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Abstract

First-order probabilistic logic is a powerful knowledge rep-
resentation language. Unfortunately, deductive reasoning
based on the standard semantics for this logic does not sup-
port certain desirable patterns of reasoning, such as indif-
ference to irrelevant information or substitution of constants
into universal rules. We show that both these patterns rely
on a first-order version of probabilistic independence, and
provide semantic conditions to capture them. The resulting
insight enables us to understand the effect of conditioning
on independence, and allows us to describe a procedure for
determining when independencies are preserved under con-
ditioning. We apply this procedure in the context of a sound
and powerful inference algorithm for reasoning from statis-
tical knowledge bases.

1 Introduction
First-order logic is widely recognized as being a funda-
mental building block in knowledge representation. As is
well known, however, first-order logic does not have the
necessary expressive power to deal with many situations
of interest (Bacchus 1990). For example, while first-order
logic allows us to express statements like “all birds fly”, it
does not allow us to assert in a natural way that most birds
fly, or that any given bird is likely but not certain to fly. The
standard way to deal with such uncertainty is via a probabil-
ity distribution over the possibilities that we envision. If we
are interested in doing probabilistic first-order reasoning,
then we can take the set of possibilities, or possibleworlds,
to be first-order models.

Having a logic with a semantics immediately gives us
a notion of deductive entailment. We deduce a formula �
from a (probabilistic) knowledge base ��� if all the (prob-
abilistic) models that satisfy ��� also satisfy � . Unfor-
tunately, as in many logics, deductive entailment is often
inadequate as an inference procedure. Many desirable pat-
terns of reasoning, particularly those involving irrelevance,
are simply not sound in all probabilistic models. Since it
�
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considers all models, entailment cannot validate these pat-
terns.

To obtain these patterns of reasoning, we must restrict
attention to those models that support them. To accomplish
this, we must first understand the underlying semantics of
these reasoning patterns; i.e., when do we get them and
why? This theme also appears in the work on belief net-
works(Pearl 1988), which utilize independence to obtain a
concise and intuitive representation of a probability distri-
bution. The power and convenience of Bayesian networks
has resulted in a resurgence of work on using probabil-
ity as a knowledge representation paradigm and has led to
a large number of applications. However, up to now it
has mostly been applied in an attribute-based(essentially
propositional) context, with the resulting limitations on ex-
pressive power. For example, using probabilistic first-order
logic, we can easily express the effect of penicillin on a
bacterial infection — ���
	���
 Pr 
 Cured
������ Infected
��
	������
Bacterial
������ Treated
��
	 Penicillin������� 8. Using Bayesian
networks, it is difficult to express binary predicates like
Infectedand Treated, and universal statements that hold for
all patients and all infections. Note that the universal quan-
tifier allows the rule to be applied to any bacterial infection,
even one that the designer did not originally include in the
knowledge base.

In this paper, we attempt to integrate the idea of prob-
abilistic independence as a foundation for irrelevance into
first-order probabilistic logic. In future work, we intend
to use the resulting framework as a semantic basis for a
first-order version of belief networks.

One perhaps surprising outcome of our analysis of inde-
pendence is its connection to a seemingly unrelated prop-
erty: substitution. In classic first-order logic, the following
axiom is valid: ����� 
��!��"#� 
�$%� , where $ is a constant. It is
well known that in modal logics, this substitution property
does not hold in general (Garson 1977). Assume we are
told, as above, that ���&
 Pr 
 Fly 
��!�'� Bird 
�����( 0 � 9 � . Can we
deduce that Pr 
 Fly 
 Tweety�'� Bird 
 Tweety�)�*( 0 � 9? We can
substitute Tweetyfor � if Tweetyis a rigid designator, i.e.,
if it denotes the same thing in all possible worlds. But mak-
ing Tweetya rigid designator can be problematic, because
then the formula ����
 Pr 
 Fly 
��!�+� Bird 
����)�,( 0 � 9 � is incon-
sistent with the observation Bird 
 Tweety�*�.- Fly 
 Tweety�



(where an observation is assumed to hold with probabil-
ity 1). Luckily, rigidity is not a necessary condition for
such substitution to be possible. We show that the constant
Tweetyis substitutable for � if the formula �.( Tweetyis
independent of Fly 
��!� given Bird 
��!� . Moreover, under a
reasonable restriction on probability distributions, indepen-
dence is necessary and sufficient for substitutability. Thus,
substitution is simply a special case of irrelevance!

For these results to be applicable, we must believe that
���&
 Pr 
 Fly 
��!�/�Bird 
��!���*( 0 � 9 � . When is this reasonable? A
primary source for such beliefs is statistical information: if
we observe that 90% of birds fly, we might well believe, for
an arbitrary bird, that it flies with probability 0.9. But when
does a statistical fact of this type imply the corresponding
probabilistic statement? That is, does the statement “90%
of birds fly” force us to believe that a particular domain el-
ement 0 flies with probability 0.9, when all we know is that
0 is a bird? Subjective Bayesians may say that there is no
connection; our degree of belief Pr 
 Fly 
�01�2� Bird 
�01��� can be
arbitrary. We show that, while this is true for a single bird
0 , it is false in general. If we know that 90% of birds fly, we
cannotbelieve, for example, that Pr 
 Fly 
�01�3� Bird 
�01�)�*( 0 � 7
for every 0 in the domain. Our semantics forces a con-
nection between the objective and subjective probabilities.
However, in general, this connection is not strong enough
to imply that Pr 
 Fly 
�01�,� Bird 
�01���4( 0 � 9 for every 0 : it is
consistent with the information that 90% of birds fly that
there is a particular domain element 0 whom we know to be
a non-flying bird in all possible worlds. But in those models
where the domain elements all “behave the same way” in an
appropriate sense, we can show that the statistical statement
does imply ���&
 Pr 
 Fly 
��!�*� Bird 
����)�'( 0 � 9 � .

