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Abstract:  We provide a model for reasoning about knowledge and prob-
ability together. We allow explicit mention of probabilities in formulas, so
that our language has formulas that essentially say “according to agent ¢, for-
mula ¢ holds with probability at least 6.” The language is powerful enough
to allow reasoning about higher-order probabilities, as well as allowing ex-
plicit comparisons of the probabilities an agent places on distinct events.
We present a general framework for interpreting such formulas, and consider
various properties that might hold of the interrelationship between agents’
probability assignments at different states. We provide a complete axioma-
tization for reasoning about knowledge and probability, prove a small model
property, and obtain decision procedures. We then consider the effects of
adding common knowledge and a probabilistic variant of common knowledge
to the language.

*A preliminary version of this paper appeared in the Proceedings of the Second Conference on The-
oretical Aspects of Reasoning about Knowledge (ed. M. Y. Vardi), 1988. This version is essentially the
same as the version that appears in Journal of the ACM, 41:2, 1994, pp. 340-367.



1 Introduction

Reasoning about knowledge has become an active topic of investigation for researchers in
such diverse fields as philosophy [Hin62], economics [Aum?76], and artificial intelligence
[Moo85]. Recently the interest of theoretical computer scientists has been sparked, since
reasoning about knowledge has been shown to be a useful tool in analyzing distributed
systems (see [Hal87] for an overview and further references).

In many of the application areas for reasoning about knowledge, it is important
to be able to reason about the probability of certain events as well as the knowledge
of agents. In particular, this arises in distributed systems applications when we want
to analyze randomized or probabilistic programs. Not surprisingly, researchers have
considered knowledge and probability before. Indeed, all the publications in economics
on reasoning about knowledge, going back to Aumann’s seminal paper [Aum?76], have
probability built into the model. However, they do not consider a logical language that
explicitly allows reasoning about probability. In this paper we consider a language which
extends the traditional logic of knowledge by allowing explicit reasoning about probability
along the lines discussed in a companion paper [FHM90].

In the standard possible-worlds model of knowledge (which we briefly review in the
next section), agent ¢ knows a fact ¢, written K;p, in a world or state s if ¢ is true
in all the worlds the agent considers possible in world s. We want to reason not only
about an agent’s knowledge, but also about the probability he places on certain events.
In order to do this, we extend the language considered in [FHM90], which is essentially
a formalization of Nilsson’s probability logic [Nil86]. Typical formulas in the logic of
[FHMO90] include w(y) > 2w(v) and w(p) < 1/3, where ¢ and 1 are propositional
formulas. These formulas can be viewed as saying “p is twice as probable as ¥” and
“© has probability less than 1/3”, respectively. Since we want to reason about the
probability that agent ¢ places on events, we modify their language to allow formulas
such as w;(p) > 2w;(v). We also allow ¢ and ¢ here to be arbitrary formulas (which
may themselves contain nested occurrences of the modal operators w; and K;) rather
than just propositional formulas. This gives us the power to reason about higher-order
probabilities (see [Gai86] for more discussion on this subject, as well as added references)
and to reason about the probability that an agent knows a certain fact.

In order to give semantics to such a language in the possible-worlds framework, we
assume that, roughly speaking, at each state each agent has a probability on the worlds he
considers possible. Then a formula such as w;(¢) > 2w;(1)) is true at state s if, according
to agent ¢’s probability assignment at state s, the event ¢ is twice as probable as .
For technical and philosophical reasons, we find it convenient to view the probability as
being placed on an arbitrary set of worlds, rather than the set of all worlds that the agent
considers possible in a given state. As we shall show by example, different choices for
the probability space seem to correspond to different assumptions about the background
context.

Despite the richness of the resulting language, we can combine the the well-known



techniques for reasoning about knowledge with the techniques for reasoning about prob-
ability introduced in [FHM90] to obtain an elegant complete axiomatization for the re-
sulting language. Just as there are different assumptions we can make about the rela-
tionship between the worlds that agent ¢ considers possible, leading to different axioms
for knowledge (see [HM92] for an overview), there are also different assumptions about
the interrelationships between agents’ probability assignment spaces at different states,
which also can be captured axiomatically. We discuss these assumptions and their ap-
propriateness, and show how these assumptions can effect the complexity of the decision
procedure for the language.

This paper is related to a number of other works. We give a brief overview of the re-
lated literature here. Propositional probabilistic variants of temporal logic [HS84, 1.S82]
and dynamic logic [Fel84, Koz85] have also been studied, with the goal of analyzing
probabilistic programs. Probabilistic temporal logic papers have traditionally limited the
language so that the only probabilistic statements that can be made are Boolean com-
binations of formulas of the form “¢ occurs with probability one.” The logics studied in
[Fel84, Koz85] do bear some superficial resemblance to ours in that explicit probability
statements are allowed, as well as linear combinations of statements. Indeed, the prob-
ability logic considered in [FHMO90], where the only formulas in the scope of the modal
operator w are propositional formulas, is a fragment of Feldman’s logic. However, there
are some fundamental differences as well, which arise from the fact that the main object
of interest in these other logics are programs. As a result, our language and those used in
[Fel84, Koz85] are incomparable. The languages used in [Fel84, Koz85] are richer than the
one we consider here in that they allow explicit reasoning about programs, but poorer in
that they can talk about the probability of only a restricted class of formulas. Moreover,
there are significant technical differences in the semantics of knowledge operators (our
K;’s) and the program operators of [Fel84, Koz85].

As we mentioned above, probabilistic knowledge has been an issue of great interest
in the economics community. Although they have not considered formal languages con-
taining knowledge and probability, their models can be viewed as a special case of the
models we discuss in this paper. In a recent paper [MS89] in the economics literature,
Monderer and Samet investigate probabilistic common knowledge, a topic that shall also
concern us here. We compare our framework to theirs in more detail when we discuss
probabilistic common knowledge.

The framework developed in this paper has also been applied to distributed systems
and cryptography in some recent papers [FZ87, FZ88, HMT88, HT93], where the issues
raised here have been examined more carefully in the context of these application areas.

Finally, we should mention two other papers that consider reasoning about knowledge
and uncertainty in a possible worlds framework somewhat similar to our own. Halpern
and McAllester [HM89] consider a language that allows reasoning about knowledge and
likelihood, but their notion of likelihood, based on the logic of likelihood of [HR87],
considers only a qualitative notion of likelihood, rather than explicit probabilities. While
this may be appropriate for some applications, it is not useful for an analysis of protocols.



Ruspini [Rus87] discusses certain relations that hold between knowledge and probability
in the one-agent case, and relates this in turn to Dempster-Shafer belief functions [ShaT6].

The rest of this paper is organized as follows. The next section contains a brief review
of the classical possible-worlds semantics for knowledge and a discussion of how knowl-
edge can be ascribed to processes in a distributed system. In Section 3 we describe the
extended language for knowledge and probability and discuss some assumptions that can
be placed on the interrelationships between agents’ probability assignments at different
states. In Section 4 we give results on complete axiomatizations and decision procedures.
In Section 5 we extend the language to allow common knowledge and probabilistic com-
mon knowledge. In Section 6 we give our conclusions.

2 The standard Kripke model for knowledge

In this section we briefly review the standard S5 possible-worlds semantics for knowledge.
The reader is referred to [HM92] for more details.

In order to reason formally about knowledge we need a language. Suppose we consider
a system with n agents, say 1,...,n, and we have a nonempty set ® of primitive propo-
sitions about which we wish to reason. (For distributed systems applications these will
typically represent statements such as “The value of variable = is 0”; in natural language
situations they might represent statements of the form “It is raining in San Francisco.”)
For convenience, we define true to be an abbreviation for the formula p V —p, where p
is a fixed primitive proposition. We abbreviate —true by false. We construct more com-
plicated formulas by closing off ® under conjunction, negation, and the modal operators
K;, for i =1,...,n (where K;¢p is read “agent ¢ knows ¢”).

We give semantics to these formulas by means of Kripke structures [Kri63], which
formalize the intuitions behind possible worlds. A Kripke structure for knowledge (for n
agents) is a tuple (S, 7, Ky, ..., K,,), where S is a set of states (thought of as states of affairs
or possible worlds), 7(s) is a truth assignment to the primitive propositions of ® for each
state s € S (i.e., 7(s)(p) € {true,false} for each primitive proposition p € ® and state
s € 5), and K; is an equivalence relation on the states of S, for ¢ = 1,...,n. The K;
relation is intended to capture the possibility relation according to agent : (s,t) € K; if
in world s agent i considers ¢ a possible world.! We define K;(s) = {s'|(s,s') € K;}.

We now assign truth values to formulas at a state in a structure. We write (M, s) = ¢
if the formula ¢ is true at state s in Kripke structure M.

(M,s) =p (for p € @) iff 7(s)(p) = true
(M,s) FeApiff (M,s) = ¢ and (M,s) =4

'We could take K; to be an arbitrary binary relation, but for distributed systems applications, taking
it to be an equivalence relation seems most appropriate (see [Hal87] for further discussion of this point).
Our results could easily be modified to deal with the general case where K; 1s an arbitrary binary relation.



(M, s) = —pift (M) [~
(M, s) |E Kipiff (M,t) = ¢ for all t € K;(s).

The last clause in this definition captures the intuition that agent ¢ knows ¢ in world
(M, s) exactly if ¢ is true in all worlds that ¢ considers possible.

