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ABSTRACT

We present a logic LL which uses a modal operator L to help capture the notion of being likely.
Despite the fact that likelihood is not assigned quantitative values through probabilities, LL captures
many of the properties of likelihood in an intuitively appealing way. We give a possible-worlds style
semantics to LL, and, using standard techniques of modal logic, we give a complete axiomatization
for LL and show that satisfiability of LL formulas can be decided in exponential time. We discuss
how the logic might be used in areas such as medical diagnosis, where decision making in the face of
unceruainties is crucial. We conclude by using LL to give a formal proof of correctness of some
aspects of a protocol for exchanging secrets.

1. Introduction

Reasoning about likelihood is an important component of decision making in
many human endeavours. One way of formalizing and carrying out such
reasoning is by means of probability theory. However, there are several
problems with this use of probability theory.

One obvious problem is that there are many situations where we want to
reason about likelihood when it is not clear that probability theory is even
applicable. For example, one might want to assert “It is not likely that a
nuclear war will begin tomorrow,” but it seems difficult to find an appropriate
sample space in which to give this statement probabilistic meaning.

* A preliminary version of this paper appeared in Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, Boston, MA, 1983.
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In other situations, it may be possible in principle to attach probabilities to
events, but it may not be reasonable in practice. A typical opinion of
researchers studying disease associations and treatment effects is that
‘... probabilities are virtually useless in medical applications, because the
conclusions that one can draw from such probability values almost never justify
the expense and inconvenience to the patient necessary to obtain them” [13].

Finally, even in situations where a probabilistic analysis could be carried out,
decision makers seem to be quite uncomfortable with this approach. Indeed,
there is convincing evidence to suggest that people are very poor at probabilis-
tic reasoning [22]. Moreover, although people seem quite prepared to say that
one outcome is more likely than another, they are unwilling to give precise
numerical probabilities to outcomes. As Szolovits and Pauker point out [21]:

They [doctors] are often extremely reluctant to engage in any
numerical computation involving the likelihood of a diagnosis or
the prognosis for a treatment. Even when official blessing is be-
stowed upon Bayesian techniques, we have seen both experienced
and novice physicians acknowledge and then ignore them.

(Similar remarks apply to other schemes, such as belief functions {20} or
fuzzy set theory [23] which attempt to attach numbers to the likelihood of
various outcomes, although we will not consider them here.)

Expert systems designers have also expressed discomfort with the use of
certainty factors and numerical probabilities in expert systems. Interestingly, it
has been observed that “the performance of most systems remains constant
under all sorts of small (<30%) perturbations in the precise values used” [1}.
This suggests that a qualitative, nonnumerical notion of likelihood may be
useful.

In this paper we introduce a modal logic which we call LL, the logic of
likelihood, where we use a modal operator L to help us capture the notion of
being likely. Thus there will be formulas in the language of the form Lp, which
roughly translates to “p is reasonably likely to be a consistent hypothesis.” We
should stress here that the degree of confidence indicated by the symbol L
depends on the user. In addition, it is quite possible that Lp and L—p hold
simultaneously.

Although likelihood is not assigned quantitative values through probabilities,
we can capture many properties of likelihood in an intuitively appealing way.
For example, if p, is reasonably likely given p,, and p, is reasonably likely
given p,, then we can deduce that p, is somewhat likely given p,. The longer a
chain of reasoning, the less confidence we tend to have in the conclusion. In
LL, we can show that from the statements p, = Lp, and p, => Lp,, we can infer
p, = LLp,, which we abbreviate as p, =>> Lp,. As we shall see, ‘“powers” of L
denote a dilution of likelihood.

In order to increase the expressive power of our language, we have added
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two additional modal operators, L* and G. L*p is used to denote the limit of
the chain Lp, sz, L3p, ..., while G is used to denote necessity. Gp
intuitively says that p is necessarily the case.

It is hoped that LL will be useful in actual decision making, for example in
management or in medical diagnosis. Our semantics for LL is intended to serve
beyond providing a setting for a completeness proof in the usual style. The user
is expected to operate with this semantic model in developing his reasoning to
uncover the “‘real” state of affairs in the situation he is studying.

The basic semantic notion of a state s represents a complete and consistent
set of “working hypotheses” concerning the situation under consideration,
adopted by the decision maker at some point during his deliberations. A state s
may have several successor states s, s”,..., of which some are likely succes-
sors and others are conceivable successors. The logic LL is not temporal and a
successor s’ of s does not represent a likely or conceivable future development
from the present state s. Rather, s’ is one of the complete sets of hypotheses
that the decision maker may move to, perhaps as a result of getting more
information about the true state of affairs, if he adopts s as his current view of
the state of the world. We remark that in this way we can view the models of
LL as allowing belief revision. Thus we can capture some of the reasoning that
goes on in nonmonotonic logics (cf. [11,12]) in a perfectly monotonic
framework.

Of course, our work is far from being the first attempt to capture reasoning
about likelihood and qualitative reasoning about probability in a modal setting.
An early paper by Rescher (cf. [17, Ch. IV]) gives axioms for a logic with a
modal operator which is essentially like our L, but does not provide a
semantics. Moore and Hutchins [14] consider a possible-worlds model for
reasoning about certainty levels (which essentially correspond to our “power of
L’”) for medical decision making and suggest the use of a modal logic for
medical reasoning, but do not provide such a logic. More recently, Segerberg
[19] and Gardenfors [4] have described modal logics which allow formulas of
the form p =g, which can be interpreted as “p is more likely than gq.”
However, there is no direct way of saying “p is likely” in their logics. The
semantics required to capture such a binary comparison operator is, perhaps
not surprisingly, much more complicated than that of LL, as is the axiomatiza-
tion; we suspect the decision procedure will be more complex as well. On the
other hand, the logics of Segerberg and Gérdenfors, by their design, do
capture probability theory more directly than LL. We do not view this
necessarily as a shortcoming of LL. In fact, one of the main theses of the
present work is that probability theory is not the only way of reasoning about
likelihood!

An important area in which the need for reasoning about likelihood arises
and where, in general, there is no sound probabilistic basis for doing so, is in
analyzing the credibility actions and threats. A head of state declares: “If you
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cross this line we shall go to war.” Or a mother leaves a note to her (somewhat
undependable) child saying “Turn off the oven at noon.” How do we express
statements about the possible occurrence of these actions? Being able to do so
is obviously important when arguing about the behavior of states, organiza-
tions, or individuals. The logic LL does not tell us how to assign likelihood to
such actions, but does give us a formalism for expressing our beliefs and
experiences on the subject, and a semantics for interpreting the formal
statements that we make.

Nevertheless, a reasonable question to ask is to what extent LL can capture
probability theory. One way of interpreting ‘“‘reasonably likely” is as meaning
“with probability greater than a” (for some user-defined «). It turns out,
however, if we simply translate ““P holds with probability greater than &’ by
LP, we quickly run into inconsistencies. We make some remarks on a solution
to this problem in Sections 3 and 4. This issue is studied in more detail in a
companion paper [5], where it is shown that there is a way of translating
probability statements into LL in such a way that inferences made in LL are
sound with respect to this interpretation of likelihood.

