
Shared Winner Determination in Sponsored Search
Auctions

David J. Martin #1, Joseph Y. Halpern #2

#Computer Science Department, Cornell University

Ithaca, NY, USA
1
djm@cs.cornell.edu

2
halpern@cs.cornell.edu

Abstract—Sponsored search auctions form a multibillion dol-
lar industry. Search providers auction advertisement slots on
search result pages to advertisers who are charged only if the
end-user clicks on the advertiser’s ad. The high volume of
searches presents an opportunity for sharing the work required to
resolve multiple auctions that occur simultaneously. We provide
techniques for efficiently resolving sponsored search auctions
involving large numbers of advertisers, with a focus on two issues:
sharing work between multiple search auctions using shared
aggregation and shared sort, and dealing with budget uncertainty
arising from ads that have been displayed from previous auctions
but have not received clicks yet.

I. INTRODUCTION

With Internet search being a necessity for most Web users,

search result pages have become a thriving advertising plat-

form. The results of a search query are presented to the user

as a web page that contains a limited number of slots for

advertisements (typically between four and twenty). On each

search result page, the major search engines, like Google and

Yahoo!, sell these slots to advertisers via an auction mecha-

nism that charges the advertiser only if a user clicks on the

ad. 99% of Google’s revenue and more than half of Yahoo!’s

revenue comes from their sponsored search auctions [1]. And

the market size is growing fast. By 2008, spending by US firms

on sponsored search is expected to increase by $3.2 billion

from 2006 and will exceed $9.6 billion, which was the amount

spent on all of online advertising in 2004 [2]. Furthermore,

44% of the current search engine advertisers joined the market

within the last two years [2]. With the increase in the market

size and the high volume of searches in mind, our goal is to

provide techniques for efficiently resolving sponsored search

auctions involving large numbers of advertisers, with a focus

on two important issues: sharing work between multiple search

auctions, and dealing with budget uncertainty arising from

previous auctions whose outcomes have not yet been decided.

In the remainder of this introduction, we describe the problem

and how we solve it in a little more detail.

When a user submits a search query, the search provider

returns the search results along with a set of advertisements in

designated advertisement slots on the search result page. These

advertisement slots are sold to advertisers via an auction where

advertisers specify a bid representing the maximum amount

that they would pay for a click. Advertisers pay the search

provider only if and when the user clicks on their ad.

When the user does click on an advertiser’s ad, the price

that the advertiser is charged is determined by a (publicly

known) pricing rule used by the search provider. For example,

with a first-price pricing rule, the advertiser is charged the

amount he bid. In practice, more complex pricing rules, such

as Vickrey pricing [3], [4] and generalized second-pricing

(used by Google and Yahoo!) [1], [5], are used because they

lead to desirable economic properties such as truthful bidding,

local envy-freeness, etc. The pricing rules employed all satisfy

the constraint that the price charged to an advertiser does

not exceed his bid. More important for our purposes, all

the pricing rules currently used proceed by first solving the

winner-determination problem (e.g., [1], [5], [6], [4]).

In our setting, winner determination is the problem of

assigning the k available ad slots on a search result page

to the n interested advertisers so as to maximize the total

expected amount of bids realized, subject to the constraint

that no advertiser gets more than one slot.1 An advertiser’s

bid of $b dollars is said to be realized if the advertiser’s ad is

displayed in some slot and the user clicks on the advertiser’s

ad. Thus, the total expected amount of bids realized depends

on the advertisers’ bids as well as on their click-through rates,

where ctrij , the click-through rate of advertiser i in slot j, is
the probability that a user will click on advertiser i’s ad if it

is in slot j. The winner-determination problem can be written

as the following integer program:

max
xij

∑

i∈[n]

∑

j∈[k]

xijctrijbi

subject to

∀ i ∈ [n], j ∈ [k] . 0 ≤ xij ≤ 1

∀ j ∈ [k] . 0 ≤
∑n

i=1 xij ≤ 1

∀ i ∈ [n] . 0 ≤
∑k

j=1 xij ≤ 1,

where we use the notation [m] to denote the set {1, . . . ,m},
the variable xij represents whether or not advertiser i is

assigned to slot j, and bi denotes the value that advertiser i
bids for a click. The objective function maximizes the expected

return of the assignment (assuming that advertisers pay what

they bid). The first set of constraints represent the condition

1The constraint that no advertiser gets more than one slot is imposed to
prevent a rich advertiser from monopolizing all the slots.

that the xijs are Boolean variables (since this is an integer

program). The second set of constraints represent the condition

that no two advertisers can be assigned to the same slot.

The third set of constraints represent the condition that no

advertiser is assigned to more than one slot.

While mechanisms currently in use differ in what pricing

rule they use after running winner determination, they all

use winner determination as a first step. It is therefore very

important to solve winner determination as quickly as possible,

especially since winner determination needs to occur before a

search result page is returned, so it contributes to the latency

experienced by the user. As we show here, we can reduce the

total latency for winner determination by sharing the winner-

determination computation across multiple auctions. We show

that by reusing some information, we can considerably save

on computation time.

In order to share work between auctions, we exploit the fact

that there are often related search queries that occur nearly

simultaneously. For example, according to the SEO Book

Keyword Tool [7], there were over 300,000 music-related

searches per day in June 2008, giving an average of over 1

music-related searches every 1/3 seconds on average. If we

batched auctions into rounds consisting of 2/3 second intervals

(well within the limits of user tolerance studies [8]), then we

would expect to see 2 music-related auctions per round. Now

it is reasonable to believe that there will be many advertisers

(e.g., music stores) who will be interested in advertising in

both music-related searches. Our techniques take advantage

of such shared data in the winner determination problems

of multiple related auctions to reduce the amount of work

required to find the winning bidders for each auction.

A. Outline

The rest of this paper proceeds as follows. Section II

describes our approach to sharing the winner determination

computation across multiple auctions using top-k aggregation

to find the winning k advertisers for different bid phrases

under a slightly restrictive assumption, called separability.

We examine the effect of the algebraic properties of top-k
aggregation on the complexity of finding an optimal sharing

plan. We show that the problem is inapproximable and provide

a reasonable heuristic for finding a shared plan. In Section III,

we provide a technique for sharing work in a more general

setting using a novel shared sort. In Section IV, we examine

the issue of uncertain budgets arising from ads which have

been recently displayed but have not yet received a click. We

demonstrate a way to egregiously game the system if this issue

is ignored and there is a high volume of search. We provide a

principled approach to dealing with budget uncertainty, along

with efficient techniques for determining the top k advertisers

in the face of this uncertainty. We discuss related work in

Section V, where we show how to adapt our techniques to

the situation where the separability assumption does not hold.

Finally, we conclude in Section VI.

ctrij slot 1 slot 2
advertiser A 0.36 0.24

advertiser B 0.33 0.22

advertiser C 0.39 0.26

Fig. 1. Separable Click-Through Rates

A B C
ci 1.2 1.1 1.3

slot 1 slot 2
dj 0.3 0.2

Fig. 2. Advertiser-Specific and Slot-Specific Factors

II. SHARED AGGREGATION AND WINNER

DETERMINATION

Given the high volume of searches performed each day,

several search queries arrive nearly simultaneously at any

given time. This presents an opportunity for sharing the

work of winner determination among several sponsored search

auctions. In order to identify the work that can be shared across

auctions, we need to first describe how winner determination

is solved for an individual auction.