Given a structure M = (S, 7,K4,...,K,), we say that a formula ¢ is valid in M, and
write M | @, if (M,s) |= ¢ for every state s in S, and say that ¢ is satisfiable in M if
(M, s) = ¢ for some state s in S. We say that a formula ¢ is valid if it is valid in all
structures, and it is satisfiable if it is satisfiable in some structure. It is easy to check
that a formula ¢ is valid in M (resp. valid) if and only if = is not satisfiable in M (resp.
not satisfiable).

We are often interested in characterizing by an axiom system the set of formulas that
are valid. An axiom system AX is said to be sound for a language £ with respect to a
class M of structures if every formula in £ provable in AX is valid with respect to every
structure in M. The system AX is complete for £ with respect to M if every formula in
L that is valid with respect to every structure in M is provable in AX. We think of AX
as characterizing the class M if it provides a sound and complete axiomatization of that
class. Soundness and completeness provide a connection between the syntactic notion of
provability and the semantic notion of validity.

It is well known that the following set of axioms and inference rules, which goes
back to Hintikka [Hin62], provides a sound and complete axiomatization for the logic of
knowledge just defined with respect to the class of Kripke structures for knowledge (see
[HM92] for a proof).

K1. All instances of propositional tautologies
K2. (Kip A Ki(p = ) = Kit)

K3. K,p = ¢

K4. K,p = K,K,p

K5. =K, = K~ K;p

R1. From ¢ and ¢ = ¢ infer ¢» (modus ponens)

R2. From ¢ infer K;¢ (knowledge generalization)

We remark that this axiom system for the case of one agent has traditionally been
called S5. Philosophers have spent years debating the appropriateness of this set of
axioms and, indeed, of this whole approach for capturing the notion of knowledge as
applied to human reasoning (see [Len78] for a review of the pertinent literature). Other
axiom systems for knowledge have been considered. We mention two here, since they will



arise in our later discussion: the axiom system K, consisting of K1, K2, R1, and R2, and
the axiom system KD45, consisting of K1, K2, K4, K5, R1, R2 and the axiom —K;(false).
The system S5 has proved particularly useful in distributed systems applications. We
now briefly review how knowledge is ascribed to processes in distributed systems. More
discussion and details on the model can be found in [Hal87].

A distributed system consists of a collection of processes, say 1,...,n, connected by
a communication network. We think of these processes as running some protocol. At
any time in the execution of such a protocol, the system is in some global state, which is
a tuple of the form (s.,si,...,s,), where s; is the local state of process ¢, and s, is the
state of the environment. We think of the global state as providing a “snapshot” of the
state of the system at any time. The environment includes everything that we consider
relevant to the system that is not described in the state of the processes. A run of a
system 1is just a function from the natural numbers to global states. Intuitively, a run
describes a possible execution of a system over time (where we think of time as ranging
over natural numbers). We identify a system with a set of runs (these can be thought of
as the possible runs of the system when running a particular protocol). We often speak
of a pair (r,m), consisting of a run r and a time m, as a point. Associated with any
point (r,m) we have r(m), the global state of the system at this point. We can define
equivalence relations ~;, for ¢ = 1,...,n, on points via (r,m) ~; (r',m’) iff process ¢ has
the same local state at the global states r(m) and r'(m’).

Suppose we fix a set ® of primitive propositions. In distributed systems applications,
we can think of these propositions as saying things like “the value of variable z is 07,
“process 1’s initial input 1s 37, and so on. We define an interpreted system Z to be
a pair (R, x), where R is a system (set of runs), and 7 is a truth assignment to the
primitive propositions of ® at every point in R. With this definition, it is easy to view
an interpreted system as a Kripke structure, where the points play the role of states and
the K; relation is given by ~;. Truth is now defined with respect to a point (r,m) in an
interpreted system Z. In particular, we have

(Z,r,m) |E K iff (Z,r",m') E ¢ for all (r',m’) such that (r',m') ~; (r,m).

Since ~; is an equivalence relation, it is easy to check that all the axioms of S5 hold for
this interpretation of knowledge.

3 Adding probability

The formula K;p says that ¢ is true at all the worlds that agent ¢ considers possible.
We want to extend our language to allows formulas such as w;(¢) > b, which intuitively
says that “according to agent 2, formula ¢ holds with probability at least 6.” In fact, it
turns out to be convenient to extend the language even further. Specifically, if p1,..., v
are formulas, then so is a1w;(¢1) + - -+ + arw; () > b, where ay,...,ax, b are arbitrary
rational numbers, and k& > 1. We call such a formula an ¢-probability formula (or simply a



probability formula, if we do not wish to specify ¢). An expression of the form a;w;(¢1) +
-+ apw;(pg) is called a term. Allowing arbitrary terms in ¢-probability formulas, rather
than just formulas of the form w;(¢) > a, gives us a great deal of flexibility in expressing
relationships between probabilities of events. Notice we do not allow mixed formulas

such as w;(p) + w;(¢) > b.2

We use a number of abbreviations throughout the paper for readability. For example,
we use w;(¢) > w;(1)) as an abbreviation for w;(¢) — w;(¥) > 0, w;(p) < b for —w;(p) >
—b, wi(p) < bfor =(w;(p) > b), and w;(¢) = b for (w;(¢) > b) A (w;(¢) < b). We also use
K?(p) as an abbreviation for K;(w;() > b). Intuitively, this says that “agent 7 knows
that the probability of ¢ is greater than or equal to b.” It might seem that the formula
w;(¢) > bshould already say that “agent ¢ knows that the probability of ¢ is greater than
or equal to b7, even without the K; operator. This is not the case under our semantics.
In a given state s, the formula w;(¢) denotes the probability of ¢ according to agent ¢’s
probability distribution in state s. Although it may seem at first seem counterintuitive,
it is useful to allow agent 2 not to know what probability distribution is being used to
calculate w;(p). For example, if agent ¢« knows that one of two distributions governs
¢, and according to one, the probability of ¢ is 1/2 and according to the other, the
probability of ¢ is 3/4, then we can model this by saying that there are two states of the
world that 7 cannot distinguish, such that w;(¢) = 1/2 in one, and w;(¢) = 3/4 in the
other. In such a situation, it would be the case that K;(w;(¢) > 1/2) holds.

The language used here extends that considered in [FHM90] in two ways. First, rather
than have just one “probability modality” w, we have a modality w; for each agent ¢, in
order to allow us to reason about the probability assigned by different agents to the same
event. Secondly, rather than restricting the formulas that appear in the scope of the
probability modality to be propositional, we allow them to be arbitrary. In particular,
we allow higher-order probability formulas such as w;(w;(¢) > b)) > c.

Before we give formal semantics to this language, we briefly review some material from
probability theory (see [Hal50] for more details). A probability space is a tuple (, X, p)
where € is a set, called the sample space, X' is a o-algebra of subsets of Q (i.e., a set
of subsets containing € and closed under complementation and countable union), whose
elements are called the measurable sets, and a probability measure p defined on the
elements of X'. Note that y does not assign a probability to all subsets of €2, but only to
the measurable sets. One natural way of attaching a weight to every subset of ) is by
considering the inner measure p, induced by p; if A C Q, we have

ps(A) =sup{u(B)|B C A and B € X'}.

Thus, the inner measure of A is essentially the measure of the largest measurable set
contained in A. The properties of probability spaces guarantee that p, is well defined, and

2There would be no difficulty giving semantics to such formulas, but some of our results on decision
procedures and axiomatizations seem to require that we not allow such mixed formulas. We return to
this point in the next section.



that if A is measurable, then p,(A) = p(A).> Given a structure M = (S, 7, Ky,...,K,),
in order to decide whether a probability formula is true at a state s in M, we need to
associate with each state s a probability space. Thus we take a Kripke structure for
knowledge and probability (for n agents) to be a tuple (S, 7,Kq,..., K., P), where P is
a probability assignment, which assigns to each agent ¢ € {1,...,n} and state s € S
a probability space P(i,s) = (Sis, Xis, ptis), where S; 5 C S. We shall usually write
P(i,s) as P;s. Intuitively, the probability space P; s describes agent ¢’s probabilities on
events, given that the state is s. We allow S; 5 to be an arbitrary subset of S. It might
seem reasonable to take S;; = K;(s), thus requiring that the agent places probability
on precisely on the set of worlds he considers possible; however, as we shall see below,
there are good technical and philosophical reasons to allow S; s to be distinct from ;(s).
It is often natural to require that S;, be at least a subset of K;(s); we consider the
consequences of this assumption below.

We can give semantics to formulas not involving probability just as before. To give
semantics to i-probability formulas, assume inductively that we have defined (M, s) = ¢
for each state s € S. Define S;;(p) = {s' € Sis | (M,s') = ¢}. Then the obvious way to
define the semantics of a formula such as w;(¢) > b is

The only problem with this definition is that the set S;s(¢) might not be measurable
(i.e., not in X, ), so that p;s(S;s(¢)) might not be well defined. We discuss this issue
in more detail below (and, in fact, provide sufficient conditions to guarantee that this
set is measurable), but in order to deal with this problem in general, we use the inner
measures (f;s)« rather than gy, ;. Thus w;(¢) > b is true at the state s if there is some
measurable set (according to agent ¢) contained in S; s(¢) whose measure is at least b.
More generally, we have

(M, s) = arwi(e1)+- - -Farwi(pr) > b i ay(pis)e(Sis(@1))+- - Far(pis)«(Sis(r)) > b.

This completes the semantic definition for the whole language.

Before we discuss the properties of this language, it is helpful to consider a detailed
example. This example illustrates some of the subtleties involved in choosing the proba-
bility spaces at each state.

