1,..., 01, if Fs Kia = (Kip1 V
...V Kipr) then Es Kija = K;p; for some j € {1,...,k}.

Proof The proof follows lines similar to those of Theorem 6. Suppose § € {K45,,, KD45, }.
For the “only if” direction, suppose that « 1s S-i-honest. Then there is an § situation
(M, w) such that (M, w) E K;a, and for all S situations (M’ w’), if (M',v') E K;«,
then Possf(M’, w') C Possf(M, w). Clearly K;« is S-consistent. Now suppose that
Es Kia = (Kjp1 V...V K;pp), where ¢1, ..., ¢ are i-objective. Suppose, by way
of contradiction, that K;a A =Kjp; is S-consistent for j = 1,..., k. This means
that there is some S situation (Mj,w;) such that (M;, w;) = K;a and a world w}
such that (w;,w};) € K; and (Mj,w}) | —p;, for j = 1,..., k. By assumption,

Tfﬁij,v € Possf(M, w). Thus, there is a world w' € WM such that (w,w') € KM
and Tfﬁ’w, = T]ﬁdij;. Since ¢; is i-objective, it follows from Proposition 11 that
(M, w") E —p;. Hence, (M,w) |E —K;¢g;j, for j = 1,..., k. But this contradicts the
assumption that Es Kja = (Kjp1 V...V K;pp). Thus Es K;a = K;p; for some
Jje{l, ...k}

For the converse, suppose K;a satisfies conditions (a) and (b) in the theorem. Let
F consist of all the formulas of the form K;y in the set B&(a,a) (see Definition 17)
such that K;a A—K;p is consistent. By (a) and (b), there is an S situation (Mg, wy)
satisfying K;a A /\weF - K;p. Suppose Afs(a, a) = {aqg, ..., am) (see Definition 17).
Let Ci o = {K;9 : Es Kja = Kjtp}. (Note that Cj o is independent of whether we
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take S to be K45, or KD45,,.) Let 1, be the formula

A K| A A K1

KyeBL(a,0)nCi KyeBy(a,0)-Ci,o

Since (M, we) |E K;a, it is easy to see that in fact (Mg, wa) | %. Our construction
of A%(a, ) also guarantees that =g 1o = (aj € ajy1), for j =0,...,m — 1. Since
ag = K;a and (Mg, wo) | Kia, it follows that (M, we) E am, so ay, = true.

We now construct an S-i-maximum situation (M2'*" w,) for K;a much as in
Theorem 6. Again, let N, be a set of i-special situations including (M, we) such that
each situation (M, w) € N, satisfies K;«, and if T' € Possf(M’, w') for some situation
(M',w") satisfying K;a, then T € Possf(M, w) for some situation (M,w) € N,.
(The fact that we can assume that all the situation in A, are i-special follows from
Lemma 31.) Again, we assume that if (M,w) and (M’ , w') are two situations in
N,, then the worlds in W™ and WM' are disjoint. We take the worlds in M
to consist of the union of all the worlds in W™ for each situation (M, w) in N,.
We define aMa"" (w) = a#M (w') if w’ is a world in WM for some (M,w) € N,. We
define IC;M‘TM to be the union of the IC;W relations for the situations (M, w) € N,

for j # i. Finally, ICZM‘TM is least Euclidean, transitive relation that includes KM
for each situation (M,w) € N,, together with (w,,w’), where w' € KM(w) for
some (M,w) € N,. We leave it to the reader to check that with these definitions,
(M2 ‘w,) is an S situation.

We now want to show (M2*" w,) = K;a. Again, we do this by proving that
if (M,w) is a situation in N, and w' is a world in WM then (M,w') E 3 iff
(M2 w') |= f for every subformula 8 of K;a. The details are much as in the proof
of Theorem 6, so are omitted here. Tt follows that (MZ'%" w,) is an S-i-maximum
situation for K;o.

As a corollary to the proof of Theorem 15, we get the following analogue to
Corollary 30, whose proof is essentially identical to that of Corollary 30.

Corollary 32 If S € {K45,,KD45, }, then the formula « is S-i-honest iff (a) K;a is
S-consistent and (b’) for all formulas 1, ..., ¢ in By(a,a), if s Kia = (K1 V
...V K;pr), then =5 Ko = K;p; for some j € {1,...,k}.