A. Separability and Winner Determination

The probability that a user clicks on an advertiser’s ad

depends on, among other things, the content of the ad and the

slot in which the advertisement is displayed. (For example,

studies have shown that ads are more likely to be clicked

on if they are displayed in slots at the top of a vertical

list of slots than if they were placed lower in the list [9].)

The assumption made by existing systems [1], [5], [6], [4],

called the separability assumption, is that the probability that

a given ad receives a click when displayed in a given slot

can be written as the product of two factors, one that depends

only on the advertiser and the other that depends only on the

slot position. This probability, denoted as ctrij , is called the

click-through rate of advertiser i in slot j. The separability

assumption then says that ctrij = ci × dj where ci is the

advertiser-specific factor and dj is the slot-specific factor.

Figure 1 shows an example of separable click-through rates

that can be decomposed into advertiser-specific factors and

slot-specific factors, as depicted in Figure 2.

Under the separability assumption, winner determination

can be solved in time linear in the number of advertisers

for any given auction. Since each ctrij is separable as

ci × dj , winner determination is equivalent to finding one-

to-one mapping α from slots to advertisers so as to maximize
∑

j∈[k] bα(j)cα(j)dj . Then α dictates the allocation of slots:

slot j is assigned to advertiser α(j). Without loss of generality,

assume that the slots are ordered such that slot j has the

jth highest value of dj . We can then solve the winner-

determination problem by simply finding the advertisers with

the top k values of bici and setting α(j) to the advertiser with

the j-highest value of bici. This requires a single scan over the

A B C
bi 14 15 10

bici 16.8 16.5 13

Fig. 3. Bids

bicis, keeping track of the top k advertisers. For the remainder

of this paper, for ease of exposition, we assume separability, in

accord with the earlier literature. However, we remark that in

earlier work [10], we showed that winner determination could

be done efficiently even without assuming separability. In fact,

the techniques for sharing computation that we develop in this

paper can be applied to the winner determination algorithm

proposed in [10]. We return to this issue in Section V.

For example, consider the click-through rates defined by

Figure 1. Now suppose the advertisers bids are as depicted

in Figure 3. Then winner determination assigns slot 1 to

advertiser A and slot 2 to advertiser B.

B. Shared Winner Determination

Having described how winner determination works for a

single auction, we turn our attention to sharing the work of

winner determination between multiple auctions that occur in

the same round. The choice of granularity of a round is left to

the system designer. While choosing a coarser granularity will

lead to higher sharing between auctions (since more searches

will occur per round), and thus greater overall efficiency, it will

also increase the latency (the time the user has to wait before

obtaining her search results). Studies have shown that users

tolerate median latencies of up to 2.2 seconds without much

adverse perception of search quality, but median latencies of

about 3.6 seconds or more are considered too long [8].

Under the separability assumption, winner determination

amounts to finding the advertisers with the top k values of

bici where k is the number of slots and bi is advertiser i’s
bid and ci is the advertiser-specific factor of advertiser i’s
click-through rate. Thus, if the same set of advertisers take

part in two auctions in the same round, then slots would be

awarded in the same way in both. However, not every bidder

takes part in every auction. Advertiser can specify a set of

bid phrases. If the search query does not match one of the

advertiser’s bid phrases, then his ad is not entered into the

auction. In addition, advertisers can specify a daily budget. If

an advertiser has already spent his budget for the day, then

again he will not take part in the auction.

In this section, we ignore budget constraints; we deal with

that in Section IV. In determining whether a query matches an

advertiser’s bid phrase, we assume that the two-stage method

proposed in [11] is used, where the search query is first

mapped into a lower-dimensional space of bid phrases and

is then matched to the advertisers’ bid phrases using exact

match. Accordingly, if a bid phrase does indeed match some

query, then we must find the advertisers with the top k values

of bici whose set of bid phrase contain the bid phrase. This

is where we can share work between the different auctions.

For example, suppose that the search queries “hiking boots”

and “high-heels” occur in the same round. There might be

several general shoe stores that specify both queries as bid

phrases. However there might be a few sports stores that

specify “hiking boots” but not “high-heels”, while a few high-

end fashion accessory stores might only be interested in “high-

heels” queries. Suppose there are 200 general shoe stores, 40

sports stores, and 30 upscale fashion stores. Finding the top k
advertisers for each of the two phrases separately requires us

to scan through 240 and 230 advertisers respectively. However,

if we find the top k advertisers among the general shoe stores,

the top k among sports stores, and the top k among the fashion

stores (which requires looking at 200, 30, and 40 advertisers),

we can then merge the first and second top k lists to find

the top k advertisers interested in “hiking boots”, and the first

and third top-k lists to find the top k advertisers interested

in “high-heels”. Merging in this way allows us to scan 40%

fewer advertisers.

This suggests the use of merging of two top-k lists as

a primitive aggregation operation that we employ to build

shared plans that successively aggregate the bici values of

all the advertisers so as to find the aggregates corresponding

to the sets of advertiser interested in each bid phrase while

minimizing the number of aggregate operations performed.

Thus, the plan we build will be a DAG where each leaf node

represents an advertiser, and each internal node has in-degree

2 and represents a top-k aggregation operator that aggregates

the top k advertisers from the two upstream nodes.

One further issue that complicates sharing is that not all bid

phrases occur in a given round. Thus a single shared plan may

not be optimal in all rounds. Unfortunately, coming up with a

new plan on the fly at every round based is not practical given

the latency requirement of winner determination. Instead, we

try to find a single plan offline that works well ‘on average’.

To formalize this, we assume that the event that a bid phrase

occurs in a round is an independent Bernoulli trial whose

probability is known. We call the probability that bid phrase

q occurs its search rate and denote it as srq. We then try

to find the plan involving pairwise top-k aggregation that

computes the aggregate for each bid phrase, and minimizes

the expected number of nodes materialized per round. A node

is materialized in a given round if it is used to compute the

result for a bid phrase that occurs in that round. In other words,

a node is materialized if there is a path in the plan’s DAG from

that node to some node corresponding to a bid phrase query

node. Therefore the probability of node v being materialized

is 1−
∏

q:v vq
(1−srq) where v q represents the statement

that node v is used in the computation of the aggregate query

corresponding to bid phrase q in the shared plan. Thus, by

linearity of expectation, the total expected cost of a plan is

∑

v

(

1 −
∏

q:v q

(1 − srq)

)

.

C. Shared Aggregation

In this section, we examine the problem at the core of

sharing winner determination: optimizing shared top-k aggre-

gation plans. To this end, we develop a framework for shared

aggregation using an abstract aggregation operator specified

by a set of algebraic properties that the operator satisfies. We

show that finding an optimal shared plan for our abstraction

of the top-k aggregation operator is not only NP-hard, but

is in fact inapproximable. The construction used in the proof

motivates our heuristic for finding a good shared plan in the

next section.