Suppose we have two agents. Agent 2 has an input bit, either 0 or 1. He then tosses
a fair coin, and performs an action a if the coin toss agrees with the input bit, i.e., if
the coin toss lands heads and the input bit is 1, or if the coin lands tails and the input
bit 1s 0. We assume that agent 1 never learns agent 2’s input bit or the outcome of his
coin toss. An easy argument shows that according to agent 2, who knows the input bit,
the probability (before he tosses the coin) of performing action a is 1/2. There is also

3We remark that there is also a dual notion of outer measure; the outer measure of A, denoted

p*(A), is essentially the measure of the smallest measurable set containing A. Tt is easy to see that
p*(A) =1 — p(A), so that the outer measure is expressible in terms of the inner measure.



a reasonable argument to show that, even according to agent 1 (who does not know the
input bit), the probability that the action will be performed is 1/2. Clearly from agent 1’s
viewpoint, if agent 2’s input bit is 0, then the probability that agent 2 performs action a
is 1/2 (since the probability of the coin landing heads is 1/2); similarly, if agent 2’s input
bit is 1, then the probability of agent 2 performing action a is 1/2. Thus, no matter what
agent 2’s input bit, the probability according to agent 1 that agent 2 will perform action
ais 1/2. Thus, it seems reasonable to say that agent 1 knows that the a priori probability
of agent 2 performing action a is 1/2. Note that we do not need to assume a probability
distribution on the input bit for this argument to hold. This is a good thing: We do
not want to assume that there is an input on the probability distribution, since none is
provided by the problem statement. Of course, if there were a probability distribution,
then this argument would hold independent of the actual probability distribution.

Now suppose we want to capture this argument in our formal system. From agent 1’s
point of view, there are four possibilities: (1, k), (1,%),(0,k),(0,%) (the input bit was 1
and the coin landed heads, the input bit was 1 and the coin landed tails, etc.). We can
view these as the possible worlds or states in a Kripke structure. Call them sq, s9, s3,
and sy respectively; let S be the set consisting of all four states. Assume that we have
primitive propositions A, H, T', By, and B; in the language, denoting the events that
action a is performed, the coin landed heads, the coin landed tails, agent 2’s input bit is
0, and agent 2’s input bit is 1. Thus H is true at states s; and s3, A is true at states sy
and s4, and so on. What should agent 1’s probability assignment be? We now describe
three plausible answers to this question.

1. We can associate with each state the sample space consisting of all four states,
i.e., all the possible worlds. This might seem to be the most natural choice, since
we are taking the probability space at each state s to be K1(s), so that at each state,
agent 1 is putting the probability on the set of states that he considers possible.
Because we assume that there is no probability on the event “the input bit is 07
(resp. “the input bit is 17), the only candidates for measurable sets (besides the
whole space and the empty set) are {s1,s3} (which corresponds to the event “the
coin landed heads”) and {s3,s4} (“the coin landed tails”). Each of these sets has
probability 1/2. Call the resulting Kripke structure My. Notice that the events {s1}
and {s;} cannot both be measurable, for then the event {s;, s}, which corresponds
to “the input bit is 17, would also be measurable. Similarly, we cannot take {s1, s4},
which corresponds to the event “action a is performed”, to be measurable. This is
because if it were measurable, then, since the set of measurable sets is closed under
finite intersection and complementation, each of {s1}, {s2}, {s3}, and {s4} would
have to be measurable.

2. We can associate with states s; and sy, where the input bit is 1, the sample space
consisting only of s; and sy, with {s;} and {s3} both being measurable and having
measure 1/2. Similarly, we can associate with states s3 and s4 the sample space
consisting only of s3 and s4, with {s3} and {s;} each having measure 1/2. Thus,



when the input bit is 1, we take the sample space to consist of only those states
where the input bit is 1, with the obvious probability on that space, and similarly
for when the input bit is 0. Call this Kripke structure M.

3. Finally, we can make the trivial choice of associating with each state the sample
space consisting of that state alone, and giving it measure 1. Call the resulting
Kripke structure Ms.

Of the three Kripke structures above, it is easy to see that only M; supports the
informal reasoning above. It is easy to check that we have (My,s) | Kll/ZA, for every
state s € S. On the other hand, in every state of My, we have either w;(A) = 1 (in
states s; and s4) or wi(A) = 0 (in states s, and s3). Thus, for every state s € S, we have
(My,s) = Ki((wi(A) = 1)V (w(A) = 0)) and (My,s) —|K11/2A. Finally, in My, the
event A is not measurable, nor does it contain any non-empty measurable sets. Thus,
we have (M, s) E Ki(wi(A) = 0) (where now w; represents the inner measure, since A
is not measurable).

Does this mean that M, is somehow the “right” Kripke structure for this situation?
Not necessarily. A better understanding can be attained if we think of this as a two-step
process developing over time. At the first step, “nature” (nondeterministically) selects
agent 2’s input bit. Then agent 2 tosses the coin. We can think of My as describing the
situation after the coin has landed. It does not make sense to say that the probability of
heads is 1/2 at this time (although it does make sense to say that the a priori probability
of heads is 1/2), nor does it make sense to say that the probability of performing action
a is 1/2. After the coin has landed, either it landed heads or it didn’t; either a was
performed or it wasn’t. This is the intuitive explanation for why the formula K ((w;(A) =
1)V (w1 (A) = 0)) is valid in My. M; describes the situation after nature has made her
decision, but before the coin is tossed. Thus, agent 1 knows that either the input bit is
1 or the input bit is 0 (although he doesn’t know which one). As expected, the formula
Ki((w1(Bo) = 1)V (wi(B1) = 0)) holds in this situation. An (admittedly weak) argument
can be made that My describes the initial situation, before nature has made her decision.
At this point the event “the input bit is 07 is not measurable and we cannot attach a
probability to it.

We can capture these intuitions nicely using runs. There are four runs, say rq, ro, r3, r4,
corresponding to the four states above. There are three relevant times: 0 (before nature
has decided on the input bit), 1 (after nature has decided, but before the coin is tossed),
and 2 (after the coin is tossed). Agent 1’s local state contains only the time (since agent 1
never learns anything about the coin or the input bit); agent 2’s local state contains the
time, the input bit (at times 1 and 2), and the outcome of the coin toss (at time 2). We
can omit the environment from the global state; everything relevant is already captured
by the states of the agents. Thus, at time 1 in run rs, agent 1’s local state is 1 (since the
time is 1), while agent 2’s local state is the pair (1,0), since the time is 1 and the input
bit is 0. Thus, r3(1) = (1,(1,0)). Similarly, we have that r3(2) = (2,(2,0,%)). We now

interpret the propositions A, H, etc. to mean that the action a has been or eventually



will be performed, heads has been or eventually will be tossed, etc. Thus, proposition A
is true at the point (r;, k) if the action a is performed at (r;,3). Similarly, H is true at
(r;, k) if heads is tossed in run r;, and so on.

Clearly at each time k = 0, 1,2, agent 1 considers the four points (r;, k), j = 1,2, 3,4,
possible. At time 0 we can define the probability space at each state to make this look
like My. At time 1, defining the probability spaces so that we get Kripke structure M,
seems to be appropriate, while at time 2, Kripke structure M, seems appropriate. Thus,
although it seems that in some sense agent 1’s knowledge about the input bit and the
outcome of the coin toss does not change over time, the probability assignments used
by agent 1 may change. For example, after the coin has been tossed, the probability
assignment should change to reflect the fact that, although agent 1 has not learned
anything about the outcome of the coin flip, he does know that the coin has been tossed.

But why and how should the fact that the coin has been tossed affect the probability
assignment used by agent 17 This question is perhaps best answered in the framework
discussed in [HT93], where the point of view is taken that the choice of probability as-
signment should reflect the agent’s view of the adversary it is playing against or, more
accurately, the knowledge of the adversary it is playing against. Different choices of
probability assignment correspond to playing adversaries with different knowledge. Sup-
pose we play an adversary with complete information about all that has happened in the
past, but who does not know the outcome of probabilistic events that will take place in
the future. Thus, at time 1, the adversary does not know the outcome of the coin toss,
while at time 2, he does. As shown in [HT93], when agent ¢ is playing against such an
adversary, the probability assignment used by agent ¢ should reflect what the adversary
knows as well as what agent ¢ knows. Technically, this amounts to taking the intersection
of the set of possible words describing agent ¢’s knowledge with the set of possible worlds
describing the adversary’s knowledge. Thus, when playing against an adversary with
complete information about the past, the assignment described by M is appropriate at
time 1, while the assignment described by M, is appropriate at time 2. (See [HT93] for
details of the arguments regarding appropriateness.) Interestingly, the probability as-
signment described by My—which initially may have seemed to be the most reasonable
choice of probability assignment—does not correspond to playing against an adversary
in the framework of [HT93]. In retrospect, it is the hardest probability assignment to
justify.

Even in this simple example we can already see that the decision of how to assign
the probability spaces is not completely straightforward. In general, it seems that it will
depend in more detail on the form of the analysis. This example already shows that in
general at a state s, we do not want to take S;; = K;(s). Note that Sy, = K1(s) only
in My above; in particular, in M7, where we can carry out the informal reasoning which
says that action a occurs with probability 1/2, we have S; ; as a strict subset of Ky(s).*

4The example presented here is a simplification of one given by Mark Tuttle. It was Mark who first
pointed out to us that it is not always appropriate to take S; , = K;(s).
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Although in this example, we do not want S;; = K;(s), we do want S; s C K,(s). This
is quite a natural condition. Without it, it is possible that an agent can place positive
probability on a fact that he knows to be false; for example, the formula K;=pAw;(p) > 0
is consistent. We would view an agent who places positive probability on an event he
knows to be false as inconsistent. Thus, we term the following condition CONS (for
consistent).