What do we gain by having formal semantic foundations
for irrelevance and for the connection between objective
and subjective probabilities? For one thing, we can check
whether these semantic properties of our model are compati-
ble with our intuitions and information we might have about
our domain. If they are not, perhaps we do not want the
corresponding reasoning patterns. Even more importantly,
we can determine the effect of new information on these
semantic properties, and hence on our reasoning patterns.
After all, our model of the world is almost never a static
one. As new information comes in, we must incorporate it
into our model; in a probabilistic framework, this is done by
conditioning our probability distribution on this new infor-
mation. Our semantic characterization of irrelevance allows
us to provide a general methodology for determining when
irrelevancies are preserved in the conditioning process. We
believe that the ideas underlying this methodology will be
applicable in many other contexts.

We present one further application of this semantic
characterization. Philosophers (starting with Reichenbach
(1949)) have long been interested in the problem of go-
ing from statistical information to subjective degrees of be-
lief. Recently, Bacchus etal. (1994) presented an approach
where one starts with a uniform probability distribution over
the set of possible worlds and conditions on a statistical
knowledge base. They show that this approach, called ran-

domworlds, supports many of the reasoning patterns that
have been viewed as desirable in both default reasoning and
statistical inference. These properties include: directinfer-
ence, which allows us to go from a statistical statement to
a conclusion about a particular individual; preferencefor
more specificinformation; and the ability to ignore irrele-
vantinformation. Our results allow us to analyze the success
of this approach, and to pinpoint those characteristics that
made it work. In fact, we can prove that these properties
hold for a large and interesting class of priors containing the
uniform prior. But our results do far more than allow us to
prove theorems about specific properties. They also provide
us with a general algorithm for reasoning about irrelevance
in first-order statistical knowledge bases. This algorithm is
particularly easy to apply when the knowledge base is de-
rived from a statistical semanticnetwork(Touretzky 1986;
Sowa 1991).

2 Syntax and Semantics
We briefly review the syntax and semantics of first-order
probabilistic logic, as introduced by Halpern (1990). Sub-
jective probabilities, or degrees of belief, are expressed us-
ing a modal operator Pr. The agent’s degree of belief in a
formula 5 (with or without free variables), written Pr 
�5*� , is
a numeric term, which is interpreted as a number between
0 and 1. Semantically, Pr 
�5*� denotes the probability of the
set of worlds where 5 holds.

Starting with a vocabulary Φ and a set of variables 6 ,
let 74
 Φ 896:� be all the formulas that we get by closing off
under the standard first-order operators and applications of
Pr. Note that we allow interleaving of first-order quanti-
fiers and modal operators. In particular, a formula such as
����
 Pr 
 Fly 
����)��( 0 � 9 � says that, for each domain element
0 , the agent believes that the probability that 0 flies is 0 � 9.
Let 7 obj 
 Φ 8;6<� be the subset of 7�
 Φ 8.6<� consisting of
objectiveformulas, i.e., those that do not mention the Pr
operator.

Our logic is expressive enough to represent conditional
probability expressions Pr 
��=�>5*� . We simply treat a formula
of the form Pr 
��=�>5*�*(@? as an abbreviation for Pr 
��,�45*��(
?;A Pr 
�5 � .

We now sketch the semantics of the logic. The truth
of formulas in 7 obj 
 Φ 8B6:� is completely determined by a
standard finite first-order structure and a valuation.1 That
is, once we provide an interpretation for all the symbols
in Φ 8C6 , the standard rules of first-order logic allow us
to assign truth values to arbitrary formulas in 7 obj. To deal
with subjective probability, we need a set of possible worlds,
with a distribution over them. Thus, we take a probability
structure to be a tuple D (E
�FB	�GC	�H�	)I2� , where F is a
finite domain, G is a finite set of possibleworlds, for each
world JLKCG , H

�J4� is an interpretationof thesymbolsin Φ
overthedomainF (that is, H

�J�� assigns to the predicate and
function symbols in Φ predicates and functions of the right
arity over F ), and I is a discrete probability distribution

1Recall that a valuation specifies an assignment of domain
elements to the free variables in the formula.



over G . The function H allows us to view each world
JMKNG as a first-order model. Note that we assume that
all the worlds in G have the same domain F although they
may be associated with different interpretations over F .2

We assign truth values to formulas given a structure D ,
a world J , and a valuation O . The definition is fairly stan-
dard (see (Halpern 1990)). For example, 
�DP	�JQ	�OR�@� (
���&
 Pr 
��*
����S�T?�� if for all 0UKVF , 
�DP	�JQ	�OXW �!YZ0\[��]� (
Pr 
�� 
����)�=�^?'� , where the numerical term Pr 
�� 
��!��� is in-
terpreted as I�
)_`J : 
�DP	�JQ	�OXWa��YR0/[��=� (b� 
����dc`� . As usual,
we write D � (e� if 
�DP	fJ=	fOZ�g� (M� for all worlds J and
valuations O . Notice that if Dh�(P� then Di�( Pr 
����+( 1.
Also note that the truth of a sentence �SK97 obj (i.e., an objec-
tive formula with no free variables) is fully determined by a
world J , so we can write JL� (P� rather than 
�DP	fJ=	fOZ��� (@� .

For the remainder of the paper, to simplify notation, we
assume that we are dealing with fixed finite vocabulary Φ
and a fixed finite domain F . We take the set G of worlds
to consist of all interpretations of the symbols in Φ over the
domain F , so that J�
�j1� for jkK Φ is the interpretation of j
in J . Thus, since all components in D besides I are fixed,
we write Il� (@� rather than Dm�(N� .