We start out by defining our notion of an abstract aggrega-

tion operator and its associated aggregate queries. An abstract

aggregate operator is simply a binary function ⊕: Z×Z → Z
for some set of values Z (e.g., Z, N). This is sometimes

known as a magma. Given the abstract operator ⊕, aggregation

queries are represented by ⊕-expressions which are obtained

by starting out with a set of variables X and closing off under

the binary ⊕ operator. An example of an aggregation query

is (x ⊕ y) ⊕ z, where x, y, z are variables that take values

in Z. In our setting, each variable represents the bid of some

advertiser, and the values of the variables change rapidly since

advertisers are constantly updating their bids using external

search engine optimizers [12] or automated bidding programs

[10] in order to achieve complex advertising goals such as

staying in a given slot during specific hours of the day, staying

a certain number of slots above a competitor, dividing one’s

budget across a set of keywords so as to maximize the return-

on-investment, etc. [12], [13], [14]. We therefore have to

evaluate our aggregate queries at each round since the variables

are constantly taking on different values.

Without using information about the algebraic properties

of ⊕, we can only share work between queries in a rather

limited manner by reusing the results of sub-expressions used

to compute the queries. For example, we can share work

between x ⊕ y and (x ⊕ y) ⊕ z by re-using the value

of x ⊕ y (which was computed for the first query) during

the computation of the second. But if we take advantage

of the various algebraic properties that ⊕ satisfies, we can

increase the amount of shared computation. For example, if ⊕
is commutative then we can share work between the queries

x ⊕ y and (y ⊕ x) ⊕ z by aggregating the value of z with

the value of the first query in order to compute the value of

the second.

Let Iq be the set of advertisers interested in bid phrase q.
Then an ⊕-expression representing the aggregate query for

bid phrase q is ⊕i∈Iq
bi – we are implicitly using right-

associativity by convention, not that it really matters – where

bi is the variable containing advertiser i’s bid. Throughout

this subsection, we assume that all bid phrases occur in every

round with probability 1 (i.e., srq = 1 for each bid phrase

q). The hardness results presented here therefore extend to the

case when the srqs are arbitrary. Sharing winner determination

then amounts to finding a shared top-k aggregation plan that

produces, for each phrase q, the top-k aggregate of the bids

of advertisers listed in Xq. Recall that the top-k aggregation

operator is the binary function that takes in two k-lists (i.e.,

lists of size at most k) and outputs a k-list of the top k
elements of the union of the two input lists. Notice that this

operator is clearly associative, commutative, and idempotent

(i.e., aggregating a list with itself returns the list itself). It

also has an identity element, namely, the empty list which,

when aggregated with any k-list, returns that list. We therefore

abstract the top-k aggregator using an abstract aggregator ⊕
satisfying the following algebraic properties.

A1) ∀ a.∀ b.∀ c.a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (associativity)

A2) ∃ e . ∀ a . a ⊕ e = e ⊕ a = a (identity)

A3) ∀ a . a ⊕ a = a (idempotence)

A4) ∀ a . ∀ b . a ⊕ b = b ⊕ a (commutativity)

For convenience of notation, let A = {A1, A2, A3, A4}. A
defines the algebraic notion of a semilattice with identity

element, and so our results in this subsection apply to any

meet or join operator, such as min, max, Bloom filter unions,

etc. We also point out that presence or absence of the identity

axiom A2 does not have any affect on our complexity results.

This is mainly due to the fact that we are aggregating variables,

not constant elements, and therefore we cannot exploit the

properties of the identity element since the variables may or

may not contain the identity element at any given round.

We say that two ⊕-expressions e and e′ are A-equivalent

iff e = e′ is provable in first-order logic plus A. Now we

can formally define the notion of a shared plan. Given a set

E consisting of ⊕-expressions over X , an A-plan for E is a

DAG satisfying the following properties:

1) each node is labeled with an ⊕-expression and has in-

degree either 0 or 2,
2) each node with in-degree 0 is labeled with a variable

x ∈ X ,

3) each node with in-degree 2 is labeled with an ⊕-

expression e ⊕ e′,
4) each e ∈ E is A-equivalent to the label of some node.

The total cost of an A-plan is the number of nodes with

non-zero in-degree in the graph (i.e., those nodes representing

top-k aggregation operators). Now we can formally state the

shared aggregation problem as follows. Given a set E of ⊕-

expressions over X , find the min-cost plan for computing each

e ∈ E.

We assume, without loss of generality, that no two ⊕-

expressions in E are A-equivalent and also that no ⊕-

expression in E is A-equivalent to any variable x ∈ X since

we can identify such expressions upfront and remove such

duplicates. We define the base cost of an A-plan to be |E|.
Since every expression E must be the label of a non-leaf

node of a plan for E, every plan for E has cost at least |E|.
What is interesting is the cost of the plan over and above |E|.
We define the extra cost of an A-plan to be the total cost of

the plan minus |E|. The nodes contributing to extra cost are

the partial results that are used to compute the final set of

aggregates. Note that minimizing the extra cost is equivalent

to minimizing the total cost of an A-plan. Later on, when we

discuss inapproximability, we will measure competitive ratio

in terms of extra cost instead of total cost, since the base cost

for all A-plans for E is the same and is unavoidable.

First we state the following lemma that is easy to prove.

Lemma 1: Two ⊕-expressions over a set of variables X
are A-equivalent iff the set of variables appearing in the two

expressions are equal. In particular, e1 ⊕ e2 and e are A-

equivalent iff the set of variables appearing in e is equal to

the union of the sets of variables appearing in e1 and e2.

Next, we show that finding an optimal shared plan is NP-

hard for our abstraction of the top-k aggregator.

Theorem 2: Finding a min-cost A-plan for E is NP-hard,

where E is a finite set of ⊕-expressions over a finite set of

variables X .

Proof: We reduce this to the set-cover problem, which

is well-known to be NP-complete [15]. Recall that, in the set-

cover problem, we are given a finite ‘universal’ set U , a finite

collection S of subsets of U such that ∪S∈S S = U , and

an integer k, and we must determine whether there is some

S ′ ⊆ S such that |S ′| ≤ k, and such that ∪S∈S′ S = U .

Consider any instance of set cover. We can convert this into

an instance of the problem of finding a minimum-cost A-plan

using the following construction. We create a variable for each

element of the universal set. That is, we set X = U . For each

S ⊆ X , we define a ‘canonical’ ⊕-expression eS as follows.

Let <X be an arbitrary strict ordering on the variables in X . If

S = {x1, . . . , xk} is a nonempty set of variables in X , where

x1 <X · · · <X xk, then eS = x1 ⊕ · · · ⊕ xk. (Since ⊕ is

associative by assumption, we can omit parentheses here.)

Now let the set of ⊕-expressions E = {eU}∪{eS : S ∈ S}.
That is, we have an ⊕-expression corresponding to each set in

S and one extra ⊕-expression corresponding to the universal

set. Note that this construction can be done in polynomial

time.

