A Little Knowledge Goes a Long Way:
Knowledge-based derivations and correctness proofs for a family
of protocols*

Joseph Y. Halpern
IBM Almaden Research Center
halpern@almvma (BITNET); halpern@ibm.com (ARPA/CSNET)

Lenore D. Zuck!
Department of Computer Science, Yale University

zuck@yalecs (BITNET); zuck@yale (ARPA)

Abstract: We use a high-level, knowledge-based approach for deriving a family of
protocols for the sequence transmission problem. The protocols of Aho, Ullman,
and Yannakakis [AUY79, AUWYS82|, the Alternating Bit protocol [BSW69], and
Stenning’s protocol [Ste76] are all instances of one knowledge-based protocol that
we derive. Qur derivation leads to transparent and uniform correctness proofs for

all these protocols.

*This paper is essentially identical to one that appears in Journal of the ACM 39:3, 1992, pp. 449-478. A
preliminary version appears in Proceedings of the 6th ACM Symposium on Principles of Distributed Computing,

1987, pp. 269-280.
TThis author was supported in part by NSF grant DCR-8405478

1 Introduction

Designing and proving the correctness of protocols in distributed systems is a notoriously diffi-
cult problem. The potential for faulty behavior makes the problem even more difficult. Subtle
bugs are often found in seemingly correct protocols (see, for example, [GS80, SH86]). Con-
sequently, researchers have looked for good tools to analyze distributed systems. Temporal
logic [OL82, Pnu77], the state machine approach [BG77, BS80, Mer76, Sun79], Floyd-Hoare-
style methods [HO83], model checking [CES86, QS82], and interval logic [SMS82] have all been
advocated, and indeed, have been used successfully to verify a number of distributed protocols.

While the proofs in the cited papers do indeed demonstrate correctness, they do not usually
help the reader to understand why the protocol is correct. Reading the step-by-step details of
these proofs, one loses the global picture of what is happening in the protocol. It is not obvious
which of the protocol’s features are important and what is the role of each of the steps in the
protocol. This understanding is crucial if we want to redesign the protocol so that it still works
correctly in a slightly different environment or if we want to optimize the protocol in some
way. Ideally, the design and verification of a protocol would be closely related and one could
straightforwardly derive correctness proofs from the design methodology. In practice, design
and verification are often done separately, in fact by different groups of people.

It has been suggested [HM90] that a useful way to analyze distributed systems is in terms
of knowledge and how communication changes the processes’ state of knowledge. The role of
knowledge in distributed systems has by now been extensively studied [CM86, DM90, FHV92,
I'I86, Had87, Hal87, HI'85, HV86, LR86, MT88, NT93, PR85] (see [Hal87] for an overview). In
this paper, we use reasoning about knowledge to help design and verify a family of protocols that
deal with a standard problem of data communication that we call the sequence transmission
problem.

The problem is easily stated: Consider two processes, called the sender and the receiver.
The sender S has an input tape with an infinite sequence X = (zg,z1,...) of data elements.
S reads these data elements and tries to transmit them to the receiver R. R must write
these data elements onto an output tape. We require that (a) at any time the sequence of data
elements written by R is a prefix of X (this is the safety property) and (b) if the communication
medium satisfies appropriate fairness conditions, then every data element z; in the sequence
X is eventually written by R (this is the liveness property).

The sequence transmission problem clearly has a trivial solution if we assume that messages
sent by § cannot be lost, corrupted, duplicated, or reordered. S simply sends zg, 1, . ..in order,
and R writes them out as it receives them. However, once we consider a faulty communication
medium, the problem becomes far more complicated. A number of different communication
models have been extensively studied in the literature. For example, [AUWYS82, AUY79] de-
scribe protocols that solve the problem in the case of a completely synchronous communication
channel which allows only one-bit messages (we call this communication model the AUY model).
They consider various types of faulty behavior, including message deletion and corruption. The
famous Alternating Bit protocol [BSW69] is a solution to the sequence transmission problem
for an asynchronous channel where messages cannot be reordered or duplicated, but may be
lost or (detectably) corrupted. Stenning’s protocol [Ste76] deals with the problem in the case
where messages may be duplicated, lost, (detectably) corrupted, or reordered.

The solutions to the sequence transmission problem that appear in the literature were all de-
signed individually, on an ad hoc basis. We attempt to provide a more uniform framework here.
We start with a knowledge-based protocol that we prove solves the sequence transmission prob-
lem, where a knowledge-based protocol is one with explicit tests for knowledge [HF85, HF'89].
A knowledge-based protocol can be viewed as a program written in a high-level programming
language. Once we have a knowledge-based protocol and have verified that it solves a given
problem, we still want to find a protocol—preferably a finite-state protocol, since it is more
easily implementable and potentially mechanically verifiable [CES86, QS82]—that solves the
problem and does not have explicit tests for knowledge. Although we do not have a general
methodology for going from a knowledge-based protocol to a standard protocol, we show that
derivations of standard protocols from the knowledge-based protocols for the sequence trans-
mission problem that we provide are quite straightforward. Our expectation is that this will be
the case for many other protocols of interest.

In order to prove the correctness of a standard protocol given the correctness of the knowledge-
based protocol, we show that the standard protocol is an implementation of the knowledge-based
protocol, where protocol P is an implementation of protocol P’ if there is a mapping from the
runs of P to the runs of P’ that preserves relevant properties (in this case, what elements
are read and written) (cf. [HF89]). We can extend this idea to get a sequence of standard
protocols, each of which is an implementation of the previous one, thereby getting a top-down
proof of correctness of the final protocol. This approach is in the same spirit as that advocated
in [Gaf86, L'T89], although these papers do not start with knowledge-based protocols at the
top level. We are not the first to use knowledge-based protocols in this way; Moses and Tut-
tle [MT88] also start with a knowledge-based protocol (for Byzantine agreement) and derive
efficient implementations of it.

We believe that the knowledge-based viewpoint gives us a unifying framework for under-
standing, verifying, and designing protocols. For example, we show that all the protocols for the
sequence transmission problem that have appeared in the literature can be viewed as straight-
forward implementations of one high-level knowledge-based protocol. Of course, this allows us
to give a uniform treatment of correctness. By using the idea of implementations, we are able
to give a particularly transparent proof of correctness for the protocols of Aho, Ullman, and
Yannakakis [AUY79, AUWY82|. We urge the reader to compare our proofs with those found
in [AUY79, AUWYS82, Gou85, Hai85].

It is interesting that the idea of thinking about such protocols in terms of knowledge appears
in an informal way quite early in the literature. For example, in [BG77] it says that “Verification
...will correspond ...to finding out whether and in which circumstances the sender subsystem
(and its user) can ‘know’ that all data obtained from the user have been received correctly
and in sequence to the user in the receiver subsystem.” We view this paper as providing a
formalization of these intuitions.

The rest of the paper is organized as follows: In the next section we describe our formal
model of distributed systems. We also discuss formally the notion of knowledge in distributed
systems and knowledge-based protocols. In Section 3 we present a knowledge-based protocol
for the sequence transmission model, and use it to derive standard protocols for the problem.
The correctness of the protocols we present is proved in Section 4. In Section 5 we extend
our results to the AUY model. The knowledge-based approach, by cutting out extraneous

implementation details, may also facilitate the process of finding different solutions to a problem.
We demonstrate this process in the case of the sequence transmission problem in Section 6.
We conclude in Section 7 with further discussion of the knowledge-based viewpoint and some
directions for further research.

2 The formal model

A detailed description of the model we use can be found in [HF89], so we only sketch the
necessary details here, and refer the reader to [HF89] for further motivation and examples.

We assume that our processes are state machines and that the relevant features of a system
at a given time are described by the global state of the system, where a global state is a tuple
describing the local state of each of the processes and the state of the environment. We take
the environment to consist of everything in the system that is relevant to the analysis that
is not part of the state of the processes. (Exactly what is relevant will of course depend on
the particular system being analyzed.) For simplicity, we assume that time ranges over the
non-negative integers; the definitions can easily be extended to other time models. A run (or
ezecution) of the system is defined to be a function from the non-negative integers to global
states. Intuitively, a run is a description of the relevant features of the system over time. We
occasionally refer to a pair (r,m) consisting of a run r and a time m as a point. As has been
done in numerous previous papers (e.g., [HF'85, HM90, Mos86, PR85]), we identify a distributed
system with a set R of runs. We say (r,m) is a point in system R if r € R.

For protocols solving the sequence transmission problem, the processes are S and R. Thus
a global state s is a tuple of the form (s.,ss,sr), where s, is the environment state, sg is
5’s local state, and sp is R’s local state. The details of the states will depend on how we
choose to analyze the system; we will discuss this in more detail when we formally analyze the
protocols presented in the sequel. We denote j’s local state in the global state r(m) by r;(m),
for j € {S, R}.

We define a protocol for process j to be a (possibly nondeterministic or probablistic) function
from j’s local states to actions. Thus a process’ protocol describes what actions the process
takes as a function of its local state. Usually we think of these actions as coming from a small set
of basic actions, such as reading a data element, writing a value, sending a message, or receiving
a message. We find it useful to think of the environment as also running a protocol. In the
introduction we discussed assumptions on the communication model such as “messages cannot
be reordered or duplicated, but may be lost or (detectably) corrupted.” Such assumptions,
which implicitly describe the environment’s behavior, can be captured by the environment’s
protocol. We take a joint protocol P to conmsist of protocols P., Ps, Pr for e, 5, and R
respectively. (We remark that for all the cases we consider in this paper, both Ps and Pgr are
deterministic, while P. is nondeterministic or probabilistic.)

We would like to associate with every (joint) protocol a particular set of runs. To do this,
we first must specify the possible local states for each of e, S, and R. Call these sets of states
L., Ls, and Lg respectively. Let G = L. X Lg X Lr be the set of possible global states. (Not
all the global states in G will necessarily be reachable when we run the protocol.) The next
step is to specify the subset Gy of G which consists of the possible initial global states. Finally,
we must specify how the actions performed by e, 5, and R change the global state. Let Act,,

Actg, and Actr be the actions performed in P., Pg, and Pg respectively. A transition function
T associates with every joint action (a.,as,ar) € Act. x Actg x Actg a global state transformer
T(ae,as,ar), i.e., a deterministic function from G to G. (We could allow 7(a.,as,ar) to be
nondeterministic, but we do not need this level of generality in this paper.) Thus we can think
of 7(a.,as,ar) as describing the effect of simultaneously having e perform action a., S perform
as, and R perform ap.

Fix G, Go (Go € G), and 7 as above. We say that a run r is consistent with protocol P (with
respect to G, Go, and T) if

1. r(0) € Go (so r(0) is a legal initial state).