The rest of this paper is organized as follows. In the next section, we give the
syntax and semantics of LL. In Section 3, we apply standard techniques of
modal logic to show that validity of LL formulas is decidable in exponential
time and give a complete axiomatization for LL. In Section 4, we discuss how
to translate English sentences about likelihood into LL, taking medical deci-
sion making as our example.

This work was motivated by the need to find a logic in which to prove that
certain security protocols and cryptographic protocols are correct. In Section 5,
we sketch a protocol (due to the second author) for exchanging secrets, and use
LL to give a formal proof of correctness of some aspects of the protocol. The
analysis involves a careful formalization of the credibility of certain actions and
threats. We exclude in Section 6 with a discussion of the relationship of LL to
nonmonotonic logic and some directions for further research.

2. Syntax and Semantics
2.1. Syntax

Starting with a set @, = {P, Q, R, . . .} of primitive propositions, we build more
complicated LL formulas using the propositional connectives -1 and A and the
modal operators G, L, and L*. Thus, if p and g are formulas, then so are —p,
(p A q), Gp (“necessarily p”), Lp, and L*p. We omit parentheses if they are
clear from context. We also use the abbreviations p v ¢ for 1(mp A g),
p=>qformpvg,p=qfor(p=q)A(g= p), Fp (“possibly p”) for 7Gp,
and L'p for L--+ Lp (i Ls). (Our G and F correspond to the O and < often
used in the temporal logic literature [10].) We will occasionally restrict
attention to LL , the sublanguage of LL which consists of formulas with no
mention of L*.
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The size of a formula p, written | p|, is its length as a string over the alphabet
PU{, A, G, L, L"), (}.

2.2. Semantics

We give semantics to LL formulas by means of Kripke structures. An LL
model is a quadruple M = (S, %, €, w), where S is a set of states, £ and € are
binary relations on S with £ reflexive (i.e., for all s € S, we have (s, s) € L)
and 7: @;— 25, Intuitively, 7 associates with each primitive proposition the set
of states of which it is true.

The size of a model M = (S, %, €, w) is |S|. We can think of (S, %, €) as a
graph with vertices S and edges £ U €. If (s, t) € £ (respectively €), then we
say that ¢ is an Z£-successor (respectively €-successor) of s. Informally, a state s
consists of a set of hypotheses that we take to be “true for now.” An
Z-successor of s describes a set of hypotheses that is reasonably likely given
our current hypotheses, while a €-successor describes a set of hypotheses
which is conceivable, but not necessarily reasonably likely. (If I buy a ticket to
the Irish sweepstakes, it is conceivable, although not reasonably likely, that I
will win.)' We will say ¢ is reachable (resp. ¥-reachable) from s if, for some
finite sequence s, .., s,, we have s,=s, s, =, and (s,,s,.,) € L U € (resp.
(s;,,8,,1)EZ) for i<k.

We extend 7 to a mapping m: {LL formulas} —2° as follows:

7(mp)=S—7(p),

m(p A q)=m(p)Nm(q),

w(Gp) = {s | for all ¢ reachable from s, t € w(p)},

w(Lp) = {s | for some ¢ with (s, ) EZ, tE€ w(p)},

w(L*p) = {s | for some ¢ which is £-reachable from s, r€ w(p)} .

As usual we write M,s = p instead of s € w(p).

Note that M,s = Fp iff M,t|= p for some state ¢ reachable from s, while
M, s L*p iff M,t|= p for some state ¢t ¥-reachable from s. Thus, in strictly
decreasing order of strength we have

Gp, —L*p, ..., —|LN—|p, ..., TL=p, p,
Lp, ..., L%, ..., L*p, Fp.

! For technical reasons, we have decided to take the € relation to be “‘conceivable but not
necessarily reasonably likely,” rather than just “‘conceivable.” Thus we have not postulated any
semantic relationship between € and £. The real conceivability relation can thus be viewed as the
reflexive transition closure of £ U €; this view of the conceivability relation is enforced by the
semantics of the modal operator G.
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We remark that we could have omitted the % relation from our semantics
and essentially taken L*p to be equivalent to Fp (this in fact is done in [5]).
The resulting development would not have differed greatly from that we give
here. In fact, none of our examples make use of the L* operator. We include
the L* operator and a conceivable successor here because we feel that it might
be helpful in modelling the way people actually seem to discuss likelihood.

Definition 2.1. A formula p is satisfiable iff for some model M = (S, %, €, )
and some s € S, we have M,s |F p; p is valid iff for all models M = (S, &, €, m)
and all s € S, we have M,s = p. It is easy to check that p is valid iff —1p is not
satisfiable.

3. Finite Models, Decision Procedures, and Axiomatization

LL can be viewed essentially as a propositional dynamic logic (PDL) (cf. [3])
with two primitive programs L and C. The formula Lp in LL corresponds to
(L) p, L*p corresponds to {L*) p, and Gp corresponds to [(L U C)*]p. The
only thing that prevents us from obtaining a decision procedure for LL by
immediate translation into PDL in this way is our requirement that L be
reflexive. Nevertheless, it is straightforward to adapt the standard techniques
used to obtain the finite model property, a complete axiomatization, and an
exponential time decision procedure for PDL and other modal logics (cf.
[2,3,8,15]) in order to show that the same results hold for LL. In particular
we have the following theorems:

Theorelln,3.1. An LL formula p is satisfiable iff it is satisfiable in a model of
size <2

Theorem 3.2. For some ¢ >0, there is a procedure for deciding if a formula p is
satisfiable (respectively valid) which runs in deterministic time O(2”|” .

Theorem 3.3. The problem of deciding satisfiability (validity) of LL formulas is
complete for deterministic exponential time.

Theorem 3.4. The following axiom system is sound and complete for LL.
Axiom schemes:

All (substitution instances of ) tautologies of propositional logic.
(AX1)

Gp=>p. (AX2)
Gp=> GGp . (AX3)
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Gp=>-L-p. (AX4)
p>Lp. (AXS5)
L(pvg)=(LpvLg). (AX6)
G(p=>q9)=>(Gp=> Gq). (AX7)
G(p>q9)>(Lp>Lqg). (AX8)
G(p=>q)>(L*p>L*q). (AX9)
L*p=(pv LL*p). (AX10)

Rules of inference:

P zati

Go (generalization) . (R1)
P.P>4q (modulus ponens) . (R2)
—ip=>"Lp

-p=>L*p (5

Not surprisingly, Theorems 3.1, 3.2, and 3.3 hold for LL ™ as well. And if we
omit (AX9), (AX10), and (R3) we obtain a complete axiomatization for LL .
The proofs of Theorems 3.1-3.4 for LL are somewhat technical, using well-
known ideas from corresponding proofs for dynamic logic and temporal logic.
We refer the reader to [2, 3, 8,15] for the details. The proofs for LL ™~ are
somewhat easier, and have much the same flavor. To give the reader an idea of
how these proofs proceed, we prove the analogues of Theorems 3.1, 3.2, and
3.4 for LL  below.