Now suppose that we have a polynomial-time algorithm

for finding the min-cost A-plan for E. Let G be the (DAG)

plan returned by the algorithm. Let ≤ be the binary relation

on nodes in G defined by u < v iff G contains a directed

(possibly zero-length) path from u to v. For each e ∈ E,

let ue be the node labeled with the ⊕-expression that is A-

equivalent to e. Note that checking whether two ⊕-expressions

are A-equivalent can be done in polynomial time by Lemma

1. Let V = {u : u ≤ ueU
} and W = {u : ∃S ∈ S . u ≤ ueS

}.
That is, V is the set of all nodes that have a path to the

node labeled eU and W is the set of all nodes that have a

path to a node labeled eS for some S ∈ S. So V induces an

arborescence rooted at ueU
that represents the plan’s pairwise

aggregation computation of eU . Similarly the DAG induced

by V represents the plan’s computation of the ⊕-expressions

in {eS : S ∈ S}. Let Z be the set of nodes in V ∩W that have

an edge into W \ V . The nodes in Z are the ones with paths

leading both to ueU
and ueS

for some S ∈ S. For each node

z ∈ z, let Sz be the set in S such that z = ueSz
. Note that

Z forms a cut of the arborescence induced by V since V and

W have the same leaf nodes (namely, the nodes labeled by

the variables in X). Therefore, by Lemma 1, {Sz : z ∈ Z} is

a set cover of U since eU is formed by aggregating the nodes

in Z since Z cuts the arborescence induced by V . Since the

plan generated by the algorithm was minimal, this must be a

minimal set cover of U , otherwise we could have replaced the

nodes in V \ W by aggregating the smaller set cover, which

would have produced a plan with fewer nodes.

Finally, we extend the idea behind the construction in the

previous proof to show that finding an optimal shared plan

for our abstraction of the top-k aggregator is, in fact, hard to

approximate to within less than a logarithmic factor of optimal.

Theorem 3: There is no polynomial-time algorithm that

finds a shared plan whose extra cost is within a log n factor

of optimum unless P = NP .

Proof: We follow the same construction as the proof

of Theorem 2, except that we close the query expressions

off under sub-expressions before adding the universal set

query. This ensures that the only extra nodes we add are for

computing the universal set query, which as we showed in

the proof of Theorem 2 corresponds to finding a minimal set

cover. Then the theorem follows directly from the fact that

minimal set cover is not approximable to within a log n factor

of optimal [16].

As we mentioned previously, these complexity results apply

to the case where the queries are probabilistic as well.

D. Algorithm

In the previous section we proved that finding an optimal

shared plan for top-k aggregation between multiple auctions

is inapproximable to within a log n factor even for the special

case where all queries occur with certain probability. We

now propose a heuristic for finding a shared aggregation

plan for multiple probabilistic queries. Our approach consists

of two stages: identifying fragments, and aggregating across

fragments.

1) Identifying fragments: In the first stage, we group to-

gether all variables that occur in the same set of query expres-

sions. We associate with each variable a bit string of length

m, where the ith bit indicates whether or not the variable

occurs in the i query expression. Then we group together all

variables that are associated with the same bit string. These

groups are equivalence classes of variables and are called

fragments in [17]. Note that even though there are 2m possible

fragments, only O(n) will be non-empty since there are n
variables. We can safely aggregate elements within a fragment

since no sharing occurs across fragments, since fragments

are equivalence classes. This step itself provides some basic

multiquery optimization since no fragment is computed twice.

It is not hard to see that this step takes O(mn log n) time; the

log n factor comes from having to index the fragments by bit

string to identify groups of fragments. Alternatively, a hash

table of bit strings could be used for grouping.

2) Aggregating across fragments: In the second stage, we

use a greedy heuristic to complete the plan that was started out

by aggregating together all the nodes within each fragments.

We say that an A-plan is incomplete if it does not compute all

query expressions, i.e., if there is some query expression that

is not equivalent to the label of any node in the plan. We can

always complete an incomplete plan by finding a set cover of

the missing query nodes from the collection of existing nodes.

Note that we are associating nodes with the set of variables

mentioned in the ⊕-expression labeling the node according

to Theorem 1. Also note that we use the term ‘set cover’ to

mean a cover whose union exactly equals the target set instead

of just being a superset of the target set. This usage of the

term is made without loss of generality with respect to earlier

complexity results.

Suppose for the moment, that all queries occur with proba-

bility 1 at each round. Then the optimal way to complete the

plan without any further sharing would be to find a minimum

set cover C of each of the missing queries and to aggregate

together all the nodes in C using an arbitrary binary tree, using

|C| − 1 nodes. Thus, the cost of completing the plan without

further sharing is
∑

q(|Cq| − 1), where Cq is the size of the

minimal set cover for query node q. This motivates our greedy

heuristic, which works as follows.

At every step, we find two nodes that would aggregate

together to form a new node that would lead to the greatest

decrease in
∑

q |Cq| per unit extra cost of computing the new

aggregate node. We call the decrease in
∑

q |Cq| resulting from
aggregating a pair of existing nodes the coverage gain of the

pair. Note that the extra cost of creating a new aggregate node

is 1 unless the aggregate is equivalent to a query expression, in

which case the extra cost is 0 since the query node would have

had to be computed anyway and would therefore have counted

toward the base cost. If there are multiple pairs of nodes that

would cover some previously uncovered query, then we pick

the pair with the highest coverage gain. The intuition is that

the faster we cover all the query nodes, the faster the plan

gets completed, and hence the fewer the extra nodes that are

required.

Unfortunately, as the reader might have noticed, we run

into a problem if we try to carry out the heuristic as stated

above. The issue is that in order to pick the pair of nodes

with the highest coverage gain, we need to first calculate the

minimum cover for each query node from the existing set of

nodes. But minimum set cover is an NP-hard problem, and

is in fact not approximable to within a log n + 1 factor as

we saw in Section II-C. Therefore we cannot use the real set

cover in measuring coverage gain, so instead we use the cover

prescribed by the greedy covering algorithm which works

as follows. Until the target set is covered, repeatedly pick

the feasible set that covers the maximum number of as-yet-

uncovered elements. It is known that this greedy algorithm

produces a cover within a 1 + log n factor of optimal [18].

In fact, the greedy algorithm performs even better during the

early decisions: the greedy algorithm achieves a competitive

ratio logarithmic in |S|, where S is the largest cardinality set in

the collection [18] (in our context, this is the size of the largest

set associated with an existing node in the incomplete plan).

We call the total size of the covers of all the query nodes

as prescribed by the greedy covering algorithm the greedy

coverage. Since we are always decreasing the minimum cover

at each step, we run for at most
∑

q |Xq| steps, where Xq is

the set of variables mentioned in query q. Each step requires

checking the newly created node with all existing nodes to

form a pair that maximizes greedy coverage gain. So the total

running time is polynomial in
∑

q |Xq|.
So far in this subsection, we have assumed that all queries

appears at each round. However, as we described earlier, in

our application, each query occurs independently with some

probability. We therefore extend the algorithm to deal with

this probabilistic setting by replacing the notion of coverage

gain with expected greedy coverage gain. Expected greedy

coverage gain of a pair of nodes is the decrease in expected

total greedy coverage of queries (i.e.,
∑

q srq|Cq|, where srq

is the probability of the aggregate query q occurring) resulting

from aggregating that pair of nodes. Thus, the algorithm favors

the covering and sharing of the queries that are more probable

over rare queries.

To summarize, our final algorithm works as follows:

1) First, group variables by the set of query expressions

they appear in, and then aggregate the variables within

each group.