Combining identical worlds into one can always be done
(in this context) without loss of generality. However, we
often need to make an additional assumption, which relates
worlds that are “essentially identical.” Formally, we say
that two worlds J and J,n are isomorphicif they agree on
all formulas in 7 obj; i.e., the agent cannot distinguish iso-
morphic worlds by any formula in his language. If the
agent’s language encodes all the agent’s information about
a world, then the agent cannot distinguish between isomor-
phic worlds. In this case, it seems reasonable to assign such
worlds the same probability. We say that a probability distri-
bution I is exchangeableif I�
�J��*(NI�
�Jonp� whenever J and
Jon are isomorphic.3 Note that the exchangeability property
does not entail a uniform distribution on the set of worlds.
Only worlds that are essentially identical are forced to be
equally likely. Furthermore, note that the worlds where we
just exchange the properties of two elements are isomorphic.
Hence, the exchangeability assumption forces the domain
elements to be interchangeable. That is, the agent can only
“recognize” a domain element via its “observable” prop-
erties. The agent cannot use properties for which there is
no term in its language to distinguish between two domain
elements. Exchangeability implies that Pr 
�� 
�01�,�/5�
�0q�)� is
the same for all 0 , a property which simplifies many of our
results.

3 Irrelevance and Substitution
Recall that we are primarily interested in the property of
irrelevance. Assume that we are given a distribution I that

2As is well-known (Garson 1977), in modal logic we run into
problems with quantifying-inif we do not make this assumption.
In particular, it is difficult to give semantics to a formula such asrRs3t

Pr
t
Bird

t�s1u�u�v
0 w 1 u when different worlds may have different

domains.
3This is not the same as de Finetti’s notion of exchangeability

(1964), although the two notions are superficially similar.

satisfies ���&
 Pr 
 Fly 
��!�+� Bird 
��!����( 0 � 9 � . Can we conclude
that it also satisfies ���&
 Pr 
 Fly 
��!�x� Bird 
��!�*� Red
����)�g(
0 � 9 � ? The answer is clearly no, as it should be. It may
be that red birds are far more likely to fly than regular
birds. But in general, we may wish to assume that things
are “as irrelevant to each other as possible;” given no in-
formation that suggests that color is relevant to flying abil-
ity in birds, we may wish to assume that it is not. What
properties should I have in order to validate the infer-
ence of ���&
 Pr 
 Fly 
��!��� Bird 
������ Red
��!���.( 0 � 9 � from
����
 Pr 
 Fly 
����*� Bird 
��!����( 0 � 9 � ?

As we observed in the introduction, this property seems
closely tied to probabilistic independence. We now formal-
ize this intuition.

Definition 3.1: Let �+	f5,	fy be formulas, and let I be a
probability distribution. We say that � is independentof y
given5 in I , denoted Il� (]z,
���	�y��{5*� , if IS� ( Pr 
��x�{5��,y/� (
Pr 
��|��5*� .

Note that this definition also applies to formulas that have
free variables. According to our semantics, this means that
zo
���	fy9�15*� holds for every possible valuation, i.e., that
����
 Pr 
�� 
��!�+�%5}
��!����( Pr 
�� 
��!�+�%5}
��!�2�ByR
��!���)� . The irrel-
evance property now follows immediately:

Proposition 3.2 : If Ii�(mzo
�� 
��!�%	fyR
��!�<��5}
��!��� , then
Il� (~����
 Pr 
�� 
��!�'��5}
��!����KlWa?�	��![��&�����&
 Pr 
�� 
��!����5�
��!�!�
yR
����)�,K]Wa?�	��![��%�

While this is fairly straightforward, it does have an un-
expected application to the problem of substitution. The
inability to substitute constants into universally quantified
formulas is perhaps the most glaring deficiency of deduc-
tion in first-order probabilistic logic. After all, the ability to
apply general rules to specific individuals is one of the char-
acteristic features of first-order logic. Why do we lose this
property in a probabilistic setting? The following example
provides an explanation.

Example 3.3: Let Φ (^_ Bird 	 Tweetyc and FM(^_`0 1 	�0 2 c ,
and consider the following four worlds: J 1 
 Bird �+(�_/0 1 c ,J 1 
 Tweety��(�0 1; J 2 
 Bird �+(�_/0 1 	�0 2 c , J 2 
 Tweety��(�0 1;
J 3 
 Bird �+(�_/0 2 c , J 3 
 Tweety�*(�0 2; J 4 
 Bird ��(�_`0 1 	�0 2 c ,J 4 
 Tweety�g(�0 2. Suppose I assigns probability 1 Y 4 to
each of these worlds, and thus probability 0 to all other
worlds. On the one hand, I�� (e���&
 Pr 
 Bird 
��!���k( 3 Y 4 � :
We assign either 0 1 or 0 2 to � ; in either case, Bird 
���� is
false in precisely one of these worlds (e.g., Bird 
�0 1 � is false
only in J 3). On the other hand, Pr 
 Bird 
 Tweety���:( 1:
Bird 
 Tweety� holds in all four worlds.

The reason that we cannot substitute the constant Tweety
into the universally quantified statement is that Tweetyis not
rigid : it has a different interpretation in each world. When
interpreting a formula such as ���&
 Pr 
 Bird 
��!����( 3 Y 4 � , we
first fix a particular domain element 0 , then consider the
set of worlds where that particular domain element 0 has
the property Bird. On the other hand, when interpreting
Pr 
 Bird 
 Tweety�)� , the denotation of the constant Tweety
varies from world to world: it is 0 1 in J 1 	�J 2 and 0 2 in
J 3 	fJ 4.



