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Abstract: We consider the relation between knowledge and certainty, where
a fact is known if it is true at all worlds an agent considers possible and is
certain if it holds with probability 1. We identify certainty with belief, in-
terpreted probabilistically. We show that if we assume one fixed probability
assignment, then the logic KD45, which has been identified as perhaps the
most appropriate for belief, provides a complete axiomatization for reasoning
about certainty. Just as an agent may believe a fact although ¢ is false, he
may be certain that a fact ¢ is true although ¢ is false. However, it is easy
to see that an agent can have such false (probabilistic) beliefs only at a set of
worlds of probability 0. If we restrict attention to structures where all worlds
have positive probability, then S5 provides a complete axiomatization. If we
consider a more general setting, where there might be a different probabil-
ity assignment at each world, then by placing appropriate conditions on the
support of the probability function (the set of worlds which have non-zero
probability), we can capture many other well-known modal logics, such as
T and S4. Finally, we consider Miller’s principle, a well-known principle re-
lating higher-order probabilities to lower-order probabilities, and show that
in a precise sense KD45 characterizes certainty in those structures satisfying
Miller’s principle.

*This paper is essentially identical to one that appears in Annals of Mathematics and Artificial
Intelligence 4, 1991, pp. 301-322.



1 Introduction

A great deal of interest has focussed recently on logics of knowledge and probability
(see, for example, the volumes [Hal86, Var88, KL86, KL87]). Researchers have used the
possible-worlds approach to give semantics to knowledge by saying an agent knows a fact
@ if @ is true at all the worlds the agent considers possible. We can also give semantics
to formulas involving probability in a possible-worlds framework by saying ¢ holds with
probability « if the set of worlds where ¢ is true is a set of probability «.

It is well known that we can capture different notions of knowledge by varying the
conditions on the accessibility relation which defines the set of worlds that an agent
considers possible (see [HM92] for an overview). One particular set of requirements on
the accessibility relation, namely that it be serial, Fuclidean, and transitive (we define
these terms below) results in the logic KD45 which has been considered the logic most
appropriate for belief [Lev84a, FH88a].

We can also give a probabilistic interpretation to belief. The greater the probability
of ¢ (according to an agent’s subjective probability function), the stronger an agent’s
belief is in . In this paper, we identify certainiy—where an agent is said to be certain
of ¢ if ¢ holds with probability 1—with belief, under this probabilistic interpretation.
We show that such an identification is well motivated: If we have one fixed probability
assignment on the set of possible worlds (as is the case in [Nil86]), then certainty satisfies
precisely the axioms of KD45. In KD45, an agent may hold false beliefs; i.e., he may
believe a fact ¢ that is false. Similarly, an agent may be certain about a fact which
is false.! However, we show that an agent can have such false beliefs only at worlds
with probability 0; i.e., almost surely, his (probabilistic) beliefs are correct. If we restrict
attention to structures where all possible worlds have non-zero probability, then S5 gives
a complete axiomatization for certainty: an agent no longer can have false beliefs.

We can extend these results by considering more general probability structures, where
the agent may have a different probability function at each state of the world. Just as
different axioms for knowledge can be captured by placing appropriate conditions on the
set of worlds an agent considers possible, so different axioms for certainty can be captured
by placing appropriate conditions on the support of the probability function, that is, the
set of worlds to which the probability function assigns non-zero measure. Indeed, we
show that many other well-known modal logics, such as T, D4, and S4, correspond in a
natural way to conditions on the support.

This is not the first paper to consider the relationship between knowledge, belief, and

certainty; Gaifman [Gai86] and Frisch and Haddawy [FH88c] also consider these issues.
Both of these papers focus on structures that satisfy Miller’s principle [Mil66, Sky80b]

1This is not to say that the KD45 axioms completely characterize the notion of “certainty”, any more
than they characterize the notion of “belief” as it is used in English. These words are used in a variety
of ways in English; no one axiom system can hope to capture them all. The point here is only that there
is a natural probabilistic interpretation of certainty that has precisely the same properties as have been
ascribed to belief in a number of papers.



(this principle is discussed in detail later). Gaifman [Gai86] shows that the valid formulas
of Sh are precisely those which hold with probability 1 in his logic (when restricted to
structures satisfying Miller’s principle), while Frisch and Haddawy [FH88c| argue that
the valid formulas of the modal logic D4 are precisely those that hold with probability
1 in their logic (which is also intended to capture Miller’s principle). We show that in
our framework, there is a precise sense in which KD45 characterizes certainty in those
structures satisfying Miller’s principle. We remark that Morgan has also considered the
relationship between axioms for probability and axioms for more standard modal logics
[Mor82a, Mor82b], but his focus is on conditional probabilities and the results have a
much different flavor from ours.

The rest of this paper is organized as follows. In the next section, we present the
formal model for reasoning about probability (which is a slight variant of the model
discussed in [FHM90, FH88b]). In Section 3 we review the formal semantics for reasoning
about knowledge, stating a number of results that are needed in the sequel. In Section
4 we show that KD45, the logic of belief, is a complete axiomatization for reasoning
about certainty (with respect to the probability structures introduced in Section 2), and
that if we restrict attention to structures where all worlds have non-zero probability,
then S5 is a complete axiomatization. In Section 5 we consider generalized probability
structures, and show how different conditions on the support of the probability measure
correspond to different axiomatizations. In particular, we show that many of the classical
modal logics can be captured by placing the appropriate conditions on the probability
structures. While these results are all quite straightforward, they do show an interesting
and not altogether obvious connection between certainty and knowledge. In Section 6
we briefly discuss some extensions to our results. In Section 7, we consider structures
satisfying Miller’s principle and relate our results to those of [Gai86] and [FH88c]. We
conclude in Section 8 with some further discussion.

2 Reasoning about probability

We are interested in making statements about certainty; that is we would like a logic that
allows formulas of the form “The probability of ¢ is 1.” In order to accommodate such
statements, we start with a more general logic, essentially that considered in [FHM90,
FH88b]. In this logic, statements of the form w(p) > 1/2 and w(p) < 2w(1)) are allowed,
which can be interpreted as “the probability of ¢ is greater than or equal to 1/2” and
“the probability of ¢ is less than twice the probability of ¢, respectively. More generally,
linear combinations of expressions involving probability are allowed.