2. For all m > 0, if r(m) = (s, S5, Sr), then there is a joint action (a.,as,ar) € P.(s.) X
Ps(ss) x Pr(sg) such that r(m + 1) = 7(a., as,ar)(r(m)) (so r(m + 1) is the result of
transforming r(m) by a joint action that could have been performed from r(m) according
to P).

We use R(P) to denote the set of all runs consistent with P (with respect to G, Gy, and 7).

Besides the type of protocol defined above (which we occasionally call a standard protocol),
we will also be interested in a more high-level notion called a knowledge-based protocol ([HF85]),
where we allow explicit tests for knowledge. To define such protocols formally, we find it
convenient to assume that there is some set ® of basic facts about the system. The set ®
can include facts of the type “xzg = 07, “R sent m to 57, etc. We define an interpreted
system T to be a pair (R, 7) consisting of a system R and an assignment 7 of truth values to
the basic facts for each point in R, so that for every p € ¢ and point (r,m) in R, we have
7(r,m)(p) € {true, false}. We say that the point (r,m)is in the interpreted system Z = (R,)
if reR.

Given an interpreted system 7 = (R, 7) and a point (r,m) in Z, we define a satisfiability
relation |= between the tuple (Z,7,m) and a formula ¢. For a basic fact p € ®, we have

(Z,r,m) = piff 7(r,m)(p) = true.
We extend the |= relation to conjunctions and negations in the obvious way:

(Z,r,m) = —p il (Z,r,m)|E ¢
(Z,r,m)= @Ay iff (Z,r,m)lE= ¢ and (Z,r,m) = 1.

We want to extend our language to allow formulas of the form K¢, which is read “process j
knows ¢”. We ascribe knowledge to processes in a distributed system using ideas first discussed
in [HM90], and later amplified in numerous other papers (see [Hal87] for an overview and
references). Again, we state our definitions under the assumption that the only processes in
the system are S and R, although they clearly extend to the case with an arbitrary (but fixed)
set of processes.

Given two global states s = (s¢,ss,5r) and s = (s, s, s%), we say s and s’ are indis-

tinguishable to process j (where j is either S or R) if j has the same state in both s and ',

ie., if s; = 8. We say two points (r,m) and (r',m') are indistinguishable to j, and write

(r,m) ~; (r',m’), if the global states r(m) and r'(m’) are indistinguishable to j. We then

define
(Z,r,m) = K; iff (Z,r',m) = ¢ for all 7" and m’ such that (r,m) ~; (v, m’).

This definition is designed to capture the intuition that processor j knows ¢ at r(m) if ¢ is
true at time m’ in run 7’ for all points (7', m’) indistinguishable to j from (r,m).

An important property of this definition of knowledge is that K ;¢ implies ¢; i.e., if an agent
knows ¢, then ¢ is true. Thus, if (Z,r,m) = K;¢, then (Z,r,m) |= ¢; this easily follows from
the observation that (r,m) ~; (r,m).

A knowledge-based protocol allows explicit tests for knowledge. Unlike the tests that appear
in a standard protocol, the truth value of the test in a conditional statement of the form “if K gy
then ...” cannot be determined by looking at the local state in isolation. Its truth depends on
the truth of ¢ at other points (all the ones with global states that S cannot distinguish from
its current global state). Thus, whereas a protocol for S is a function from 5’s local states to
actions, a knowledge-based protocol for S is is a function from a pair consisting of a local state
for § and an interpreted system to actions. For example, suppose that in local state £ process
S is at the step in Ps with an instruction of the form “if Ksp then send m else send m'”. The
action performed by S in state £ is “send m” if S knows ¢, and “send m'” otherwise. Thus we
have

send m if (Z,r,m) = ¢ for all points (r,m) where rg(m) = ¢
Ps(l,T) = , i
send m’ otherwise.

Note that the only difference between the formal definition of knowledge-based protocols and
standard protocols is that a knowledge-based protocol takes an interpreted system as one of its
arguments. Of course, a standard protocol can be viewed as a special case of a knowledge-based
protocol where the function is independent of the interpreted system.

Fix a set G of global states, a subset Gg C G of initial states, a transition function 7 on
(G, and an interpreted system 7 with global states in G. We define a run r to be consistent
with (knowledge-based) protocol P relative to T (with respect to G, Gy, and 7) just as we
defined the notion of a run being consistent with a standard protocol P, except that now
the joint action (a.,as,ar) in clause 2 is in P.(s.,Z) X Ps(ss,Z) x Pr(sg,Z) rather than
Pe(se) X Ps(SS) X PR(SR).

An interpreted system Z = (R, 7) is consistent with a knowledge-based protocol P (with
respect to G, Go, and 7) if every run r € R is consistent with P relative to Z. In general, there
is not a unique interpreted system that is consistent with a given protocol. Thus, in order to
prove that a knowledge-based protocol P has certain properties (for example, that is is satisfies
certain specifications), we typically show that the required properties hold for all interpreted
systems Z consistent with P.

3 A knowledge-based protocol and implementations of it

In this section we present a knowledge-based protocol for the sequence transmission problem
and show how it can be implemented by standard protocols. As we show below, Stenning’s

protocol and the Alternating Bit protocol are in fact straightforward implementations of this
knowledge-based protocol.

Intuitively, the knowledge-based protocol is quite simple. § reads the i*P data element, and
repeatedly sends it to R until 5 knows that R has received it and that R knows that it is
the i* element. At that point, S reads the (7 + 1)** element, and so on. R writes the data
elements as it “learns” about them, and tells S which values it has learnt about so far. We
present an informal description of a knowledge-based protocol A that captures these intuitions
in Figure 1 below. For simplicity, we assume here and throughout this paper that the input
sequence consists only of Os and 1s, although we could easily extend our techniques to deal with
any finite data domain.

The INIT statement that begins both S’s protocol and R’s protocol describes how certain
variables are to be initialized. In particular, 5 initializes a counter ¢ to 0, and R initializes
a counter 7 to 0; we thus implicitly assume that ¢ is part of S’s local state, and j is part
of R’s local state. In the description of the protocol, we take Kr(zy) as an abbreviation for
Kp(zr = 0)V Kg(zp = 1). Thus, if Kg(z) holds, then R knows the value of z;. Recall
that S sends the i*" data element until it knows that R knows the value of this data element.
Intuitively, this suggests that S should test if KsKpg(z;) holds; if it does not, then S should
continue to send the it" data element; otherwise S can increment i and read the next data
element. However, there is a subtle problem with this intuition. Roughly speaking, it arises
because we cannot substitute equals for equals inside the scope of a K operator. For example,
suppose we are at a point where ¢ = 3. What 5 really wants to do is to continue sending
the value of z3 until KsKpr(z3) holds. This is not the same as sending it the value of z3 until
KsKpg(z;) holds. Put another way, (i = 3)A KsKRr(z;) is not equivalent to (¢ = 3)A KsKp(z3).
The problem is that R may know the value of 25 without knowing the value of z; (or, for that
matter, without even knowing the value of i), since the variable 7 may take on different values
in the global states that R considers possible. In a state where : = 3, we want .5 to continue
sending z; until K'sKpr(z3) holds, not until KsKr(z;) holds. In order to achieve this effect, we
define Kr(za;) to be an abbreviation for Kr(zy), where k is the value of 7 in the current state.
We could similarly define Kr(za;) as an abbreviation for Kr(z,), where £ is the value of j in
the current state, but there is no need. Since j is part of R’s local state, it is easy to see that
Kg(za;) and Kg(z;) are equivalent.!

We take —Kg(x;) in the description of the protocol to be some string of symbols (distinct for
each value of 7). The effect of “receive z” is that S checks its message buffer for the message
delivered on that round, and stores that message in the z register. If no message is delivered,
then it stores A in its register. The effect of “receive 2z'” is similar. Note that in the protocol
S sends the data element z; only if necessary; that is, if ~KsKgr(za;) holds. If it is common
knowledge that the first 10 elements of every sequence are 0s, then S would not need to send
these elements; R could write them without receiving any message from 5.

We would like to show that the knowledge-based protocol A is correct in a wide variety of

!The fact that we needed to extend the logic by adding Kr(zai) indicates a nontrivial lack of expressive power
in what is an essentially propositional logic of knowledge in terms of dealing with scoping. For those readers
familiar with first-order modal logics, note that using first-order constructs, we can easily express Kr(zai) as
Vk(k =1 = Kr(z)). Since we did not want the overhead of a lengthy discussion of first-order modal logics, we
used the approach presented above. For further discussion of the subtleties of scoping and how this affects the
expressive power of modal logic, the interested reader is encouraged to consult [Fit91, GH91].

5’s protocol:

INIT: 2 := 0; read y
do forever
if —stf(R(;r@i)
then send (1, y); receive z
else 7 := 7 + 1; read y; receive z
end

R’s protocol:

INIT: 5:=0
do forever
if —J(R(x]‘)
then send —Kg(x;); receive 2’
else if Kr(z; =0)
then write 0; j := 7 + 1; receive 2’
else write 1; j := 7 + 1; receive 2’
end

Figure 1: Protocol A

settings, precisely because it abstracts away the details of how a state of knowledge such as
KsKp(zq) is attained. In particular, it is correct even if

1. we allow messages to be deleted, duplicated, reordered, or detectably corrupted;

2. we have an asynchronous system, where S and R perform an action only when they are
scheduled (rather than performing an action at every round). Of course, in order to
assure the liveness property, we must assume that S and R are scheduled infinitely often
(although this by itself may not suffice);

3. there is some a priori knowledge about the sequence X (e.g., it is common knowledge
that the first 10 elements of X are 0’s).

The presentation of protocol A in Figure 1 is informal, in that it is given in terms of if-
then-else statements. In order to provide a formal proof of correctness, we need to be able to
view A as a function from states and interpreted systems to actions along the lines discussed in
Section 2. Thus we must specify local states for S, R, and the environment e, view 5’s and R’s
protocols as functions from local states to actions, define a protocol for the environment, and
define a transition function that associates with each joint action a global state transformer.

We briefly sketch the details here.