While this inability to substitute may seem counterintu-
itive,� as we saw in the introduction, at times it is a desirable
feature. It is easy to see that we can substitute constants
that are rigid designators. But if we make an assumption
like exchangeability, then no constants are rigid designators
(since if the constant $ is interpreted as the domain element
0 in one world, for each 0Rn , there is an isomorphic world
where $ is interpreted as 0Rn ). The following result provides
the key insight as to when it is safe to substitute, without
assuming rigidity:

Proposition 3.4 : (a) If I is a distribution such that
Il� (~���&
 Pr 
��*
������%5�
������B�:(@$%��K]Wa?+	)�![�� then
Il� ( Pr 
�� 
�$%�+��5�
�$%�)��KlWa?�	��![��
(b) If I is anexchangeabledistribution,then
Il� (~���&
 Pr 
��*
������%5�
������B�:(@$%�*( Pr 
�� 
�$%���f5�
�$������ .4

Intuitively, this tells us that substituting $ is closely re-
lated to conditioning: substitution is essentially condition-
ing on the additional information that “ � is also called $ ”.
Clearly, we can substitute if this additional information that
�~(V$ is irrelevant. That is, we can substitute $ for � in
���&
 Pr 
��*
������f5�
����)��K|Wa?�	)�![�� if Pr 
��*
������)5�
��!���:�g(�$��'(
Pr 
�� 
�������5}
��!��� for each � . But as we argued above, irrel-
evance is characterized by probabilistic independence. We
can therefore apply Proposition 3.2 with �N(�$ as yR
���� ;
combined with Proposition 3.4, we get:

Corollary 3.5: Let Il� (]zo
�� 
��!�%	�
��g(P$%�*��5�
��!��� .
(a) I]� (�����
 Pr 
�� 
��!����5�
��!����KlWa?�	)�![��
" Pr 
�� 
�$�����5�
�$%�)�,K
Wa?�	��![����
(b) If I is exchangeable,then I@� (P���&
 Pr 
�� 
����,��5�
��!���,(
Pr 
�� 
�$%�+��5�
�$%�)��� .

Not surprisingly, Corollary 3.5 does not apply in the ex-
amples above. There, the distribution I did not make � 
����
and �](V$ independent. In fact, in Example 3.3, the two
events Bird 
���� and �g( Tweetywere completely correlated.
Hence, this result gives us the tools to decide when substi-
tution is appropriate.

4 Independency Mappings
The results of the previous section show us how we can use
the independence properties of a distribution to conclude
that certain things are irrelevant and, in particular, to substi-
tute constants into universal rules. To use these techniques,
we need to know whether I|� (~z,
��+	fy2�>5*� for possibly many
formulas ��	�y1	f5 . In this section, we describe a technique
that allows us a concise and intuitive graphical represen-
tation of some of the independencies that hold in I . This
representation allows a simple procedure for answering a
wide range of independence queries.

Our representation utilizes a standard tool from the liter-
ature: Markovnetworks(Pearl 1988). A Markov network
is an undirected graph � that encodes the independencies
that hold for a distribution I . In general, the nodes of such
a network correspond to randomvariables, while the edges

4Without exchangeability, we cannot conclude that�3s3t
Pr
t��
t�s1u�����t�squ
�<s�v��fu�v

Pr
t��
t���u�����t��fu�u�u

, the property
required to prove (b) from (a).

represent dependencies between them. Until now, Markov
networks have been applied purely in an attribute-based
(essentially propositional) setting. We apply this idea in
the context of first-order logic by viewing each vocabulary
symbol j in Φ as a random variable, whose values are the
possible interpretations of j over the domain F . Formally,
the graph has a node for each symbol in Φ. The existence
of an edge between two symbols j and � in Φ means that
choosing an interpretation for j may directly influence the
probabilities with which we choose an interpretation for � .
Conversely, the absence of this edge implies that there is no
such direct influence.
Example 4.1 : Consider again the situation in Exam-
ple 3.3. A Markov network � for a distribution over
this vocabulary has two nodes: one for Bird and one for
Tweety. The symbol Birdhas four possible interpretations—� 	%_/0 1 cq	�_`0 2 c and _`0 1 	f0 2 c —and the symbol Tweety has
two— 0 1 and 0 2. In the distribution I in that exam-
ple, the interpretations of Tweetyand of Bird were corre-
lated: I�
�J�
 Bird �g(�_/0 2 c��/J�
 Tweety�g(�0 1 �g( 0 while
I�
�J�
 Bird �~(i_/0 2 c��!J�
 Tweety��(�0 2 ��( 1 Y 2 (where
J�
 Bird �](�_`0 2 c denotes the event _/J : J�
 Bird �](
_/0 2 cZc ). Hence, a graph � that represents the indepen-
dencies in I musthave an edge between Bird and Tweety.
On the other hand, consider a distribution I�n that makes
the interpretations of Tweety and Bird independent. If
we have, for example, I�n�
�J�
 Tweety�9(�0 1 �B( 1 Y 2 and
I�n�
�J�
 Bird �=(M_`0 1 c`�=( 2 Y 7, then the world J 1 in Exam-
ple 3.3 has I�n�
�J 1 ��( 1 Y 2 � 2 Y 7 ( 1 Y 7. Similarly, if
I�n�
�J�
 Tweety��(P0 2 ��( 1 Y 2 and I�n�
�J�
 Bird �*(U_`0 1 	�0 2 c/��(
3 Y 7, then the world J 4 has I�n�
�J 4 �,( 1 Y 2 � 3 Y 7 ( 3 Y 14.
A graph with no edge between Bird and Tweetyrepresents
the independencies of I�n in this case.
As usual, Markov networks can also encode more complex
conditional independencies between the vocabulary sym-
bols (random variables). Let � , � , and � denote disjoint
subsets of nodes in � . We say that � separates� from �
in � if every path from a node in � to a node in � passes
through a node in � . Intuitively, � encodes the fact that �
can only influence � via � . Hence, if we fix a particular
interpretation for the symbols in � , the symbols in � can no
longer influence � . We say that � is an independencymap-
ping(   -map)for I (Pearl 1988) if, whenever � separates �
from � in � , the distribution I makes the interpretations of
the symbols in � conditionally independent of the interpre-
tations of the symbols in � given an interpretation for the
symbols in � . Note that an   -map is a sound but incom-
plete representation of independencies: many distributions
have independencies that cannot be expressed in a graphical
structure of this type.

An   -map � for I encodes conditional independencies
that hold in I . Is this really useful? After all, the   -map en-
codes independencies of interpretations of vocabulary sym-
bols, while we are interested in formulas. As we now show,
there is a natural way in which we can translate the former
to the latter. Essentially, we can make any formula in � in-
dependent of any formula in � given a formula that contains
all the relevant information about � .