The formal syntax of the logic is quite straightforward. Well-formed formulas are
formed by starting with primitive propositions, and closing off under Boolean connectives
(conjunction and negation), as well as allowing weight formulas of the form ajw(yy) +
...+ agw(pr) > b, where ay, ..., ay, b are arbitrary integers and ¢,. .., g, are arbitrary
formulas. We call the resulting language £F. A formula such as w(p) > 1/2 is, strictly



speaking, an abbreviation of the £F formula 2w(p) > 1, while w(p) < 2w(z)) is an
abbreviation for ~(w(y) > 2w(v)). We also use a number of other obvious abbreviations
without further comment, such as w(yp) < b for —w(p) > —b and w(p) = b for (w(p) >
b) A (w(p) < b).

Just as in [FH88b], we allow arbitrary nesting of probability formulas, so that w(w(y) >
1/2) < 1/3 is a legal formula of £F.2 Such higher-order probability statements will be
one of our main interests here. They are not as unmotivated as they might first appear.
Suppose we take ¢ to be the statement “it will rain tomorrow,” and we have just heard
the weatherman say that it is likely to rain tomorrow. Thus, according to the weather-
man, w(y) > 1/2 holds. However, suppose we have found this weatherman to be quite
unreliable in the past, so that his predictions turn out to be wrong far more often than
they are right. Thus, we might place probability less than 1/3 on his statement, which
leads us exactly to the formula w(w(yp) > 1/2) < 1/3. (See [Gai86, Sky80b] for further
discussion of higher-order probabilities.)

We use a possible-worlds approach to give semantics to the formulas in £F. (This is
essentially the same approach as that taken by Nilsson [Nil86].) We take a probability
structure N to be a tuple (S, 7, pr), where S is a finite or countably infinite set of
states or possible worlds, = associates with every state s € S a truth assignment 7(s)
on the primitive propositions (so that x(s)(p) is either true or false for every primitive
proposition p and state s € S), and pr is a discrete probability function on S (so that
pr(s) > 0 for each s € S and Y .5 pr(s) = 1). We can think of pr as being the agent’s
subjective probability assignment to the worlds in S. As usual, for every subset A C S|,
we define pr(A) = > ,capr(s). We have restricted S here to be countable and pr to be
a discrete probability function for ease of exposition. We discuss in Section 6 how our
results can be extended to more general settings.

We can now define the satisfaction relation |=, where (N, s) | ¢ is read “¢ is true
(or satisfied), in state s of the probability structure N”, by induction on the structure of
. The definitions for the propositional connectives are the standard ones. Intuitively,
we would like a formula such as w(¢) > 1/2 to be true if the probability of the set of
states where  is true is at least 1/2. To make this precise, given a formula ¢, suppose
we have defined (N, s) | o for all states s € S. Let Sy = {s € S:(N,s) =¢}. Then
we define (N,s) = w(p) > 1/2 if pr(S,) > 1/2. The complete formal definition of = is
given below:

(N,s) = p (for a primitive proposition p) iff x(s)(p) = true

(st) |: o Al (N73) |: ¢ and (N73) |: ¥

(N, s) B —piff (N,s) e

(N,s) E arw(er) + -+ + arw(pr) > b iff arpr(Sy, ) + -+ + agpr(Sy, ) > b.

As usual, we say a formula o is valid with respect to probability structure N =
(S, 7, pr), written N |= ¢, if (N,s) E ¢ for all s € S. A formula is valid with re-

ZNesting was not considered in [FHM90] to simplify the presentation, although there is no technical
difficulty involved in adding it there as well.



spect to a class N of probabilily structures, written N = ¢, if N |= ¢ for all N € N.
Similarly, we say ¢ is satisfiable with respect to N if (N,s) = ¢ for some s € S, and
satisfiable with respect to A if ¢ is satisfiable with respect to IV for some N € .

In [FHM90], a complete axiomatization is provided for the sublanguage of L” that al-
lows only Boolean combinations of weight formulas with propositional arguments (i.e., if
@ occurs in the context w(yp), then ¢ is a propositional formula), while in [FH88b],
techniques are sketched for extending this axiomatization to the full logic (indeed, in
[FH88b], a complete axiomatization is provided for a richer language with modal oper-
ators for knowledge). Here, our interest is in a different sublanguage of £F, where the
only probability statements are those that involve certainty, that is, those of the form
w(p) = 1 (with nesting allowed); we abbreviate such a formula as Cert(¢). Thus we
have

(N, s) | Cert(p) iff pr(S,) = 1.
Equivalently, we get:

(N,s) = Cert(p) iff (N,t) = ¢ for all ¢ such that pr(¢) > 0.

We use LY to denote the sublanguage where the only probability statements are those
of the form Cert(p). Thus, a typical formula of L% is =g A Cert(=Cert(p) A Cert(q)).

3 Reasoning about knowledge

The possible-worlds model can also be used to capture reasoning about knowledge. We
briefly review the necessary ideas here; the interested reader is referred to [HM92] for
more details.

The intuitive idea is that an agent knows ¢ if ¢ is true in all the worlds the agent
considers possible. For now, we restrict our discussion to a situation involving only one
agent; in Section 6 we discuss how our results can be extended to a situation involving
many agents.

In order to reason about knowledge, we use a modal logic with a modal operator K,
where K¢ is read “the agent knows ¢.” The well-formed formulas are formed by starting
with primitive propositions, and closing off under Boolean connectives and applications
of K. Thus, if ¢ and ¢ are formulas, then so are =, © A ¢, and Ky. We call this
language LK.

In order to give semantics to such formulas, we use knowledge structures.®> A knowl-
edge structure M is a tuple (S, 7, K), where S is a set of states (not necessarily countable),
7 associates a truth assignment with every state in .S, just as in the case of probability
structures, and K is a binary relation on S. Intuitively, (s,¢) € K if, in state s, the agent
considers ¢ possible. For future reference, we define K(s) = {t: (s,1) € K}; thus, K(s) is
the set of states the agent considers possible in state s.

30ur usage of the term knowledge structure here differs from that of [FHV91]. We use it here in
contrast to probability structures.



Again, we define truth for formulas in £X by induction on structure. The only clause
that differs from that for £ is that for formulas of the form K:

(M,s) = Ky iff (M,t) = ¢ for all ¢ such that (s,t) € K.
This captures the intuition that the agent knows ¢ in state s if ¢ is true at all the
worlds that the agent considers possible in state s.