Theorem 16: For S € {K45,,,KD45,}, a formula « is S-i-honest iff there is an
S-i-stable set S containing o such that for all S-i-stable sets S containing o we have

ker; (S®) C ker;(S). Moreover, if o is S-i-honest, then a}'v‘isﬁ iff B € S”.

Proof The proof follows almost the same lines as that of Theorem 8. Suppose « is S-
i-honest. Then, by definition, there is an S-i-maximum situation for «, say (Mg, wy).
Let S* = {¢ : (M, wq) = K;p}. Clearly S* is an S-i-stable set containing «. Let
S be any other S-i-stable set containing «. Suppose ¢ ¢ ker;(S). Let (M, w) be an
S situation (M, w) corresponding to S; we must have (M, w) | K;a A =K;p. Thus,
there is a world w’ € W such that (w, w') € KM and (M, w') = —¢. Since (M,,w,)
1s an S-i-maximum situation, TJZ\.J,w’ € Possf(Ma, wq). Thus, there is some world u
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such that (wq,u) € KM and T]ﬁ,ja . =Ti . By Corollary 3, we have (M,, u) = .
Thus, (Mg, ws) |E —K;p. This means that ¢ ¢ S. Since ¢ was chosen arbitrarily, it
follows that ker;(S®) C ker;(S). Moreover, it is clear from this argument that aj~%3
iff g e S°.

For the converse, suppose that there is an S-i-stable set S* containing « such that
ker;(S®) C ker;(S) for every other S-i-stable set containing «r. We want to show that
a is S-i-honest. Suppose that s K;a = (Kjp1 V...V K;¢1), where ¢4, ..., ¢, are
1-objective formulas. It follows that every S-i-stable set containing « must contain
one of ¢1,...,¢r. In particular, this is true of S*. So we can suppose without loss
of generality that ¢1 € S*. Since ¢ is i-objective, we in fact have @1 € ker;(S®).
By definition of S, this means that ¢; is in ker;(S) for every other S-i-stable set S
containing . We must have g K;a = K;p1, for if K;a A =Kjp; were consistent,
there would be an § situation (M, w) such that (M, w) = K;a A =K;p1. But then
S={p:(M,w) E K;B3} is an S-i-stable set containing & and not ¢1, a contradiction.
It now follows from Theorem 15 that « is S5,-7-honest.

Theorem 19: For S € {K45,,KD45,}, the formula o is S-i-honest iff K;a is S-
consistent and o € D (). If o is S-i-honest, then a~sp iff B € Di(a).

Proof Suppose a is S-i-honest. Then there is an §-i-maximum situation for «, say
(M2, wy). It follows that K;« is S-consistent. Moreover, we claim that § € D%(«)
iff (MJ*", wa) = K;3. Using the notation in the proof of Theorem 15, let 13 be the
formula

A K| A A —K; )

KieB5(a,B)NCs KipeBs(a,p)—Cia

Tt is easy to see (and is actually shown in the proof of Theorem 15) that (MZ'*" w,) =
Yg. Moreover, suppose that A%(a,B8) = (Bo,...,3m). Our construction guaran-
tees that =5 ¢¥p = (85 © Bj+1), for j = 0,...,m — 1. In particular, this means
that (M7% w,) E fo < Pm. Recall that gy = K;8 and By, is either true or
false. If (M™% w,) & K;B, then we must have B, = true, so B € Di(a). If
(M™% w,) = =K;$3, then we must have (3, = false, so f ¢ D%(a). Taking 3 = a,
since (M* w,) = K;a, we have that a,, = true, so a € D% (a). It also immediately
follows that if & is S-i-honest, then a}««g[)’ iff 3 € D(a).

Now suppose that & € Dy («) and K;« is consistent. Let A% (o, o) = (aq,. .., am).
Since @ € Di(a), we must have a,, = true. Construct the situation (M7 w,)
as in the proof of Theorem 15. (Since K;« is S-consistent, we can carry out this
construction.) As shown in that proof, (MZJ'*" w,) = ¥,. Moreover, as we have
observed, s o = (a0 © ap). It follows that (MJ*" w,) E K;a. Thus, « is
S-i-honest, since (M2'%" w,) is clearly an S-i-maximum situation for K;a.
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C Proofs for Section 6

Proposition 20: For each Sb, situation (M,w) and for all k, there is a unique
i-objective k-x-tree T’ wk Such that (M, w) = Q’ M(TJZ\’J*U) k)

Proof The inductive construction proceeds much like that in Proposition 2. The
only difference 1s that we give the world w special treatment in our construction.
Given a structure M and worlds w,w’ € WM we construct a *-tree that we call
Tarw,wk by induction on k. Ths w0 18 just Tas w0, and T we w, k41 consists of a
root labeled by the truth assignment at w’, and for each pair (w', w") € K;, an edge
labeled 7 to the root of Tas e w i, unless w” = w. In that case, we construct an edge
labeled 7 to a node labeled *. We then again eliminate duplicate trees, as in the proof
of Proposition 2.