There is no unique way to represent the local states of 5, R, and e. Indeed, finding the
appropriate representation is often a very difficult problem. Fortunately, in this case, the text of

the program suggests some reasonable choices. Since S has commands which update a counter
i, we expect this counter to be part of its local state. S’s local state also has a variable (or
register) y which contains the value of the last data element read. Similarly, R’s local state
has a variable j. S’s local state and R’s local state contain variables z and 2’ respectively that
store the last message received. Finally, we require that S keeps track of the values it has read
and R keeps track of the values it has written. To see where we use this, suppose R sends
5 a message of the form —Kg(x,,,)
later point (r,m’). As we shall show (Lemma 4.2), R knows the value of z; when it sends this
message; i.e., K p(z;) holds at (r,m). Let k be the value of j at the point (r,m). We would
like to be able to conclude that KsKpr(zy) holds when S receives the message. (Note that we

at the point (r,m) and S receives this message at some

do not expect that KgKpr(z;) will hold when S receives the message, because by the time that
S receives the message, j may have a different value.) However, if R “forgets” the value of zj
earlier, then Kpr(zx) would no longer hold at (r,m’), and hence neither would KsKg(z;). By
having R keep track of all the values it has written, we assure that such forgetting does not
occur. (We return to this point later.)

Motivated by this discussion, we take Lg, the set of local states for .5, to consist of states of
the form (y,7,z, X'), where y € {0,1} is the last data element read, ¢ records the value of the
counter 7 used in Ag, z is the last message received by S, and X' is the sequence of values read
by S. Similarly, we take Lg, R’s local states, to consist of states of the form (j,2',Y), where j
is the value of R’ counter, 2’ is the last message received by R, and Y is the sequence of values
written by R.

In the environment state we want to keep track of the input sequence, the elements read by 5,
the elements written by R, all the messages sent by S and R (since we allow message duplication,
it does not suffice to just keep track of messages sent but not yet received); we also need some
mechanism for allowing the environment to determine which of S and R is scheduled. Thus, we
take the set L. of environment states to consist of states of the form (X, ¢,Y, bs, br, gos, gor),
where X is the input sequence, ¢ is a counter describing which element of X was last read, Y,
as before, is the sequence of elements written, bg (resp. br) is a sequence containing all the
messages sent by S (resp. R). We take gog (resp. gor) to be a Boolean variable whose value
is 0 or 1 depending on whether S (resp. R) is scheduled to move on that round. As we shall
see, by using gog and gor we can capture asynchrony, where a process moves only when it is

scheduled.

We take G, the set of possible global states for A, to be L. x Lg X Lg. G, the set of initial
global states of A, consists of all global states of the form

((Xv 0, <>7 <>7 <>7905790R)7 (‘rOv 0,7, <>)7 (07 A, <>))7

where X is an infinite sequence of 0s and 1s, zq is the first element in the sequence X, and A
denotes the empty message. Thus, in an initial state, S starts out reading the first element of
the sequence X, R has not written any elements, and neither .5 nor R has sent or received any
messages.

We define RP(A), the set of potential runs of A, to be the set of all runs r over G such that
r(0) € Go. When we consider interpreted systems that are consistent with A, all the runs will
be potential runs of A.

It is now easy to view 5’s protocol Ag as a function from its local state and an interpreted

system 7 to actions. We have:

As((y,i, 2, XV, T) = { i:=1 + Iyread y if (Z, 7“,‘m) = Kr(za;) whenever rsg(m) = (y,14,2, X')
send (i,y) otherwise.

Note that there is a slight overloading of notation above. The ¢ that appears in the local state
(y,7,2, X') as an argument to Ag refers to the value of the register 7 in S’s local state, the ¢
that appears in the left-hand side of the action ¢ := ¢ 4+ 1 refers to the register, while the one
in the right-hand side again refers to the value of the register. Similar comments hold for the
occurrences of y. We hope the reader will be able to disambiguate without any difficulty. We
also leave it to the reader to provide the analogous definition for Ap.

We want to prove that A is correct even if messages can be reordered, duplicated, and
detectably corrupted. We capture these possibilities in the environment’s protocol. At each
step, the environment can nondeterministically choose to perform a “sendg m” action, for some
m in the sequence bg or in {*, A}, or a “sendg current” action. Thus, the environment delivers
either a message previously sent by R (i.e., one in bgr), a corrupted message, denoted by x,
an empty message (one that may have been deleted), denoted by A, or the message that R is
currently sending. If S'is scheduled (i.e., if gog = 1), the result of this action is that z is updated
appropriately, since .5 performs a “receive z” action whenever it is scheduled. Similarly, at each
step the environment nondeterministically chooses to perform a “sendg m” action for some m
in the sequence bg or in {*, A}, or a “sendp current” action. (We could of course assume that
the environment can deliver more than one message at a time. The resulting model would be
similar to the one we use.) Duplication of messages is possible since the same message in bp
can be delivered several times. We capture the possibility of message corruption by allowing
the environment to send the message * (other more sophisticated ways of capturing message
corruption are clearly possible); message deletion is captured by allowing the environment to
send A. TFinally, at each step, the environment can perform actions of the form go, := 0 or
go, := 1 for p € {5, R}; this has the effect of determining which of S and R will be scheduled
at the next step.

All that remains is to define the transition function 7. The definition is completely straight-
forward, although tedious to write down. For example, if we take a. = sendg*; gop := 1,
ag = send (7, y); receive z, and ar = send ﬁKR(xj); receive 2/, then we have

T(ae,as,aR)

((X767Y7 bSy bRa 170)7(3/7@-727)(/)7(].7 ZI7Y)) -
(()(7 C,Y, bS : <i7y>7bR7 17 1)7 (y77;7 *7X/)7 (]7 Zlay))'

Thus, as a result of the environment scheduling S when S sends (7, y) to R and the environment
sends * to 9, (i,y) is appended to bs (we use - to indicate the operation of appending to a
sequence) and z is set to . R’s action is disabled since gop = 0 (although gor does get set to
1 in the new global state as a result of the environment’s gor := 1 action). If gor were 1, then
the result of the “send —Kg(x;)” message would be to extend br. The effect of 7 is similar for
other joint actions. We leave further details to the reader.

Although up to now we have implicitly been associating A with the pair (Ag, Ar), we now
formally take it to be the joint protocol (A, As, Ar), where A, is the nondeterministic protocol
for the environment described above.

We have given all the details necessary to determine whether a given interpreted system
is consistent with the knowledge-based protocol A (with respect to G, Gy, and 7). Note that
there might be many interpreted systems consistent with A. We allow systems where there is
no message corruption (so no message of the form « is ever delivered), or systems where there
is some a priori knowledge of the input sequence (so that, for example, the first element of the
input sequence in every run of the system is 0). We do make one restriction on the interpreted
systems we consider: we want them to give the natural meaning to the relevant basic facts.
In this case, we are only interested in basic facts of the form z = 0 and =z = 1, so we restrict
our attention to interpreted systems Z = (R, 7) where the truth assignment 7 is such that the
formula z; = 0 (resp. z; = 1) is true exactly at the points where z; (the ith component of the
sequence X in the environment’s local state) really does have the value 0 (resp. 1). For the
purposes of this paper, we call such systems appropriate.

We can now state the correctness result. We say a run r is fair if both 5 and R are scheduled
infinitely often in R (i.e., if gog = 1 at infinitely many points in r, and similarly for gog), and
every message sent by S (resp. R) infinitely often after a given point is eventually delivered
uncorrupted after that point (when R (resp.) is scheduled). Note that if a message is delivered
at a point when S is scheduled, then the semantics of A ensures that the message is read (stored
in the register z) at that point; similarly for R. We remark that our fairness condition is easily
seen to be equivalent to the condition that any message that is sent infinitely often by S5 is
delivered uncorrupted infinitely often to R when R is scheduled, and similarly with the roles of

S and R reversed.

Recall that a run of a protocol for the sequence transmission problem has the safety property
if the sequence of elements written is always a prefix of the input sequence, and it has the liveness
property if every element in the input sequence is eventually written.

Theorem 3.1: Let Z be an appropriate interpreted system consistent with A (with respect to
G, Go, and 7). Then every run of T has the safety property, and the fair runs of T have the
liveness property.

The fact that the theorem holds for every appropriate interpreted system consistent with A
shows, as we claimed, that A is correct in a wide variety of settings. In particular, A is correct in
systems where messages can be deleted, duplicated, reordered, and detectably corrupted (since
the environment can perform all these actions), in completely asynchronous system, where the
scheduling of S and R is determined by a possibly adversary scheduler (since the environment
can perform an arbitrary sequence of gog and gog actions), and in systems where there is a
priori knowledge about the input sequence.

We defer the proof of Theorem 3.1 to the next section. We continue here with our discussion
of A. As we mentioned above, the only reason that we need R to keep track of the values it
has written is to ensure that KsKp(7q;) holds when § receives —Kp(x,,). However, it should
be clear that 5 does not actually need to know that R currently knows the value of z; before
it reads the next data element. It suffices for S to know that R wrote z; at some time in the
past. Thus, we can replace the test “KgKgr(za;i)in S’s protocol by =K s(R wrote z;), and then
delete the X’ and Y from the local states of S and R. The resulting protocol is still correct.
(We sketch the minor modifications necessary to prove this after our proof of Theorem 3.1 in
the next section.)

10

This remark suggests how we can implement protocol A as a standard protocol A**. The
protocol is informally described in Figure 2 below. As the reader can see, the protocols A and
A*! are very similar syntactically. Tests for knowledge in A are replaced by tests on z and 2’
in A%', and instead of sending messages of the form ﬁKR(xj), R now sends j, since it carries
the same information. As we mentioned above (and prove in the next section), in the case
of protocol A, when S receives a message —Kg(%;,,), then S knows that R knows the value
of z;. Similarly, in this case, when S receives a message ¢ + 1 (i.e., when z = 7 + 1), then
KsKpr(za;). Thus, we replace the test “KsKpr(za;) in protocol A by z # ¢ 4+ 1 in protocol
A#t. Similarly, Kr(z;) holds if R receives a message of the form (j,y) (i.e., when proj,(z') = j,
where projy returns the first component of its argument). In this case, R writes projs(z’), the
second component of z'.

5’s protocol:

INIT: z:= A; ¢ := 0; read y
do forever
ifz#i+1
then send (¢, y); receive z
else 7 := i + 1; read y; receive z
end

R’s protocol:

INIT: 2/ :=X;7:=0
do forever
if proji(z') # 5
then send j; receive 2’
else write projy(2'); j := j + 1; receive 2’
end

Figure 2: Protocol A*!

The formal semantics of protocol A** is very similar to that of A. L% and L3I, the sets of
local states for S and R, are identical to Lg and Lpg respectively, except that the components
X" and Y are deleted. I, remains unchanged (except that the form of the messages recorded
in bg and bp is slightly different). A%, A% and A%, the protocols for S, R, and e, are defined
in a manner analogous to that for A; again, A%' captures the fact that messages can be deleted,
reordered, duplicated, and detectably corrupted. We now formally identify the protocol A*!
with the joint protocol (A%, A3, A5"). We leave the details to the reader.