We define validity and satisfiability with respect to a knowledge structure and a class
of knowledge structures just as in the case of probability structures.

We are often interested in classes of knowledge structures where certain restrictions
are placed on the binary relation K, since by restricting K we can capture a number
of interesting properties of knowledge. Recall that a binary relation K on S is reflexive
if (s,s) € K for all s € S, transitive if (s,t) € K and (t,u) € K implies (s,u) € K,
symmetric if (s,1) € K implies (¢,s) € K, Fuclidean if (s,t) € K and (s,u) € K implies
(t,u) € K, and serial if for all s € S, there is some ¢ such that (s,t) € K. Let M be the
class of all knowledge structures. We restrict M by using superscripts r, s, ¢, e, and [
to denote reflexive, symmetric, transitive, Euclidean, and serial structures, respectively.
Thus, M’ denotes the class of all reflexive and transitive knowledge structures, M
denotes the class of Euclidean, serial, and transitive structures, and so on.

Consider the following collection of axioms:

P All instances of axioms of propositional logic
K (Ko AK(p =) = K¢
T K=

4 Kp = KKy

5 Ky = K-Kyp

D —-Kfalse

and rules of inference:

R1 From ¢ and ¢ = % infer ¢

R2 From ¢ infer Kp*

We get various systems by combining some subset of K, T, 4, 5, and D with P,
R1, and R2. Thus, we get the logic K by combining K with P, R1, and R2, KT by
combining K and T with P, R1, and R2, and so on. Traditionally, KT4 has been called

“The names K, T, 4, 5, and D are fairly standard, and are taken from [Che80]. The axiom D given
in [Che80] is different from that given here, although the two versions are equivalent in the presence of
P, K, R1, and R2.



S4, and KT45 has been called S5; KD45 is sometimes called weak S5 [FH88a]. As well,
the K is often omitted, so that KT becomes T, KD becomes D, and so on. We try to use
the most common notation throughout this paper, and hope the reader will bear with
us.

Different authors have argued for the appropriateness of different logics to capture
knowledge. For example, S5 has been used to capture a notion of knowledge appropri-
ate for analyzing distributed systems [HM90, Hal87] and synchronous digital machines
[RK86]. Moore used S4 in [Moo85]. On the other hand, since the knowledge represented
in a knowledge base is typically not required to be true, T has been thought to be in-
appropriate for these applications; thus, KD45 is considered, for example, in [Lev84a].
KD45 is also considered to be an appropriate logic for characterizing the beliefs of an
agent who might believe things that in fact turn out to be false [FH88a, Lev84b].

We say that an axiom system A is sound with respect to a class of (knowledge or
probability) structures Q if all the axioms in A are valid with respect to Q and the rules
of inference preserve validity; A is complete with respect to a class Q if all the valid
formulas in @ are provable using the axioms and rules of inference of A.

It turns out that there is a close connection between conditions placed on K and the
axioms. In particular, T corresponds to K being reflexive, 4 to K being transitive, 5 to
K being Euclidean, and D to K being serial. To make this precise, we define an axiom
system A to be normal if it consists of the axioms P, K, rules of inference R1, R2,
and some subset (possibly empty) of the axioms T, 4, 5, and D. The class of structures
corresponding to A is that class that results by restricting to the relations corresponding
to the axioms as discussed above. For example, M is the class corresponding to KD45
and M" is the class corresponding to T. We use M# to denote the class of structures
corresponding to the normal axiom system A. We then get the following well-known

result (whose proof can be found in [Che80, HM92]):

Theorem 3.1: If A is a normal axiom system, then A is sound and complete with respect
to M4 (for the language LX ).

As a consequence of Theorem 3.1, we get, for example, that KD45 i1s a sound and
complete axiomatization with respect to M*®* and that T is a sound and complete axiom-
atization with respect to M”. Since a binary relation is reflexive, symmetric, transitive
(i.e., an equivalence relation) iff and only if it is reflexive, Euclidean, and transitive, we
get that S5 is a sound and complete axiomatization with respect to M"*,

We need two more results from modal logic. The proof of the first can be found in
[Che80, HM92]. It says that although we have allowed the set of states in a knowledge
structure to be infinite and even uncountable, we can without loss of generality (at least
as far as satisfiability and validity are concerned) restrict attention to finite knowledge
structures, i.e., those where the set of states is finite. We say a formula ¢ is consistent
with an axiom system A if —¢ cannot be proved from A.



Theorem 3.2: If A is a normal axiom system and @ is consistent with A, then ¢ is
salisfiable in a finite knowledge structure in M4,

The second result relates S5 provability to KD45 provability. The result is undoubt-
edly known to experts, but since a proof does not seem to appear in the literature, we
sketch one below.

Theorem 3.3: The formula ¢ is S5 provable iff Ko is KD45 provable.

Proof: Clearly if K¢ is KD45 provable, then K¢ is Sh provable (since D is implied by
T and all the other KD45 axioms are axioms of S5), so by axiom T, ¢ is S5 provable.
For the converse, it suffices to show that if ~K¢ is consistent with KD45, then —¢p is
consistent with S5. If =K is consistent with KD45, then by Theorem 3.1, =Ky is
satisfiable in a knowledge structure in M say M = (S,7,K). Thus for some s € S,
we have (M, s) = K. It follows that for some ¢t € K(s), we have (M, 1) = —~¢. Let
M' = (K(t),#',K'), where ©’ is & restricted to K(t) and K’ is K restricted to K(t). The
fact that K is Euclidean allows us to prove a number of facts, the details of which we leave
to the reader: (1) K(¢) is nonempty (in particular, ¢ € K(1)), (2) for all u,u’ € K(t), we
have (u,u’) € K. (3) if u € K(¢) and (u,u’) € K, then v’ € K(t) (here we use the fact that
since (t,t) € K and (¢,u) € K, we also have (u,t) € K by the Euclidean property, so if
(u,u’) € K, by the Euclidean property again, so is (¢,u’)). From (1) and (2) it follows that
K’ is an equivalence relation on K(t) # 0, and so M € M"". A straightforward induction
on structure now shows that for all formulas ¢ and all u € K(s), we have (M, u) |= ¢ iff
(M',u) = ¢ (in order to deal with the case K1’ we need to use observation (3) above). I

Actually, the proof of Theorem 3.3 shows a little more. Notice that the only property
of the K that we used in the proof is that it is Euclidean. It thus follows (by the same
proof) that ¢ is Sh provable iff K¢ is K5 provable.