We take TMw 5= Tjww w k- e now must show that (M, w) E M(TJZ";w k)
Using techmques similar to those of Proposition 2, it is easy to show that (M, w) =k
M(TMw wk). It easily follows that if (M, w) can be i-embedded in (M', w'), then
M(TJZ\’;w k) can be -embedded in a situation (M”, w") such that (M’, w') = (M", w').
Conversely, we can show that if M(TJZ\/’I*U) k) can be i-embedded in a situation (M", w"),
then (M, w) can be i-embedded in a situation (M', w')such that (M', w') =5 (M", w").
The desired result 1mmed1ately follows.

The uniqueness of 77 ”w’k follows along the same lines as in Proposition 2; we omit
details here.

We need the following lemma to prove a number of the remaining results.

Lemma 33 Suppose (M, w) and (M’ w") are S5, situations such that TM w = TJZ\’; )
and for every i-subjective subformula ¢ of 3, we have (M, w) = v iff (M’ 2] |— .

Then (M, w) | giff (M, w") E .

Proof Suppose (M, w) and (M', w') satisfy the hypotheses of the lemma. We prove
the result by induction on the structure of 1, but we need a somewhat stronger
induction hypothesis. We prove by induction on the structure of i that if ¢ is a
subformula of 3 such that depth(¢) < k, then (a) (M,w) E ¢ iff (M, vw') E ¢
and (b) for arbitrary worlds v € WM and o' € wM'if Trvwrk = T o w b,
then (M,v) = ¢ iff (M',v") = ¢. We focus on part (a) here. The only nontrivial
case is if 9 is of the form K;¢'. Suppose that (M,w) E K;vy'. We want to show
(M, w") = Kﬂ/) If j = ¢ the result is immediate by assumption, so suppose j # 1.
Suppose that u’ € /CM (w"). If w' = w', it is immediate from the induction hypothesis
that (M, w') = ¢'. So suppose that v’ # w’. Since TJZ‘,’;w = TJi/ﬂwM there must be
some u € KM (w) such that Tatuw k-1 = Trurw k—1. Since (M, w) E K;9', we
must have (M, u) = ¢'. Since depth(y) < k — 1, by part (b) of our main induction
hypothesis, it follows that (M',v') = 4. Hence, (M’ ,w') | K;y'. The converse
follows by a symmetric argument. The proof of part (b) is similar and left to the
reader.

Proposition 22: If (M, w) and (M',w') are Sb,, situations such that Possissf‘ (M, w) =
PossZ»SE’"(M’, w'), then (M, w) = (M, w').



Proof Suppose Posslss" (M,w) = PossZ»SS"(M’,w’). We say that w; € KM(w) and
wy € IC;»MI(w’) correspond ifTJZ\.f:wl = TJZ\.’;’wz. Since Possis‘r’"(M, w) = PossZSS"(M’, w'),
for each world in K} (w), there is a corresponding world in IC{W(w’), and for each
world in KM'(w'), there is a corresponding world in KM (w). We show that if w; and
wsy are corresponding worlds in WM and WM’ respectively, then (M, w1) = (M', ws).
We proceed by induction on structure. Suppose (M, w;) = ¢. We must show that
(M',ws) = ¢. The result follows immediately from Lemma 33 and the induction
hypothesis except in the case that ¢ is of the form K;¢'. In this case, suppose that
u' € /CZMI(wz) = ICZMI(w’). This means there is some u € KM (w) corresponding
to u’. Since we must have (M, u) |= ¢, by the induction hypothesis it follows that
(M',; ') = ¢. Hence (M',ws) | K;p. A symmetric argument applies to the converse
implication.

Proposition 23: For all agents i and Sb,, situations (M, w1) and (M, ws), there is
an Sby, situation (Ms, ws) such that ]30552»55"(]\137 wz) = PossZ»SS"(Ml, wl)UPossz»SE" (M, ws).