CONS. For all 7 and s, if P; s = (Sis, Xis, ftis), then S; s C K;(s).

Note that CONS does not imply that s € 5;,; an agent is not required to view the
state that he is in as one of the set of states in his probability space. Although it may
seem unusual, there are times (in particular, when analyzing asynchronous distributed
systems), when it turns out to be appropriate not to require that s € S; ; [HT93].

In some applications, although the agents have different sets of points they consider
possible, it is useful to model them as agreeing on what the probability space is at each
point. In this case, we say that the probability assignment is objective. This is a quite
natural assumption in contexts where all the probabilistic events are common knowledge,
for example, if there is a global coin. Alternatively, in the framework of [HT93], it is
appropriate if the agents are viewed as all playing the same adversary, who has at least
as much knowledge as each of the agents individually. Note that under this assumption,
the intersection of the set of states describing agent :’s knowledge with the set of states
describing the adversary’s knowledge is the same for all :. This means that, according
to the framework of [HT93], the agents should all use the same probability assignment.
Note that this assumption is appropriate, for example, if the agents all play an adversary
who has complete information about the global state of the system, they would agree on
what the appropriate probability space should be.?

In the context of a Kripke structure for knowledge and probability, having an objective
probability assignment corresponds to the following condition:

OBJ. P;, =P;, for all 7, 5, and s.

Note that if we had required that S;; = K;(s) for each agent ¢ and each state s, then
OBJ could hold only in Kripke structures where K;(s) = K;(s) for all agents ¢ and j and
all states s.

We now consider some other assumptions about the interrelationship between an
agent’s probability assignments at different states. A rather natural assumption to make
on the choice of probability space is that it is the same in all worlds the agent considers
possible. In the context of distributed systems, this would mean that an agent’s proba-
bility space is determined by his local state. We call this property SDP (state-determined
probability). Formally, we have:

5Mark Tuttle and Yoram Moses first pointed out to us that in distributed systems applications, an
appropriate choice is often an objective probability with the probability space consisting of all the points
with the same global state. This approach was first taken in [HMT88]. See [FZ88, HT93] for further
discussion on the appropriate choice of probability assignment in distributed systems.
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SDP. For all ¢, s, and ¢, if t € K;(s), then P; s = Pi.

Of the three Kripke structures we considered above, only My satisfies SDP. As the
discussion in [HT93] shows, SDP is most natural in situations where no nondeterministic
(or, perhaps better, nonprobabilistic) choices are made by “nature”. (In our example,
the choice of the agent’s input bit is nonprobabilistic; the outcome of the coin toss is
probabilistic.) SDP is an assumption that has often been made. Indeed, it is implicitly
assumed in much of the economists’ work (e.g., [Aum76, Cav83]). In these papers, it is
assumed that each agent initially defines a probability space over the sample space of
all worlds. Thus, for each agent 7 we have a probability space P; = (S, &}, u;), where
S is the set of all worlds.® Agent i’s probability of an event e at a state s is taken to
be the conditional probability of e given agent ¢’s set of possible worlds. This means
that P; s = (Ki(s), Xis, pis), where X; s = {ANKi(s)| A € A}, and pi (AN Ki(s)) =
1i(A)/11:(K;i(s)).” Note that the resulting Kripke structure has the SDP property.

While M; and M; in our example above do not satisfy SDP, they do satisfy a weaker
property which we call uniformity. Roughly speaking, uniformity holds if we can partition
K:(s) into subsets such that at every point in a given subset 7', the probability space is
the same. Formally, we say uniformity holds if:

UNIF. For all ¢, s, and ¢, if P; s = (Sis, Xis, ptis) and t € S; 5, then P;y = P s.

Notice that UNIF does not require that S; ; C K;(s); thus, in order to be able to partition
Ki(s) into subsets such that at every point in a given subset 7', the probability space is
the same, we require both UNIF and CONS. Uniformity arises in a natural way when
considering appropriate probability assignments in distributed systems. Each subset of
S;.s turns out to correspond to the result of “nature” making a particular nonprobabilistic
choice, just as is the case in the structure M; in our example (see [HT93] for details).
Uniformity also has some interesting connections with a well-studied principle regarding
higher-order probabilities called Miller’s principle [Mil66, Sky80]; we comment on this in
a little more detail below. Note that CONS and SDP together imply UNIF, and that all

the structures in our example above satisfy UNIF.

There is one last property of interest to us, which seems to have been assumed in
all previous papers involving reasoning about probability, and that is that all formulas
define measurable sets. As shown in [FHM90] (and as we shall see again below), reasoning
about probability is simplified if we assume that all formulas define measurable sets. More
precisely, we say that formulas define measurable sets in M if

MEAS. For all 7 and s and for every formula ¢, the set S; ;(¢) € X ,.

6 Aumann actually assumes that there is an objective probability on the whole space, so that P; = P;
for all agents ¢ and j. This corresponds to the agents having a common prior distribution.

“This approach runs into slight technical difficulties if K;(s) is not measurable, or has measure 0.
However, 1t is always assumed that this is not the case.
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(Recall that S;(p) ={s" € S;is|(M,s") E ¢}.)

Clearly if primitive propositions define measurable sets, then all propositional for-
mulas define measurable sets. However, there is no particular reason to expect that a
probability formula such as w;(p) + wi(¢q) > 1/2 will define a measurable set (in fact, it
is easy to show that in general it will not). Let PMEAS be the property which says that
all primitive propositions define measurable sets. (Note that PMEAS does not hold in
My, but does hold in M; and M3.) The following lemma describes sufficient conditions
for MEAS to hold.

Lemma 3.1: If M s a structure satisfying CONS, OBJ, UNIF, and PMEAS, then M
satisfies MEAS.

Proof: A straightforward induction on the structure of formulas ¢ shows that S; ;(¢) is
measurable for all formulas ¢. The assumptions CONS and OBJ together imply that for
all agents 7 and j, we have S; ; C K;(s), so it is easy to see that 5; ;(Kj¢p) is either S; ; or
(0. In either case it is measurable. Similarly, we can show that OBJ and UNIF together
imply that for any probability formula ¢, we have that S; ;(¢) is either S; s or (). §

It seems that OBJ, UNIF, and PMEAS are often reasonable assumptions in dis-
tributed systems applications, so this lemma is of more than just pure technical interest.

We close this section by briefly considering one more property of probabilities that
has appeared in the literature. Miller’s principle is an axiom that connects higher-
order probabilities (that is, probabilities on probabilities) with probabilities on formulas
[Mil66, Sky80]. It says:

wi(p) 2 bwi(wi(p) = b).

It is easy to see that, in general, this axiom does not hold in structures for knowledge
and probability. However, it is not hard to show that our condition UNIF implies this
axiom. In systems satisfying UNIF, we have either (a) (w;(¢) > b) is false at state s, in
which case UNIF implies that w;(w;(¢) > b) = 0 at state s, or (b) (w;(¢) > b) is true
at state s, in which case UNIF implies that w;(w;(¢) > b) =1 at state s. In either case,
it is easy to see that Miller’s principle holds. It turns out that there is a precise sense
in which Miller’s principle completely characterizes uniform structures; see [Hal91] for
details.

4 Complete axiomatizations and decision procedures

We now describe a natural complete axiomatization for the logic of probability and
knowledge. The axiom system can be modularized into four components. The first
component allows us to do propositional reasoning, the second allows us to reason about
knowledge, the third allows us to reason about inequalities (so it contains axioms that
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allow us to deduce, for example, that 2z > 2y follows from = > y), while the fourth is
the only one that has axioms and inference rules for reasoning about probability.

I. Axiom and rule for propositional reasoning
Axiom K1 and rule R1 from Section 2

I1. Axioms and rule for reasoning about knowledge
Axioms K2-K5 and rule R2 from Section 2

For reasoning about inequalities, we need a system that allows us to prove all valid
formulas about linear inequalities; one particular system that will do the trick is given

in [FHM90]. We repeat it here.

IT1. Axioms for reasoning about linear inequalities

I. (a1wi(pr) + -+ + apwi(pr) = b) & (awi(er) + - + apwi(er) + 0wi(@r4r) > b)
(adding and deleting 0 terms)

12. (a1wi(@r) + -+ arwi(pr) > b) = (a5, wi(ps,) + -+ ajwi(w;,) > b), i g1, .0, g s
a permutation of 1,..., k (permutation)

13.

w

(a1wi(pr) +- - Farwi(pr) 2 b) Alajwi(er) +- - Fajwi(er) > ) = (a1 +ap)wi(er) +
-+ (a4 a)wi(pr) > (b4 ') (addition of coefficients)

I4. (arwi(er) + -+ + arwi(er) > b) & (dagwi(er) + -+ + dagw(pr) > db) if d > 0

(multiplication of nonzero coefficients)
I5. (t >b) Vv (t <b)iftisa term (dichotomy)

16. (t > b) = (t > ¢) if t is a term and b > ¢ (monotonicity)

Finally, we need axioms for reasoning about probability. The axioms we take are also
given in [FHM90]; they are simply a translation of the standard axioms for probability
in finite domains to our language.

IV. Axioms for reasoning about probabilities

¢) > 0 (nonnegativity)

W2. w;(true) = 1 (the probability of the event trueis 1)

W4. w;

wi(
i
W3. wi(p A) +wi(p A ) = wi(p) (additivity)
() = wi() if ¢ & ¢ is a propositional tautology (distributivity)
wi(

false) = 0 (the probability of the event false is 0)®

8 Axiom W5 is actually redundant. It is included, since it will be needed later when we replace
axiom W3 by another axiom in the nonmeasurable case.
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Axiom W3 corresponds to finite additivity. Although we allow infinite domains, as noted
in [FHM90] we do not need an axiom that corresponds to countable additivity. Indeed,
we could not even express such an axiom in our language. Roughly speaking, we can get
away with finite additivity because we can show that if a formula is satisfiable at all, it
is satisfiable in a finite domain.