4 Relating certainty and knowledge

We first show that if we consider N, the class of all probability structures as defined in
Section 2, then certainty is characterized by the axioms of KD45. We first define some
notation: if ¢ is a formula in £, let ™ be the formula in £¥ that results by replacing
all occurrences of C'ert by K. Similarly, if ¢ is a formula in £5, let ©“ be the formula
in £ that results by replacing all occurrences of K by Cert. For each axiom system
A discussed in Section 3, let A be the result of replacing all occurrences of K in the
axioms and inference rules of A by Cert.

Theorem 4.1: KD/5° is a sound and complete axiomatization for the language LE with
respect to Ny.



Proof: The proof of soundness is straightforward: Fix a probability structure N =
(S,m,pr) and a state s € S. Clearly if (N,s) | Cert(p) A Cert(¢ = 1), then both S,
and S, have measure 1. It is a standard consequence of the properties of probability
that their intersection also has measure 1. Since S, N S,=y C Sy, it follows that S, has
measure 1. Thus (N, s) | Cert(v), giving us K.

Next note that if (N, s) | Cert(¢), then S, has measure 1, so (N, s') | Cert(p) for
all s € S, so that (N,s) = Cert(Cert(yp)). This gives us 4. The proof of 5 is similar
and left to the reader.

Finally, note that Sy,s. 1s empty, and so in particular cannot have measure 1. Thus

(N, s) |E —~Cert(false), proving the validity of D.

We leave it to the reader to check that the rules of inference preserve validity, and

that P is valid.

For completeness, it suffices to show that if ¢ is consistent with KD45%, then ¢ is
satisfiable. Suppose that ¢ is consistent with KD45%. Then ¢ is consistent with KD45.
By Theorem 3.2, o™ is satisfiable in a finite knowledge structure M = (S, #,K) € M.
Suppose (M, s) = ¢, Recall that K(s) = {t : (s,t) € K}. Suppose |K(s)] = n. Let
N = (5", 7', pr), where S" = K(s) U {s}, 7’ is the restriction of = to S, and pr(t) = 1/n
for t € K(s). Note that if s € K(s), then pr(s) = 1/n by definition, while if s ¢ K(s),
then we must have pr(s) = 0. Now a straightforward induction on the structure of
formulas shows that for all formulas » € £ and all states ¢ € S’, we have (N,t) |= ¢
iff (M,t) |= 4. The only nontrivial case is if ¢ is of the form Cert(¢)'). But note that
our definition of pr guarantees that (N, ) E Cert(y') iff (N, ') =o' for all ¢’ € K(s) iff
(by the induction hypothesis) (M,#') = (¢')X for all ¢ € K(s) iff (M,t) & K((¢")*) iff
(M,t) = (Cert(¢))X. This completes the inductive proof. As a consequence, we have
that (N, s) = ¢, so @ is satisfiable. I

Corollary 4.2: If ¢ is a formula in L5 then ¢ is S5 provable iff No = Cert(¢%).

Proof: By Theorem 3.3, ¢ is S5 provable iff Ky is KD45 provable. By Theorem 4.1,
K is KD45 provable iff Ay = (Kp)C. Since (K@) = Cert(¢Y), we are done. 1

Corollary 4.2 is closely related to Theorem 5 of [Gai86]; we discuss the precise rela-
tionship in Section 7.

Note that KD45 allows the agent to have false beliefs; =@ A K¢ is consistent with
KD45. By interpreting K as certainty (by translating a formula ¢ to ¢“), we get some
added insight into the probability of having false beliefs. Given a probability structure
N = (S,m,pr), let FB consist of those states s € S where the agent has some false
beliefs, i.e., those states s where for some formula ¢ we have (N,s) = —p A Cert(y).
Then it is easy to see that F'B is a set of measure 0.

Proposition 4.3: pr(FB) = 0.



Proof: Suppose s € F'B. Then for some formula ¢, we have (N,s) | —¢ A Cert(e).
Thus, pr(S,) =1 and s ¢ S,. It follows that pr(s) = 0. Since pr is a discrete measure,
so that pr(FB) =3 ,crp pr(s), it follows that pr(FB) = 0. 1

Proposition 4.3 shows that if there are no states of measure 0, then the agent will
not have false beliefs. This suggests that S5 will form a complete axiomatization in this
case. To make this precise, let N consist of those probability structures where all states
have positive measure (thus N = (S, 7, pr) € Ny iff pr(s) > 0 for all s € S).

Theorem 4.4: S5¢ is a sound and complele axiomatization with respect to N.

Proof: Suppose ¢ is S5 provable. Since N7 C Ny, it follows from Corollary 4.2 that
N1 | Cert(pY). Thus, if N = (S,7, ) € N7, we have N |= Cert(p%). Since every
state in S must have positive probability, we have (N,s) = ¢ for all s € S. Thus
N | ¢%. Tt follows that N |= ¢©. This shows that S5 is sound with respect to Nj.
Completeness of S5¢ follows the same lines as that of Theorem 4.1; we need only observe
that since s € K(s), all states are assigned positive measure in our construction, so we
get a probability structure in 7. I

It is well-known that using the axioms of KD45, we can prove that any formula in £%
is equivalent to a formula with no nesting of K’s. (This is proved by using the equivalences
KleAy)= (K ANKY), KK = Ko, K-Kp = Ko, K(p V K¢) = (Ko V Kv), and
K(pV ~K¢) = (Ke VK1), all of which are easily seen to be valid with respect to
M we omit details here.) Using Theorem 4.1, it follows that

Corollary 4.5: For every formula ¢ in LY, there is a formula @' which has no nesting
of Cert such that ¢ is equivalent to ¢’ in all probabilily structures; i.e., N |= ¢ = ¢'.

A fortiori, the result also holds for A;. This says that we do not gain any expressive
power by allowing nesting of the C'ert modality. Note that we do gain expressive power
if we can make statements that involve probabilities other than 1; the formula w(w(p) >
1/2) < 1/3 is not equivalent to any formula without nested probability statements.

5 (Generalized probability structures

There are situations for which the probability structures discussed in Section 2 may not
be general enough to capture what is going on. In particular, since there is only one
probability function in the picture, we cannot capture situations where there is some
uncertainty about the probability function.