Proof Without loss of generality, we can assume W™t and WM2 are disjoint. Let
WMs — WMy WMz Define #M3 so that 71'M~°’|sz1 = 7M1 and malwme = Mz et
/C;Ma = /Cjwl u IC;M2 for j # ¢, and define /CZME’ to be the smallest reflexive, Euclidean,

and transitive relation (i.e., equivalence relation) containing /ClMl, /CZM2 and the pair
(w1, ws). Tt is easy to see that PossZSS"(Mg, wy) = PossZ»SS"(Ml,wl)UPossis‘r’”(Mz, wa).

Theorem 24: The formula « is Sby-i-honest iff (a) K;o is S5,-consistent and (b)
for all Q;-formulas ¢1, ..., ¢r, if =ss5, Kija = (Kip1 V...V K;01) then =g5, Kija =
K;p; for some j € {1,... k}.

Proof The proof again follows very similar lines to that of Theorem 6. For the “if”
direction, suppose that « is S5,-i-honest. Thus, there is an S5, situation (M, w)
such that (M,w) E K;a, and for all S5, situations (M’ ,w’), if (M' | vw') E K;«,
then Possis‘r’”(M’, w') C POSS?S”(M, w). Clearly K;a must be S5,-consistent. Now
suppose that |=g5. K;a = (K;p1 V...V K;¢1), where @1, ..., ¢p are @;-formulas.
To obtain a contradiction, suppose K;o A ~K;p; is S5,-consistent for 7 = 1,... k.
This means that there is some S5, situation (M;, w;) such that (M;,w;) F K;a and
a world w} € IC;Mj(wj) such that (M;,w;) | —g;, for j = 1,... k. By assumption,
o . € Possis‘r’“(M, w). Thus, there is a world w’ € KM (w) such that TJ@*

Mj,w] w! =
TJ@?“},_. It follows from Proposition 20 that (M, w’) = —¢;. Hence, (M, w) E ~K;¢;,
for j ; 1,..., k. But this contradicts the assumption that |=g5 K, = (K;p1 V...V
Kipr).

For the converse, suppose K;o satisfies conditions (a) and (b) in the theorem.
Recall the definition of Df:?(oz) given just before Theorem 26 in the main text. Let
F' consist of all formulas of the form wai/), where K;v is a subformula of a and

V¢ Dg(a). This means that K;« /\—|KZ'Q§¢1/) is consistent for ¢ € F'. Tt follows from
(a) and (b) that there is an S5, situation (M,, w,) satisfying K;a A /\weF - K;p.
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We claim that (M,,ws) |E £. To show this, we prove by induction that for each
subformula ¢ of a, we have that (M., w.) |E €,. This requires showing that for
each subformula of ¢ of the form K;y, we have (My,wo) E K;¢ iff ¢ € DiQ(oz).
Suppose that 3 € Df‘)(a). Thus, =g5, Kia = KZ'QEM/). Since (Mg, wq) E Ko,
it follows that (M, we) |E KZ-QEW/). From the induction hypothesis, it follows that
(Mo, wa) = &y. Since &y is an i-subjective formula, it follows that (M, w) | &y for
all w € ICZM“ (wq). Since (My,w) can be embedded in itself and (My, w) = Qf%’;,
it follows that (M,,w) | . Since this is true for all w € IC?/I"(UJQ), we have
that (Mg, ws) | K. On the other hand, if ¢ ¢ DZ-Q(oz), then by construction,
(Mg, wa) = —J(Z'wal/}. Thus, there must be some w € ICZM"(wa) such that (M., w) |
—|QE¢1/) Thus, there must be a situation (M, w’) such that (Ma, w) is i-embedded in
(M,w") and (M,w") |E €y A —9. By Lemma 21, Tf"; w TJZ";w By the induction
hypothesis, (M,,w) |E &y. Thus, it follows from Lemma 33 that (Mg, w) E —9.
Thus, (My, we) | —K;¢ as desired.

We now construct an Sh,-i-maximum situation (M2**" w,) for K;«a using amal-
gamation, much as in the proof of Proposition 6 and 15. Let N, be a set of situations
including (M, wy) such that each situation (M,w) € N, satisfies K;a, and if T €
PossZ»SE’"(M’, w') for some situation (M’ w') satisfying K;o, then T' € Poss?sﬂ (M, w)
for some situation (M, w) € N,. Again, we assume that if (M,w) and (M’ w’) are
two situations in N,, then the worlds in W™ and W™’ are disjoint. We take the
worlds in M™% to be an amalgamation of the situations in N, just as in Theo-
rem 15. The only difference is that we now define ICZM‘T” to be the least equivalence
relation that includes KM for each situation (M, w) € N, together with (w,,w’),
where w' € KM (w) for some (M, w) € N,,.