Because of the close syntactic similarity between A*' and A, it is quite straightforward to
show that the correctness of A*! follows from the correctness of A. Formally, we show that
A*' is an implementation of A by constructing a function ¥*' which maps a run r of A%’ to
a potential run of A such that S and R read and write the same data elements at (r,m) and
(¥**(r), m). Moreover, if r is a fair run of A*, then ¥*(r) is also fair. We can then show

11

that the system Z = (W*(R(A*")), r) is consistent with respect to A, where 7 is defined so as
to make 7 an appropriate system. From the correctness of A, it follows that safety holds for
every run of W*(R(A*")), and liveness holds for the fair runs. Since ¥*' preserves fairness and
reading and writing, it follows that safety holds for every run in R(A*") and liveness holds for
the fair runs of R(A*"). We provide the details of the construction in the next section. This
gives us the following analogue to Theorem 3.1:

Theorem 3.2: Fvery run of A®" has the safety property and every fair run of A®' has the
liveness property.

Thus, protocol A*! solves the sequence transmission problem in systems where messages can be
deleted, reordered, duplicated, and detectably corrupted.

Note that A*' is still an infinite-state protocol, since z (resp. z’), which is recorded in S’s
(resp. R’s) local state, can take on infinitely many values. This is not just an artifact of
our solution; it is a necessary requirement for sufficiently general solutions. In [AFWZ88] it is
shown that if we allow messages to be reordered and duplicated (and there is no upper bound on
message delivery time for messages that do get delivered), then in any solution to the sequence
transmission problem S must be able to transmit infinitely many distinct messages; thus there
can be no finite state solution to the problem. A somewhat more involved argument given in
[AFWZ88] shows that if messages can be deleted and reordered then there is also no finite state
solution.

There are finite-state solutions if we restrict the environment’s actions. In particular, in
Figure 3, we present a finite-state protocol A’ that solves the sequence transmission problem if
we do not allow messages to be reordered (although they can be deleted, detectably corrupted,
and duplicated). The informal description of A’ is identical to that of A%, except that + is
replaced by @ (addition mod 2).

The formal description of A% is, not surprisingly, also very similar to that of A**. The set
L{;s of local states for S is identical to L% except that now 7 and z only take on the values 0 and
1. Similar remarks hold for LJE. However, we must now capture the fact that we do not allow
messages to be reordered. There are a number of ways that this could be done. We have chosen
to do it by adding components lasts and lastp to the environment’s state. These are natural
numbers that point to the last message in bg (resp. br) that was delivered; i.e., if lasts = k,
then the k™™ message in bg was the last message sent to R by the environment. Initially, we
take lastg = lastp = 0, and require that they be nondecreasing over time. This guarantees
that messages cannot be reordered.

In the next section we describe a function U which maps runs of A to runs of A% in the
obvious way so as to preserve reading and writing of data elements, and fairness. Correctness
of Af* then follows from the correctness of A%*. We thus get:

Theorem 3.3: FEvery run of A" has the safety property and every fair run of A" has the
liveness property.

Thus, protocol A’ solves the sequence transmission problem in systems where messages can be
deleted, detectably corrupted, and duplicated (but not reordered).

12

5’s protocol:

INIT: z:= A; ¢ := 0; read y
do forever
ifz£:ip1
then send (1, y); receive z
else 7 := i1 @ 1; read y; receive z
end

R’s protocol:

INIT: 2/ :=X;7:=0
do forever
if proj1(2') # j
then send j; receive 2’
else write proja(2'); j := j & 1; receive 2/
end

Figure 3: Protocol A%

We remark that protocol A** is essentially Stenning’s protocol, while protocol A% is essen-
tially the Alternating Bit protocol.? Thus, these well-known protocols are simply implementa-
tions of the knowledge-based protocol A.

4 Correctness proofs

In this section we prove the correctness of protocols A, A**, and A. We begin with A.

4.1 Correctness of A

Let Z = (R, 7) be an appropriate interpreted system consistent with A. Let r € R. For every
k > 0, for every component a of r(k), we let a”*) denote the value of a at the global state (k).

For example, i"(¥) denotes the value of i at 7(k) (recall that i is in fact in the sg component of
r(k)). Since X7(8) = X7(¥) for all k, k' > 0, we often omit the k and write X" for X*(*),

Intuitively, safety for A is obvious since R writes a data element only if R knows its value.
A formal proof follows from the next lemma.

Lemma 4.1: For all runs r € R and all times m > 0, [Y"0")| = 5707) qnd Y7(m) < X7,

2Typically, these protocols are assumed to run in an event-driven system; thus, for example, rather than S
sending a message (7,y) every time it is scheduled and z # ¢, S would only send the message periodically, as
determined by an internal timer. We omit the straightforward modifications of the protocol required to deal
with the timer here.

13

Proof: Let r € R. We proceed by induction on m. For m = 0, the claim follows from our
characterization of Gy, the set of initial global states. To see that for every m > 0, |Y7'(m)| =
47(m) note that, from the semantics of A, it is immediate that |Y| increments iff j does.
For the inductive step of the second part, assume the claim is established for every £ < m.

If 570" = j707=1) then the semantics of A shows that either (Z,r,m — 1) = - Kp(z;) or
goTR(m_l) = 0. In either case it is easy to see that yr(m) = Yr(m_l), so that the claim trivially

follows from the induction hypothesis. If 570™) £ j70m=1) then (Z,r,m — 1) |= Kr(z¢), where
(= jrim=1) goTR(m_l) =1land j70") = j7("=D 41 If 2, = 0 then, since (Z,7,m—1) |= Kr((z, =
0) vV Kp(zg = 1)) and (I,r,m— 1) |= (z, = 0), it follows that (Z,r,m — 1) = Kgr(z, = 0),
so that Y70 = y7(m=1) .0, Similarly, if z; = 1 then (Z,r,m — 1) | =K,(z;, = 0), so that
yr(m) = yr(m=1) . 1, In either case, it is immediate that the claim holds. (Note that in our
semantics, we regard the actions of increasing 7 and writing either 0 or 1 as being performed at
the same time step, i.e., as one atomic action. Without this assumption, the lemma does not
hold. However, we can modify A in a straightforward way to get a protocol whose correctness
does not depend on such atomicity assumptions; we leave details to the reader.) Il

In order to prove liveness, we need two preliminary lemmas.

Lemma 4.2: For every { > 0, d € {0,1}, and appropriate interpreted system I, the following
all hold:

1. If (¢,d) is in bg(m) then (Z,r,m) = (z; = d).

2. if 7Kgr(x,) is in er(m) and £ > 1, then (T,7,m) = NiZt Kr(z}).

3. If (2')"™) = (¢,d), then (Z,r,m) |= Kgr(z; = d).

4. if 270" = —Kg(x,) and £ > 1, then (Z,r,m) = NiZh KsKr(z).
Proof:

1. Suppose (€, d)is in bg(m) and let £ < m be the least integer such that (¢, d) is in bg(k). From
the semantics of A it follows that the message was sent at the point (r,k — 1); moreover,
7 =1 = ¢ and d = z,. Hence, (Z,r,k—1) = (z¢ = d). Since T is an appropriate
interpreted system, it follows that (Z,r,m) |= (z; = d).

2. Suppose —Kg(x,) is in bTR(m), ¢>1,and (r,m) ~g (r',m'). We want to show that the
values of zg,...,2zs_1 are the same in both r(m) and r'(m’). Note from the semantics of

A it follows that there exists n < m such that —Kg(x,) was sent by R at the point (r,n)
and j7(") = ¢. By Lemma 4.1, we have that |Y7’(”)| =(and Y™ < X", We clearly have
y7(") < y7(m) | Since R records the sequence of values it has written in its local state, we
must have Y™’ (m") = Y7(m) By Lemma 4.1 again, yr'(m) < X7 Tt follows that the values
of zg,...,2_1 are the same in both r(m) and #/(m’). Thus, (Z,r,m) = ANiZy Kr(zz)-

3. Suppose that (2/)"(™) = (¢,d) and that (+',m’) ~g (r,m). Then (2')"' (") = (¢,d). Thus,
we must have that (¢,d)is in b5, since (¢,d) must have been sent at some time n’ < m’
in run 7. From part 1, it follows that (Z,7",m') = (zy = d). Thus (Z,r,m) = Kg(z,).

14

4. This proof follows the same lines as that for part 3, using part 2 instead of part 1; we
leave details to the reader. 1

Lemma 4.3: Let r be a fair run. Then for every k > 0 there exists an my > 0 such that

Proof: We prove the lemma by induction on k. For the base case we can take mg = 0; the result
follows since j7(°) = 0 by our assumptions about the form of the initial state. For the inductive
case assume that for some my > 0, we have j7("%) = k. We want to show that there exists
m > my, such that j7(™) = k + 1. Assume, by way of contradiction, that for all m > my, we
have 570" = k. The semantics of A implies that for all m > my, if R is scheduled at (r,m), we
must have (Z,r,m) = = Kg(zy). Since R’s local state does not change when it is not scheduled,
it follows that (Z,r,m) = = Kg(zy) for all m > my. The run r is assumed to be fair, so R sends
infinitely many —Kp(x,) messages to S in r, and these are received at infinitely many points by
S at times when S is scheduled. From Lemma 4.2 we get that (Z,7,n) = AjZd KsKg(z,) if
2"(") = —Kg(x,). Since S is scheduled infinitely often in 7, it follows from the semantics of A
that 7 takes on all the values up to and including % in r. In particular, there is some point (r,n’)
such that (") = k. Since (Z,r,m) |E ~Kpr(zy) for all m > my, it follows from the properties
of knowledge that (Z,r,m) = =" KsKg(zy) for all m > my (recall that for any formula ¢, if
(Z,r,m) = Ksp then (Z,r,m) |= ¢). Thus, every time S is scheduled after the point (r,n’),
it sends R the message (k,y). Since r is a fair run, there must be some m’ > 0 such that
Zr(m’) = (k,y). By Lemma 4.2, this implies that (Z,r,m') | Kg(xt), which is a contradiction.

The proof of Theorem 3.1 now follows easily. Safety follows from Lemma 4.1. For liveness,
suppose r is a fair run. We want to show that every data element z; in X" is eventually
written. By Lemma 4.3, there is some my, such that j7(™#) = k. By Lemma 4.1, we have that
[Y7(me)| = j7(mk) and that Y7("%) < X7, so that z} is written by time my.

A straightforward modification of this proof shows the correctness of the modified version
of A discussed in the previous section, where the test KsKpg(za;) in line S2 is replaced by
Ks(R wrote z;), and the X’ and Y components of 5’s and R’s local states are deleted. All we
need to do is replace the Kp(zy) in parts 2 and 4 of Lemma 4.2 by (R wrote z3). We leave
details to the reader.