For example, consider an agent tossing a coin, which he knows to be either a fair
coin (so that the probability of both heads and tails is 1/2) or a biased coin (so that the
probability of heads is, say, 1/3, while the probability of tails is 2/3). This suggests that

9



we allow one possible world where the probability function assigns probability 1/2 to the
event heads (i.e., to the set of possible worlds where the coin lands heads) and another
possible world where the probability function assigns probability 1/3 to the event heads.
We might even consider a situation where the agent does not know his own probability
function (this is analogous to situations regarding the modeling of knowledge, where we
want to allow an agent who does not know what he knows), and thus considers a number
of worlds possible where he has different probability functions.

These scenarios lead us to a more general approach: associating a (possibly differ-
ent) probability function with each possible world. We capture this intuition by means
of generalized probability structures. A generalized probability structure N is a tuple
(S,7, PR), where S is a finite or countably infinite set of states, 7(s) is a truth assign-
ment to the primitive propositions for each state s € S, and PR(s) is a probability
function on S for each state s € S. Generalized probability structures can be viewed as
a generalization of knowledge structures. Instead of just having a set of states that an
agent considers possible from each state s, each world that the agent considers possible
is assigned a probability (where the worlds that the agent does not consider possible
are assigned probability 0). We remark that the Kripke structures for knowledge and
probability of [FH88b] are in fact a generalization of generalized probability structures
(in that they allow many agents and include modal operators for knowledge).

We give semantics to probability formulas just as before, except that when evaluating

the truth of a weight formula in the state s, we use the probability function PR(s). Thus,
we get

(N,s) E arw(er) +...arw(pr) > biff a1 PR(s)(S,,) + ... arPR(s)(S,,) > b.

Note that the probability structures of Section 2 can be viewed as a special case of
generalized probability structures, where PR(s) = pr for all states s € S.

When reasoning about certainty, it is clear that, in some sense, all that is rele-
vant are the states with non-zero measure. Given a generalized probability structure
N = (5,7, PR), let the support relation Suppy on S be defined by: (s,1) € Suppy if
PR(s)(t) > 0; i.e., (s,t) € Suppy if the probability function in state s assigns positive
probability to state ¢. It is easy to check from the definitions that

(N, s) | Cert(p) iff (N,t) |= ¢ for all ¢ such that (s,t) € Suppy.

This suggests that the Suppy relation plays the same role in generalized probability
structures as the K relation does in knowledge structures. To make this precise, given a
generalized probability structure N = (S, 7, PR), let My = (S, 7,K) be the knowledge
structure where X' = Suppy. Then we have

Theorem 5.1: If ¢ € LY, then (N,s) = ¢ iff (My,s) E o*.

Proof: Again, the proof proceeds by an easy induction on the structure of ¢. The
only nontrivial case is if ¢ is Cert(¢’). In this case, we have (N,s) = ¢ iff (N,s) |
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Cert(¢") iff (N,t) E ¢ for all t such that (s,t) € Suppn(s) iff (by induction hypothesis)
(My,t) | (¢")X for all ¢ such that (s,¢) € K(s) iff (by definition) (My,s) E K((¢")¥)
iff (My,s) =@, 1

For reasoning about knowledge, we obtain different axioms by varying the conditions
on the relation K. We can obtain analogous axioms for reasoning about certainty by
varying the conditions on the support relation. Note that the support relation is always
serial: there must be at least one state ¢ such that PR(s)(t) > 0, since if we sum PR(s)(t)
over all states ¢ we get 1. We can impose other restrictions on the support relation, just
as we did for the accessibility relation K; we then get analogous classes of generalized
probability structures N7, N'*", and so on. Just as in the case of knowledge, given a
normal axiom system A, we can talk about the class of generalized probability structures
N4 corresponding to A.

Theorem 5.2: If A is a normal aziom system that includes T or D, then A® is sound
and complete with respect to N4 (for the language L ).

Proof: Given a generalized probability structure N € N4, observe that My € MA.
By Theorem 3.1, all the axioms of A are valid in My and all the rules of inference of A
preserve validity in My. Thus, by Theorem 5.1, all the axioms of A are valid in N and all
the rules of inference of A preserve validity. For completeness, it suffices to show that if
¢ is a formula in £ which is consistent with A”, then ¢ is satisfiable in some generalized
probability structure in N4, If ¢ is consistent with AY, then ©* is consistent with A.
By Theorem 3.2, ¢ is satisfiable in a finite knowledge structure M = (9, 7,K) € M4,
It is easy to construct a generalized probability structure N = (S,7, PR) € N4 such
that My = M, simply by defining PR so that Suppy = K. (Of course, there are many
definitions of PR that will do the trick. However, note that we are using the fact that
either T or D is one of the axioms in A here, since we need K to be serial to ensure that
there is some support relation Suppy with Suppy = K.) By Theorem 5.1, ¢ is satisfiable
in N. 1

This result shows that most of the standard logics of knowledge can be interpreted
as logics of certainty. We remark that we could easily have derived Theorem 4.1 as a
corollary to Theorem 5.2.

6 Extensions

As we mentioned above, we can easily extend our structures to allow for many agents.
Suppose we have many agents, each with his own subjective probability function. In the
case of probability structures, this would amount to considering structures of the form
(S,®,pri,...,prn), where pr; is agent ¢’s probability function, while in the case of gener-
alized probability structures, we would have structures of the form (S, 7, PRy,..., PR,),
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where PR;(s) is agent ¢’s probability function in state s. We would then extend the
language to allow formulas of the form Cert;(¢): agent ¢ is certain that ¢ holds. The
analogous changes can be made in the case of knowledge structures too, and the ax-
iom systems can be extended in the obvious way to allow reasoning about many agents
(cf. [HM92]). All our results then go through with essentially no change.

Gaifman’s HOPs (higher-order probability structures) are equivalent to generalized
probability structures with two agents, one of which is taken to be the agent doing the
reasoning, and the other which is taken to be the expert. The agent’s probability function
is taken to be independent of the state (and so is like the probability function in our
probability structures in Section 2), while the expert may have a different probability
function at each state. It is not quite clear why the expert has different probability
functions in each state while the agent does not, but in any case Gaifman’s model can be
easily extended to allow the agent to have different probability functions at each state.
Gaifman goes on to consider general HOPs, in which the expert’s probability function can
be time-dependent. We can easily deal with this in our framework by adding temporal
operators, and a temporal accessibility relation.