Definition 4.2: Let ¡ be a set of symbols (that may in-
clude¢ both symbols in Φ and variables). We say that£ KL7 obj 
¤¡�� is a maximallydescriptiveformula over ¡
if all (world,valuation) pairs that satisfy £ agree on all for-
mulas in 7 obj 
¤¡�� .
For example, if £!¥ is the formula asserting that there are
exactly ¦ birds, then £ ¥ � Bird 
��!� is a maximally descriptive
formula over _ Bird 	f��c .
Theorem 4.3: Let I bean exchangeabledistribution, and
let � bean I-mapfor I . Let � , � , and � bedisjointsetsof
symbolsin Φ suchthat � separates� and � in � , andlet 6
bea setof variables.If �SKB7 obj 
¤�l8§6:� , yQKB7 obj 
��<8k6<� ,
and 5 is a maximallydescriptiveformulaover �k896 , then
Il� (]zo
���	�y=��5*� .

This theorem allows us to “read” an   -map in a useful
way. By looking at an   -map of an exchangeable distribu-
tion I , we can determine many conditional independencies
zo
���	�y=��5*� that hold for I .

Example 4.4: We construct a distribution I2¨ over the vo-
cabulary _ Fly 	 Bird 	 Tweetyc that extends I�n from Exam-
ple 4.1 and satisfies ���&
 Pr 
 Fly 
��!�}� Bird 
��!���=( 0 � 9 � . We
define I2¨ so as to make Pr 
 Fly 
�01�,� Bird 
�0q�)�=( 0 � 9, and
Pr 
 Fly 
�01�=� Bird 
�0q�)�C( 0 � 5, where Fly 
�01� is chosen in-
dependently for each domain element 0 . More precisely,
let J be a world over this vocabulary, and let J,n be that
world over the vocabulary _ Bird	 Tweetyc which agrees with
J about the interpretations of Tweetyand Bird. For our
two domain elements 0 1 	�0 2, define ©%ª to be 0 � 9 if 0Rª<K
J�
 Bird ��«9J�
 Fly � (i.e., if 0 ª in J is a flying bird), © ª ( 0 � 1
if 0 ª K�J�
 Bird ��¬­J�
 Fly � , and © ª ( 0 � 5 otherwise (i.e., if
0 ª is not a bird). If we define I2¨ 
�J4�*(NI�n¤
�Jon¤��A�© 1 Af© 2, then
the graph � where the only edge is between Bird and Fly is
an   -map for I2¨ . Since

�
separates Tweetyand _ Fly 	 Bird c ,

and true is a maximally descriptive formula over _/��c , we
conclude from Theorem 4.3 that �~( Tweetyis uncondi-
tionally independent of both Fly 
��!� and Bird 
���� . It fol-
lows trivially that I2¨P� (�z,
 Fly 
��!�%	f�<( Tweety � Bird 
����)� ,
so that Corollary 3.5 allows us to conclude that I2¨®�(
Pr 
 Fly 
 Tweety�*� Bird 
 Tweety�)�'( 0 � 9.

5 The Effects of Conditioning
In the previous sections, we showed that certain desirable
patterns of reasoning hold, given certain semantic condi-
tions on distributions. But our reasoning process is rarely
static: we continually get new information, and we must
update our probability distribution accordingly, by condi-
tioning on the new information. In this section, we study to
what extent the conditioning process preserves the desirable
patterns of reasoning we have been studying. As we shall
see, having a semantic characterization of these properties
greatly facilitates this investigation.

Given a distribution I on G and a sentence 5~KB7 obj, let
I�
�5*�+(NI�
�_/J : J�� (�5�c/� ; if I�
�5*��¯ 0, the distribution I+� 5
obtained by conditioning on 5 has 
�I+� 5 �f
�J4�*(NI�
�J��)Y/I�
�5*�
if J°� (±5 and 0 otherwise. Note that this process is de-
fined only for objective formulas 5 . Also note that con-

ditioning interacts as we would hope with our semantics:
Il� ( Pr 
��|�f5 �+(P? iff I+� 5@� ( Pr 
����*(P? .

It is easy to show that exchangeability is always main-
tained under conditioning.

Proposition 5.1: If I is exchangeableand 5�K]7 obj, then
I+� 5 is exchangeable.

Determining which (conditional) independencies are
maintained is somewhat more complex. As the following
example shows, conditioning on a formula 5 may create
some dependencies; we need to make precise which ones.

Example 5.2: Consider again the distribution I2¨ from
Example 4.4, and re-
call that I2¨ satisfies both ����
 Pr 
 Fly 
��!���Bird 
����)��( 0 � 9
and Pr 
 Fly 
 Tweety��� Bird 
 Tweety�)�<( 0 � 9. It is not too
hard to see I2¨,�Bird 
 Tweety� satisfies the same two formu-
las, although Bird and Tweetyare clearly not independent
in I2¨,�Bird 
 Tweety� . Since Bird and Tweetyare not inde-
pendent, there must be an edge between Tweetyand Bird
in the   -map � for I2¨��Bird 
 Tweety� . But, intuitively, we
made no direct connection between Fly and Tweety; the
only connection goes through Bird. We might hope that
� supports this intuition, and does not have a direct edge
between Fly and Tweety. The fact that we continue to get
Pr 
 Fly 
 Tweety��� ( 0 � 9 suggests that this is the case.

What happens if we condition I2¨ on the assertion
Bird 
 Tweety�*�]- Fly 
 Tweety� ? The resulting distribution
must satisfy Pr 
 Fly 
 Tweety���4( 0; hence, it can no longer
be the case that z,
 Fly 
��!�%	f�§( Tweety� Bird 
��!��� (since this
would imply a probability of 0.9 for Fly 
 Tweety� ). Intu-
itively, the assertion Fly 
 Tweety� makes a direct connection
between Fly and Tweety, one that is not mediated by Bird.
Therefore, in the   -map for this new distribution, Bird will
no longer separate Fly from Tweety.