2) Until the plan covers all query nodes, do the following:

a) For each pair of nodes in the incomplete plan,

compute the expected greedy coverage.

b) If there exist some pairs of nodes that could be

aggregated together to form a missing query node,

then aggregate one such pair with the maximum

expected greedy coverage.

c) Otherwise pick any pair with maximum expected

greedy coverage and aggregate them to form a new

node.

The running time of the algorithm is polynomial in
maxq srq

minq srq

∑

q |Xq| using an analysis similar to that for the de-

terministic queries case presented above. We observe that our

algorithm performs within a constant factor of any polynomial-

time algorithm (unless P = NP) in the inapproximable case

described in the proof of Theorem 3. Initially, our algorithm

adds aggregates that compute all the ⊕-expressions of E′

since these aggregate nodes have zero extra cost. Once these

nodes have been created, our algorithm then tries to find a

greedy covering for the query node labeled eU and therefore

essentially runs greedy set cover, which is a (1 + log n)-
approximation to optimal.

We point out that the more certain the queries are, the

more effective our sharing techniques will be. The intuition

is that nodes that perform shared computation give more

savings when they are used in more queries. Figure 4 shows

an example of the savings provided in a set of 10 top-k queries

over 20 advertisers. The queries were chosen by flipping coins

to determine whether each advertiser would be in the list of

top-k contenders, discarding duplicate queries.

III. SHARED SORTING AND WINNER DETERMINATION

In the previous section, we provided techniques for sharing

between auctions with where the advertiser-specific factor of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

E
x
p
e
c
te

d
 n

u
m

b
e
r

o
f
to

p
-k

 a
g
g
re

g
a
ti
o
n
s

Probability of each query

without sharing
with sharing

Fig. 4. Expected cost of plan vs. query probability

the click-through rate was identical across all the bid phrases.

In reality, it seems quite reasonable that the same advertiser

in the same slot position might have different click-through

rates for substantially different bid phrases. For example, a

book store that mainly sells books but also dabbles in selling

movies and music might have a higher advertiser-specific

factor when the bid phrase is “books” than when the bid phrase

is “DVDs”. If this is the case, we cannot directly share the top-

k aggregation of the bici values across bid phrases as we did

in Section II-B since the value of ci can be different for each

phrase. Instead, we devote this section to examining how we

can share work by exploiting the fact that the bi values are

shared across bid phrases.2

A. Threshold Algorithm

In order to share work between auctions, we use the well-

known threshold algorithm [19] to find the top q advertisers for

each bid phrase that occurs in a given round. In our context, the

threshold algorithm works as follows. For a given bid phrase q,
let cq

i be the advertiser-specific factor of the click-through rate

of advertiser i for bid phrase q. Let jq
1 , jq

2 , . . . be an ordering

of advertisers who are interested in bid phrase q, ordered

by descending values of cq
i .
3 Let iq1, i

q
2, . . . be an ordering

of advertisers who are interested in bid phrase q, ordered by

descending values of bi. The algorithm proceeds in stages. At

each stage s = 1, 2, . . . , the threshold algorithm incrementally

maintains k indices in {iqs′ : 1 ≤ s′ ≤ s} ∪ {jq
s′ : 1 ≤ s′ ≤ s}

with the highest values of bic
q
i . It terminates early at the first

stage s where all top k values are no less than the threshold

defined by bi
q
s
cj

q
s
. It is well-known that the threshold algorithm

is instance optimal for the class of algorithms that find the

advertisers with the top k values of bic
q
i without making “wild

guesses” (i.e., the algorithms must not access an advertiser

until that advertiser is encountered via a sequential scan of one

2If, in addition, we allow the values of bi to vary across bid phrases, then
there is no opportunity for sharing work between phrases at all since no data
is shared between the phrases.

3We assume that the click-through rates are recalculated only occasionally
and for the most part remain fixed. Therefore the ordering j

q

1 , j
q

2 , . . . can be
treated as fixed and can be precomputed.

of the lists). Instance optimality means that, for any input, the

threshold algorithm finds the top k values within a constant

factor of the time it takes the fastest algorithm that avoids wild

guess on that input. Thus, we could solve the top-k problem for

each bid phrase in an instance-optimal manner if we had a way

of listing, on demand, the advertisers interested in phrase q,
starting with the advertiser i with the highest bi and proceeding

in decreasing order of bi values. This motivates the following

problem that we call shared merge-sort.

B. Shared Sorting

Consider a sponsored search auction that matches some

bid phrase q, and let Iq be the set of advertisers who are

interested in k. For ease of exposition, we assume that each

|Iq| is a power of two; the discussion generalizes to arbitrary

cardinalities in a straightforward way. The threshold algorithm

as described above initially asks for the advertiser i ∈ Iq with

the highest value of bi. It then asks for the advertiser from

Iq with the next highest value of bi, and then the next, and

so on, until the threshold condition described above has been

met. To supply the threshold algorithm with an advertiser at

each stage, we construct a plan whose DAG is a balanced

binary tree as used in a merge-sort of the set {bi : i ∈ Iq}.
Each leaf node is associated with a distinct bi from this set.

Rather than running the entire merge-sort upfront, we treat

each non-leaf node as an on-demand operator that stores a left

register and a right register, and sends the contents of the larger

of the two registers upstream and then clears that register; if a

register to be read from is empty, its value is pulled from its

corresponding downstream node. This way, we don’t do any

extra work beyond the stage where the threshold condition is

met. Each operator stores the sequence of values it has sent

upstream. This will be used for caching results when operators

are shared between multiple sort plans.
Now suppose that there is some other auction for another

phrase q′, and let Iq′ be the set of advertisers who are

interested in q′. If Iq ∩ Iq′ 6= ∅, then we have already done

some work in ordering advertisers who are interested in k.
We would like to re-use some of this work when feeding

advertisers to the threshold algorithm for phrase q′. Clearly,
we can re-use the cached results of any operators below which

all leaves correspond to advertiser in Iq ∩ Iq′ . This amounts

to the problem of optimally sharing our on-demand merge

operators in the merge-sort trees for multiple bid phrases.

With each each merge operator v, we associate the set of

advertisers Iv corresponding to the leaves below the operator.

Then, according to the usual merge-sort tree restrictions, two

operators u and v can be merged into a new merge operator

w only if Iu ∩ Iv = ∅ and |Iu| = |Iv|. The total number of

times an operator v is invoked in the worst case is |Iv|. This
happens when the threshold condition is never met and the

entire set Iv is sorted. Since we do not model the distribution

of values that the bis take, we conservatively use this full-

sort cost when evaluating the cost of shared plans. Thus, the

expected full-sort cost of a merge-sort operator in a shared plan

is |Iv|
(

1 −
∏

q:v q(1 − srq)
)

, where srq is the probability

that bid phrase q appears in some auction, and q v denotes

the property that operator v is used in bid phrase q’s merge-

sort tree in the shared plan. By linearity of expectation, the

total expected full-sort cost of a shared merge-sort plan is

∑

v

|Iv|

(

1 −
∏

q:v q

(1 − srq)

)

C. Algorithm

We propose the following simple bottom-up greedy heuristic

for building a shared merge-sort plan that starts out with the

leaf nodes, each corresponding to a distinct advertiser, and

successively merges the two nodes that would lead to the

largest savings in expected cost. When creating a new node

w, we annotate it with the set of bid phrases Qw whose

merge-sort tree it contributes to. Initially, each leaf nodes v
is annotated with Qv = {q : v ∈ Iq}. At any point, we can

merge nodes u and v into a new node w only if Qu∩Qv 6= ∅,
Iu ∩ Iv = ∅, and |Iu| = |Iv|. We then set Qw = Qu ∩ Qv

and Iw = Iu ∪ Iv . We pick the u and v such that the expected

savings of merging them to create new node w is maximized.