Things get more complicated if we drop the measurability assumption. It is easy to
check that in this case, W3 is no longer sound. As shown in [FHM90], there is another
axiom that we can replace W3 by to get a complete axiomatization. This axiom is also
the key axiom that characterizes belief functions in the Dempster-Shafer approach to
reasoning about uncertainty.

W6. w;(e1 V... Vr) > Sica, 20 (— DI wi(Aigr 9:).

Although this axiom may appear somewhat mysterious, note that if we replace > by
=, then in the measurable case, this becomes an instance of the well-known inclusion-
exclusion rule for probabilities [Fel57].

It turns out that if we replace W3 by W6, we get a complete axiomatization for -
probability formulas in the nonmeasurable case. (See [FHM90] for more details, as well
as proofs of soundness and completeness.)

Let AXjrpas consist of K1-K5, 11-16, W1-W5, and R1-R2. Let AX be the result of
replacing W3 in AX ;45 by W6. The following theorem says that these axiomatizations
are sound and complete.?

Theorem 4.1: AX (resp. AXypas) is a sound and complete axziomatization for the logic
of knowledge and probability (resp. for structures satisfying MEAS).

Proof: Soundness is straightforward, as usual, so we focus on completeness. We sketch
the proof for the measurable case; the nonmeasurable case follows the same lines.

In order to prove completeness, we need only show that if the formula ¢ is consistent
with AXyrgas, then ¢ is satisfiable in a Kripke structure for knowledge and probability
satisfying MEAS. Let Sub(¢) be the set of all subformulas of ¢, and let Sub™(¢) be the

set of subformulas of ¢ and their negations.

Let s be a finite set of formulas, and let ¢, be the conjunction of the formulas in s.
We say that s is consistent if it is not the case that AXygas F —@s, where as usual, we
write AXprgpas ¢ if the formula v is provable in the axiom system AXjrpas. The set s
is a mazimal consistent subset of Sub* () if it is consistent, a subset of Sub*(y), and for
every subformula ¢ of ¢, includes one of ¥ and —t. (Note that it cannot include both,
for then it would not be consistent.) Following Makinson [Mak66] (see also [HM92]), we
first construct a Kripke structure for knowledge (but not probability) (S, 7, Ky, ..., K,)
as follows: we take S, the set of states, to consist of all maximal consistent subsets

9The proofs of the technical results in this section presume familiarity with the results of [FHM90]
and with standard proofs of completeness and complexity for modal logics (cf. [Lad77, HM92]).
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of Subt(yp). If s and ¢ are states, then (s,t) € K; precisely if s and ¢ contain the
same formulas of the form K;i». We define = so that for a primitive proposition p, we
have x(s)(p) = true iff p is one of the formulas in the set s. Our goal is to define a
probability assignment P such that the if we consider the Kripke structure for knowledge
and probability M = (5,7, K1,...,K,,P), then for every state s € S and every formula
Y € Subt(p), we have (M, s) E ¢ iff ¢ € s.

We now sketch the techniques from [FHMO90] required to do this. It is easy to see
that the formulas @, are provably mutually exclusive for s € S5; that is, AXypas F
vs = iy for s # t. Indeed, the proof uses only propositional reasoning, namely K1 and
R1. Moreover, again using only propositional reasoning, we can show that AXpypas F
Y & Vises|pes}¥s, for all i € Sub(p). Using these observations, we can show, using
WI1-W5, that u;(¥) = Yses|pesy #ilps) is provable in AXygas (cf. [FHM90, Lemma
2.3]).19 Using this fact together with I1 and 13, we can show that an i-probability formula
Y € Subt(p) is provably equivalent to a formula of the form Y cg ¢,0i(¢5) > b, for some
appropriate coefficients c;.

Fix an agent 7 and a state s € S. We now describe a set of linear equalities and
inequalities corresponding to ¢ and s, over variables of the form z;,, for s* € S. We
can think of x;.s as representing p; s(s'), i.e., the probability of state s’ under agent
’s probability distribution at state s. We have one inequality corresponding to every
i-probability formula ¢ in Sub™(p). Assume that 1 is equivalent to Y, cg copi(ps) > b.
Observe that exactly one of ¢ and = isin s. If ¢ € s, then the corresponding inequality

1S
E Cs! Liss! Z b.

s'eS

If =) € s, then the corresponding inequality is

E CsiTisst < b.

s'eS

Finally, we have the equality
E Tiey = 1.
s'eS
As shown in [FHM90, Theorem 2.2], since ¢, is consistent, this set of linear equalities

and inequalities has a solution z7,,, s' € S.

For each z and s, we solve the corresponding set of inequalities separately. We now
define P so that P;, = (5,2, p;), where if A C S, then p;,(A) = YseA Uiy Since
Yosies Tisey = 1, it is easy to see that ; ; is indeed a probability measure. Note that, in
the probability space P; s, every set is measurable. This probability assignment does not
necessarily satisfy CONS; it may well be the case that there are sets disjoint from K;(s)
that are assigned positive measure under p; .

10Note that this proof makes crucial use of W3; this formula is not provable using the axiom system

AX.
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As we said above, we now want to show that for every formula ¢ € Sub™(y) and
every state in s, we have (M,s) | ¢ iff ¢» € s. The proof proceeds by induction on
Y. If ¢ is a primitive proposition, the result is immediate from the definition of #. The
cases where ¥ is a negation or a conjunction are straightforward and left to the reader.
The case where ¥ is an i-probability formula follows immediately from the arguments
above, since the appropriate inequality corresponding to ¢ is satisfied by p;,. Finally,
if ¢ is of the form K;v', the proof proceeds using well-known arguments from modal
logic (cf. [HC68, HM92]). We sketch a few of the details here. If K%' € s then, by
construction of K;, for all ¢ € K;(s), we have K;1)' € t. Since t is a maximal consistent
subset of Sub*(y), it must be the case that one of ¢’ or =¢' is in ¢. From Axiom K3, it
follows that it must in fact be ¥’. By the induction hypothesis, we have that (M,t) E ¢’
Since this argument holds for all ¢ € K;(s), we have that (M, s) = K¢

Now suppose that (M,s) E K;1'. We want to show that K;10' € s. Let s’ be the
subset of s consisting of all formulas in s of the form K;v" or =K;4)". Notice that, in
particular, s* includes one of K;1' or =K;%'; we plan to show that in fact it must include

K;¢'. We claim that
AXMEAS - Psi = 77/)/. (1)

For suppose not. Then ¢, A =1’ is consistent. Thus, there is a maximal consistent subset
of Sub*(yp), say t, that includes s' U {=¢'}. But then, by construction of X;, we have
(s,t) € K;, and by the induction hypothesis, (M,?) = —¢'. But this contradicts our
assumption that (M, s) = K;¢'. Thus, (1) holds.

By R2, from (1), we have
AXnras b Ki(ps = ). (2)
Using A2 and propositional reasoning, it follows that
AXnrgas B Koy = K, (3)

Every conjunct of ¢, is of the form K;v" or =K;v". Thus, if o is one of the conjuncts
of p,i, using either Axiom A4 or A5, it follows that

AXpyEas F o= Ko (4)

It is well known (and can be proved using K1, K2, R1, and R2) that for any formulas oy
and oy, we have
AXMEAS + ]X’Z’(O'l A 0'2) & Ko N Ko,

Thus, from (4), it follows that
AXMEAS F Psi = [X’igosi. (5)
From (3) and (5) we now get

AXMEAS F Psi = [(277/)/
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Since ¢, and hence @, is consistent, it now follows that = K;v’ cannot be one of the
conjuncts of ¢,:, and hence that K;i' € s, as desired.

If ¢ is consistent, it must be in one of the maximal consistent subsets of Sub™(¢).
Thus, it follows that if ¢ is consistent, then it is satisfiable in the structure M. This
completes the proof in the measurable case.

Note that the proof shows the modularity of the axiom system. In order to deal
with z-probability formulas, we just need the axioms for reasoning about probability
and inequalities (together with propositional reasoning); the axioms for reasoning about
knowledge play no role. Similarly, in order to deal with knowledge formulas, we just used
the axioms for reasoning about knowledge.

This modularity is important when it comes to dealing with the nonmeasurable case.
We must now replace the arguments above for constructing P by analogous arguments
from [FHM90, Theorem 3.8] for the nonmeasurable case. As these arguments show, it is
not quite the case that we can construct a Kripke structure satisfying ¢ whose set of states
is the set S above consisting of maximal consistent subsets of Sub™(¢). Rather, we need
to make copies of each of the maximal consistent sets. Thus, for each maximal consistent
set s, there will be states s1,...,s, (as shown in [FHM90], we can take n < [Sub(p)]).
We can now define a probability assignment P on this set; it will no longer be the case
that in the probability space P; s, all sets are measurable. Modulo this change to P, we
can construct a Kripke structure M for knowledge and probability such that for each
state sj corresponding to a maximal consistent set s and each formula ¢ € Sub*(y), we
have (M, s;) | ¢ iff ©» € s. The proof follows identical lines to that of the measurable
case. The only change comes in dealing with ¢-probability formulas. Again, this is done
by constructing a collection of linear equalities and inequalities that p; , must satisfy, as

in the proof of [FHM90, Theorem 3.7]. We omit further details here. I

We can also capture some of the assumptions we made about systems axiomatically.
In a precise sense (as we shall see), CONS corresponds to the axiom

This axiom essentially tells us that the set of states that agent ¢ considers possible has
measure 1 (according to agent 7).