However, before we do this, perhaps a few words of discussion regarding the
axioms are in order. We do not view the axiom system as giving a technique for
proving valid formulas. Optimal proof procedures using tableau methods can
be obtained from the proof of Theorem 3.2 (cf. [2]). Rather, a sound and
complete axiomatization gives us a complete characterization of the properties
of a system. Once we have such a characterization we can check whether our
proposed semantics reaily captures properties of likelihood in a reasonable
way.

It is easy to check that all the axioms and inference rules are sound, and for
the most part, they are in accord with our intuitions about likelihood. (AXS),
for example, says that if p is true, then it is likely to be true, while (AX7) says
if it is necessarily the case that p implies ¢, then if p is likely, then so is g. The
one conspicuous exception to the intuitive plausibility of the axioms is (AX6).
Indeed, if we think of L as meaning ‘‘with probability 3,” then (AX6) does not
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hold. To see this, consider a situation where we toss a fair coin twice, and let P
represent “the coin lands heads both times,” while Q represents “‘the coin
lands tails both times.” It is easy to see that the event (P v Q) holds with
probability =1, although neither P or Q individually does. Thus, if we
interpret L to mean “with probability =3,” we have L(Pv Q), but not
LPv LQ.

Clearly this example suggests that it is inappropriate to think of L as
meaning ‘“‘with probability =1.” As we show in the next section, Lp is best
thought of as saying “p is reasonably likely to be a consistent hypothesis,”
which is a much weaker statement than “p holds with probability =3.” One
way to capture the stronger statement is to use LGp instead of Lp. We
motivate this translation in the next section; it is also discussed in much greater
detail in [5]. Note that LG(P v Q) is not equivalent to LGP v LGQ, so that
with this translation the problem mentioned above does not arise.

We defer further discussion of this issue to the next section, and conclude
this section with a sketch of the proofs of Theorems 3.1, 3.2, and 3.4 in the
case of LL".

3.1. Proof sketch of Theorems 3.1, 3.2, and 3.4 for LL~

We write |- p if the LL~ formula p is provable from (AX1)-(AX8), (R1), and
(R2). We say p is consistent if it is not the case that - —1p. A finite set 3 of
formulas is consistent if the conjunction of the formulas in % is consistent.

Clearly, if p, is satisfiable, then p, is consistent. (This is just a reformulation
of the fact that the axioms are sound.) We now show that if p, is consistent,
then p, is satisfiable in a model of exponential size which can be constructed in
exponential time. This will suffice to prove Theorems 3.1 and 3.2. Standard
arguments show that this also suffices to prove Theorem 3.4. For suppose p, is
valid but not provable. Then by definition, —1p, is consistent, and hence
satisfiable. But this contradicts the assumption that p, is valid.

Lemma 3.5. Let % be a consistent finite set of formulas. Then:

(@ fpArq€EZ, then 3 U{p, q} is consistent,

(b) if 7 (p A Q) E 3, then either 3 U{—1p} or 3 U {q} is consistent,

(©) if "p€E X, then 3 U{p} is consistent,

(d) if Gp € 3, then 3 U {p} is consistent,

(e) if "Lg€ 2, then 3 U {—q} is consistent,

(f) if "GgeE 3, then ' ={q}U{Gp | Gp € 3} is consistent,

(g) if Lr€3, then I'={r}U{"q|Lge3X}U{Gp|GpEZ} is con-
sistent.

The proofs of parts (a)-(e) are straightforward. For example, to prove (e),
let o be the conjunction of the formulas of 3, and let o' be the conjunction of
the formulas of 3 U {—1q}. Using (AXS5) and propositional reasoning, we can
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see that |- " Lg=>"q, so |- 0 =g’ Thus the consistency of X implies the
consistency of 3 U {—1q}. We sketch a proof of parts (f) and (g) in Appendix
A.

From Lemma 3.5, we immediately get:

Lemma 3.6. If 3 is a consistent finite set, then there exists a consistent finite set
of formulas 3° such that X° is a minimal set containing 3 satisfying the
following properties:

(@ ifprqEZ thenp, g€ X",

) if (prq)ESS, then "pES  or 1gE X,

() if " pEZ thenp€e 3",

(d) if Gp EXF, then p € 3,

(e) if "Lgq€E X, then 1gE X"
We call 3¢ a “completion” of 3.

Returning now to the proof of the theorem, suppose p, is consistent. We will
construct a model whose graph looks like a tree such that p, is satisfied at the
root. We first construct a sequence of trees Ty, T,, T,,...such that T, C T, .
Each node of T, is labelled by a pair of consistent finite sets of formulas
(2,2°), where 3° is a completion of 3 as in Lemma 3.6. There will be two
types of successor relations in 7: conceivable successors and likely successors.

T, simply consists of one node labelled (p,, {p,}°). Suppose we have
constructed T, ..., T,. We construct T,,, by adding conceivable and likely
successors to the leaves of 7, as follows. Suppose a leaf s of 7, is labelled by
(2, 2°). For each formula Lr € 3° we create a likely successor of s labelled
(I, I'}), where

I={r}U{nq|LgEX}U{Gp|Gpe X}

(cf. Lemma 3.5(g)) and I’} is a completion of I. Similarly, for each formula
—1Gq € X, we create a conceivable successor labelled (4,, A7), where

4,={1q}U{Gp|Gpe 3},

and AY is any completion of 4.
We obtain a model M = (S, %, €, w) as follows:

S=U{s|sisanode of T},
F={(s,8)|s€SYU(U {s,1) |1 is a likely successor of s in T,}),
€=U {(s,1)| tis a conceivable successor of i in T,},

m(P)={s€ S| PE I where (I, 3°) is the label of s}

for each primitive proposition P.
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It is now a straightforward matter to show (by induction on the structure of p)
that p € 3 implies M,s = p, and —1p € X implies M,s = —1p, where (3, ) is
the label of s. Thus we have constructed a model for p,.

The model we have just constructed is in general infinite. We get a finite
model by first observing that the label on each node of the graph consists
essentially of subformulas of p,. To make this precise, we define the closure of
Po» Cl(p,), to be the least set H such that:

(@ pAg€EH = p,g€EH,

) —(prgEH > —p, 1gqEH,
(c) ——porGpor LpEH => pEH,
(d) ~LporGpeH=>—pEH.

An easy proof by induction on | p,| shows:
Lemma 3.7. |Cl(py)| <|p,|.

It is easy to check that if a node is labelled by (¥, 3°) in the construction
above, then both ¥ and X are subsets of CI( p,). We can now slightly modify
the construction of the model above to get a model of size 2", where n = | Pols
by identifying nodes with the same label. More precisely, given the sequence of
trees Ty, T,, ..., as constructed above, let M’ =(S’, &', €', =) be defined as
follows:

§'=U {3°|there is a node labelled (3, 3°) in T},
F={252)]2esyu(U{(Z°I)|a node labelled (I, ') is
a likely successor of a node labelled (¥, 3¢) in T}}),

€' =U{(Z°, I'")|a node labelled (I, I'*) is a conceivable successor
' of a node labelled (3, 3°) in T},

m'(P)={Z°|P€ X} for each primitive proposition P .

Again a straightforward argument by induction on the structure of p shows
that

pE X’ implies M3 p, —p€3° implies M’ 3°E—p.