Frisch and Haddawy [FH88c] present a structure along the same lines as those of
Gaifman, except that they actually allow the agent to have different probability functions
at each state. However [Had], they view their structure as only appropriate for giving
semantics to formulas with depth of nesting at most two (and thus inappropriate for
a formula of the form Cert(Cert(Certp))). In order to deal with deeper nesting, they
require a whole sequence of probability functions. This makes their approach for nested
formulas quite different from ours and that of Gaifman.

Another way we can extend our structures is by dropping the assumptions that the
set of possible worlds is countable and that the probability function is discrete. We briefly
discuss how to do so here.

If we drop the assumption that the probability function is discrete, we have to ex-
plicitly describe with each probability function its domain, the set of sets to which the
function assigns a probability. These sets are called the measurable sets. We then have to
slightly redefine the semantics of Cert(y¢) to take into account the possibility that the set
S, might not be measurable. If N is a probability structure, we define (N, s) = Cert(y)if
there is some measurable set A such that A C S, and p(A) = 1. This essentially amounts
to considering the inner measure induced by p (see [FHM90, FH88b] for more details). It
is easy to check that this definition agrees with our old definition if S, is measurable. We
make similar modifications if N is a generalized probability structure. In this case, we
also redefine the support relation so that (s,t) € Suppy iff t € N{a:PR(s)(A)=1}A. Again,
this definition agrees with our old definition of support if all sets are measurable. We
leave it to the reader to check that, with these modifications, all our proofs go through
with essentially no change. These modifications also enable us to deal with the case that
the set of possible worlds is uncountable. We leave details to the reader.
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7 Miller’s principle

Gaifman [Gai86] and Frisch and Haddawy [FH88¢| are mainly interested in structures
that embody Miller’s principle [Mil66, Sky80a, Sky80b]. In [Sky80a, Sky80b], a number
of variants of Miller’s principle are presented. The one of most interest to us here can be
expressed

wy (p|(wa(p) € 1)) € 1,

where w; and w;y can be viewed as the probability functions of two agents (we present
possible interpretations for these agents below) and [ is an interval, which for the purposes
of this discussion we can take to be a closed interval [a,b] where a and b are rational
endpoints with 0 < a < b < 1. Intuitively this says that the conditional probability of ¢
with respect to wy, given that the probability of ¢ with respect to wy lies in the interval
[a, b], is [a, b].

There are a number of possible interpretations of w; and w,;. One is to view w; as
referring to rational degrees of belief of an agent and w, to refer to propensities or objective
probabilities (see [Sky80a, Sky80b, Hal90] for further discussion of these issues). Another
viewpoint is taken by Gaifman [(Gai86], where as we mentioned in the previous section,
wy 1s taken to represent the expert and wy the agent about whom we are reasoning.
A third possibility mentioned by Skyrms [Sky80a] is that we can identify w; and w,
as degrees of belief of an agent who does not necessarily know his own mind. The
motivation for Miller’s principle depends in part on the interpretation placed on w; and
wy. For example, van Fraassen [Fra84] gives an argument showing that a violation of
Miller’s principle makes possible a Dutch book against the agent: a system of bets (using
odds in accordance with the agent’s probabilities) in which the agent incurs a net loss in
all circumstances. Here wy is interpreted as giving the agent’s probability of events at
a certain future time, while w, is interpreted as giving the agent’s current probability.
Skyrm’s [Sky80a] argues that the third interpretation would hold of any agent who wants
to maintain the consistency of his beliefs after conditionalization.

Since we have focused on a situation with one agent (and therefore, only one probabil-
ity operator), we will consider the third interpretation here, since it is the only nontem-
poral interpretation that involves only one agent. This interpretation is easily captured
within a generalized probability structure. We discuss some consequences of this inter-
pretation now, and then relate our results to those of Gaifman and Frisch and Haddawy.

Since we assume that w; and w, in Miller’s principle now represent the same probabil-
ity function, we replace both by w. This still does not does not correspond to a formula in
LT since we do not allow conditional probabilities. But since w(p[h) = w(p A ) /w(w)),
Miller’s principle can be rewritten as

aw(w(p) € I) <wlp A(wlp) € 1)) < bw(w(p) € 1), (+)

where we take I to be the interval [a,b] and w(p) € I to be an abbreviation of a <
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w(p) < b. This is (an abbreviation of) a formula in £F.?

Miller’s principle (the axiom (*)) for the full language £ is not sound with respect to
any of the classes of structures we have considered so far. This is perhaps not surprising,
since information about support is not sufficient to capture an axiom that talks about
arbitrary probabilities, rather than just certainty. In [FH88b], probability structures
satisfying a condition called uniformity are considered; these arise naturally in distributed
systems applications. In the notation of this paper, a generalized probability structure
N = (S, 7, PR) is uniform if for all s,t € S, if (s,t) € Suppn, then PR(s) = PR(1). As
we now show, uniform structures do capture Miller’s principle.

To make this precise, define a probability frame to be a pair F' = (S, PR), where
S is a set of states and PR(s) is a discrete probability function on S for each s € S.
Thus, a frame is a (generalized) probability structure without the truth assignment =.
A probability structure (S, 7', PR') is based on frame (S, PR) if S = S” and PR = PR'.
Uniformity and all the conditions on support that we have considered can be viewed as
conditions on frames, rather than conditions on structures, since they do not depend
on the truth assignment at all. Thus, for example, we can define a frame (S5, PR) to
be uniform if for all s,t € S, if (s,t) € Suppp, then PR(s) = PR(t). Note a frame
F'is uniform iff some probability structure based on F' is uniform iff every probability
structure based on F is uniform. We say a formula ¢ is valid in frame F| written F' = ¢,
if N | ¢ for every probability structure N based on F. The following theorem shows
that Miller’s principle characterizes uniform frames.

Theorem 7.1: The following two conditions are equivalent:
1. F is a uniform frame.

2. Every instance of Miller’s principle (i.e., the aziom (*)) is valid in F.°

5Note that our requirement that I be an interval with rational endpoints is necessary in order to
make this a formula in £F. We also remark that rather than expressing the conditional probability as
one term divided by another, we have cleared the denominator to avoid having to deal with the problems
that arise when the denominator is 0.