The next result makes the intuitive arguments used in this
example more precise, by giving us a formal procedure for
determining how   -maps change as a result of conditioning.

Theorem 5.3: Let � be an   -map for I . Suppose5^(
y 1 �B�������gy�² is a formulain 7 obj 
 Φ � and I�
�5*�o¯ 0. Let ��n
bethegraphobtainedbyaddingto � edgesbetweennodes
j and � if, for some� , j and � bothappearin y ª . Then� n is
an   -mapfor I+� 5 .

This theorem follows from a more general one, proved in
the full paper, that holds for arbitrary Markov networks: Let
I be a distribution with the I-map � ; let ³ be some event
which refers only to some set � of nodes in � . Then the
graph ��n obtained by adding edges between all the nodes
in � is an I-map for I+� ³ . Unlike many of the results
on Markov networks (particularly those discussed in (Pearl
1988)), this result does not require the distribution I to be
positive (i.e., that I�
�J���¯ 0 for every world J ).

Theorem 5.3 clearly validates our intuitive argument from
Example 5.2: The process of conditioning on Bird 
 Tweety�
adds an edge betweenBird and Tweety, but the node Birdstill
separates Fly from Tweety. On the other hand, conditioning
on Bird 
 Tweety�/��- Fly 
 Tweety� adds a direct edge between
Fly and Tweety, thereby preventing Bird from separating



these two symbols and eliminating the resulting conditional
independency� . As we show in Section 7, this seemingly
simple analysis provides us with a very powerful tool for
reasoning about irrelevance in statistical knowledge bases.

6 Objective and Subjective Probabilities
The nature of the connection between objective probabilities
(frequencies) and subjective probabilities (degrees of belief)
has generated extensive and often heated debate. On the
one hand, devout frequentistsbelieve that all probabilities
derive from frequencies, and that subjective probabilities
are meaningless, or at least irrelevant to the “real world.”
On the other hand, the more extreme subjectiveBayesians
believe that the concept of “the real world” is uninteresting
and irrelevant, and that only subjective probabilities, which
may be arbitrary, are meaningful. While we do not have
the space to elaborate on this discussion, we show that
the formal semantics of our language forcesa connection
between these two types of probabilities.

Example 6.1: In the depression era in the U.S., unemploy-
ment was such that, for any advertised job, there would
be a line of applicants stretched around the block, wait-
ing to interview for the job. There is a true story about
a journalist who went up to one of the men standing in
such a line, and asked him “There are a thousand people
standing in line to interview for this one job; what do you
think your chances are?” The man answered: “Oh, fifty-
fifty, just like everybody else.” Is it reasonable to believe
that ���&
 Pr 
 GetJob
��!���,( 0 � 5 � ? A priori , it seems that the
answer is “yes;” after all, you might say, “I may believe
whatever I wish.” Surprisingly, this is inconsistent with
the basic semantics of first-order probabilistic logic. Let us
simplify the analysis, and assume that the number of peo-
ple interviewing for the job is three. Thus, if we ignore
for the moment all other aspects of the world, there are
three possible worlds over this domain, say J 1, J 2, and J 3,
each with domain _`0 1 	f0 2 	�0 3 c , where in J�ª , the person 0Rª
is the one who ultimately gets the job. Suppose we take
the probability of J�ª to be ´3ª , �k( 1 	 2 	 3. The formula
���&
 Pr 
 GetJob
��!���=( 0 � 5 � implies Pr 
 GetJob
�0 1 �)�=( 0 � 5,
and since 0 1 gets the job just in J 1, we get that ´ 1 ( 0 � 5.
Similarly, we get that ´ 2 ( 0 � 5 and ´ 3 ( 0 � 5. But ´ 1, ´ 2,
and ´ 3 must sum to 1, so this is inconsistent. Intuitively,
the two statements “precisely one person will get the job”
and “���&
 Pr 
 GetJob
����)�*( 1 Y 2 � ” both count occurrences of
the event “GetJob
�01� holds in J ”: The first statement does
so for a fixed J , and the second for a fixed 0 (weighted by
I�
�J�� ). Hence, the outcomes must be related.

To generalize this argument, we first introduce some no-
tation. As in (Halpern 1990), we augment first-order logic
with a statistical quantifier. Formally, we allow proportion
expressionsof the form �>� 5�
��!���>� µ . This is interpreted as a
rational number between 0 and 1, that represents the pro-
portion (or fraction) of domain elements satisfying 5�
��!� .
As for probabilities, we allow conditionalproportion ex-
pressionsof the form ¶��*
����*��5�
��!��¶%µ , interpreting each one
as an abbreviation for the formula obtained by multiplying

to clear the denominator. We can now show, using similar
arguments to those above, that:
Theorem 6.2: Thetwostatements¶�� 
��!�*�%5�
�����¶ µ �@? and
����
 Pr 
�� 
��!�+�f5�
����)�,·­?�� are inconsistent.

It follows that we cannot have statistical information that
? of 5 ’s are � ’s and believe that the probability that � 
�01�
holds given 5�
�01� is �°¸(�? for each domain element 0 .
We can believe that the probability of � 
�01� given 5�
�01�
is � for somedomain elements, just not all of them. In
the above example, for instance, it is quite legitimate to
have ´ 1 ( 3 Y 4 	�´ 2 ( 1 Y 4 	�´ 3 ( 0. This would im-
ply Pr 
 GetJob
�0 1 ���B( 3 Y 4, Pr 
 GetJob
�0 2 ���B( 1 Y 4, and
Pr 
 GetJob
�0 3 ����( 0.

When do we get a tighter connection between objective
and subjective probabilities? Part of the answer is fairly
clear: if we want to have ����
 Pr 
�� 
��!�x�\5�
��!���g(±?�� , we
must first have Pr 
�� 
�01�+��5�
�0q�)� be the same for all domain
elements 0 . As we have already pointed out in Section 2,
this is a consequence of the exchangeability assumption. It
turns out that this is also sufficient to guarantee the desired
connection: If Pr 
�� 
�01�*�f5�
�0q�)� takes the same value, say � ,
for all domain elements 0 , then Theorem 6.2 implies that
necessarily ��(P? .