The expected savings from creating node w is given by

|Iw| ∗
n
∑

i=1









∏

1≤j<i

(1 − srqj
)



 srqi





n
∑

j=i+1

srqj









where Qw = {q1, . . . , qn}. Note that
∑n

i=1

[(

∏

1≤j<i(1 − srqj
)
)

srqi

(

∑n

j=i+1 srqj

)]

is simply

the expected number of queries in Qw that occur beyond the

first.

IV. DEALING WITH BUDGET UNCERTAINTY

In most existing systems, advertisers can specify a daily

budget, which represents the maximum amount of money the

advertiser is willing to spend per day. The search provider is

required to respect this constraint, and must therefore never

charge an advertiser more than his daily budget on any given

day. In order to perform winner determination correctly, we

need to take this budget into consideration. What makes

this tricky is that the amount of budget remaining is often

uncertain. With the high rate of searches, an advertiser may

well be interested in a new auction before he has to pay for

his winnings from a previous auction. Since advertisers pay

for clicks only after a user clicks on their ad, if the user from

the first auction has not yet clicked on the advertiser’s ad by

the time the second auction occurs, there will be uncertainty

about the amount of budget that the advertiser has remaining,

since the first user may still click on the ad at some time in

the future.

Suppose we were to ignore the budget issue during winner

determination and simply not charge the advertiser if the

user clicks after the advertiser’s budget has been depleted.

Consider an advertiser who is interested in a popular keyword,

such as music, whose budget is almost exhausted. Until he

receives enough clicks to completely exhaust his budget, we

would allow him to bid his remaining budget on every music-

related search query that occurs. He may win m auctions, but

only have enough money in his budget to pay for m′ < m
clicks. If he gets more than m′ clicks, payment for the extra

clicks would be forgiven. Thus, the advertiser would get

more than his budget’s worth of clicks. This constitutes lost

revenue, since the slots could have been assigned to competing

advertisers who had less chance of depleting their budgets. We

now propose a principled solution to this problem by taking

into account the outstanding ads that are awaiting clicks, and

computing appropriately throttled bids for advertisers who are

likely to go over budget.

A. Throttling Bids

To start with, consider an advertiser i for whom there

are no outstanding ads awaiting clicks from users. Denote

the i’s remaining budget, i.e., his daily budget minus the

amount he has paid to the search provider for clicks that have

already occurred, as βi. Suppose that in the current round, the

advertiser takes part in mi auctions, and that his current bid

for a click is bi. Rather than using bi directly as his bid, we

use a modified bid b̂i instead. If the advertiser can afford to

pay his stated bid of bi for each of the mi auctions, then we

take b̂i to be bi; otherwise, we use the highest possible bid

that the advertiser could still afford to pay for each auction.

In other words, we let b̂i = min(bi, βi/mi).
Now suppose that there are some, say li, outstanding ads of

advertiser i that are awaiting clicks. For each outstanding ad

j, suppose the price for a click on that ad was determined to

be πj and the probability of that ad getting clicked (given the

time elapsed since the ad was displayed) is ctrj . We make

no assumptions about the value of ctrj , but we point out

that it is reasonable to model ctrj as decreasing over time,

and furthermore, that it reaches 0 after a specified time limit

has passed; this will enable us to discard outstanding ads

that have received no clicks in a long time. Let Xj be the

random variable for the amount eventually paid for ad j. For
any l ∈ {1, . . . , li}, let Sl =

∑l

j=1 Xj . Thus, the amount of

budget remaining once the debts for outstanding ads have been

cleared is max(0, βi−Sli). We would like to take b̂i to be the

highest possible bid that the advertiser could still afford once

his debts for outstanding ads have been cleared. That is,

b̂i =







bi if Sli < βi − mibi

0 if Sli ≥ βi

(βi − Sli)/mi otherwise

or, written another way, b̂i = min(bi,max(0, βi − Sli)/mi).
However, since the values of the Xjs are uncertain because

the ads are still awaiting clicks, we use the expected value

at the time of winner determination. That is, we let b̂i =

E(min(bi,max(0, βi − Sli)/mi)).

B. Computing Bounds for Throttled Bids

Let ωl denote
∑l

j=1 πj , where πj is the price for a click on

the jth outstanding ad. Note that Sli ≤ ωli , since each Xj is

either πj with probability ctrj , or else is 0 with the remaining

probability. Thus, if ωli ≤ βi −mibi, then b̂i = bi. Otherwise,

if ωli > βi − mibi, we can compute b̂i as follows. Note

that E(min(bi,max(0, βi − Sli)/mi)) = E(min(mibi, βi −
min(βi, Sli)))/mi. Thus, in order to compute b̂i, we can

compute the distribution of min(βi, Sli) and then take the

expected value of min(mibi, βi − min(βi, Sli)) over that

distribution. This takes time O(min(2li , βi)), assuming that βi

is written in the lowest denomination of currency. However,

observe that during the winner-determination phase, we do not

need the precise values of b̂i. We simply need the ability to

compare b̂i with b̂i′ for advertisers i and i′ in order to find

the top k advertisers. Of course, once winner determination

is over, we will need the precise values of b̂i for the winning

advertisers in order to compute the prices for clicks. But there

are only k winning advertisers at this point, so the amount of

computation is a lot less than computing the precise b̂i values

for all n advertisers.
Now, in order to compare the b̂i and b̂i′ , we use Hoeffd-

ing bounds to compute successively tighter upper and lower

bounds for b̂i and b̂i′ until the upper bound is lower than the

lower bound for the other at which point we can resolve the

comparison test with certainty. In order to do this, notice that

b̂i can be rewritten as

bi Pr(Sli < βi − mibi) +
1

mi
E((βi − Sli)1βi−mibi≤Sli

<βi
)

We will denote upper and lower probability bounds as

Pr(. . .) and Pr(. . .) respectively, and we denote upper

and lower expectation bounds as E(. . .) and E(. . .) re-

spectively. Let µl denote E(Sl) =
∑l

j=1 ctrjπj by lin-

earity of expectation, and let σl denote
√

Var(Sl) =
√

∑l

j=1 ctrj(1 − ctrj)π2
j . Using Hoeffding’s inequality [20],

which upper-bounds the probability that the sum of bounded

independent random deviates from its expected value, we can

derive the following bounds for Pr(Sl < x) for any x > 0,

Pr(Sl < x) =















1 if ωli ≤ x,
0 if x < µli ≤ ωli , and

max(0.5, 1 − exp(−2(x − µli)
2/
∑li

j=1 π2
j))

if µli ≤ x < ωli ;

and

Pr(Sl < x) =







1 if µli ≤ x

min(0.5, exp(−2(µli − x)2/
∑li

j=1 π2
j))

if x < µli ≤ ωli .