5We remark that using frames to characterize axioms is a well-known technique in modal logic [Gol92,
HC84]. Consider, for example, the axiom T for knowledge. Although we have noted that it is sound
for reflexive knowledge structures (i.e., knowledge structures where the K relation is reflexive) and,
together with P, K, R1, and R2 provides a complete axiomatization for such structures, it is not hard
to construct a non-reflexive structure where every instance of T is valid (see [HM92]). On the other
hand, T does characterize reflexive knowledge frames (where a knowledge frame is just a pair (S, K),
and a reflexive knowledge frame is a knowledge frame where the relation K is reflexive), in that every
instance of T is valid in a knowledge frame F iff F' is reflexive. Similar remarks hold for all the other
axioms we considered for knowledge. However, although Miller’s principle does characterize uniform
frames, it is not the case that Miller’s principle together with the other axioms of probability discussed
in [FHM90, FH88b] provides a complete axiomatization for the language £F with respect to uniform
frames. For example, the formula (w(p) > a) = w(w(p) > a) = 1, which is valid in uniform frames,
can be shown not to be provable from Miller’s principle and the other axioms. (Roughly speaking, this
is because a model where probabilities get values in a non-standard field can be found where all of the
axioms of probability and Miller’s principle hold, and this formula is not satisfied.)
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We now want to show that when we restrict to reasoning about certainty, KD45
provides a complete axiomatization for uniform structures. Let N/ be the class of
uniform structures.

Theorem 7.2: If ¢ is a formula in LY, then N = ¢ iff N/ |= .

Proof: We first show that the support relation in a uniform structure is Euclidean, se-
rial, and transitive. Suppose that N = (S, 7, PR) is a uniform structure. If (s,t), (s, u) €
Suppn, then we have PR(t) = PR(s) = PR(u), and PR(s)(u) > 0. Thus PR(t)(u) > 0,
so (t,u) € Suppy. It follows that Suppy is Euclidean. A similar straightforward ar-
gument shows that Suppy is transitive. We have already observed that every support
relation in a probability structure is serial. Thus Suppy is Euclidean, serial, and transi-
tive, i.e., N € N, Since N/ C ¥ it follows that N |= ¢ implies N/ = .

For the converse, it suffices to show that if o is satisfiable in some structure in A%,
then it is satisfiable in some structure in A"/, So suppose that ¢ is satisfiable in some
structure in N¥*. By Theorem 5.2, it is consistent with KD45. By Theorem 4.1, it is
satisfiable in some structure in M. (Given a generalized probability structure N € N
satisfying ¢, it is not hard to give an explicit construction of a probability structure
N’ € N satisfying ¢; Theorem 4.1 allows us to avoid this step.) Suppose (N,s) = ¢,
where N = (S,7,pr) € Nyg. Let N' = (S, 7, PR), where PR(s') = pr for all s’ € S.
Clearly N’ € N/ and (N, s) & ». 1

Corollary 7.3: KD/5% is a sound and complete with respect to N/ for the language
L.

Thus KD45% is a sound and complete axiomatization for the class of structures char-
acterized by Miller’s principle, given our interpretation of Miller’s principle with w; and
wy identified. Combining Corollary 7.3 with Theorem 3.3, we get

Corollary 7.4: If  is a formula in L5, then ¢ is provable in S5 iff N“"/ = Cert(o%).

As we mentioned above, Gaifman does not identify w; and w,; rather, he associates
wy with the expert’s probabilities and w, with the agent’s probabilities. In addition,
Gaifman actually considers a stronger form of Miller’s principle, namely

wi(ply A (walp) € 1)) € 1,

" He shows that struc-

tures satisfying this stronger principle can be characterized in a way rather similar to
Theorem 7.1. We provide a few of the details here. Suppose we are given a generalized

where ¢ is a conjunction of formulas of the form wq(yp" € I').

"It is not hard to extend our proof that Miller’s principle is sound in uniform structures to show that
if we identify wy and ws, then this stronger principle is sound in uniform structures as well.
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probability structure N = (S, x, PRy, PR;) for two agents. Recall that Gaifman assumes
that the agent’s probability assignment PR, is independent of the state, thus there is
a fixed probability function pr such that PRy(s) = pr for all states s € S. Given a
state s € S, let C'(s) be the equivalence class of states in S consisting of all states s’
such that PRy(s") = PRi(s). Thus, C(s) is the set of states where the expert has the
same probability function that he does in s. Now consider the set of states S,,,q4 where
the expert believes that with probability 1, his probability distribution is the right one,
e, Spooa = {5 PR1(s)(C(s)) = 1}. Gaifman shows that the stronger form of Miller’s
principle is equivalent to the condition pr(Sye.q) = 1, which Frisch and Haddawy call the
equivalence class constraint. Namely, Gaifman shows that the stronger form of Miller’s
principle is sound in all structures satisfying the equivalence class constraint, and that
the equivalence class constraint holds in all frames where the stronger form of Miller’s
principle is valid. Moreover, Gaifman shows that if ¢ is provable in S5, then ¢ holds
with probability 1 (with respect to pr) in all structures satisfying the equivalence class
constraint. Note that by Corollary 7.4, the analogous result holds for uniform structures.

As mentioned in the previous section, in [FH88c|, where they only discuss probability
formulas of depth 2, Frisch and Haddawy do not assume that PRy is the same for
all agents. Since they also want to consider structures where Miller’s principle holds
(they do not consider the stronger version of Miller’s principle), they assume that the
equivalence class constraint holds for every probability function P Rs(s), i.e., they assume
that PRy(s)(S400d) = 1 for all states s. However, in order to deal with more deeply
nested formulas, Frisch and Haddawy plan to have a sequence of probability functions.
Thus, in their structures they will have functions PRy, PRs, PRs, ..., where PR;(s) gives
a probability function at each state s. They do not provide interpretations for these
probability functions, but they want to consider structures where Miller’s principle holds
between all consecutive pairs of probability functions given by PR; and PR;y1. Thus,
they plan to assume that the equivalence class constraint holds between consecutive
pairs of probability functions. Miller’s principle is easily seen to be sound in structures
satisfying this constraint. Rather than having a different modal operator for each of these
probability assignments, they only have one modal operator C'ert. They use the PR;’s
to give semantics to more deeply nested occurrences of Cert. More formally (using our
notation), in order to interpret an occurrence of the modal operator Cert appearing at
depth ¢ at state s, they use the probability function Prob;(s), where Prob;(s) = PRi(s)
and for ¢ > 1, we define Prob;(s) as the mean value of PR;(s") over all states s’, where the
weighting is done with respect to Prob;_1. Thus, if S" is a subset of S, then Prob;(s)(S’)
is Yyes PRi(s)(s") - Probi_1(s")(S) [Had]. They show that under this interpretation for