This gives us the desired exponential size model of p,. To see that we can
construct such a model in deterministic exponential time, note that the only
source of nondeterminism in the construction above comes from part (b) of
Lemmas 3.5 and 3.6. We construct the model deterministically by adding both
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of these “or” branches, pruning one later if we discover it leads to an
inconsistency (a node labelled by both p and —1p for some formula p). We refer
the reader to the tableau construction described in [2] for further details. O

Definition 3.8. A set of formulas X is finitely satisfiable if every finite subset of
2 is satisfiable. A logic is compact if every finitely satisfiable set of formulas is
satisfiable.

LL is not compact. To see this, let 3 consist of the formulas L*p, —p, 1 Lp,
L%, .... Every finite subset of 3 is clearly satisfiable, yet 3 is not.
However, the use of L* in this counterexample is necessary, since we have:

Theorem 3.9. LL  is compact.

Proof. The proof is very similar to the proof of Theorem 3.4 for LL™. We
simply observe that Lemmas 3.5 and 3.6 both hold if we replace “consistent”
by ““finitely satisfiable” throughout (where now 3 may be an infinite set). If 3,
is finitely satisfiable, we can construct a model for it exactly as we constructed a
model for the consistent formula p, above. We leave details to the reader. [

4. Translating into LL

We now come to the delicate task of using LL to model real-life reasoning
about situations involving incomplete and uncertain information. As usual with
such modelling tasks, whereas the mathematical structure is uniquely defined,
we are sometimes faced with several choices for translating an everyday
concept into the mathematical framework. Where appropriate, we shall outline
the various possible translations. The actual option to be selected by the user
will depend on the application field and on the norms of assurance and safety
that he is seeking. What follows is not an application of LL in the sense that we
outline a complete system for expressing medical facts within LL and give
algorithms for reaching decision concerning such facts, i.e. making a diagnosis.
Rather, what we present is an exercise involving medical terminology, to
illustrate how a user might translate medical facts and his working hypotheses
concerning these facts into LL. The translation brings out the relationship
between intuitive concepts such as likelihood, possibly being true, etc., and the
corresponding modal operators in LL.

Consider a medical doctor faced with a patient exhibiting a number of
symptoms, having a certain medical history, who may have certain diseases.
Each basic relevant proposition concerning the situation is expressed by a
propositional variable. Thus Y may represent the symptom that the patient’s
complexion is yellow, DR that he is a heavy drinker, HP that he has hepatitis,
D that he will die, TM that he has a tumor, HR that he has heart trouble, etc.
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Note that the uncertainty extends to symptoms as well as diseases. Thus the
patient may have a high blood count, but it is possible that there is some
unreliability in the test. With a new patient, the doctor may suspect a drinking
problem, but not be sure about it even after a direct question. Thus the
physician may choose to express his current working hypothesis concerning the
patient’s drinking as L(DR), even before he has strong information supporting
this hypothesis.

The logic LL is not temporal. The statement D (patient will die), is not
construed as something that the doctor will follow over the coming weeks or
months, but rather as a working hypothesis that he may or may not adopt now.

We view a state s as a consistent and complete set of hypotheses, the set of
statements each of which is taken to be ‘“‘true for now.” Note that every
formula, including complex ones such as L(D v G(TM)), gets a truth value at
s. A state s represents the set of hypotheses that the doctor may adopt at a
certain point during his diagnosis and decision making process. The assumption
that s is complete is an idealization. In practice we imagine that s is a finite set
consisting of only the formulas “relevant’” to the discussion, and perhaps all
their subformulas.

Besides s, there are many other complete consistent sets of hypotheses.
Some of these the doctor may consider likely given his current estimate as to
the true state of affairs. If s’ is considered likely given that s describes the true
state of affairs, then this is modelled in the graph structure by having
(s, s") € . Other states of affairs are conceivable (but not necessarily likely).
If s" is considered conceivable given s, then we have (s, s”) € €. Let s be a state
which, among other things, contains the hypotheses Y, HP, and =TM. The
state s may have an £-successor s, containing Y, 7HP, and HR, and another
Z-successor s, containing Y, DR, and HP. There may also be a €-successor s,
containing Y, DR, —"HP, TM, and D. By our semantic rules, it also follows
that s contains L(Y), L(—Y), L(HP), L(—HP), etc.

As an idealization, we view the semantic model M used in a specific decision
making situation as being given in advance. Experts are consulted about the
possible successors to any possible state, and the resulting model M is then
stored. In practice, the experts will enumerate various rules or extra-logical
axioms concerning the situation, these rules embodying their knowledge and
past experience. The idealized model M must satisfy these axioms. The
decision maker will then use these rules when arguing about specific states that
he adopts and the likely and conceivable successors of these states. Thus, for
example, medical expertise may be incorporated into the extra-logical axiom
Y = L(HP) (if the patient’s complexion is yellow, then his having hepatitis is a
likely working hypothesis).

We emphasize that if s contains the formula p (i.e. if M,s = p), this does not
mean that p is actually true at s, but rather that p is one of the hypotheses that
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we are taking to be true at this state. Thus Lp means that p is likely to be a
consistent working hypothesis; this falls short of saying that it is likely that p is
actually true. However, if in no state that is reachable from s is it the case that
—1p is a working hypothesis, then it must be the case that p is actually true at s.
Thus, the statement ‘it is (actually, or necessarily) the case that p” is
translated by Gp. Consequently, ‘it is likely to be the case that p” is translated
by LGp. Similarly, “it is not likely to be the case that p” is translated by
—LGp, while “it is likely to be the case that p does not hold” is translated by
LG—p.

Note that the statement “p holds with probability =1"" is better captured by
“it is likely to be the case that p” rather than “p is likely to be a consistent
hypothesis.” Indeed, it is shown in [5] that statements of probability theory can
be translated to LL in a sound manner, using LGp to capture “p holds with
probability =«.” That is, if we translate statements of probability theory true
of a given probability space appropriately into LL, then any deduction we can
draw from the (translated) statements in LL will also be true of that probability
space. Thus, in this precise sense, LL can capture notions of probability
correctly.

But in some cases Gp might be too strong to capture the true strength of our
belief in p. LL gives us a wide range of choice in expressing degree of
likelihood. For example, " L*—1p can be viewed as saying ““it is completely
unlikely that —p,” since if s contains =1L *—p, then any state £-reachable from
s contains p. Similarly, for sufficiently large, user-specified N, = L~—1p can be
viewed as ““for all practical purposes p holds.” We remark that these transla-
tions can also be used to capture a probabilistic notion of likelihood.