Tt remains to show that (M2*" w,) | K;a. We first show that (M7*" w,) = &,.
As in the case of (My,w,), we actually show that for every subformula ¢ of «, we
have that (M2'%" w,) E &,. We do this by showing that for every subformula 1 of
¢, we have (M w,) = Ky iff ¢ € D?(a). Suppose that ¢ € DiQ(oz). Thus,
Ess, Kia = KZ-QEW/;. It easily follows from Proposition 20 that (MZJ'*" w) =
Qf“/) for all w € ICZM;MI(wa) By the induction hypothesw (MZ* wa) E &y.
Since &y is i-subjective, (MJ'?%, w) |: &y for all w € IC (wa). It follows that
(MZ* w) = ¢ for all w € IC (wa) and thus (M2 w,) | K;v¥. On the
other hand, if ¢ ¢ DZQ( ), then by definition there is some situation (M, w) such that
(M,w) EK; oz/\—|QE¢1/; By construction, there must be some world w' € ICZM;MI(MQ)
such that TJZ\’J*ME w = TZ’* By Proposition 20, we have (M2'%* w') = —Qf“/). Using
Lemmas 21 and 33 and the induction hypothesis just as we did for (M,, w,), we can
now show (M2 w') | =, and so (MJ*  w,) = ~K;9. Thus, (M2 w,) | €a,
as desired.

Since Tj&*mar,wa = Tj&i,wy and both (M2 w,) and (My,w,) satisfy &g, it
follows from Lemma 33 that (M2 ‘wy) and (M, ws) agree on the truth value of
K;a. Since (Mg, w,) E K;a, it follows that (M2'%", w,) E K;a.

Theorem 25: A formula o s S5,-i-honest iff there is an S5,-i-Q-stable set S®
containing o such that keriQ(So‘) C keriQ(S)‘ Moreover, if o is S5, -i-honest, then, for
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all B € L, abvly B iff B € S°.

Proof The proof is almost identical to that of Theorem 16. Suppose a is SH,-i-
honest. Then, by definition, there is an S5,-i-maximum situation for a, say (Mg, we).
Let % = {p € L : (M4, w,) = Kip}. Clearly S® is an S5,-i-@Q-stable set containing
a. Let S be any other S5,-i-@Q)-stable set containing «. Suppose ¢ ¢ keriQ(S). Let
(M, w) be an S5, situation corresponding to S; we must have (M, w) | K;a A= K;p.
Thus, there is a world w’ € WM such that (w,w’) € KM and (M, w') = —¢. Since
(Mg, wg) is an Sh,-i-maximum situation, Tjif:w, € PossZ-SS“(Ma, Wq). Thus, there is
some world u such that (ws,u) € KM and TJZ"/’I:U = TJZ\";w,. By Proposition 20, we
have (My, u) = —p. Thus, (My,ws) = —K;@. This means that ¢ ¢ S*. Since ¢ was
chosen arbitrarily, it follows that ker?(S“) C ker?(S). Moreover, from the definition
of vy, it follows that afvg, 8 iff g€ S

For the converse, suppose that there is an S5,-i-Q-stable set S® containing « such
that kerZ-Q(Sa) C ker?(S) for every other S5,-i-stable set containing a. We want
to show that « is S5,-i-honest. Suppose that g5, Kija = (Kjp1 V...V K;op),
where @1, ..., ¢ are @Q;-formulas. It follows that every S5,-i-Q-stable set containing
a must contain one of ¢, ..., . In particular, this is true of S®. So we can suppose
without loss of generality that ¢1 € S®. Thus, ¢ € ker;(S%). By definition of 5S¢,
this means that ¢; is in keriQ (S) for every other S5,-i-stable set S containing a. Just
as in Theorem 16, it now follows that |=g5, K;a = K;p1. By Theorem 24, « is
S5,,-1-honest.

Theorem 26: The formula o is Sy -i-honest iff a € Di(a). If o is SHy-i-honest,
then a}'vlssnﬁ iff g e Df:?(oz).