OBJ corresponds to the axiom
W8. (a1wi(pr) + -+ + agwilpr) 2 b) = (arw;(p1) + -+ + arw;(or) = b)

Axiom W8 says that each i-probability formula implies the corresponding j-probability
formula. This is clearly sound if we have an objective probability distribution.

UNIF corresponds to the axiom

WI. ¢ = (w;(p) = 1) if ¢ is an i-probability formula or the negation of an ¢-probability
formula.
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Since a given z-probability formula has the same truth value at all states where agent ¢’s
probability assignments is the same, the soundness of W9 in structures satisfying UNIF
is easy to verify.

SDP corresponds to the axiom

W10. ¢ = K;p if ¢ is an z-probability formula or the negation of an ¢-probability
formula.

Since SDP says that agent ¢ knows the probability space (in that it is the same for all
states in K;(s)), it is easy to see that SDP implies that in a given state, agent ¢ knows all
i-probability formulas that are true in that state. Axioms W7 and W10 together imply
W9, which is reasonable since CONS and SDP together imply UNIF.

The next theorem proves our claims about the correspondence between various prop-
erties and various axioms.

Theorem 4.2: Let A be a subset of {CONS,OBJ,UNIF,SDP}, and let A be the corre-
sponding subset of { W7, W8, W9, W10}. Then AXUA (resp. AXpypasUA) is a sound and

complete axiomatization for the logic of knowledge and probability for structures satisfying

A (resp. MEASU A).M

Proof: Again, soundness is straightforward, so we focus on completeness. We obtain
completeness in each case by a relatively straightforward modification of the proof of
Theorem 4.1. We just sketch the details here.

First, consider the relationship between CONS and axiom W7. Assume that W7 is
included as an axiom. In this case, it is easy to see that we can modify our construction in
the proof of Theorem 4.1 so that we can take P;; = (S; s, Xis, ptis) such that S; ; C K;(s).
We sketch the details in the measurable case. Recall that in this case, in the proof of
Theorem 4.1, we took P;, = (S, 25,/12'75), so that all sets were measurable, and p; ,
was defined in terms of a solution to a set of linear equalities and inequalities. Now
we claim that in the presence of W7, we can show that if s € S and s’ ¢ K;(s), then
©s = (pi(ps) = 0) is provable. To see this, observe that p; = K;(—¢y ) is provable using
K4 or K5. Thus, applying W7, we have that ps = (pi(—gs) = 1) is provable. Finally, by
using W2, W3, and W4, it is not hard to show that ¢, = (p;(¢s) = 0) is provable. As
a consequence, we can augment the linear system of equalities and inequalities defining
pis by adding x5 = 0 for s’ ¢ K,(s). The proof that shows that the consistency of s
implies that the original linear system was satisfiable can easily be extended to show that
the augmented system must now be satisfiable in the presence of W7. Again, we can
use the solution to this system to define y; s. Since z;59 = 0 for s’ ¢ K;(s), we can take

1'While it is straightforward to extend Theorem 4.1 to the case where we have mixed formulas of the
form w;(¢)+w; (¥) > b (with appropriate modifications to axiomsI1, 12, I3, and I4), the situation seems
much more complicated in the presence of the properties UNIF and SDP. It is due to these complexities
that we do not allow such mixed formulas in our language.
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Sis € Ki(s), so that CONS is satisfied. Note that if W7 is the only additional axiom,
then we can take S; s to be K;(s); as we shall see, some of the other axioms may force
Si.s to be a strict subset of K;(s).

Now consider the relationship between OBJ and axiom WS8. Assume that W8 is
included as an axiom. It is easy to see that the subscripts in ¢-probability formulas can
then be ignored (that is, we can think of w;(y) as simply w(y)). Thus, we can easily
modify the construction of Theorem 4.1 so as to take P; ; = P; ;. This guarantees that
the Kripke structure for knowledge and probability that we construct satisfies OBJ.

Next, consider the relationship between UNIF and axiom W9. Assume that W9 is
included as an axiom. Let T;(s) be the set of states that contain precisely the same -
probability formulas and negations of ¢-probability formulas as s. Just as we showed that
the presence of W7 allowed us to assume without loss of generality that S; 5 is a subset of
Ki(s), we show that the presence of W9 allows us to assume that S;, is a subset of Tj(s).
Again, we consider only the measurable case here. Suppose that s’ ¢ T;(s). Then s and
s" disagree on some i-probability formula, say . Without loss of generality, ¢» € s and
Y ¢ s'. Thus, p, = ¢ and b = —p, are both provable. Since, by W9, ¢ = (pi(yp) = 1)
is provable, it easily follows using the axioms of probability and propositional reasoning
that ps = (pi(ps) = 0) is provable. Thus, we can augment the linear system of equalities
and inequalities defining p; s by adding x5 = 0 for s’ ¢ Ti(s). Just as in our proof of
the relationship between W7 and CONS, we can now show that we can take T;(s) to be
a subset of S;;. Now note that for each ¢t € S, 5, we must have T;(s) = T;(¢). Since, as
the proof of Theorem 4.1 shows, the definition of y;; depends only on the ¢-probability
formulas and negations of ¢-probability at state ¢, it follows that we can take P;; = P;
for all t € Ti(s). Thus, UNIF holds. We remark that if our only additional axiom is
W9, then we can actually take S; s = T;(s); however, if we have both W7 and W9, then
by combining the arguments used in each case, we can show that we can take S; s to be
ICZ(S) N TZ(S)

Finally, consider the relationship between SDP and axiom W10. Assume that W10
is included as an axiom. We want to show that we can slightly modify the construction
of Theorem 4.1 so that if ¢t € K;(s), then ¢ € Tj(s). This is trivial to do: we just change
the definition of the K; relation so that ¢t € K;(s) iff it is the case both that ¢ € T;(s)
and that s and ¢ contain all the same subformulas of the form K;u. With this change,
we can assume without loss of generality that if t € K;(s), then P; s = P; 4, since, as we
have already noted, the definition of y; depends only on the :-probability formulas and
negations of z-probability at state t. Now for the structure M constructed in this way,
we still want to show (in the measurable case) that (M, s) = ¢ iff v € S. The proof is
almost identical to that given for Theorem 4.1. There is only one case where we must
be a little careful: when proving that if (M,s) E K;9', then K;i)' € s. Rather than
taking s° to be the subset of s consisting of all formulas in s of the form K;u" or = K;2)",
we now extend it to consist of all these formulas together with all ¢-probability formulas
or negations of :-probability formulas in s. With this change, the proof now proceeds
as before. It is still the case that for every formula ¢ € s, we have that ¢ = K;o is
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provable; for formulas of the form K;v¢"” we use K4, for formulas of the form —K;" we
use K5, and if ¢ is an z-probability formula or the negation of an z-probability formula,

we use W10.

Let A be a subset of {CONS,O0BJ,UNIF.,SDP}, and let A be the corresponding subset
of {W7,W8 W9 W10}. If A is included among the axioms, then our discussion shows
that given a consistent formula ¢, we can modify our original construction of a Kripke
structure for knowledge and probability satisfying ¢ to get a Kripke structure that not
only satisfies ¢, but also the conditions in A. This proves completeness. 1

As is often the case in modal logics, the ideas in our completeness proof can be
extended to get a small model property and a decision procedure. In order to state our
results here, we need a few definitions. Recall that Sub(y) is the set of all subformulas
of p. It is easy to see that an upper bound on the size |Sub(p)| of Sub(¢) is the number
of symbols in p, where we treat a rational number as a single symbol. We also define the
size of a Kripke structure (5, 7,K1,...,K,,P) to be the number of states in S. (Note
that the size of a Kripke structure may be infinite.)

Theorem 4.3: Let A be a subset of {MEAS,CONS,OBJ,UNIF,SDP}. The formula ¢
is satisfiable in a Kripke structure satisfying A iff it is satisfiable in a Kripke structure
salisfying A of size at most |Sub()|2I5“@) (or just 25 if MEAS € A).

Proof: We need only show that the Kripke structure for knowledge and probability
constructed in the proof of Theorem 4.2 is no bigger than the size given in the statement
of this theorem. If MEAS € A, then the set of states is simply the set of maximal
consistent subsets of Sub™(p). Now a subformula of ¢ and its negation cannot both
be in a maximal consistent subset, so the cardinality of a maximal consistent subset
is at most equal to |Sub(¢)|. Hence, the number of states in the Kripke structure for

knowledge and probability constructed in the proof of Theorem 4.2 is at most 2154,

If MEAS ¢ A then, as we mentioned in the proof of Theorem 4.1, then we cannot
take the states of the Kripke structure satisfying ¢ to be the maximal consistent sets of
Sub™(¢). Rather, we must make copies of the sets. As shown in [FHM90], we need to

make at most |Sub(p)| copies of each state, so the size of the resulting structure is at
most |Sub(y)[2150() g

It can be shown that this result is essentially optimal, in that there is a sequence
of formulas ¢1,p9,... and a constant ¢ > 0 such that (1) |Sub(er)| < ck, (2) @ is
satisfiable, and (3) ¢y is satisfiable only in a structure of size at least 2.!2 Indeed, this
exponential lower bound holds even when there is only one agent. However, if we assume
that CONS and either UNIF or SDP hold, then we can get polynomial-sized models in

the case of one agent.