Using these bounds, we can derive bounds for Pr(x ≤ Sl < y)
as Pr(x ≤ Sl < y) = max(0,min(1,Pr(Sl < y) − Pr(Sl <
x))) and Pr(x ≤ Sl < y) = max(0,min(1,Pr(Sl <
y) − Pr(Sl < x))). Now for 0 < x < y, we can

bound E(Sl1x≤Sl<y) from above and below by xPr(x ≤
Sl < y) and y Pr(x ≤ Sl < y) respectively. Using the

bounds that we have just derived, we can bound the value

of bi Pr(Sli < βi − mibi) + βi

mi
Pr(βi − mibi ≤ Sli <

βi) + 1
mi

E(Sli1βi−mibi≤Sli
<βi

) and hence that of b̂i.

If the bounds for b̂i and b̂i′ as computed above are insuf-

ficient to decide the comparison, we can expand Pr(Sl < x)

and E(Sl1x≤Sl<y) in terms of expressions involving Sl−1, πl,

and ctrl to get tighter bounds. We do this repeatedly until the

bounds are tight enough to decide the comparison. Pr(Sl < x)
expands to

ctrl Pr(Sl−1 < x − πl) + (1 − ctrl) Pr(Sl−1 < x)

and E(Sl1x≤Sl<y) expands to

ctrl E(Sl−11x−πl≤Sl−1<y−πl
)

+ ctrlπl Pr(x − πl ≤ Sl−1 < y − πl))
+ (1 − ctrl) E(x ≤ Sl−1 < y)

We order the random variables Xj in increasing order of πj .

We expand out variables of high πj values first, thus quickly

eliminating their appearance in the Hoeffding bounds which as

can be seen from the equations above leads to tighter bounds.

Note that, in the worst case, the running time for getting a

precise value for b̂i is still O(max(2li , βi)), but our technique
allows us to terminate early once the bounds are tight enough

for the purpose of comparison. Furthermore, we can cache the

bounds for comparison with other b̂i′s and for computing the

precise computation of b̂i should advertiser i be one of the top
k advertisers.

V. RELATED WORK

Early work on multiquery optimization includes work done

by Sellis [21] to provide shared plans for select, project, and

joint queries. However, this work did not consider shared ag-

gregation. Cocke looked at sharing work for computing expres-

sions where the operators were commutative non-associative

operators in the context of compiler optimization by finding

global common subexpressions [22]. In contrast, our work fo-

cuses on operators that are associative as well as commutative.

There has recently been a lot of work done in the context

of data streaming and sensor networks that is closely related

to ours. For example, Dobra, Garofalakis, et al. introduce a

technique for computing approximate aggregates by sharing

work across multiple queries [23] transmitting ‘sketches’ of

the data rather than the entire data. In our setting, it is

important to find the exact aggregate values in order to

ensure the desired economic properties of the auction, such

as truthfulness and envy-freeness. Trigoni, Yao, et al. look at

optimizing aggregates in sensor networks [24]. They focus on

communication cost and use more coarse cost-model than ours.

They consider a unit cost of sending a vector of aggregates

whose length depend on the problem size. In contrast, we

consider the cost of computing each individual aggregate,

which is a more accurate computation cost model. Zhang,

Koudas, et al. consider the problem of sharing aggregation

over data streams in the Gigascope system where the queries

are aggregates of group-bys of several attributes [25]. They

use ‘phantom’ group-by aggregates that contain partial results

for multiple queries and propose a greedy heuristic finding

the optimal set of phantoms for count and sum aggregates.

Krishnamurthy, Wu, and Franklin suggest the use of fragments

[17] (i.e., grouping inputs by the set of selection predicates that

they satisfy) that we use in the first stage of our algorithm.

However they did not take advantage of further algebraic

properties of the aggregation operator as we do. Huebsch,

Garofalakis, et al. consider the problem of sharing aggregate

computation for distributed queries and classify aggregates

based on whether or not they are linear and whether or not

they are duplicate-insensitive [26]. Like [24], this work uses

a coarser cost model than ours. Other work on multiquery

aggregation includes that of Silberstein and Yang where they

look at aggregation using a set of multicast trees in a network

that satisfies certain assumptions on the relationship between

the trees [27]. Our setting is different in that, rather than given

a network, we have to design the optimal network between

sources (inputs) and sinks (queries).

Non-Separable Click-Through Rates. Recent work goes

beyond the traditional assumption of separable click-through

rates [10]. Advertisers are allowed to bid on clicks, im-

pressions, and purchases resulting from displaying their ad,

and click-through and purchase rates are allowed to be non-

separable. The technique proposed in [10] takes advantage

of the fact that the number of slots is usually very small in

comparison with the number of bidders. A complete bipartite

graph is constructed with advertisers on one side and slots

on the other. The edge between an advertiser and a slot is

weighted by the expected realized bid that would obtained by

assigning that advertiser to that slot. The graph is then pruned

to a much smaller graph by considering only the advertisers

with the k highest edges incident to each slot, where k is the

number of slots. Then the maximum weight bipartite matching

is found between these O(k2) advertiser and k slots using the

well-known Hungarian algorithm [28]. Our work fits very well

into this framework – we can use the shared top-k algorithms

presented in this paper to find the top k advertisers for each

slot in the graph-pruning step described above.

Finally, related to our work on uncertain budgets, Aggarwal

and Hartline propose a related auction known as the knapsack

auction, where bidders want to place items of varying sizes

in a knapsack of a given capacity [29]. They suggest that

this auction can be used to run a single auction to sell

advertisement slots for the entire day where each advertiser’s

budget runs out after receiving exactly one click. In contrast

to our approach, their auction fixes the outcome ex ante at

the start of the day. Re, Suciu, et al. propose a technique they

term ‘multisimulation’ to find the top-k most probable tuples

in the result of a query to probabilistic database [30]. They

do this by running Monte-Carlo simulations for all tuples and

scheduling the simulations so as to quickly eliminate unlikely

contenders.

VI. CONCLUSION

In this paper, we highlight the opportunity for sharing work

when there is a high search volume by sharing the winner

determination computation across multiple sponsored search

auctions that occur simultaneously. We provided techniques

for both separable and non-separable click-through rates even

if the advertiser-specific factor is different across bid phrases

in the case of separable click-through rates. We are working on

a thorough experimental evaluation of our proposed heuristics.

It would also be desirable to provide provable approximation

bounds if possible.

We also demonstrate a way for advertisers to game the

system when there is a high volume of search if the system

ignores the issue of budget uncertainty. Our solution auto-

matically throttles bids by takes into account ads that have

been displayed recently but have not yet been clicked on.

We showed how to solve winner determination efficiently by

computing upper and lower bounds on throttled bids rather

than computing their values precisely. As future work, we

would like to explore in more detail how to schedule the

refinement of these bounds to reduce the amount of work

necessary to compare two throttled bids.

VII. ONGOING AND FUTURE WORK

[10] propose a framework where advertisers submit bidding

programs to bid on their behalf. These programs are run every

time an auction occurs thus giving the advertisers much more

dynamic control over their bids. In order to make informed

decisions about how to bid, it would be useful for these

programs to be able to compute quantities such as average (or

maximum) bid placed on a given set of bid phrases (e.g., those

bid phrases containing the word ‘music’), or the total number

of users who have searched for one of a set of bid phrases.