Proof Suppose « is Sh,-i-honest. Then there is an Sh,-i-maximum situation for «,
say (Mq,wq). The proof of Theorem 24 shows that v € Dg(a) iff (Mo, wo) E K.
Since (Mg, wq) | Kja, it immediately follows that a € Dé?(oz). Notice that this
argument also shows that if o is S5,-i-honest, then af~, 3 iff 3 € DiQ(oz).

Now suppose that a € Dg(a) and K;« is Sh,-consistent. Let (MI** w,) be the
situation constructed in the proof of Theorem 24. (Since K;« is Shy,-consistent, we
can carry out this construction.) The proof of that theorem shows that (M7**, w,) =
K;piff g € Dég(oz). Since « € Dég(a), we must have that (M2'*" w) | K;a. Thus,
(M [wy) is an S5,-i-maximum situation for a. It follows that « is S5,-i-honest,
as desired.

D Proofs for Section 7

Theorem 27: For S € {T,,54, : n > 1} U{K45,,, KD45,,,S5, : n > 2}, the problem
of computing whether o 1s S-i-honest 1s PSPACE-complete.

Proof For § € {T,,S4, : n > 1}, the upper bound is almost immediate from
Corollary 30, together with the fact (proved in [12]) that the satisfiability problem
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for T,, and S4,, is in PSPACE: Let F' consist of all the subformulas of K;o of the
form K;¢ such that K;a A =Ky is satisfiable. We then check if K;« /\KleF’ K
if satisfiable. If it is, then « is honest; otherwise « is not honest. These tests can all
be done in PSPACE.

If S € {K45,,,KD45, : n > 2}, then the upper bound follows using similar rea-
soning from Corollary 32 and the fact that the validity problem for K45,, and KD45,
is in PSPACE [12].16

Finally, for the case of Sb,, we first remark that the techniques of [12] can be
used to show that validity in S5,, situations for the language £% can be determined
in PSPACE. Thus, the tests required to check whether o € Dég(oz) can all be carried
out in PSPACE. The upper bound now follows from Theorem 26.

For the lower bound in the case that § is T,, or S4,, let 3 be an arbitrary formula
and let ¢ be a primitive proposition that does not appear in 8. We claim that 3 is
S-valid iff @« = K1qV K1(q = B) is S-1-honest. Clearly, if § is S-valid, then « is
equivalent to {rue, and so 1s honest. For the converse, suppose 3 is not S-valid. Since
Kia = « is S-valid, by Theorem 6, it suffices to show that neither Kioo = K¢ nor
Kia = Ki(¢ = p) is S-valid. Since f is not S-valid, there must be some § situation
(M, w) such that (M, w) = . Since ¢ does not appear in 3, there are S-structures
M; and M5 that are identical to M except that in My, ¢ is true at all the worlds,
while in M3, —¢ is true at all worlds. Clearly (M1, w) E Kia A = K1(q = 3) while
(M3, w) E Ky A =K1q. This proves that a is not honest. Since deciding validity
in T, or S4,, 1s PSPACE-hard for n > 1 as long as there is at least one primitive
proposition in ® [9],'7 it follows that deciding honesty is PSPACE hard if there are at
least two primitive propositions in the language (since we have assumed that ¢ does
not appear in ). We can improve this slightly. Using the techniques of [9], we can
show that the PSPACE lower bound holds even if |®| = 1. The idea is that, with only
one primitive proposition and the modal operator K1, we can write an infinite family
of formulas that have all the properties that we really need of primitive propositions.
Thus we can simulate the argument above using only one primitive proposition. We
refer the reader to [9] for details.

For the lower bound in the case that S is K45,,, KD45,, or S5,, let 8 be an
arbitrary formula and let p be an arbitrary primitive proposition (which may appear
in ). We claim that true}««}s[)’ iff «a = KipV K1—-pV Ky is §-1-honest. If true}««}gﬁ,
then K3/ is true in an S-1-maximum situation for true, say (M, w). Clearly we also
have (M,w) = Kia. Thus, there is an S-1-maximum situation for Kia, namely
(M, w), and hence « is S-1-honest. Conversely, suppose that « is S-1-honest. Then
it has a maximum S-1 situation, say (M, w). Consider any i-objective tree (or, in
the case of Sby, i-objective #-tree) T'. Either p or —p must be true at the root of
T. If it is p, then clearly T is in Poss‘f(M’,w') for some S situation (M’ w’) that
satisfies Kyp. Similarly, if the root satisfies =p, then T is in Poss‘f(M', w') for some
S situation (M', w') that satisfies —p. In either case, we must have T' € Poss‘f(M, w).
Tt follows that (M,w) is a maximum S-1 situation for true. Moreover, we have

16 Actually, K45, is not considered in [12]. However, the proof that the validity problem for K45,
is PSPACE-complete is a trivial modification of that for KD45,,.