12The idea is that ¢y, forces a structure to contain a binary tree of depth k. In fact, the result follows
from the corresponding result for the modal logic K (cf. [Lad77, HM92]). Without any assumptions on
the probability assignment, w;(¢) = 1 acts like the O operator. We omit details here.
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Theorem 4.4: [f the formula ¢ talks about the knowledge and probabilities of only one
agent and A is a subset of {MEAS,CONS,OBJ,UNIF,SDP} containing CONS and
either UNIF or SDP, then ¢ is satisfiable in a structure satisfying A iff ¢ is satisfiable
in a structure of size polynomial in |Sub(p)| satisfying A.

Proof: Let M = (S, 7,K1,P) be a structure satisfying A where ¢ is satisfiable. For each
s €S, let P1s=(S1s, X1s,p1,5). Since CONSisin A, we know that Sy C K4(s) for each
s € 5. Without loss of generality, we can assume that Ky is a single equivalence class,
that is, that £; = 5 x S. (Proof: Suppose that (M,s) = ¢. Let M' = (5", 7', K}, P’),
where S’ is the equivalence class of Ky that includes s, and let 7', K}, and P’ be the
restrictions of wx, K1, and P, respectively, to S’. It is easy to see that (M',s) | ¢,
and K/ is a single equivalence class by construction.) Since CONS and SDP together
imply UNIF, and since A contains CONS and either UNIF or SDP, it follows that M
satisfies UNIF. Observe that it follows that no two distinct probability spaces P; ; have
overlapping sample spaces; that is, if P = (S15, X15, f1,5) and Py = (S14, X1 1, 1),
and if Py s # Pi4, then S; 5N S;; = 0. This is because if u € Sy 5N Sy, then by UNIF
we have Py, =Py and Py = Pry, s0 Pr s = Prg.

We now describe a small probability space P; , (one whose sample space has cardi-
nality at most |Sub(p)|) that we shall later “replace” Py s with. For each state s, let ¥
be the set of formulas o € Sub*(¢) such that (M,s) E o. By techniques of [FHM90]
(see Theorem 2.4 for the measurable case, and Theorem 3.4 for the general case), for
each state s, there is a probability space P; , = (5] ,, X] , pf ,) where

1. S, C S,
2. the cardinality of S , is at most |Sub()|* (in the measurable case, |57 | < |Sub(p)|)

3. if we interpret wy (1)) to mean the inner measure of the set of states s where ¢p € ¥,
for each 1 € Sub*(p), then each of the i-probability formulas and negations of i-
probability formulas of ¥, is satisfied, and

4. if MEAS is in A, then every subset of S] | is measurable (that is, a member of A7 ,).

Let so € S be a state such that (M, sg) | ¢. For each formula o € ¥, of the form
- K11, we select some state ¢, such that (M,t,) | -t (there is such a state t,, since
(M, s0) |E ~K1t). Let T consist of s, along with each of these states ¢,. Note that the
cardinality of T'is at most 1 + |Sub(p)|. Define M" = (5, ', K1, P’) by letting S” be the
union of the sample spaces of Py | for each s € T', by letting 7' be 7 restricted to S, by
letting Kj = 5" x 5’, and by letting P'(1,s) = P; . It is straightforward to show that
(M',s0) = @, that M’ satisfies A, and that M’ is of size polynomial in [Sub(y)|. I

We now consider the complexity of decision procedures for the validity problem. The
difficulty of deciding whether ¢ is valid will be a function of the length of o, written
|e]. In computing this length, we also include the length of the coefficients in probability
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terms. (Since all coefficients are rational, the length of the coefficient is just the sum of
the lengths of the numerator and denominator, written in binary.)

Theorem 4.5: Let A be a subset of {MEAS,CONS,OBJ, UNIF,SDP}. If CONS €
A, but it is not the case that UNIF or SDP is in A, then the validity problem with respect
to structures satisfying A is complete for exponential time (i.e., there is an algorithm that
decides if a formula ¢ is valid in all structures satisfying A that runs in time exponential
in ||, and every exponential time problem can be reduced to the validity problem). If
CONS & A or UNIF or SDP is in A, then the validily problem with respect to structures
satisfying A is complete for polynomial space.

Proof: The proof requires combining techniques for proving upper and lower bounds on
the complexity of the validity problem for logics of knowledge and logics of probability,
as discussed in [HM92] and [FHMO0] respectively. We briefly sketch the main ideas here,
referring the reader to [HM92] and [FHMO90] for further details.

The polynomial space lower bound follows from the polynomial space lower bound
for logics of knowledge alone [HM92]. For the exponential time lower bounds, let B;p be
an abbreviation of w;(¢) = 1. We can view B; as a modal operator, just like K;. If UNIF
or SDP is in A, then it can be shown that B; satisfies the axioms of the modal system
KD45, but without these assumptions, B; is unconstrained (in particular, it satisfies
only the axioms of the modal system K). If CONS is in A, then everything “reachable
probabilistically” is also considered possible. More formally, suppose we have a sequence
of states sg, s1,..., s such that s; is reachable probabilistically from sg, as far as agent 1
is concerned; that is s;41 is in 51 5, and g5, ({8;41}) > 0, for 0 < j < k—1. Then CONS
implies that (so,sx) € K1. As a consequence, it is not hard to show that B; and K; can
be used to essentially simulate the [a] and [a*] operators in Propositional Dynamic Logic
(PDL). Since the validity problem for PDL is exponential-time complete [FL.79], we get
the exponential time lower bound if CONS is in A, but neither UNIF nor SDP is. Note
that the lower bound holds even with only one agent.

In the cases where we claim a polynomial space upper bound, this is shown by proving
that if a formula  is satisfiable at all, it is satisfiable in a structure that looks like a tree,
with polynomial branching and depth no greater than the depth of nesting of K; and w;
operators in . The result now follows along similar lines to corresponding results for
logics of knowledge.

Finally, the exponential time upper bound follows by showing that if a formula is
satisfiable at all, it is satisfiable in an exponential size model, that can be constructed in
deterministic exponential time; the technique is similar to that used to show that logics
of knowledge with common knowledge are decidable in deterministic exponential time
[HM92], or that PDL is decidable in deterministic exponential time [Pra79]. I

Again, if we restrict attention to the case of one agent and structures satisfying CONS
and either UNIF or SDP, then we can do better. In fact, the complexity of the validity
problem is no worse than that for propositional logic.
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Theorem 4.6: Let A be a subset of {MEAS,CONS,OBJ,UNIF,SDP} containing
CONS and either UNIF or SDP. For the case of one agent, the validity problem with
respect to structures satisfying A is co-NP-complete.

Proof: We show that the satisfiability problem is NP-complete. It follows that the
validity problem is co-NP-complete. The lower bound is immediate, since clearly the
logic is at least as hard as propositional logic. For the upper bound, by Theorem 4.4,
@ is satisfiable in a structure satisfying A iff ¢ is satisfiable in a structure M of size
polynomial in |Sub(y)| satisfying A. It might seem that this suffices to complete the
proof: we simply guess a polynomial-sized structure satisfying . However, there is
one additional subtlety: in order to describe the polynomial-sized structure, we have to
describe the probabilities of all of its subsets. A priori, this might take us far more than
polynomial space.

By results of [FHM90], we can assume without loss of generality that M has the prop-
erty that for each state s in M and agent ¢, the probability assigned to every measurable
subset of S, ; in the probability space P, ; is a rational number a/b, such that the length
of a and b is linear in |p|. If MEAS is in A, we can assume even more, namely that
every subset of 5;, is measurable. This means we can describe the probability space
Pi.s by describing the probability of each point. If MEAS ¢ A, then we cannot assume
that every subset of S;; is measurable. Instead, we describe the probability space P; s
by describing the probabilities of the basis sets, i.e., the nonempty measurable sets none
of whose proper nonempty subsets are a measurable set. Since every measurable set is
the disjoint union of basis sets, this again completely describes P; ;. In either case, we
get a polynomial-sized description of the structure M. Thus, in order to check if ¢ is
satisfiable, we just guess a structure M with a polynomial-sized description that satisfies
it. This gives us an NP procedure for checking satisfiability. I

5 Adding common knowledge

For many of our applications, we need to reason not only about what an individual
process knows, but about what everyone in a group knows, or what everyone in a group
knows that everyone else in the group knows. Common knowledge can be viewed as the
state of knowledge where everyone knows, everyone knows that everyone knows, everyone
knows that everyone knows that everyone knows, etc.

It is easy to extend our language so that we can reason about common knowledge.
We add modal operators Fg (where G is a subset of {1,...,n}) and Cg, where Egp and
Cay are read “everyone in the group GG knows ¢” and “p is common knowledge among
the group G”, respectively.

(M, s) |E Egp iff (M,s) = K;p for all it € G

24



(M, s) = Cap iff (M,s) = ELp for all k > 1, where Ely is an abbreviation for Egp,
and EET o is an abbreviation for EgEke.

It is well known (again, see [HM92]) that we can get a complete axiomatization for
the language of knowledge and common knowledge by adding the following axioms and
rule of inference to the axiom system described in Section 2:

C1. EGgD f= /\ieG ](Zgo
C2. (OGgO A Cg(c,o = 77/))) = Cgv

C3. Chp <& Eg(c,o A CGgO)
RC1. From ¢ = Egp infer p = Cgp.

Axiom C3, called the fized-point axiom, says that C'gp can be viewed as a fixed point
of the equation X & Fg(p A X). In fact, with a little work it can be shown to be the
greatest fixed point of this equation, that is, it is implied by all other fixed points. For
most of our applications, it is the fixed-point characterization of common knowledge that
is essential to us (see [HM90] for a discussion of fixed points). The rule of inference RC1
is called the induction rule. The reason is that from the fact that ¢ = Fgp is valid,
we can easily show by induction on k that » = EL¢ is valid for all k. It follows that
¢ = Cgyp is valid. In fact, the same proof can be used to show that for any structure
M, if ¢ = Fgp is valid in M, then ¢ = Cgyp is valid in M (see [HM90] for further

discussion of these points).