4.2 Correctness of A*!

As we said before, we prove correctness of A*" by showing that A*' is an implementation of
A. We define a mapping ¥*' from runs of A*! to potential runs of A that preserves reading
and writing of data elements, and preserves fairness. We want a function ¥**: R(A*) — RP(A)
such that for every run r € R(A*") and every time m we have:

I1. X0 = X7, () (m) = crim), y Ut (r)(m) — yr(m),

I2. if 7 is fair then W*'(r) is fair.

15

Note that I1 says that reading and writing of data elements are preserved.

The definition of ¥*! is the obvious one. Intuitively, we just replace every message j sent
by R by the message —Kp(x;). We now define W*(7)(m) by induction on m, so that not only
does I1 hold, but we also have

o ol D) rm) 4 o8 Om) g rim)

o PTHm) — rim) apd YR m) = jrim)

o yVIOm) = yrim)

R bg“(r)(m) _ bg(m) and b}‘g“(r)(m)
—Kg(x,)

r(m) b

is the result of replacing every message ¢ in by y

. (2’)‘1’5t(7’)(m) = (2')"(™), and 27 (™) s like 27 (™) except that if 27 (™) = ¢, then %" ((m) =
—Kr(x,)-

This completely specifies U*!. Tt is easy to see that with this definition, I2 also holds.

Let R = *(R(A*")), and let Z = (R,) be an appropriate interpreted system. (Recall this
means that the formulas z. = 1 and z. = 0 are true exactly where they ought to be.) Our goal
is to show that Z is consistent with A. Safety of A*' then follows from safety of A, and liveness
of A*! then follows from liveness of A. By the definition of W%, it is easy to see that if r € A%,
then r(0) = ¥*(r)(0), and that initial states of runs of A" are legal initial states of runs of A.
Thus it only remains to show that W*'(r)(m + 1) is the result of transforming ¥*'(r)(m) by a
joint action that could have been performed by A in Z.

Proposition 4.4: Let r € R(A*Y). Then, for every m,k > 0, if 770" =k and j70"t1) = k41
then i"™) =k, and if i"("™) = k and i"™t) = k 4+ 1 then 570" = k + 1

Proof: The proof is by induction on m. If m = 0, then j7(©) = i7(®) = 0. Moreover, 2"(©) = X,
so the semantics of A* guarantees that (1) = 0. The claim for the case m = 0 trivially
follows. For the inductive step, assume the claim holds for every m’ < m. If j7(™) = k and
47(m+1) — k4 1. then, by the semantics of A*’, projl((z’)T(m)) = k. Tt follows that i"(") = £
for some n < m. Since i is clearly nondecreasing, we must have "(™) > k. To see that
77(m) = [, assume that (™) > k. From the semantics of A** it follows that for some m’ < m,
i7(m') =k and i"(™'+1) = k 4+ 1. Hence, by the induction hypothesis, j7(™) = k + 1. Since
j is nondecreasing, this contradicts the assumption that 47(m) = k. Tt therefore follows that
i"(m) = k. The inductive step for the second half is similar. |

Proposition 4.5: Let r € R(A*®"). Then, for every m > 0:
1. 270m) 2 (m) L1 Gff (T, 9% (r), m) |= ~KsKr(za;).

2. proji(270M) # U iff (T, 0 (r),m) = ~Kp(z;).

16

Proof: Assume that 2™ # 7"(") 4+ 1. Suppose that "™ > 0 (the proof is similar, but
somewhat easier, if i) = 0; we leave details to the reader). From the semantics of A*f,
it follows that there exists some m” < m such that i"(m") = jr(m) — 1 zr(m") — jr(m) and
37 (m"+1) — 37(m) Thus there must exist m’ < m” such that j7(") = 27(m") and goTR(m/) =1. We
now show that every message delivered to S between times m’ and m was actually sent by R at
or before time m'. From Proposition 4.4 and the fact that both 7 and 7 are nondecreasing, we
have that j7(") is either #"("™) or (") 4 1 for all n with m/ < n < m, and for n < m’, we have
47(n) < §7(m) 4 1. Moreover, if j7(") = i7(m) 4 1, then i"(®) = 7(™)_ Tt follows that we cannot
have z7(7") = 7(m)+1 for p < m. For if 2r(n) — gr(m) 4 1, then we must have ir(n) = 4r(m) If § is
not scheduled between n and m, then 2™ = 7(m) 4 1, contradicting our initial assumption,
and if S is at n’ between n and m, then we would have i"(*') = i7(™) 4 1 also a contradiction.
Thus, if n < m, then 2"(™_if it is an integer, must be at most 7"(m) " In particular, every
message delivered to S at or before time m was already sent by R at or before time m/.

Let 7' be a run identical to 7 up to time m/, such that R is not scheduled (and hence no
messages to R are delivered) from time m' to m, such that rg(n) = ri(n) for all n < m (such a
run 7’ exists since all the messages received by S in r at or before time m were already sent by
R at or before time m'). By the definition of ¥*', it follows that (V**(r), m) ~g (V' (r'), m).
Let " € R* be such that

1. X" is identical to X"’ (and X7) except that mz.’rlzm) + mz.’rl(m)

2. For n < m, we have r(n) = r(n).

It is easy to see that such a run r” exists. For example, we can take r”” so that it is identical to
7' up to time m/ (except for the difference between X" and X”') such that neither S nor R is
scheduled between m’ and m in r”. It immediately follows that (¥*'(r"),m) ~g (¥*(r"), m).
Since mi’ﬁzm) # x;’;(m), we must have (Z, ¥*'(r'), m) | =Kpg(za;). Consequently, (Z,¥*(r),m) |=
- KsKp(za;), as desired.

If z7(m) = §7(m) 41, then choose m’ to be the last time before m that $ is scheduled (i.e., such
that gOE(m) = 1). Note that there must be such a time, otherwise we would have 2r(m) = \: 2
never changes if S is not scheduled. We must have z"(m'+1) = j7(m) 4 1 (again, because z does
not change when $ is not scheduled). By definition, we have (z)‘I’St(T)(m'H) = =KR(X;r(m) 41)-
From part 4 of Lemma 4.2, it follows that (Z,¥*(r),m) = KsKgr(za;), as desired.

The proof of part 2 of this lemma is similar and left to the reader. Il

From Proposition 4.5 we can derive:
Corollary 4.6: 7 = (V*'(R(A*")),) is consistent with A.

Since the same read and write actions are performed at the same times in r and ¥*(r),
and since 7 is consistent with A, it follows from Theorem 3.1 that every run in R(A*') has the
safety property. And since W*' also preserves fairness, it follows from Theorem 3.1 that fair
runs of R(A*") have the liveness property.

17

4.3 Correctness of A

We prove the correctness of A by showing that it is an implementation of A®. Again we
define a mapping from tuns of A" to runs of A** that preserves reading and writing of data
elements, and preserves fairness. That is, we want W/*: R(A/*) — R(A*!) to have the following

properties:
1. XU = X7, W 0m) = erlm) |y 9P () m) = yrm),

I12. if 7 is fair then W/*(7) is fair.

Again, the definition of U/* is straightforward. We define ¥% so that I1 holds and:

o V) _ gorlm) | WECYm) _ o rm)
o yPE)m) — yrim)

o (YEOm) = r(m) gpd G0 Z yrim)|,

o The definitions of Z‘I’fs(r)(m), z"I’fs(T)(m)7 bng(T)(m)

plicated, since in protocol A%, arbitrary integers can be sent, not just 0 and 1. Thus we

, and b;gfs(r)(m), are slightly more com-

have:
V() (m) if 27(m) = j7(m)
SO 2 LBy m) g i i) = i) g1
2r(m) otherwise
() ifm=20
pE)m) _ | U m-) if m > 0, b = i)
bgfs(r)(m—l) (V) m=1) WP E)(m=1)y otherwise;

L) (M) and b}gfs(r)(m) are similarly defined.

Let R = W/(R(A%)). Our goal is to show that every run r € R is consistent with protocol
At Tt is easy to see that W/*(7)(0) € G3'. Thus, we have to show that for all m > 0, r(m + 1)
is the result of transforming r(m) by a joint action that could have been performed from r(m)
according to A*". To show this, we first establish some invariant properties of runs in R(Afs):

Lemma 4.7: Letr € R(Afs). Then for every m > 0, the following all hold:
1. =700 (mod 2) and j70 = |V (mod 2).

2. (a) If ™) = 27(m) = 0, then there exists m' < m such that |Y"(")| = 0 and bTR(mIH) #
b,
(b) If [Y"0)| = proji(270™)) = 0, then there exists m' < m such that ') = 0 and
br(m'-{—l) 7£ br(m')
S S -

18

3. (a) If""™ =k > 0 (resp. and in addition "™ = k+1 (mod 2)), then there exist times
my < ...<mp<m (resp. my < ...< mpp1 < m) such that for all ¢ with 1 < € <k
(resp. 1 <L < k+1), we have |Y""™)| = { and bTR(m@H) + bTR(m/z) (so that a message
was sent by R at the point (r,my)).

(b) If|Y"U)| = k, k > 0 (resp. and in addition proj,((2')""™) = k + 1 (mod 2)) then
there exist times mg < ... < mg_1 < m (resp. mg < ...my < m) such that for all {
with 0 < € <k —1 (resp. 0 < { < k), we have (M) = ¢ and bg(m"ﬂ) + bg(m") (so
that a message was sent by S at the point (r,my)).

Proof:

1. For m = 0 we have ¢"(©) = 7(0) = j7(0) = |YT(0)| = 0, so that the claim holds by definition
of the initial states of A, while for m > 0, the claim holds since i (resp. 5) is incremented
mod 2 exactly when a new data element is read (resp. written).

2. (a) From the semantics of A it follows that if 27(™) = 0, then there must have been
some time m’ < m such that R was first scheduled at m’. From the semantics of
Af# it follows that |Yr(ml)| =0, er(m) =), §rm) =g, (z’)r(m/) = A, and hence that
bTR(mIH) = (0). The result follows.

(b) Similar to the previous case.