17 A PSPACE lower bound is also proved in [12], but that proof requires that ®, the set of primitive
propositions, be infinite. In [9], it is shown that the result holds even if there is one primitive
proposition in the language.
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(M,w) E =Ki1p A =K1—p. Since (M, w) | Kija, we must have (M, w) E K10, so
true}'v‘lgﬁ. This completes the proof of the claim.

Thus, for § € {K45,,, KD45,,55,}, we have shown that checking honesty is as
hard as checking whether true}'v‘ls/)’. For the case of S € {K45,,KD45, : n > 2}, it
is easy to see that if ¢ is a l-objective formula, then true}'v‘lggo iff ¢ is valid. Thus,
to get the PSPACE lower bound, it suffices to show that it is PSPACE hard to
decide the validity of l-objective formulas in the case of K45, and KD45,. This
follows from the lower bound proof given in [9]. There (just as in [12]) it is shown
that we can effectively translate a QBF (Quantified Boolean Formula) A to a modal
formula ¢4 involving only the modal operators K; and K3 so that so that A is
true iff p4 is S-satisfiable, for § € {K45,,, KD45,,S5,}. The PSPACE lower bound
for satisfiability for K45,, and KD45,,, n > 2, then follows from the PSPACE lower
bound for QBF [23]. The formula ¢4 is in fact 1-objective and can be assumed to
mention only one primitive proposition. Thus, deciding satisfiability and validity for
1-objective formulas is PSPACE-hard. It follows that deciding whether a formula is
S-1-honest is PSPACE-hard, even if ® consists of a single primitive proposition, for
S € {K45,,,KD45,}.

For S5,,, in the case that n > 3, we can get a lower bound in a similar way: From
Theorem 26, 1t follows that if ¢ is a formula that only involves the modal operators
Ky and K3, then ¢ 1s S5z-valid iff true}'vég’ngo. The PSPACE lower bound now follows
from the PSPACE lower bound for S52. To get the PSPACE lower bound in the case
that n = 2, we need to look even more closely at the PSPACE lower bound proof
in [9]. The formulas ¢4 that arise in the proof are easily seen to have the following
property: either —p, is valid (if the QBF A is false), and hence so is K3K;-¢, or
wa 1s satisfiable and it is not the case that true}’vésnKzKl—'goA. Thus, A is false iff

true}’vésnKzKl—'goA. This gives us the PSPACE lower bound for checking honesty in
S55.

Theorem 28: For § € {K,, Ty, 54, 1 n > 1} U {K45,,KD45,,S5, :n > 2}, if a is
S-i-honest, then the problem of deciding if a3 is PSPACE-complete.

Proof For S € {K,,,T,,S4, : n > 1}, the upper bound follows from Theorem 9 and
the fact that checking validity for S is in PSPACE [12]. For the lower bound, observe
that « 1s S-valid iff Ky« is valid, and thus, by Theorem 9, « is valid iff tme}'v‘lga. The
result now follows from the PSPACE lower bound for checking validity for §, which
holds even if ® consists of a single proposition [9, 12].

For § € {K45,,,KD45,,S5, : n > 2}, the upper bound follows from Theorems 19
and 26. The lower bound follows from the observation made in the proof of Theo-
rem 27 that proving whether {ruepsg is already PSPACE hard.

Theorem 29: Suppose S € {K D45, K45, 55}. If ® (the set of primitive propositions)
1s finite, then the problem of deciding whether a 1s S-1-honest and the problem of
deciding whether a}’v}gﬂ for an S-1-honest o are both decidable in polynomaial time.

If ® s infinite, these problems are both Ag’bg(n)-complete‘
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Proof Since, as we have observed, the notions of honesty and }'vfg coincide for K45,
KD45, and S5 (except that falseis K45-honest and not KD45- or S5-honest), it suffices
to focus on KD45.

Clearly if ® is finite, there are 2/®! truth assignment to the propositions in ®.
Thus, there are no more than 22'*191%1 KD45 situations. To decide if o is KD45-1-
honest, we must see if there is a maximum situation satisfying K«. This can be done
by exhaustively checking all situations, in time linear in |a|, the length of a. (Of

course, the constant here will be some multiple of 92!