Given the wide range of choices in expressing degrees of likelihood, a
natural question to ask is at what point should one take action on the basis of
likelihood. For example, consider a doctor trying to decide whether or not to
operate on a tumor. If the tumor is malignant, then he should certainly operate
to prevent the cancer from spreading. On the other hand, the operation is
sufficiently dangerous that if the tumor is benign, then he should definitely not
operate. He can perform some tests for malignancy, but these are expensive,
have undesirable side effects, and are not completely reliable. Let MAL
denote that the tumor is malignant, so "MAL denotes that it is benign, and let
OP denote the decision to operate. Clearly MAL = OP, while "“MAL = —OP.
A doctor might certainly feel that if he has reached a state where he has
concluded L(MAL) (or perhaps LG(MAL) or L1 L*(MAL), in the light of
our discussion above), then he should operate. But what if he can only
conclude L3(MAL) or L*(MAL)? This will very much depend on the doctor’s
philosophy as to what level of risk is acceptable given the potential con-
sequences, and on exactly how he interprets L. It is up to the user of the
system to decide which is appropriate here and to incorporate the correspond-
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ing extra-logical axioms such as L(MAL)=>OP or LG(MAL)=> OP, etc.,
which best express his philosophy concerning treatment. The logic LL provides
him with tools for doing this.

5. Using LL to Prove the Correctness of a Protocol

We now show how to apply LL to proving the correctness of some aspects of a
protocol to exchange secrets suggested by the second author [16]; other
protocols with similar properties have also been developed recently (cf. [9]). It
is striking that a relatively short, informal argument of correctness is transfor-
med into a lengthy formal proof. Of course, this phenomenon is not atypical
when dealing with formal systems. Actually an important benefit arises from
the formalization process in our case. A number of hidden assumptions about
credibility of actions and threats must be made explicit in the formal translation
for the proof to go through. Thus we gain a better understanding of the
situation that we study. Although Al is not in general concerned with analyzing
cryptographic protocols, the reader will find that many of the issues that arise
here, particularly issues of credibility of actions and threats, also arise in many
situations that are of more immediate interest to Al.

The situation is the following. Suppose Alice and Bob have one-bit secrets
which they would like to exchange (the multibit case proceeds along similar
lines). For definiteness, we assume that the secrets are passwords to certain
files. We want the protocol to be self-enforcing; that is, we would like it to
work without the necessity of an appeal to a trusted third party to act as an
intermediary or a judge to adjudicate disputes. Thus, we assume that the files
are booby-trapped in such a way that if someone tries to enter either file with
the wrong password, both files are destroyed. This assumption prevents either
Alice or Bob from just guessing the password. Moreover, when combined with
our assumption of credibility, which says that it is reasonably likely that Bob
(respectively, Alice) will act on the information provided by Alice (respectively
Bob) in the course of the protocol, it will prevent cheating. Finally, we assume
that Alice can tell if Bob enters her file, and vice versa.

For the reader who feels that our assumptions about mutual destruction (of
files) and credibility, and our requirements for the self-enforcing nature of the
protocol are far-fetched, we note that similar situations are a serious part of
real life. Mutual deterrence between nuclear powers is based on an assurance
of mutual destruction if both sides start using their weapons, and on the
credibility of the threat that if one side starts direct hostilities, then the other
side will be able and willing to use its nuclear weapons. This is, of course, a
situation where no trusted third party or sufficiently powerful judge is
available. Thus, any arrangement between the powers must be self-enforcing to
be valid. Note that in this context, discussion about the participants’ possible
actions cannot be phrased in probabilistic terms because there are no samples
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based on past experience. On the other hand, the methodology and language
of LL are suitable for arguing within and about this setup.
The protocol proceeds in three steps which are completely symmetric.

Step 1. (a) Alice sends a random bit R, to Bob by oblivious transfer. (This is
a protocol developed by the second author [16] which has the property that
with probability 2, Bob knows R,, but Alice does not know whether or not
Bob knows R,. We could model this by assuming that there is a special
channel between Alice and Bob which with probability ; will transmit R,
correctly and otherwise will transmit garbage. Bob will know whether or not he
has gotten R,, but Alice will not.)

(b) Bob sends a random bit Ry to Alice by oblivious transfer.

Step 2. (a) Alice computes u,, where u, =1 if the oblivious transfer
succeeded and 0 otherwise. She sends Bob S, ® pu,, where S, is her secret and
@ represents addition mod 2. (This transmission, like all the rest in this short
protocol, is sent over a regular transmission line which we assume is error-
free.)

(b) Bob computes u; and sends Alice Sz D pg.

Step 3. (a) Alice sends Bob S, ®R,.

(b) Bob sends Alice Sy D R;.

Assuming there is no cheating, then if Bob received R, at Step 1, then he
will be able to compute S, at Step 3, and thus enter Alice’s file. But when
Alice sees Bob entering her file, she will know that u; = 1, and so will be able
to compute Sy (since she was sent S D uy at Step 2) and be able to enter
Bob’s file. Similar remarks hold with Bob and Alice’s role interchanged. Thus,
if either Bob receives R, or Alice receives Ry at Step 1, an event which has
probability 3, the secrets will be exchanged.

The main difficulty in proving the correctness of the protocol lies in showing
that there is no cheating, i.e. that both Alice and Bob, who have agreed to
adopt this protocol, will actually send the prescribed bits. Before we prove that
there is no cheating, let us illustrate the need for the credibility assumption by
considering simplified situations. From our discussion, it will also be clear why
such a proof cannot be conducted within classical logic and why being able to
reason about likelihood is required. Assume that Bob’s secret password S; = 0.
Can we prove that Bob will not tell Alice “my password is 1”’? In order to do
so, we need to make some assumptions regarding likelihood.

Denote by (B, T, 1) the hypothesis that Bob tells Alice that his password is
1, by (A, E, 1) that Alice enters Bob’s file with password 1, and by DS that the
files are destroyed. Bob knows that G(A, E, 1) = G(DS). We can express the
fact that he does not want the files destroyed by G(—DS). We now introduce
the extra-logical assumption: G(B,T,1)=> L*G(A,E, 1) for some k. If we
assume that Bob actually tells Alice that his password is 1, then with some
diluted likelihood we must assume that Alice actually enters his file with
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password 1. This is exactly our assumption of credibility. In this setting, we can
prove G(1(B, T, 1)): Bob will never tell Alice that the password is 1. (Note we
have prefixed the primitive propositions by G, since we are concerned here
with the situation where they actually occur, and not just with the situation
where it is a working hypothesis that they occur. The conclusions we could
derive by using the alternative translation without the G would be much too
weak for our purposes here.)

As we mentioned in the previous section, a more reasonable translation for
the assumption that Bob does not want his files destroyed might be
1 L*G(DS) or even 71 L"G(DS) for sufficiently large N greater than k—after
all, people do not want to die, yet they use car travel, ignoring the conceivable
risks involved. In this case, we can show respectively that 7 L*G(B, T, 1) and
-LV"*G(B, T, 1). Although there is some degree of latitude here in the
translation, the conclusions are quite robust.

By way of contrast, assume that Alice is chained and unable to reach her
keyboard. Then an assumption such as G(B, T, 1) = L°G(A, E, 1) is not called
for. In this situation, it makes sense that we cannot prove that Bob will not lie
about the password.