3. We prove all the parts simultaneously by induction on m. The case m = 0 is trivial.
Suppose m > 0. For part (a), consider the case ¢"(™) =k, 270" = k 4+ 1 (mod 2) and
k > 0. (The proof in the other case is easier, and left to the reader.) Let ns, £ = 1,...,k be
such that ¢"("e) = ¢ — 1, ¢"(+1) = ¢ The semantics of A guarantees that it must be the
case that z"(") = i7" @1, By part (1) it follows that 2"("¢) = ¢ (mod 2). Since messages

are not reordered, and the messages received at times nq,...,ny alternate values between
0 and 1, it must be the case that there exist times my < ... < mgy1 such that my; < ny
for £ =1,...,k, mry1 < m, and the value 2"(¢) is sent at time my, and j7("¢) = z(ne)

¢=1,...,k+1. By part (1), it follows that the value of |Y'| has changed at least £—1 times
by the point (7, ng), so that |Y"(")| > ¢: moreover, by (1) again, [y ()| = z7(ne) (mod 2).
Since the value of ¢ is nondecreasing, by the induction hypothesis applied to (c), we have
that [Y7(*)| < £+ 1. Since |Y"(")| = ¢ (mod 2), it follows that in fact |Y7(")| = £. This
argument also shows that [Y7(")| > |Y7(")| > k, proving the first half of (c).

The proof of (b) and the second half of (c) is similar and is left to the reader. 1

We can now show that U/*(r) € R(A*")if r € R(A’*). That is, we can show that the actions
performed by the processors and the environment in U/(7) are really the ones dictated by A**.

Lemma 4.8: Let r € R(A*). Then for every m > 0 we have:
1. For every k > 0,

(a) If 22" (07 = & then k € b}gfs(r)(m).

19

(b) If 2"V N = (k. 0), then (k,€) € bY),

2. (a) If!]ngs(T)(m) =1 then

i IfZ\IJf) 7& g (r _I_ 1 then b 5 (r)(m+1) — bg'fs(T)(m) . <2'\I"f5(7=)(m)7 y‘l’fs(r)(m)%
w. 1If ZUP)(m) = 95 (r)(m) + 1 then z"I’f (r)(m+1) — ;95 (r)(m) +1 and V) (m1)
P)m) 4 1
(b) IfgoR (r)m) _ 1 then
i. If projy(+/Y"()m)) £ jUFENm) ghep pT D Z RO b)em),
ii. If z"l’f r)(m) — ‘I’fs()() then]‘I’fs(r)(mﬂ) ‘I’fs(Nm) 41 gnd YU () (mt1) —

Proof:

1. (a) If ZPm) = k. then either (a) z UE(r)m) = 9P ()(m) and (b) 27 = §7(m) o
L) m) = 9P)m) 4 1 and 270m) = rmt1) gy 1, Suppose case (a) obtains. Since,
by definition of ¥/, we have 7% Brym) = ¢’ (") and by part (1) of Lemma 4.8 we
have i7(™) = ¢7(™) (mod 2), it follows from part (3) of Lemma 4.7 (or part (2) in case
crlm) — 0) that there exist times mg < ... < my < m such that for all 0 < ¢ < k, we
have |[Y7(m¢)| = £ and bTR(m"H) + bTR(m"). From the definition of ¥/*, it follows that

le b;gfs(T)(m"H), and, in particular k € bgfs(T)(mkH)

is similar and is left to the reader.

. The proof if case (b) obtains

(b) Similar to the previous case.

2. We prove only part (i) of (a); the other cases are similar and left to the reader. Observe

that 1f LU () (m ;é §UP () (m ™) +1 and gogfs(r)(m) = 1, then, by the definition of ¥, we have

m) £ 47(m) 4 1 and gos(™) = 1. The semantics of A’ guarantees that bg(mH) # bg(m).
‘Iifs(r)(m+1)' I

The claim now follows immediately from the definition of bg

We now immediately get:
Lemma 4.9: Let 7 € R(A*"). Then ¥/*(r) is consistent with protocol A*.

Since the definition of ¥/ guarantees that for every run r in R(A®), the same read and
write actions are performed at the same times in 7 and W/*(r), it follows from Theorem 3.2 that
every tun in R(A) has the safety property. And since W/* preserves fairness, it also follows
from Theorem 3.2 that every fair run of A’ has the liveness property. This completes the proof
of Theorem 3.3.

5 A solution in the AUY model

In the AUY model [AUWYS82, AUY79], message transmission is assumed to proceed in syn-
chronous clocked rounds. Processes are always scheduled. We can conceptually think of a round

20

or step as consisting of three phases: a send phase, a receive phase (where all messages sent in
that step that are not deleted are received, possibly after being corrupted), and a local compu-
tation phase (during which data elements may be read from the input sequence or written onto
the output sequence). Since a message is received on the same round in which it is sent (if it
is received at all), messages cannot be reordered or duplicated. As in [AUWY82, AUY79], we
assume that the symbols transmitted over the channel are 0, 1, and A (again A denotes that
nothing is sent), and that the input sequence X consists of 0s and 1s. We consider three types
of errors in the communication medium:

o Deletion errors: 0 or 1 is sent, but A (nothing) is received.
o Mutation errors: 0 (resp. 1) is sent, but 1 (resp. 0) is received.

e [Insertion errors: A is sent, but 0 or 1 is received.

As observed in [AUWYS82, AUY79], the sequence transmission problem has no solution if
all three error types are present. To see this, observe that if all error types are present, then
any sequence o of messages in {0,1, A}* transmitted by S can be altered by the channel to
any other sequence ¢’ of the same length. Thus R can gain no information from the messages
it receives about the messages that S actually transmitted. It was also shown in [AUWY82,
AUYT79] that for any combination of two out of the three possible types of errors, the problem is
solvable. However, the informal correctness proofs presented in [AUWY82, AUY79] are difficult
to follow, and some effort has been expended in constructing more formal proofs [Gou85, Hai85].
Unfortunately, these proofs are also far from transparent.

We provide solutions to the sequence transmission problem in the AUY model by imple-
menting protocol A”. Note that A as it stands does not provide a solution, since messages
such as (7,y) are illegal in the AUY model. We overcome this difficulty by encoding messages
of the form (4, y) using only A, 0, and 1. This is straightforward under our assumption that the
system is synchronous. Suppose we first restrict attention to deletion and insertion faults. A
message of the form (7,y) can then be transmitted by first sending ¢, then on the next round
sending y. This leads us to the protocol A%, described in Figure 4 below (the di stands for
deletion and insertion since, as we shall show, the protocol tolerates deletion and insertion
errors). Note that each iteration of the loop corresponds to two time steps (each one begun
by a “send” statement), since each step consists of a send phase, receive phase, and a local
computation phase. S now has two variables for receiving, z; and z;. Messages are received in
z1 in the first step of the loop, and in z9 in the second step.

We give semantics to A® along the same lines as A. The set ng' of local states for § is
identical to L% except that now we have variables z; and z; instead of just z, and we have
a counter step taking values in {1,2} keeping track of which step in the loop S is about to
perform. Similar remarks hold for L&. The set L% of local states for the environment is now
considerably simpler. It just has the form (X,¢,Y). We can omit the bg and br components,
since the only messages that can be delivered are the messages sent in that round; there is no
point in keeping track of all the messages sent by S and R. And we can omit the gog and
gor components in the environment’s state, since S and R are always scheduled. The actions
performed by S and R are analogous to those performed when running protocol A*. However,
we must allow the environment to perform actions corresponding to deletion and insertion

21

5’s protocol:

INIT: z1 := A; 29 := A; 2:= 0; read y
do forever

send 17; receive zy;

send y; receive z9;if 21 =t § 1 then 7 := ¢ P 1; read y end
end

R’s protocol:

INIT: 2} :=A; 25 := X, 7:=0
do forever

send j; receive 2i;

send A; receive zj; if (21, 2) = (4, A) then write z}; j:=j & 1 end
end

Figure 4: Protocol A%

errors. Thus, we take the environment’s actions to have the form (ag,br), where a and b are
one of ins0, insl, del, or A. The effect of insOg is that R receives 0 if S sent A; otherwise R
receives whatever S sent. The effect of inslg is similar. The effect of dels is that R receives A
(i.e., S’s message, if there is one, is deleted), while the effect of Ag is that R receives whatever
S sent. The effect of actions of the form bg is analogous. The environment nondeterministically
performs one of these actions at each step. We leave further details to the reader.

We prove correctness of A% by defining a mapping ¥% mapping runs of A% to runs of Af5.
Since the sending of a message in A’ corresponds to two steps in A%, we conceptually divide
runs of A% into 2-blocks. The first 2-block consists of times 0 and 1, the next one consists of
times 2 and 3, and so on. Each 2-block corresponds to one iteration of the loop. If both messages
i and y sent by S in a 2-block of a run r of A% are delivered uncorrupted (i.e., undeleted) to
R, then we say that (i,y) is delivered in W¥(r). If either part of the 2-block is corrupted, then
we say that A is delivered to S in W% (7). Note that the messages sent by R in a 2-block are
of the form j followed by A. As long as both of these messages are delivered uncorrupted, then
we say j is delivered in the corresponding run \Ildi(r).S Note that either the message that 5
intended to send is actually delivered to R, or else R can tell that the message sent by S was
corrupted (and thus R can treat it as if no message at all was sent); identical comments hold
with the roles of S and R reversed.

We say a run of A% is fair if there are infinitely many 2-blocks where both of $’s transmis-
sions are delivered, and infinitely many 2-blocks where both of R’s transmissions are delivered.?

¥n the case of R’s messages, we could have just focused attention on the first component of the 2-block, since
it is the only one that gives information to S. We have chosen to present the protocol in this way for uniformity
with the protocols we present later.

*Note that if we assume a fixed non-zero probability of any given message arriving, then the set of runs
satisfying our fairness criterion has measure 1. Our fairness condition is equivalent to that used in [AUWY82,

22

With this notion of fairness, it is easy to check that the mapping ¥% sketched above maps fair
runs of A% to fair runs of A”. We leave the details to the reader. Using this mapping, we get:

Theorem 5.1: Protocol A% solves the sequence transmission problem in the AUY model with
deletion and insertion errors. Every run of AY has the safety property, and the fair runs have
the liveness property.

Although A% solves the sequence transmission problem in the AUY model for the case of
deletion and insertion errors, it cannot deal with mutation errors. If 0 and 1 can be mutated,
then it is possible that, for example, S sends (0,1) and R receives (0,0) (i.e., 0 followed by 0).
The point is that R cannot tell when it receives a message from S whether or not it has been
corrupted. We solve this problem by using a different encoding function when dealing with
mutation errors. We need an encoding function e that has the following two properties (with
respect to the faulty behavior allowed) for each message m that can be sent by either S or R

(so that m € {(0,0),(0,1),(1,0),(1,1),0,1}):

1. (Unique decodability) If e(m) is received uncorrupted, then the recipient knows that it is
uncorrupted, and that it is an encoding of m.

2. (Corruption detectability) If e(m) is corrupted, then the recipient knows it is corrupted.