Theorem 6.3 : If I is exchangeableand I � (
¶�� 
��!�*�%5�
�����¶ µ K@Wa?+	)�![ , then I@� (P���&
 Pr 
��*
�������5�
��!����K
Wa?�	)�![�� .

7 From Statistics to Degrees of Belief
We now present one important application of the ideas pre-
sented in this paper, to the problem of going from statistical
information to subjective degrees of belief. Assume that
we have a knowledge base ���^KC7 obj 
 Φ � which can con-
tain statistical as well as first-order statements. We would
like to use our information to induce degrees of belief in
statements concerning particular individuals. There are a
number of properties that we might hope such an approach
would have. We briefly describe the ones of interest here
using simple examples.

Direct inference: Suppose ��� fly is

¶ Fly 
����*� Bird 
��!�%¶�µ�( 0 � 9 � Bird 
 Tweety���
Then we would like to conclude Pr 
 Fly 
 Tweety���g( 0 � 9;
that is, we would like our degree of belief in Fly 
 Tweety�
to be determined by the statistical information. This tight
connection between statistical information and degrees of
belief is known as directinference.

Preference for more specific information: Suppose we
have statistical information about � within two sets, where
one is more specific than (i.e., a subset of) the other. For
example, suppose that, in addition to the information in
��� fly, we also know that ¶ Fly 
��!�*� Penguin
�����¶%µ=( 0 � 01 �
����
 Penguin
����:" Bird 
��!���*� Penguin
 Tweety� . In that
case, we would hope to use the more specific statistics for
Fly 
��!� , and conclude that Pr 
 Fly 
 Tweety�)��( 0 � 01.

Irrelevant information: If, in addition to �x� fly, we also
learn that Red
 Tweety� . We might hope to ignore the seem-
ingly irrelevant information Red
 Tweety� and still conclude
that Pr 
 Fly 
 Tweety�)�*( 0 � 9.



(Bacchus etal. 1994) presents one approach, called ran-
dom¹ worlds, to dealing with this problem: Start with a
uniform prior over the set of possible worlds, condition on
the knowledge base ��� , and use the resulting posterior dis-
tribution I 0 �a��� to form degrees of belief. They show that
all these properties hold for the random worlds approach.
Is there anything special about the uniform prior that gives
these results? Our analysis in the previous sections gives
us the tools to answer this question. It is immediate from
the definition of exchangeability that the uniform prior is
exchangeable: Since all worlds have the same probability,
then in particular so do isomorphic worlds. It is also easy
to check that the uniform prior is “very independent”: the
interpretations of all the vocabulary symbols are chosen in-
dependently. Formally, we say that a distribution I is fully
independentif the graph � 0 that has no edges is an   -map
for I . Clearly, the uniform prior is fully independent. As
we show below, full independence and exchangeability are
the only properties of the uniform prior that are required
to prove these properties. It follows that these results ac-
tually hold for a large class of priors. For example, the
random-propensitiesdistribution considered in (Bacchus et
al. 1995) is also fully independent and exchangeable. So is
the distribution I�n presented in Example 4.1. Thus, we have
a large space in which we can look for a prior that would
give us the benefits of the uniform prior without some of its
disadvantages.

For example, a rather general theorem was proved in
(Bacchus etal. 1994) from which direct inference and pref-
erence for more specific information followed quite easily.
The following result is a restatement of that theorem, but
for arbitrary fully independent and exchangeable prior dis-
tributions, rather than just the uniform prior.

Theorem 7.1: SupposeI is an exchangeableand fully
independentdistributionand let KB be a knowledgebase
of theformKBn ��5�
�$%� . If KB � (�¶�� 
��!�*�%5}
��!�%¶%µºKlW ?�	)�![ ,
and KBn , � 
��!� , and 5�
���� do not mention$ , then I+�KB � (
Pr 
�� 
�$%���oK|Wa?�	)�![ .

We give the main ideas for this proof using an example,
noting that the full proof is essentially identical.

Example 7.2: Let Φ (»_ Fly 	 Bird 	 Tweetyc . Assume that
we start from a fully independent and exchangeable prior I ,
and condition on KBfly (defined above).

(a) By Theorem 5.3, we can construct an   -map �
for I+�KBfly by adding an edge between Bird and Fly be-
cause of the conjunct ¶�¼=½¤¾¿
��!�*� Bird 
�����¶%µl( 0 � 9 and an
edge between Bird and Tweetybecause of the conjunct
Bird 
 Tweety� . Since our original   -map was � 0, these are
the only edges.

(b) Since Bird separates Fly and Tweety, we now apply
Theorem 4.3 and conclude z,
 Fly 
��!�%	f�]( Tweety �/5�
����)�
where 5}
��!� is a maximally descriptive formula over
_ Bird 	��&c . As described immediately after Definition 4.2,£ ¥ � Bird 
��!� is an appropriate choice.

(c) By Proposition 5.1, I+�À
 KBfly � £ ¥ � is exchange-
able, and so by Theorem 6.3, I+�a
 KBfly � £ ¥ �h�(

����
 Pr 
 Fly 
������ Bird 
��!���B( 0 � 9 � . It follows that I+�KBfly
satisfies ���&
 Pr 
 Fly 
��!�+� Bird 
��!��� £ ¥ �*( 0 � 9 � .

(d) Applying Corollary 3.5 to our conclusions from
steps (b) and (c), we conclude that I+�KBfly � (
Pr 
 Fly 
 Tweety�=� Bird 
 Tweety��� £!¥ �B( 0 � 9 for every ¦ .
Since we know Bird 
 Tweety� , and the formulas £ ¥ are mu-
tually exclusive and exhaustive, the desired conclusion fol-
lows easily.