The above “proof,” which is based on LL, is of course rather simple and not
too different from any informal argument that we might give. In fact, why not
take the conclusion G(—(B, T, 1)) as an axiom? The point is that the extra-
logical axioms that we adopt are more basic: some facts about the nature of the
system and how new facts may be learned, a fact about Bob’s aims (at all costs
to avoid destruction of the files), and a general statement about the connection
between availability of information and action (the credibility assumption).
Having adopted these given or ‘“‘obvious” assumptions, we can proceed to
formally derive the particular statement G(—1(B, T, 1)). Note that it is precisely
for expressing the credibility assumption that we need the likelihood operator
L. Tt is not reasonable to assume that if Bob tells Alice that S; =1, then she
will necessarily enter his file with the password 1. The logic LL enables us to
express the appropriate assumptions concerning Alice’s actions. The same
remarks apply to the following treatment of the full protocol. As mentioned in
the Introduction, the need to express credibility assumptions was one of our
initial motivations for creating LL.

We now give an informal proof that there is no cheating, or, more accurate-
ly, that with reasonable likelihood there is no cheating, and then formalize it in
LL.

There can be no cheating at Step 1 (this is simply a proven property of the
oblivious transfer), and it is easy to check that even if there is cheating in Step
2, neither Alice nor Bob has enough information at the end of Step 2 to deduce
Sy or S,, respectively. Suppose Alice cheats at Step 3. Since with probability 3
Bob knows R, , he will then deduce an incorrect value for S, . Since we assume
that Bob is reasonably likely to act on information provided by Alice (the
credibility assumption), he is reasonably likely to enter her file using the wrong
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password and thus destroy both files. Therefore Alice does not cheat at Step 3.
A similar argument shows that Bob does not cheat at Step 3.

Next we show that it is not to Alice’s advantage to cheat at Step 2. For
suppose that Alice cheats at Step 2 and deduces Sy at Step 3. She is prevented
from using this value unless Bob has already entered her file. Otherwise, Bob
will deduce that u, =1 and compute the wrong value of S,. It is then likely
that he will try to enter Alice’s file (the credibility assumption again) and thus
destroy both files. Therefore Alice does not cheat at Step 2, and by similar
arguments, neither does Bob.

Finally, note that if Bob stops the protocol early and does not send Alice
S D Ry, then Alice can still deduce that ug =1 if Bob ever enters her file
before she has entered his, and thus she will still be able to deduce Sg.

In order to formalize this reasoning in LL, we will require the following
primitive propositions:

(a) four primitive propositions of the form (V,i), where VE{S,, u.},
i € {0, 1} (which intuitively stand for “the value of V is i""),

(b) six primitive propositions of the form (A,S,V,i), where V&
{R,,S.®Pu,, S,DR,}, i€{0,1} (Alice sends R, =i, S,Du,=1i
SA PR, =i),

(c) six primitive- propositions of the form (A,D,V,i), where V€&
{Rg, Sy, ng) (Alice deduces—from information provided by Bob—that Ry = i,
etc.),

(d) two primitive propositions of the form (A, E, i), i € {0, 1} (Alice enters
Bob’s file with password i),

(¢) one primitive proposition DS (the files are destroyed).

We get eighteen more primitive propositions by interchanging the roles of A
and B.

Besides the logical axioms of LL described in the previous section, we will
have other extra-logical axioms which summarize some of the relationships
between these primitive propositions. We present the axioms from Alice’s
point of view. We get another set of axioms by interchanging the roles of A
and B.

The first axiom says that S, and u, cannot have two values:

—(G(V,0) A G(V,1)), where Vis S, or u, . (1A)

The second axiom describes one property of the oblivious transfer: it is likely
that Bob will be able to deduce the value of Alice’s random bit after the
oblivious transfer:

G(A,S,R,,i)> LG(B,D,R,, ), (2A)

All other transmissions proceed over error-free lines, so Bob will deduce
something exactly if Alice sends it:
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(GA,S, 5, Ppu,,i)=G(B,D, S, Dpu,, i)
A(G(A,S,S,®R,,i)=G(B,D,S,DR,,i). (3A)
Now we describe how Bob deduces S, from S, ® p, and p, (respectively
from S, @ R, and R,), by doing modular arithmetic:
[(G(B,D, S,® R4, i) A G(B,D, Ry, j)) v
(G(B7 Da SA® IJ’A7 l) A G(B’ D’ IJ’A7 j))] ?
If Alice enters Bob’s file before he has entered hers, then he will correctly
deduce that u, = 1:
[MG(B,E,0) A1G(B,E, 1) A (G(A,E,0) v G(A,E, 1))] >
GB,D, p,, 1) A G(p,,1). (5A)
We remark that there are many assumptions hidden in this seemingly
innocuous axiom. As we shall see, its truth depends on, among other things:
(a) that the first step is done by oblivious transfer, (b) that Bob can tell when
Alice enters his file, (c) that Alice is rational (so that she would not enter his
file without having deduced the value of S;), and (d) that Alice isn’t ““black-
mailing” Bob (by threatening, for example to enter the file using password 1
within one minute unless Bob tells her in time that the true password is 0). We
will look at this axiom more carefully below, and show how it can be reduced
to a number of more basic axioms about the system, together with some
axioms for reasoning about the other player’s beliefs.

If Bob deduces that S, = i, it is reasonably likely he will enter the file with
password i (this is the credibility assumption):

G(B,D, S,,i)=> LG(B,E,i). (6A)

Finally, we need to say that both files get destroyed if the wrong password is
used:

G(S.,i) A G(B,E,i®1)>DS. (TA)

Let (A, C,3) be an abbreviation for
G(A,S,R,,i)AG(S,, ) AG(A,S,S,DR,,iDjD1)

i=0,1, j=0,1

(Alice cheats at Step 3). Then we can show, using axioms (1A)-(7A) and the
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logical axioms for LL presented in the previous section, that
(A, C,3)> L*G(DS).

If Alice cheats at Step 3, then she must take as an L hypothesis that her files
are destroyed. Taking the contrapositive we get:

L*G(DS)=> (A, C,3).

As long as Alice is not willing to contemplate the risk of having her files
destroyed at level L2, then she will not cheat at Step 3. Of course, by
interchanging the roles of A and B to obtain axioms (1B)—(7B), we can prove
that this is true for Bob as well. Note that if we weaken the credibility
assumption (6A) to G(B,D, S,,i)=> L*G(B, E, i), then the L’ changes to
L**'. The perceived risk involved in cheating depends on the credibility of
Bob’s threat.

While we cannot prove that Alice does not cheat at Step 2, we can show that
cheating is not to her advantage. That is, we can show that if she cheats and
she enters Bob’s file before he enters hers, then it is likely that the files will be
destroyed. Let (A, C, 2) be an abbreviation for

Vv G(pa, i) A G(S,, j) A G(A, S, S, ®p,,iDjD1)

i=0,1, j=0,1

(Alice cheats at Step 2) and let (A, E, F) be an abbreviation for
(G(A,E,0) v G(A,E, 1)) A1G(B,E,0) A1G(B,E, 1)
(Alice enters first). Then we can show
(A,C,2)A(A,E,F)=> LG(DS) .