It is perhaps not surprising that if we augment AXy;p4s with the axioms for common
knowledge, we get a complete axiomatization for the language of knowledge, common
knowledge, and probability for structures satisfying MEAS. If we want to deal with
nonmeasurable structures, we must use the axiom system AX rather than AX/54s5. And
again we get small model theorems and an exponential-time complete decision procedure
(regardless of what additional assumptions among MEAS, OBJ, UNIF, and SDP we
make). The proofs involve a combination of the techniques for dealing with common
knowledge, and the techniques for probability introduced in [FHM90] and the previous
section. We omit details here.

In [HM90] it was observed that common knowledge is often not attainable in practical
distributed systems, but weaker variants of it are. One obvious variant to consider is a
probabilistic variant (indeed, this was already mentioned as something to consider in

[HM90]). Recall that we defined K?¢ to be an abbreviation for K;(w;(¢) > b). We now
extend our syntax to allow modal operators of the form EZ and C&. We define

(M, s) = Eboiff (M, s) = Kb for all i € G.
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By analogy to Cqip, we want CL to be the greatest fixed point of the equation X <
E%(p A X). The obvious analogue to the definition of Czp, namely, ELo A (EL)2p A ...
does not work. For example, consider a structure M for knowledge and probability
defined as follows. There are four states in M, say s, sq, S3, S4. Agent 1 cannot distinguish
s1 from sy and cannot distinguish s3 from s4, while agent 2 cannot distinguish s; from
s3 and cannot distinguish s, from s4. Thus, K; is the reflexive symmetric closure of
{(s1,52), (s3,54)} (i.e., K1 is the least relation containing (s1,s2) and (ss,s4) that is
reflexive and symmetric) while Ky is the reflexive symmetric closure of {(s1, s3), (s2,$4)}.
We take the primitive proposition p to be true at sy and s3, and false at s; and sy (so
that =(s1)(p) = false, etc.). The Kripke structure M is sketched below in Figure 1 below
(where reflexive loops between states are ignored).

Figure 1: The Kripke structure M

We assume that M is an SDP structure (so that S;, = K;(s)). We take Py, = P1s,
to be the probability space that assigns probability 1/2 to both s; and sy. Similarly,
Pas; = Pas, is a probability space where both s; and s3 have probability 1/2. On the
other hand, we take Py , = P15, and Py, = Pa,, to be such that the probability of
s4is 1. Take G = {1,2}, and let ¢ be the infinite conjunction Eéﬂp A Eé/?Eéﬂp A
It is now easy to check that (a) (M,s1) = ¢, (b) (M,s;) = ﬁEé/Qp, and (¢) (M, s3)
ﬁEé/Qp. Since (M, s1) = p, it follows that none of s, s2, or s3 satisfy p A Eé/Qp. Thus,
(M, s1) [~ Eé/Z(p A Eé/zp), so (M, s1) £ Ecl;/Z(p A ). In particular, this means that ¢
does not satisfy the fixed-point equation X < Eé/Q(p A X).

However, a slight variation does work. Define (F2)%p = true and (F2)*1p = BL(¢ A
(F2) ). Then we take

(M,s) |= Clo iff (M, s) = (F2) o for all k > 1.

We remark that this actually is a generalization of the nonprobabilistic case. The reason
is that if we define Fp = true and Fit'p = Eq(p A Fhg), then we get Fip < Ekp
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(since both Eg(p A1) & Fap A Egtp and Fgp = ¢ are valid). The analogous facts do
not hold once we add probabilities, as we have already observed.!?

The following lemma shows that this definition indeed does have the right properties:
Lemma 5.1: Cly is the grealest fized-point solution of the equation X & EX(p A X).

Proof: We first show that CZ¢ is a fixed-point solution of the equation, that is, that
Cly & EL(p A Chp) is valid. One implication is straightforward: if EL(p A Cle)
holds at (M, s), then so does E&(p A (FL)*p) for each k, since Clyp = (F&)*yp is valid.
That is, (F&) e holds for each k at (M,s), and so Cly holds at (M,s). As for
the other implication, assume that C%p holds at (M,s). Hence, (F&)**'p, that is,
El(o A (FL)*p), holds at (M,s) for each k. For each agent 7, let A;; be the set of
states in S; ; where p A (F3)F¢ holds, for k = 1,2,.... Since (M,s) = EL(¢ A (F2)*),
it follows that (p;s)«(Aix) > b, for each agent ¢ and for all k. It is a standard result
of probability theory that there exists B;y C A;; such that B;j; is measurable and
tis(Bix) > b [Halb0, Nev64]. It is straightforward to verify, by induction on k, that
(F )1 p = (F))*p is valid. (Proof: the case k = 0 is easy, since (F3)°p =qef true. For
the inductive step, note that the validity of (F2)* ¢ = (F2)Fp implies the validity of
El(p N (FLF1e) = Eb(p A (F2)F@). But this last formula is precisely (F&)*+2p =
(F2)**1p.) Thus we have A;; 2 A;p D A;3 O .... Without loss of generality, we can
assume also that B;; O B;y 2 B;3 2 ... (since we can always replace B, by the union
of By for k' > k). The set B; ., = N2, B is a measurable set; it is easy to see that it
must have measure at least b. By construction, o A C% () holds at B; .. It thus follows
that EL(¢ A CL(y)) holds at (M, s), as desired.

We now show that C2 is the greatest fixed point. Assume that 1 is a fixed point in a
structure M, that is, that M |= ¢ & E%L(¢ A1). We want to show that M |= ¢ = Cle.
We first show, by induction on k, that M = o = (F&)*p. Since (F%)°¢ =g true by
definition, the result is immediate in the case of £ = 0. For the induction step, suppose
M =+ = (FL)™p. 1t follows easily that M = E&(p A ) = EL(e A (F5)™p). Hence,
since M = ¢ & E&L(p A1), we must also have M = ¢ = EL(¢ A (FE)™p). But
(FE)™ o =aet E&(0 A (FE)™p). So M =4 = (F2)™ . This completes the inductive
step. It now follows that if (M, s) = ¢, then (M, s) | (F&)* for all k, and hence that
(M, s) = Cée. Thus, M =1 = Clp. This proves that C&y is the greatest fixed point
of the equation X & EL(p A X). I

It is now easy to check that we have the following analogues to the axioms for Eg

and Cg.

131t is interesting to note that the infinite conjunction E% o A (EL)%¢ A ... is a solution to a slightly
different fixed-point equation, namely X < ELp A ELX. This is the definition taken by [MS89]. Both
definitions are generalizations of the nonprobabilistic case, since, as we observed above, Eg(¢ A X) is
equivalent to Ege A EgX, so Cgyp is also a solution to the fixed-point equation Ege A EgX. The two
definitions are quite similar. Which is the right one to use seems to depend on the application. Our
definition seems to be somewhat more appropriate in analyzing probabilistic coordinated attack and
Byzantine agreement protocols [HT93].
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CPL. by & Neo K.
CP2. Cly e ElL(pACle)
RCP1. From ¢ = EL(¥) A ¢) infer v = Clep.

We remark that these axioms and rule of inference are sound in all structures for
knowledge and probability. And again, we can actually show the following strengthening
of RCP1: for any structure M, if ¢ = EL(1) A ) is valid in M then o = Cly is valid
in M.

It can be shown that these axioms and inference rule, together with the axioms and
inference rules C1-C3 and RC1 for common knowledge discussed above and AXjpspas
(resp. AX) gives us a sound and complete axiomatization for this extended language in
the measurable case (resp. in the general case). Moreover, we we can prove a small model
theorem, and show that the validity problem for all variants of the logic is complete for
exponential time. These proofs are quite difficult; details will appear in a later paper.

6 Conclusions

We have investigated a logic of knowledge and probability that allows explicit reasoning
about probability. We have been able to obtain complete axiomatizations and decision
procedures for our logic. We have also identified some important properties that might
hold of the interrelationship between agents’ probability assignments at different states.

It seems to us that the most important area for further research lies in understanding
better what the appropriate choice of probability space is. Some discussion of this issue
appears in [FZ88]; a more general treatment appears in [HT93]. Using the ideas in this
paper together with Moses’ recent work on resource-bounded reasoning [Mos88], Moses,
Tuttle, and the second author have made progress on capturing interactive proofs and
zero knowledge [GMR89] in the framework of knowledge and probability discussed in this
paper. These results appear in [HMT88]. The analysis in [HMT88] is done using the same
style of probability assignment as in our examples in Section 3, that is, they take S; (. )
to consist of all points with the same global state as (r,m). This probability assignment
satisfies OBJ and UNIF, but not necessarily SDP. While this is not the only choice of
probability assignment that is reasonable in this context, there are good grounds for
believing that no reasonable choice will satisfy SDP. If there are nonprobabilistic events
in a system as well as probabilistic events, SDP seems inappropriate. As we said earlier,
a general framework for deciding which choice of probability assignment is appropriate,
presented in terms of adversaries, appears in [HT93].

As this discussion may suggest, although our understanding of the subtle interaction
between knowledge and probability is increasing, more work needs to be done in this
area. It would be especially useful to have a larger body of examples on which to test
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our ideas. The economics and game theory literature may be a good source for such
examples. We expect that further progress can be made by combining the intuitions
from both computer science and game theory.
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