(Bacchus et al. 1994) also presents a theorem dealing
with the treatment of irrelevant information. Similar argu-
ments allow us to generalize that theorem, showing that it
holds for all fully independent and exchangeable priors. In
fact, the techniques of this paper give us a powerful new
(sound but not complete) technique for testing when such
irrelevance holds, by using   -maps. As we now demon-
strate, this approach allows us to deal with quite complex
knowledge bases.

Penguin

Fly

Sees−Well

Antarctic
Tweety

0.3

0.9

0.010.8

0.02

0.1

0.7

0.99

Domesticated0.05

Has−Wings

Bird

Animal

Figure 1: A graphical representation of a knowledge base

Example 7.3: Figure 1 is a graphical representation of a
statistical knowledge base KB. The dark unlabeled ar-
rows denote is-a arrows (Touretzky 1986); for example,
the edge between Tweetyand Bird corresponds to the state-
ment Bird 
 Tweety� , while the edge between Birdand Animal
corresponds to ���&
 Bird 
��!�9" Animal
����)� . The labeled
arrows correspond to statistical statements; for example,
the edge between Fly and Bird labeled with 0 � 9 repre-
sents the statement ¶ Fly 
��!�+� Bird 
��!�%¶�µV( 0 � 9. What
independencies hold after we condition some fully inde-
pendent and exchangeable prior I on KB? Figure 1 al-
ready gives us the answer: If we view the figure as an
undirected graph, we get precisely the   -map for I+�KB!
Hence, we can conclude for example that _ Bird 	 Animalc
separates Tweety from Fly. Using arguments as above
(and the fact that Bird 
���� implies Animal
��!� ), it is not
too hard to show that we can use the statistics for birds
when reasoning about Tweety. In particular, I+�KB � (
Pr 
 Fly 
 Tweety��� ( 0 � 9 � Pr 
 Has-Wings
 Tweety����( 0 � 99 �
Pr 
 Domesticated
 Tweety���k( 0 � 05. Note that, due to the
complexity of this knowledge base, none of these conclu-
sions follow from the (Bacchus et al. 1994) theorems. If
we now condition on Antarctic 
 Tweety� , we add an edge
between Antarctic and Tweety. This creates a path from
Tweetyto Fly that is not blocked by Bird. Hence, we will
no longer be able to conclude that Pr 
 Fly 
 Tweety�)�,( 0 � 9,
but our other two conclusions still hold. This is precisely
the behavior we would expect.



This type of analysis also applies to knowledge bases with
non-unary predicates.

Example 7.4: Assume that our knowledge base KB is

¶ Sells
��
	f¾Z�*� Supermarket
��!��� Cheese
�¾Z��¶ µRÁ Â ( 0 � 6
¶ Sells
��
	f¾Z�*� Supermarket
��!��� Specialty
�¾Z��¶%µRÁ Âx( 0 � 2
Supermarket
 Safeway��� Cheese
 Stilton�
English
 Stilton�2� Stinky
 Stilton�
¶ Stinky
����*� Cheese
��!�%¶ µ ( 0 � 25 �

�

Safeway

Stilton

CheeseSupermarket

Sells

English

Specialty
Imported

Stinky

Figure 2: I-map for supermarket knowledge base

The I-map resulting from conditioning a fully in-
dependent and exchangeable prior I on KB is
shown in Figure 2. Using the independencies im-
plied by this diagram, we can show that I+�KB � (
Pr 
 Sells
 Safeway	 Stilton�k� KB�~( 0 � 6. But if we add
to the knowledge base the statements ���&
 English
��!�B"
Imported
��!�����~¶ Specialty
��!�*� Imported
�����¶ µ ( 0 � 9, the
resulting I-map will also have an edge from English to
Importedand from Specialtyto Imported, creating a path
from Stilton to Sellswhich is not blocked by Cheese. This
will prevent us from drawing the no-longer-desired conclu-
sion that Pr 
 Sells
 Safeway	 Stilton����( 0 � 6.

The knowledge bases in these examples were fairly com-
plex, yet our analysis of independencies was easy to carry
out. But there was nothing special about these examples:
our analysis uses only simple syntactic tests, and can easily
be applied to any knowledge base. The analysis is partic-
ularly easy for knowledge bases that correspond to a prob-
abilistic (or statistical) semanticnetwork(as did the one in
the first example). In this case, as we showed, the   -map
can simply be read off the network. As in steps (b), (c), and
(d) in Example 7.2 above, our other theorems then allow us
to derive probabilities for various queries.

8 Conclusions
In this paper, we used a semantic approach to analyze several
important patterns of reasoning in first-order probabilistic
logic. In particular, we presented a semantic characteriza-
tion and a graphical representation language for irrelevance
in this context. We showed that the deeper understand-
ing gained by our analysis allows us to determine when
certain irrelevancies are maintained as we gain new infor-
mation. Perhaps the most important immediate payoff of
these results is a sound and simple procedure for reason-
ing about irrelevance in statistical knowledge bases. Our
graphical representation language immediately reveals that

some facts are irrelevant to our query given our information,
allowing us to ignore certain parts of the knowledge base
entirely. When combined with our other results, we obtain a
sound (although incomplete) inference algorithm for a large
sublanguage of first-order probabilistic logic.

Our graphical representation of irrelevance is particularly
well-matched to knowledge bases corresponding to statis-
tical semantic networks. Given the popularity of semantic
networks as a knowledge representation language, we feel
that this new approach for sound irrelevance reasoning in
such networks is a significant contribution of our work.

We conclude with one important direction in which our
work should be extended. We defined independence for
events defined by arbitrary formulas. However, our defi-
nition of Markov networks represents independence at the
more coarse-grained level of vocabulary symbols. While
this is still fairly powerful, it is insufficient for certain appli-
cations. For example, we cannot use such networks to rep-
resent the fact that Cancer
���� is independent of Cancer
�¾R�
if � and ¾ are not related. In future work, we hope to provide
a more refined representation for independencies that would
allow us to capture independencies of this type.
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