Similarly we can show that it is not to Bob’s advantage to stop the protocol
before Step 3. If he enters Alice’s files before she enters his, then if he has
cheated at Step 2, the same proof as above shows that LG(DS) holds, while if
he is honest at Step 2, then it is easy to show that Alice can deduce S;; i.e. we
get

G(pg, i) A G(Sg, /) A G(B, S, Sy @ py, i®))) A (B, E,F)>
G(A, D, Sg, J)

(where (B, E, F) says Bob enters first, and is the result of interchanging A and
B in (A, E, F)). Finally, similar reasoning can be used to show that if both
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Alice and Bob follow the protocol correctly, then Alice will be able to enter
Bob’s file iff he can enter hers, and it is likely they will both be able to enter.

We conclude this section by taking a closer look at axiom (5A). In order to
do so, it will be helpful to imagine our language as having been augmented by
modal operators for knowledge (as is done in [5]). Thus if p is a formula, so are
K, p and K; p (read “Alice knows p”” and “Bob knows p”*). The precise details
of the semantics of K, and K, need not concern us here. The only properties
we will need are that if p is a propositional tautology, then both Alice and Bob
know it; i.e. if p is a propositional tautology, then both K, p and K p hold.
Actually, we will not need this fact for all propositional tautologies, but just
the few simple ones we use in our reasoning. We also assume that knowledge is
closed under implication, so that (K,(p = q) A K, p) > K .4, and similarly for
Ky (cf. (AX7)). Again, we will actually need only a few instances of this axiom
in our reasoning. From these two assumptions it is straightforward to show that
(K.p A K,q)=> K, (p A q). (The proof uses the fact that p=>(g=>(p A q)) is
a propositional tautology, cf. the proof that (Gp A Gq) = G(p A q) in Appen-
dix A.) Finally, we assume that Alice and Bob know “‘the rules of the game”’;
i.e., they both know all logical and extra-logical axioms discussed above and
introduced below.

What assumptions do we really need to make for axiom (5A) to hold? Why
can Bob deduce that p, =1 if Alice enters Bob’s file before he enters hers?
Intuitively, Bob’s reasoning is the following. He assumes that Alice is rational,
so that she would not enter his file without knowing the value of §;. In
particular, she would not just randomly guess a value and enter using that
value, since then both files might be destroyed. He also must assume that the
only way she can deduce the value of S, is by having deduced either both
Sz @ Ry and R, or both S;® u; and py. (Note that this is essentially a
converse to axiom (3B).) Next he must assume that she cannot deduce the
value of uj if he does not enter her file. (Note that this would not be true if we
did not have an oblivious transfer at Step 1. If Step 1 were done by a regular
transmission, then Alice would know that Bob got the value of her random bit,
so she would also know that w,; = 1.) Since Alice cannot deduce the value of
wg; then the only way she could have deduced the value of S; is by knowing
both S, D R, and Ry. Since she knows Ry, we must have u, = 1. Of course,
this whole chain of reasoning is predicated on the assumption that if Alice
enters his file, then Bob knows about it.

We now capture these assumptions axiomatically. First, the assumption that
Alice is rational is simply:

G(A,E,i)=> G(A,D, S;,i) . (8A)
We consider this axiom in greater detail below. Again we will find that it

incorporates a number of assumptions about Alice’s behavior.
The next axiom is the converse of (4B) (recall that we get (4B) by
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interchanging the role of A and B in (4A)), and says that the only way that
Alice can deduce the actual value of Sy is by doing the modular arithmetic
described in (4B):
G(A,D, S5, )>

(G(A,D, S; @Ry, i) A G(A, D, S, R, 0)) v

(GA,D,S; @Ry, iD1) A G(A,D, S5, Ry, 1)) v

(G(A,D, S;® g, i) A G(A, D, Sg, pg,0)) v

(G(A,D, S, @y, iB1) A G(A, D, Sy, pug, 1)) . (9A)

Next we need a partial converse of (5B), which describes under what

circumstances Alice can deduce the value of uy. In fact, she can never deduce
that ug =0 (there is always a possibility that the oblivious transfer worked),

and if Bob has not entered her file, then she does not have the information to
deduce that u, =1 either:

“G(A, D, g, 0) A ((AG(B,E,0) A 1G(B,E, 1)) >
“G(A, D, gy, 1)) (10A)

As we observed above, this axiom makes crucial use of the fact that Step 1
used an oblivious transfer.

Using axioms (8A), (9A), and (10A), we can already show that if Alice
enters Bob’s file before he enters hers, then Alice must have been able to
deduce that R; =0 or that Ry =1; i.e., the oblivious transfer must have

succeeded. That is, we can prove
(A,E,F)=>(G(A,D, R;,0) v G(A,D, R, 1)) .

But, by definition of u,, we must then have u, =1. The next axiom just
captures this definition formally:

G(1a.1)=(G(A, D, Ry,0) v G(A,D, Ry, 1)). (11A)

Provided Bob knows that Alice enters his file before he enters hers and he

knows axioms (8A)—(11A), he will know that u, = 1. Our assumption that
Bob can tell if Alice has entered his file can now be formalized as:

G(A,E,0) v G(A,E, 1)= K,(G(A, E,0) v G(A,E, 1)) . (12A)

Of course, Bob also knows about his own actions. In particular, he knows
whether or not he entered Alice’s file:
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(G(B,E, i)=> KzG(B,E, i)) A ((G(B,E, i)=> Ky—1G(B,E, i)) .
(13A)

Using (12A) and (13A), we can easily prove that
(A’ E, F)$ KB(A? E5 F) ,

i.e. if Alice enters first then Bob will know about it. From (8A)-(11A), we can
prove

(A,E,F)=>G(p,, 1)

Using the properties of knowledge discussed above, it follows that
Kg(A,E,F)= KgG(ps, 1) .

Putting together these observations we get

(A7 E’ F)é (KBG(“'A’ 1) A G(“’A’ 1)) ‘

Now KyG(m,,1) says that Bob knows that u, =1. But in this case,
G(B,D, p,, 1) must hold. Indeed, if we had started with an enriched lan-
guage, we could have dispensed with a proposition such as G(B, D, u,,1)
altogether, identifying it with K;G(um, =1). The next axiom makes this
identification explicit.

KzG(V,i)=G(B,D,V,i), where Vis S, or u, . (14A)

Using (8A)—(14A) and the properties of knowledge discussed above, we can
prove (5A); i.e. we can prove

(A,E,F)=>(G(B,D, u,, 1) A G(u,s, 1))

Note that in doing this deduction, Bob has to reason about Alice’s reason-
ing. Now Alice uses this fact to conclude that it is not worthwhile to cheat at
Step 2. Thus, in doing her reasoning, Alice has to reason about Bob reasoning
about her! This phenomenon of reasoning about someone else’s reasoning is
particularly noticeable in negotiations. In doing such reasoning, it is frequently
necessary to make assumptions about the rationality of the other party.

Note that if Bob knows that our “axiom of rationality” (8A) is true, then,
among other things, he will not succumb to blackmail attempts on the part of
Alice. Suppose Alice says to Bob “I will enter your file with password 1 at the
end of one minute unless you tell me in time that the password is 0.” Bob will
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not find Alice’s statement credible; rationality precludes her from entering
without having deduced the right value. However, if Alice could convince Bob
that she was very ill and would die unless she could get information about a
cure which was only available in Bob’s file, then her blackmail attempt would
be quite credible and Bob might very well succumb to it.