An encoding with these properties essentially allows us to treat any type of faulty behavior as
a deletion error. If corruption is detected, a message can be ignored and treated as if it were
lost.

di

In the case of deletion and insertion errors, we took the trivial encoding function e* such

that: ‘ '
el((i,y)) = (i,y) and e% (i) = (i,), for i,y € {0,1}.

It is easy to check that e?’ has the properties of unique decodability and corruption detectability
in the case of deletion and insertion errors. In order to implement A’ in the presence of deletion
and mutation errors, we must find an encoding that preserves these properties in the presence
of deletion and mutation errors. One encoding that works is €%™, defined by:

e?((0,0)) = e™(0) = (1,A, X, A),
e™((0,1)) = ed™ (1) = (A, 1,7, 0),
e((1,0)) = (A, A, 1, M),
e ((1,1)) = (M, A, A, 1),

Time is now divided into 4-blocks rather than 2-blocks. The intention here is that if, for
example, S wants to send a message (0,0), then it sends a 1 followed by three As over the
next four rounds. It is easy to check that e does indeed have the properties of unique
decodability and corruption detectability in the case of deletion and mutation errors. Clearly
any uncorrupted sequence of messages received in a 4-block is uniquely decodable. A mutation
error is easily detectable and, indeed, easily corrected: Since 0 does not appear in any encoded
message, if 0 is received it must be the case that a 1 was sent and mutated. If a non-A message
sent in a 4-block is deleted, then the recipient will get all As in that 4-block, and thus know

AUYT9).

23

that the message was corrupted. These ideas lead us to the protocol A% described in Figure 5.
The protocol is a straightforward variant of A%. We now use ¢%” to do the encoding. Each
iteration of the loop now consists of four time steps, corresponding to a 4-block. S now has four
receive variables, z1, 22, z3, and 24, such that z; is used in the £*P step of a 4-block. As before,
we take proj; to be the function which projects onto the 7t component of its argument.

5’s protocol:

INIT: 21 ;= A5 29 := A 23 := Ay 2z := A i := 05 read g
do forever

send proji(e?™((i,y))); receive z1;
send proja(e?™({i,y))); receive zy;
send projs(e?™((i,y))); receive z3;
send proja(e?™({i,y))); receive zq; if (e¥™) 1 ((21,29,23,24)) =1 D 1

then i := 1 ¢ 1; read y
end

R’s protocol:

INIT: 2} := A; 2h = A 20 = A2, := A 7:=0
do forever

send projy(e¥™(j)); receive 2;;
send proja(e?™(j)); receive zh;
send projs(e™(j)); receive 24;
cend proja(e™™ (7)): reccive 24: if proja(e)=1 (2} 4. 25, %)) = j

then write proja((e®™)1 ((2], 25, 25, 24))); j = @ 1
end

Figure 5: Protocol A%™

mi

In order to deal with mutation and insertion errors, we define an encoding €™ which is just

like €™ except that the roles of 1 and A are interchanged:

eml(<070>):em€(0): (A, 1,1,1),
eml(<071>):eml(1): <) 7171>7
e”“(<1,0>) =(1,1,A,1),
e™((1,1)) = (1,1,1,A).

It is easy to check that e”™ has the properties of unique decodability and corruption detectability
in the presence of mutation and insertion errors. We can then obtain a protocol A™" which is
just like A%™ except that occurrences of e?™ are replaced by e™

We say a run of A% or A™ is fair if there are infinitely many 4-blocks where all of S’s
transmissions are delivered uncorrupted, and infinitely many 4-blocks where both of R’s trans-
missions are delivered uncorrupted. Again, using an implementation mapping, we can show the

24

correctness of A% and A™. We state the theorem below, leaving details of the proof to the
reader.

Theorem 5.2: Protocol A™™ (resp. Ami) solves the sequence transmission problem in the AUY
model with deletion and mutation (resp., mutation and insertion) errors. Fvery run of A%™
(resp. A™) has the safety property, and the fair runs have the liveness property.

We remark that we could deal with other error types too, provided we could find appropriate
encoding functions. There is, however, no encoding function with the properties of unique
decodability and corruption detectability that can deal simultaneously with deletion, mutation,
and insertion errors.

Note that as we move further away from our knowledge-based protocol, we make more and
more use of the details of the underlying model. In particular, A makes heavy use of the
assumption that messages are not reordered, and the protocols A%, A% and A™ make heavy
use of the synchronous nature of the AUY model, so that messages are received in the same
round that they are sent (if they are received at all).

6 Another solution to the sequence transmission problem

In this section we construct another family of protocols that solves the sequence transmission
problem.

Protocol A can be viewed as a sender-driven protocol: $ sends z; if S does not know that
R knows z;; i.e., S sends z; when = KgKpg(za;) holds. We can also consider receiver-driven
protocols, where S sends z; only if S knows that R does not know z;; i.e., when Ks-Kg(zai)
holds. Receiver-based protocols might be quite practical if S is relatively busy, or if 5’s messages
are quite long rather than only consisting of one bit. Indeed, a receiver-based protocol is
implemented as part of the NETBLT protocol at MIT [CLZ87].

It is easy to modify protocol A to get a receiver-driven protocol. Indeed, the tests for
knowledge allow us to get to the heart of the problem immediately. We simply add a test to
protocol A to ensure that S only sends (7, y) if Kg-KRr(za;) holds. The resulting knowledge-
based protocol B is described in Figure 6 below. The formal semantics of B are essentially the
same as those for A; we leave details to the reader.

We can prove that B has the safety property by applying the same arguments as for A.
However, B in general does not have the liveness property, even in fair runs. To see the
problem here, consider an asynchronous system where messages may take an arbitrary number
of rounds to be delivered. Suppose that S has sent the message (0, 1) once, and this message
is not received by R. Without further assumptions on the system, there is no way for S ever
to know that K's—KRg(zo) holds. Even if S gets a message from R saying —Kg(x,), it is not the
case that Ks—Kpg(zo) holds when the message is received, since it is possible that R received
S’s message (0,1) after it sent the —Kg(x,) message. Although Kg(za;) is a stable formula
(once true it remains true), “Kpg(za;) is not.

B does have the liveness property in fair runs of systems where we make the additional
assumption that messages have finite lifetimes, that is, systems where there is some constant
T such that messages are delivered within time 7T if they are delivered at all. Note the AUY

25

5’s protocol:

INIT: 2 := 0; read y
do forever
if —stf(R(;r@i)
then if I(S—!I(R(;r@i)
then send (¢, y); receive z
else receive z
else 7 := i + 1; read y; receive z
end

R’s protocol:

INIT: 5:=0
do forever
if —J(R(.r]‘)
then send —Kg(x;); receive 2’
else if Kr(z; =0)
then write 0; j := j + 1; receive 2’
else write 1; j := j + 1; receive 2’
end

Figure 6: Protocol B

model is a special case of a system where messages have finite lifetimes; in this case the lifetime
is one round.

If we further restrict to systems where messages can be deleted, duplicated, or detectably
corrupted, but not reordered, we can obtain a finite state implementation B of B analogous to
Af*. In general, the implementation requires a timer which keeps track of whether the lifetime of
5’s previous message has expired. We can avoid this complication in the AUY model, since the
lifetime of a message is one round. For example, in Figure 7 we describe B¢, a straightforward
implementation of protocol B in the AUY model with deletion errors only.

The idea behind B¢ is quite simple. As in protocol A and A%, § uses a variable i to keep
track of the parity of the data element it last sent, and R uses a variable j to keep track of
the parity of the data element it next wants to receive. R keeps sending j to S (thus telling S
the parity of the next data element it wants to receive). If S receives a non-A value z, then it
knows which data element R would currently like to know; if z = ¢, then R still doesn’t know
the value of the data element S is currently reading, so 5 sends it; if 2 = ¢ @ 1, then R does
know the value of the current data element, so S reads the next data element and sends it. If
R receives a non-A value 2/, then R knows that this is the value of the next data element, so
R writes z'. We can easily find protocols B%, B¥" and B™ that deal with any pair of error
types in the AUY model by doing encoding just as in the previous section.

26

5’s protocol:

INIT: z:= A; ¢ := 0; read y
do forever
ifz£:ip1
then if z = ¢
then send y; receive z
else receive z
else i := 1 @ 1; read y; receive z
end

R’s protocol:

INIT: 2/ :=X;7:=0
do forever
ifz#7
then send j; receive 2’
else write 2'; 7 := j @ 1; receive 2’
end

Figure 7: Protocol B¢

7 Conclusions

We have described high-level knowledge-based protocols for the sequence transmission prob-
lem, and have shown that several well-known protocols are simply implementations of one
of our knowledge-based protocols. These observations allowed us to provide well-motivated
and relatively straightforward correctness proofs for all these protocols. We feel that such an
approach—starting with a knowledge-based protocol that is almost model-independent, and
then implementing the knowledge acquisition using particular properties of the model—leads
to a better understanding of the protocol and its correctness than other approaches that have
been used. Although in the case of the Alternating Bit and Stenning’s protocols (essentially
protocols A** and A*), a direct proof of correctness might be somewhat shorter than the proof
we gave, given our overhead of first having to verify the knowledge-based protocol A, we believe
that the understanding gained by using the knowledge-based protocol is itself of benefit. We
expect that in other cases it will also result in shorter proofs. Certainly our proofs of correctness
of the protocols of Aho, Ullman, and Yannakakis, obtained by viewing these protocols as an
implementation of A, seem substantially simpler than the others in the literature.

Although we feel that our correctness proofs are simpler than others, there is no question
that they are still somewhat long and tedious. This seems to be an inescapable feature of formal
correctness proofs. The advantage of the knowledge-based approach used here is that it at least
allows the reader to obtain a clear high-level picture of what is going on, even if the low-level
details are still tedious to check.

27

There are other advantages of the knowledge-based approach which are perhaps not so
apparent from the analysis we have done here. In particular, it should be easier to develop
correct protocols and change them to meet new requirements by starting with knowledge-based
protocols, since this should make it clearer what the role of each command in the protocol is. As
well, thinking at the knowledge level may often simplify matter. We remark that we discovered
the receiver-driven protocol B by thinking at the knowledge level and trying to understand if
we could replace the test ~KgKpr(za;) in S’s protocol by Ks—Kr(zai).