Cert, the axioms of KD4¢ are sound, but not necessarily complete.
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8 Conclusions

We have examined the relationship between knowledge, belief, and probability. We
showed that, just as we can capture different properties of knowledge by placing appro-
priate conditions on the accessibility relationship, we can capture properties of certainty
by placing conditions on the support. In particular, if we assume one fixed probability
function, we showed that KD45 provides a complete axiomatization. Moreover, the set
of worlds where an agent has false beliefs has probability 0. Interestingly, KD45 also pro-
vides a complete axiomatization with respect to structures satisfying Miller’s principle.

Many researchers have rejected S5 as an appropriate axiomatization for an agent’s
beliefs since they want to allow an agent to have false beliefs. Instead, they consider
KD45, which allows false beliefs. Our results suggest that there is a reasonable interpre-
tation for belief that is characterized by the KD45 axioms, but still makes rather strong
assumptions about the correctness of an agent’s beliefs.

These results show how the tools of modal logic can be brought to bear on reasoning
about probability. We believe that further work along these lines should yield further
insights into probability, belief, and knowledge.

Acknowledgments: This paper was inspired by discussions with Peter Haddawy. Moshe
Vardi made a number of useful comments on an earlier draft of the paper.

Appendix: Proof of Theorem 7.1

Recall we are trying to prove that uniform structures characterize Miller’s principle.

We first show that Miller’s principle, namely, the axiom
aw(w(p) € I) Swlp A(w(p) € 1)) < bw(w(p) € 1),  (x)

where [ = [a, b] is an interval with rational endpoints, is sound in all uniform structures.

Suppose N = (S, 7, PR) € N*"/ and let s € S. We consider two cases. First suppose
that (N, s) = w(g) € I. Then since PR(s) = PR(t) for all ¢ such that (s,t) € Suppy, it
follows that (N,t) = w(p) € I for all ¢t such that (s,t) € Suppy. Thus

(N, s) | w(w(p) € I) = 1. (1)

It also follows that (N, t) = ¢ iff (N, 1) = oA(w(p) € 1) for all ¢ such that (s,t) € Suppn.
Thus

(N, 5) = wle A(w(p) € 1)) = w(p). (2)
From Equation (2) and the assumption that (N,s) | w(p) € I, we get
(N,s) | w(e A (w(p) € 1)) € 1. (3)

17



Equation (*) now follows from Equations (1) and (3).
If (N,s) = w(p) € I, similar arguments to those used above show

(N, ) |= w(w(p) € I) = 0.

(N, 5) |5 wle A(w(p) € 1)) = 0.
Equation (*) again follows.
Thus, if ¢ is any instance of () and F' is a uniform frame, then we get F | .

Now suppose that F' | 1 for every instance ¢ of (%), where F' = (S, PR). We want
to show that F' is a uniform frame. Thus we must show

if (s,t) € Suppr then PR(s) = PR(t). (4)
We first show
if (s,t) € Suppp, then (s,u) ¢ Suppr implies (t,u) ¢ Suppp. (5)

Suppose (s,t) € Suppr, (s,u) ¢ Suppr and PR(t)(u) = a. We want to show that a = 0.
Let p be a primitive proposition and let N = (S, 7, PR) be a probability structure based
on F such that = makes p true only at state u. Suppose a # 0. Choose a rational
number b with 0 < b < a, and let I = [b,1]. By Miller’s principle (N, s) E w(p A (w(p) €
1)) > bw(w(p) € I). Thus PR(s)(Spaquwpen) > bPR(s)(Swpyer). Since u is the only
state where p A (w(p) € I) could hold, we must have PR(s)(Syau(p)er) < PR(s)(u) = 0.
On the other hand, by assumption we have PR(t)(u) = a, so (N,t) E w(p) € I. Thus
bPR(5)(Swper) = bPR(s)(t). Since (s,1) € Suppy implies that PR(s)(t) > 0, we get

0 = PR(s)(Spawpien) > bPR(s)(Swper) = bPR(s)(t) > 0.

This is a contradiction, so we must have a = 0, showing that (5) holds.

Next, we show
if (s,t),(s,u) € Suppp, then PR(t)(u) = PR(u)(u) = PR(s)(u). (6)

Suppose (s,t) € Suppr, (s,u) € Suppr, PR(t)(u) = a, PR(u)(u) = b, and PR(s)(u) = c.
Moreover, suppose a # b. Let I = [d,e] be an interval with rational endpoints such
that @ € I, b ¢ I, d > 0. Again, consider a structure N based on F' such that p is
only true at state v in N. In N, the formula p A (w(p) € I) is not true at any state,
so using the same arguments as above, we can show that 0 = PR(s)(Spau(p)en) >
dPR(5)(Swper) = dPR(s)(t) > 0. This gives us a contradiction. Thus, we must have
a=>band PR(t)(u) = PR(u)(u).

In order to show that a = ¢, note that it follows from what we have shown that
if .J is any interval containing a, then PR(s)(Syp)es) = 1 (since every state in the
support of s gives probability a to u). Suppose that ¢ # a. Let J = [d,e] be an
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interval with rational endpoints containing @ but not ¢. By Miller’s principle, using the
fact that PR(s)(Swpes) = 1, we get that d < PR(s)(Spawp)er)) < e. However, since
p A (w(p) € J) is true only at u, we get ¢ = PR(s)(u) = PR(5)(Sya(u(p)en))- Since ¢ was
assumed not to be in the interval [d, e, we get the desired contradiction.

We can now show that F'is uniform. Suppose (s,t) € Suppr; we must show that
PR(s) = PR(t). Choose an arbitrary u € S. If (s,u) ¢ Suppr, then by (5) we have
PR(t)(u) = 0 = PR(s)(u). And if (s,u) € Suppr, then by (6), we have PR(s)(u) =
PR(u)(u) = PR(t)(u). Thus PR(s) = PR(1) as desired. 1
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