Note that what really matters here is not whether the axiom is really true or
not, but whether Bob believes it to be true. (This phenomenon holds for many
of our axioms that involve credibility.) In a real-world situation, Bob might
actually work very hard to convince Alice that he believes it, and Alice might
work equally hard to convince Bob that he shouldn’t. And indeed, this is
precisely that type of maneuvering that one observes in negotiations!

6. Conclusions

We have presented a logic designed to reason qualitatively about likelihood
and given examples of how it can be used. As is often the case, the exercise of
trying to prove the protocol formally correct using LL was for us a very useful
one, helping us to clarify a number of important assumptions that needed to be
made, particularly in regard to blackmail threats. This is exactly why we feel it
to be so important to develop logics for such purposes, especially when such
subtle issues as likelihood, belief, and knowledge are involved.

Of course, we have only scratched the surface here. Work needs to be done
to extend LL in order to give it greater scope and applicability. Several
extensions suggest themselves. One is to consider the first-order case. Another
is to incorporate cost functions. There are some outcomes (such as the patient
dying in the case of a medical diagnosis) which may not be very likely, but have
a high associated cost if they occur. A straightforward way of dealing with cost
functions is to simply add primitive propositions, say C,, . . ., Cs, to represent
the range from high cost (C,) to low cost (C,), with the relationship
C,=> (,= - C,. The fact that P is an outcome with high associated cost
would then be represented by the formula P=> C,.

It is also often useful to be able to incorporate knowledge and time into our
reasoning. Indeed, we have already seen examples of the usefulness of
knowledge in our discussion of the cryptographic protocol in the previous
section. Temporal logic—a modal logic for reasoning about time—is already
well-known in the literature (cf. [10, 18]), as are modal logics of knowledge and
belief (see [6] for an overview). There is no problem augmenting LL with the
modal operators discussed in these papers. A logic of likelihood and know-
ledge is investigated in [5]. It is shown that by combining the separate
axiomatizations for knowledge and likelihood we can get a complete axiomati-
zation for the resulting logic, LLK. And, like LL, LLK also has an exponen-
tial-time complete decision procedure.

Another avenue worth exploring is the relationship between LL and non-
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monotonic logic. Like LL, the nonmonotonic logic of McDermott and Doyle
[11, 12] uses modal logic and is designed to make inferences in the presence of
uncertainty. It attempts to capture how people leap to conclusions on the basis
of, for example, certain heuristic rules of thumb or default rules (the typical
example used is “Since Tweety is a bird, and the typical bird flies, then, unless
there is information to the contrary, conclude that Tweety flies””). Of course,
when extra information is acquired, certain conclusions made using non-
monotonic reasoning may have to be withdrawn. This is exactly why non-
monotonic logic is nonmonotonic: something that can be concluded from a
certain set of facts cannot necessarily be concluded from a larger set of facts.

Recall that models for LL also incorporate nonmonotonic reasoning in a
very natural way. While p may be a consistent hypothesis at a given state, we
might well change our minds and move to another state (possibly as a result of
getting further information) in which we take —p as a consistent hypothesis. It
is thus perhaps not surprising that LL can be used to provide elegant solutions
to many of the problems dealt with by nonmonotonic logic. Consider, for
example, the “‘sorites paradox” described in [11}:

If you remove one grain of sand from a heap of sand, you still have
a heap. But if you continue doing this, you will ultimately get to a
single grain. Does that mean that a single grain is a heap? If not, is
there some number, say 57,895 grains, below which a bunch of
grains are not a heap?

As McDermott points out, if we try to capture the property that removing
one grain from a heap leaves a heap in first-order logic via

HEAP(n + 1) > HEAP(n) ,
we run into a problem when we add the observations that

—HEAP(1)
HEAP(1000000000) .

On the other hand, if we replace the first implication by

HEAP(n + 1) > L"-HEAP(n) for some N sufficiently large ,
the problem disappears. A similar solution can be given for the “lottery
paradox” of [11].

Given its simple and intuitively appealing syntax and semantics, LL could be
quite useful in practice to reason about situations where decisions must be
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made under uncertainty, in the absence of quantitative data. But before LL
can be used with complete confidence, it will be necessary to understand better
the impact of using different translations to capture notions of likelihood, and
the relationship between LL and other methods of capturing likelihood.

Ultimately the success or failure of a system of reasoning depends on how
well it captures what people intend to say, and how easy it is to use. While we
feel that LL scores well on both counts, empirical research will be necessary to
bolster that feeling.

Appendix A. Proof Sketch of Lemma 3.5(f) and 3.5(g)

To prove part (f) we first show:
(i) F(GprGg=G(pnrg),
(i) F(GpA1Gq)=>1G(Gp Agq).

To prove (i), we first note that by propositional reasoning

Fp>(g=>(prgq). (1)

Then using (R1) we get

FG(p=>(a=>(pr9g)). (2)

By repeated uses of (AX7) and (R2), we get

- Gp=>(Gg=(G(p A 9))- 3)

Now |- (Gp A Gq) > G(p A q) follows by propositional reasoning. The proof
that - G(p A g)= Gp A Gq follows by similar arguments using (AX7), (R1),
(R2), and propositional reasoning, and is left to the reader.

To prove (ii), we proceed as follows. Using (AX3) and propositional
reasoning, we get that

= Gp A 1Gg A G(1(Gp A 1q))=> GGp A 1Gq A G(—(Gp A 1q)) .
(4)

Now using (i), we see that

F GGp A 1Gg A G(1(Gp A19))=> G(Gp A (Gp A1g)) A —|G((15.)

By propositional reasoning we can show
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FGpA—(Gp Amg)>q, (6)
so using (R1), (R2), (AX7), (5), and (6) we get

F G(Gp A (Gp A q))=> Gy . (7)
From (4)—-(7) we see that

F Gp A1Gg A G(1(Gp A —1q))> Gg A 1Ggq . (8)

Of course, by propositional reasoning, Gq A -1Gq is inconsistent, so we get, as
desired

F Gp A 1Gqg=>-G(Gp A g). 9)

Now suppose that Gp,, ..., Gp, are all the formulas of the form Gp in 5.
By using (i), (ii), (AX7), and propositional reasoning, we can easily show

FGp A AGp, A1Gg=>1G(Gp, A---AGp,Aq).  (10)

Now suppose X is inconsistent, but {Gp,, ..., Gp,,1q} is not. By defini-
tion, we then have ‘

F(Gp, A+ A GpA—ig). (11)
By (R1), it follows that

F G(—(Gp, A+ A Gp, AT1g)). (12)
Finally, from (10) and (12) and propositional reasoning, we get that

F (Gpy A -+ - A Gp, A1Gg) . (13)
Thus A= {Gp,, ..., Gp,, 1Gq} is inconsistent. Since A is a subset of %, we

have shown that 3 must also be inconsistent, and this contradicts our initial

assumption.
The proof of part (g) is very similar to that of (f). The crucial observation we

need here is that by using (AX4), (AX6), and (AX8) we can show
FGp,An- AGp,ALg, A+~ AT1Lg,, A Lr=>
L(Gp, A AGp,ATIg A" ATIg,, AT). (14)

We leave details to the reader. [
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