The knowledge-based protocols we designed assumed processes with infinitely many distinct
states and required that infinitely many distinct messages could be sent. In retrospect, this is
perhaps not surprising. It is often the case that a high-level solution to a problem is inefficient.
Protocols such as the AUY protocols and the Alternating Bit protocol show that under some
circumstances (i.e., under appropriate restrictions on the actions of the environment) we can
find finite-state solutions to the sequence transmission problem. However, as we observed at the
end of Section 3, if we allow messages to be reordered and lost (or reordered and duplicated),
and there is no upper bound on message delivery time (for messages that are delivered), then
there is no finite-state solution. (We remark that if there is an upper bound on message
delivery time, then the modified Stenning protocol [Ste76] gives a finite-state solution.) In fact,
in [AFWZ88] it is shown that if we allow messages to be reordered and duplicated, then there
is no solution using a finite message alphabet, and both [AFWZ88] and [LMF'88] show that
under most natural requirements, if we allow messages to be reordered and deleted, then there
is no solution using a finite message alphabet.

If we allow undetectable corruption of messages (so that any message can be converted
to any other), then there is no solution at all, either finite state or infinite state (since any
message sequence can then be converted to any other). It would be interesting to characterize
the assumptions required to guarantee that a solution to the sequence transmission problem
exists, and the assumptions required to guarantee a finite-state solution, and then to generalize
these results to the case where we have a whole network rather than just two processes (see
[AGS8S8] for preliminary work along these lines).

Finally, we should acknowledge that at this point the verification of protocols is still far more
an art than a science. We do not have a general methodology for deriving a knowledge-based
protocol, nor a general methodology for implementing it as a standard protocol once we have
found it. Nevertheless, we feel that the knowledge-based approach will be an aid in designing and
verifying protocols. Recent papers, such as [Had87, HMT88, HMW90, M1.90, Maz90, NT93],
that have used the knowledge-based approach lend credence to our feelings.

Acknowledgements: We would particularly like to thank Brent Hailpern, who started us
thinking about the AUY protocols. We also thank Ron Fagin, Mike Fischer, Brent Hailpern,
Yoni Malachi, Murray Mazer, Yoram Moses, and Moshe Vardi for their insightful comments on
earlier drafts of this paper, Micah Beck for his thoughtful referee’s report and for catching a
subtle bug in an earlier presentation of protocol A, Eli Gafni and Laura Haas for pointing out
references [GS80] and [SH86], Moshe Vardi for pointing out reference [BG77] (and the quote
about the use of knowledge that appears there), and Josh Cohen Benaloh for IATEX help.

28

References

[AFWZ88]

[AGSS]

[AUWYS2]

[AUYT9)]

[BGT77]

[BS80]

[BSW69]

[CESS6]

[CLZ87]

[CMS6]

[DM90]

[FHV92]

[FIS6]

C. Attiya, M. J. Fischer, D. Wang, and L. D. Zuck. Reliable communication using
unreliable channels. Manuscript. 1988.

Y. Afek and E. Gafni. End-to-end communication in unreliable networks. In
Proc. Tth ACM Symp. on Principles of Distributed Computing, pages 117-130,
1988.

A. V. Aho, J. D. Ullman, A. D. Wyner, and M. Yannakakis. Bounds on the size
and transmission rate of communication protocols. Computers and Mathematics
with Applications, 8(3):205-214, 1982. This is a later version of [AUY79].

A. V. Aho, J. D. Ullman, and M. Yannakakis. Modeling communication protocols
by automata. In Proc. 20th IFEE Symp. on Foundations of Computer Science,
pages 267273, 1979.

G. V. Bochmann and J. Gecsei. A unified method for the specification and verifica-
tion of protocols. In B. Gilchrist, editor, Information Processing 77, pages 229-234.
North-Holland, Amsterdam, 1977.

G. V. Bochmann and C. A. Sunshine. Formal methods in communication protocol
design. IEFFE Transactions on Communications, COM-28:624-631, 1980.

K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-
duplex transmission over half-duplex links. Communications of the ACM, 12:260—
261, 1969.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. on Program-
ming Languages and Systems, 8(2):244-263, 1986. An early version appeared in
Proc. 10th ACM Symposium on Principles of Programming Languages, 1983.

D. D. Clark, M. L. Lambert, and L. Zhang. NETBLT: a high throughput transport
protocol. In SigComm 87 Workshop, pages 353-359. 1987. Proceedings published
in Computer Communication Review 17:5.

K. M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40-
52, 1986.

C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine envi-
ronment: crash failures. Information and Computation, 88(2):156-186, 1990.

R. Fagin, J. Y. Halpern, and M. Y. Vardi. What can machines know? On the
properties of knowledge in distributed systems. Journal of the ACM, 39(2):328-
376, 1992.

M. J. Fischer and N. Immerman. Foundations of knowledge for distributed sys-
tems. In J. Y. Halpern, editor, Theoretical Aspects of Reasoning about Knowledge:

29

[Fit91]

[Gaf86]

[GHO1]

[Gou85]

[GS80]

[Had87]

[Hai85]

[Hal87]

[HFS85]

[HF89]

[HM90]

Proc. 1986 Conference, pages 171-186. Morgan Kaufmann, San Francisco, Calif.,
1986.

M. Fitting. Modal logic should say more than it does. In J.-L.. Lassez and G. Plotkin,
editors, Computational Logic, Fssays in Honor of Alan Robinson, pages 113-135.
MIT Press, Cambridge, Mass., 1991.

E. Gafni. Perspectives on distributed network protocols: a case for building blocks.

In Proc. IEEE MILCOM 86, 1986.

A. J. Grove and J. Y. Halpern. Naming and identity in a multi-agent epistemic
logic. In J. A. Allen, R. Fikes, and E. Sandewall, editors, Principles of Knowledge
Representation and Reasoning: Proc. Second International Conference (KR ’91),
pages 301-312. Morgan Kaufmann, San Francisco, Calif., 1991.

M. Gouda. On “A simple protocol whose proof isn’t”. IEFFE Transactions on
Communications, COM-33(4):382-384, 1985.

V. D. Gligor and S. H. Shattuck. On deadlock detection in distributed systems.
IEEFE Transactions on Software Engineering, SE-6(5):435-440, 1980.

V. Hadzilacos. A knowledge-theoretic analysis of atomic commitment protocols. In
Proc. 6th ACM Symp. on Principles of Database Systems, pages 129-134, 1987. A
revised version has been submitted for publication.

B. T. Hailpern. A simple protocol whose proof isn’t. IEFE Transactions on Com-
munications, COM-33(4):330-337, 1985.

J. Y. Halpern. Using reasoning about knowledge to analyze distributed systems.
In J. F. Traub, B. J. Grosz, B. W. Lampson, and N. J. Nilsson, editors, Annual
Review of Computer Science, Vol. 2, pages 37-68. Annual Reviews Inc., Palo Alto,
Calif., 1987.

J. Y. Halpern and R. Fagin. A formal model of knowledge, action, and commu-
nication in distributed systems: preliminary report. In Proc. jth ACM Symp. on
Principles of Distributed Computing, pages 224-236, 1985.

J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributed systems.
Distributed Computing, 3(4):159-179, 1989. A preliminary version appeared in
Proc. 4th ACM Symposium on Principles of Distributed Computing, 1985, with
the title “A formal model of knowledge, action, and communication in distributed
systems: preliminary report”.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549-587, 1990. A preliminary version
appeared in Proc. 3rd ACM Symposium on Principles of Distributed Computing,
1984.

30

[HMTSS]

[HMW90]

[HOS3]

[HVS6]

[LMFSS]

[LR86]

[LT89]

[Maz90]

[Mer76]

[ML90]

[Mos86]

[MTS8S]

[NT93]

[OL82]

J. Y. Halpern, Y. Moses, and M. R. Tuttle. A knowledge-based analysis of zero
knowledge. In Proc. 20th ACM Symp. on Theory of Computing, pages 132-147,
1988.

J. Y. Halpern, Y. Moses, and O. Waarts. A characterization of eventual Byzantine
agreement. In Proc. 9th ACM Symp. on Principles of Distributed Computing, pages
333-346, 1990.

B. T. Hailpern and S. S. Owicki. Modular verification of communication protocols.
IEEE Transactions on Communications, COM-31(1):56-68, 1983.

J. Y. Halpern and M. Y. Vardi. The complexity of reasoning about knowledge and
time. In Proc. 18th ACM Symp. on Theory of Computing, pages 304-315, 1986.

N. A. Lynch, Y. Mansour, and A. Fekete. Data link layer: two impossibility results.
In Proc. 7th ACM Symp. on Principles of Distributed Computing, pages 149-170,
1988.

R. E. Ladner and J. H. Reif. The logic of distributed protocols (preliminary re-
port). In J. Y. Halpern, editor, Theoretical Aspects of Reasoning about Knowledge:
Proc. 1986 Conference, pages 207-222. Morgan Kaufmann, San Francisco, Calif.,
1986.

N. A. Lynch and M. R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2(3):219-246, 1989. Also available as MIT Technical Memo
MIT/LCS/TM-373.

M. S. Mazer. A link between knowledge and communication in faulty distributed
systems. In R. Parikh, editor, Theoretical Aspects of Reasoning about Knowledge:
Proc. Third Conference, pages 289-304. Morgan Kaufmann, San Francisco, Calif.,
1990.

P. M. Merlin. A methodology for the design and implementation of communication
protocols. IFEFE Transactions on Communications, COM-24(4):614-621, 1976.

M. S. Mazer and F. H. Lochovsky. Analyzing distributed commitment by reasoning
about knowledge. Technical Report CRL 90/10, DEC-CRIL, 1990.

Y. Moses. Knowledge in a distributed environment. PhD thesis, Stanford University,
1986.

Y. Moses and M. R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3:121-169, 1988.

G. Neiger and S. Toueg. Simulating real-time clocks and common knowledge in
distributed systems. Journal of the ACM, 40(2):334-367, 1993.

S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.
ACM Trans. on Programming Languages and Systems, 4(3):455-495, 1982.

31

[Pnu77]

[PRS5]

[QS82]

[SHS6]

[SMS82]

[SteT6]
[Sun79]

A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on Foun-
dations of Computer Science, pages 46-57, 1977.

R. Parikh and R. Ramanujam. Distributed processing and the logic of knowledge.
In R. Parikh, editor, Proc. Workshop on Logics of Programs, pages 256-268, 1985.

J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int’l Symp. on Programming, Lecture Notes in Computer
Science, Vol. 137, pages 337-371. Springer-Verlag, Berlin/New York, 1982.

S. R. Soloway and P. A. Humblet. On distributed network protocols for changing
topologies. Technical Report LIDS-P-1564, MIT, 1986.

R. L. Schwartz and P. M. Melliar-Smith. From state machines to temporal logic:
specification methods for protocol standards. IEFE Transactions on Communica-
tions, COM-30(12):2486-2496, 1982.

M. V. Stenning. A data transfer protocol. Comput. Networks, 1:99-110, 1976.

C. A. Sunshine. Formal techniques for protocol specification and verification. IEFF
Computer, 12:20-27, 1979.

32