, but this is independent of

|a].) Similar arguments show that deciding if a}'v}(D%ﬁ can be done in linear time.
If @ is infinite, we must work harder. Before we go into details, we briefly review

Gottlob’s [6] results. Extend the language so that it includes a modal operator O.

Roughly speaking, O¢ says that ¢ is valid. Formally,
o (W,w) | Op if (W', w') |E ¢ for all KD45 situations (W', w').

Thus, if ¢ does not contain any occurrences of O, then (W, w) = Dy iff ¢ is KD45-
valid. (We could, of course, similarly extend K45 or S5.) If we do not allow any
occurrences of K (so that the only modal operator is O), we get what Gottlob
called Carnap’s logic. Gottlob showed that the validity problem for Carnap’s logic
is Ag’bg(")—complete. Gottlob’s argument in fact shows that if we start with any
base logic whose satisfiability problem is NP-complete and extend it with a O oper-
ator that denotes validity as above, then the validity problem of the resulting logic
Ag’bg(n)—complete. Since the satisfiability problem for KD45 is also NP-complete,
Gottlob’s argument shows that the validity problem for the full logic with both K
and O operators is Ag’bg(n)—complete.

For the lower bound, given a formula ¢ in Carnap’s logic, let ¢* be the result of
replacing all O operators in ¢ by Ki. Let W* consist of all truth assignments and
let w € W*. An easy induction on the structure of ¢ that w = ¢ iff (W*, w) E . Tt
follows that true}'v}(D%go* iff ¢ 1s valid. This shows that the problem of deciding if
apb s is AR harg,

Let ¢ be a primitive proposition that does not appear in ¢. It is easy to see that
@ is valid in Carnap’s logic iff @« = Ki¢* V K1q V K1—¢ is KD45-1-honest. For if
@ is valid in Carnap’s logic, then there is an KD45-1-maximum situation satisfying
Kja (namely, the situation (W*, w), where W* consisting of all truth assignments
and w € W*). Conversely, suppose ¢ is not valid in Carnap’s structure. Clearly
every truth assignment satisfying ¢ is in some situation satisfying K1¢ (and thus
Kja); similarly every truth assignment satisfying —¢ is in some situation satisfying
K1=q. Thus, if Kja were KD45-1-honest, then the only KD45-1-maximum structure
satisfying it would be W*. But, clearly W* = =K1¢ A =K;—q. Since ¢ is not valid
in Carnap’s logic, it also follows from our earlier argument that there is some truth
assignment w € W* such that (W*, w) E —¢*. Hence, (W*, w) = ~K1¢*. Tt follows

that (W*, w) E =K, so « is not KD45-1-honest. The Ag’bg(n) lower bound on
checking whether a formula a is KD45-1-honest now follows from Gottlob’s results.
For the upper bounds, we use the ideas of Definition 17 and Theorem 19. We now
define an extended objective formula to be a Boolean combination of propositional
formulas and formulas of the form Og. A top-level subformula of a formula g is a
subformula of the form K;¢ such that ¢ is an extended objective formula. Given
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formulas o and 3, we construct a finite sequence (5}, 031, ..., 0,,) of formulas and a
finite sequence (B],..., B,) of sets of formulas of the form K¢ where ¢ is an ex-
tended objective formula, as follows: We take 3} to be K;3. Suppose we have defined
B, .., 0B, and B, ..., B} so that B}, consists of all the top-level subformulas of 3} _.
If 3, is not of the form O¢, then we define B;c+1 to consist of all the top-level extended
subformulas of 3, and define ﬁ;c+1 to be the result of replacing each subformula K;¢
of 3, that is in Byy1 by O(a = ). The construction ends if 3, is of the form O.
Recall that in Definition 17, we defined a sequence Ak p,s(a,3) = (Bo, ..., Bm). It
is straightforward to check that our construction guarantees that FExpas 5 = [)’]’
(The proof is by induction on j.) Suppose Ak p.-(a,@) = (ag,...,an), and the
corresponding sequence using O is (g, ..., al,). By Theorem 19, a is KD45-1-honest
iff o, = true, and by the observation above, this is true iff «/, is valid. In addition,
we have a}*v}(D%[)’ iff B,, = true, which holds iff 3/, is valid. Thus, we have reduced
both the question of checking for honesty and checking nonmo?o)tonic consequence to
Ag,log n

deciding validity in the extended logic. This proves the upper bound.
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