These quantities can be computed using sum, average, and

count aggregates over bid phrases. Often multiple advertisers

will want to perform similar aggregates over similar sets of bid

phrases, giving us the opportunity to share such aggregation.

We therefore consider aggregates other than the top-k aggre-

gate that we considered in Section II. However, rather than

considering the shared aggregation problem for each particular

aggregate, we take a more general approach and employ the

abstract algebraic framework that we introduced earlier. As

ongoing work, we study the relationship between algebraic

properties of the aggregation operation in question and the

complexity of finding the optimal shared aggregation plan. To

this end, we consider the following algebraic properties of

binary aggregation operator ⊕.

A1) ∀ a.∀ b.∀ c.a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (associativity)

A2) ∃ e . ∀ a . a ⊕ e = e ⊕ a = a (identity)

A3) ∀ a . a ⊕ a = a (idempotence)

A4) ∀ a . ∀ b . a ⊕ b = b ⊕ a (commutativity)

A5) ∀ a . ∀ b . ∃! c . ∃! d . a ⊕ c = d ⊕ a = b (divisibility)

These axioms can been used to characterize vari-

ous algebraic structures of interest, including semigroups

({A1}), monoids ({A1, A2}), groups ({A1, A2, A5}), Abelian
groups ({A1, A2, A4, A5}), bands ({A1, A3}), semilattices

({A1, A3, A4}), quasigroups ({A5}), and loops ({A2, A5}).
We have already seen axioms A1, A2, A3, and A4 from

Section II. We focus mainly on those aggregates satisfying A4,
since the most common and important aggregation operators

that come up in our setting, and in database and stream settings

in general are commutative. Such aggregates include sum,

count, product, max, min, top-k, and Bloom-filter unions and

intersections. Moreover, these aggregates can be combined

A1 A2 A3 A4 A5 Complexity

N * * * N PTIME

N N N * Y PTIME

N Y N * Y PTIME

N N Y * Y PTIME

N Y Y * Y O(1)
Y * N Y N NP-complete

Y * N Y Y NP-complete

Y * Y Y N NP-complete

Y * Y * Y O(1)

Fig. 5. Complexity Results for Optimally Sharing Aggregation

with each other to compute other useful aggregates such as

mean and variance.

Figure 5 summarizes our complexity results so far. Note

that this includes a complete characterization for commutative

aggregates. We do not yet have complexity bounds for the

cases corresponding to lines 6 through 8, when A4 = N
instead of Y . Also missing are approximation algorithms for

the NP-complete cases.

ACKNOWLEDGMENT

The first author is supported in part by NSF under Grants

IIS-0534064 and IIS-0534404. The second author is in part

supported by NSF under Grants ITR-0325453 and IIS-

0534064, and by AFOSR under Grant FA9550-05-1-0055.

Any opinions, findings, conclusions or recommendations ex-

pressed in this material are those of the authors and do not nec-

essarily reflect the views of the sponsors. We thank Mingsheng

Hong for several useful discussions on shared aggregation and

for pointers to literature on multiquery optimization.

REFERENCES

[1] B. G. Edelman, M. Ostrovsky, and M. Schwarz, “Internet advertising
and the generalized second price auction: Selling billions of dollars
worth of keywords,” NBER Working Paper No. W11765, November
2005. [Online]. Available: http://ssrn.com/abstract=847037

[2] eMarketer, “The unstoppable surge of search advertising,” http://www.
emarketer.com/Article.aspx?1004811, April 2007.

[3] W. Vickrey, “Counterspeculation, auctions, and competitive sealed ten-
ders,” Journal of Finance, vol. 16, pp. 8–37, 1961.

[4] G. Aggarwal, A. Goel, and R. Motwani, “Truthful auctions for pricing
search keywords,” in EC ’06: Proceedings of the 7th ACM Conference

on Electronic Commerce. New York, NY, USA: ACM Press, 2006, pp.
1–7.

[5] H. R. Varian, “Position auctions,” UC Berkeley Working Paper, 2006.
[6] G. Aggarwal, S. Muthukrishnan, and J. Feldman, “Bidding to the top:

VCG and equilibria of position-based auctions,” in WAOA ’06: Pro-

ceedings of the 4th Workshop on Approximation and Online Algorithms.
Berlin, Germany; Heidelberg, Germany: Springer, September 2006, pp.
15–28.

[7] SEO Tools, “SEO Book keyword tool,” http://tools.seobook.com/
keyword-tools/seobook, 2008.

[8] A. Sears, J. A. Jacko, and M. S. Borella, “Internet delay effects: how
users perceive quality, organization, and ease of use of information,” in
CHI ’97: CHI ’97 extended abstracts on Human Factors in Computing

Systems. New York, NY, USA: ACM Press, 1997, pp. 353–354.
[9] Nielsen/NetRatings, “Interactive advertising bureau (IAB) search brand-

ing study,” Commissioned by the IAB Search Engine Committee, August
2004, available at http://www.iab.net/resources/iab searchbrand.asp.

[10] D. J. Martin, J. Gehrke, and J. Y. Halpern, “Toward expressive and
scalable sponsored search auctions.” in ICDE ’08: Proceedings of the

24th IEEE International Conference on Data Engineering. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 237–246.

[11] F. Radlinski, A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, and
L. Riedel, “Optimizing relevance and revenue in ad search: A query
substitution approach,” in SIGIR ’08: Proceedings of the Conference on

Research and Development in Information Retrieval. New York, NY,
USA: ACM Press, 2008, p. (to appear).

[12] B. Kitts and B. LeBlanc, “Optimal bidding on keyword auctions,”
Electronic Markets, vol. 14, no. 3, pp. 186–201, 2004.

[13] C. Borgs, J. Chayes, N. Immorlica, M. Mahdian, and A. Saberi, “Multi-
unit auctions with budget-constrained bidders,” in EC ’05: Proceedings

of the 6th ACM Conference on Electronic Commerce. New York, NY,
USA: ACM Press, 2005, pp. 44–51.

[14] S. Muthukrishnan, M. Pál, and Z. Svitkina, “Stochastic models for bud-
get optimization in search-based advertising,” in Internet and Network

Economics, ser. Lecture Notes in Computer Science. Berlin, Germany;
Heidelberg, Germany: Springer, 2007, vol. 4858, pp. 131–142.

[15] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-

ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
New York, NY, USA: Plenum Press, 1972, pp. 85–103.

[16] C. Lund and M. Yannakakis, “On the hardness of approximating
minimization problems,” Journal of the ACM, vol. 41, no. 5, pp. 960–
981, 1994.

[17] S. Krishnamurthy, C. Wu, and M. Franklin, “On-the-fly sharing for
streamed aggregation,” in SIGMOD ’06: Proceedings of the 2006 ACM

SIGMOD International Conference on Management of Data. New
York, NY, USA: ACM Press, 2006, pp. 623–634.

[18] D. S. Johnson, “Approximation algorithms for combinatorial problems,”
in STOC ’73: Proceedings of the 5th Annual ACM Symposium on Theory

of Computing. New York, NY, USA: ACM Press, 1973, pp. 38–49.
[19] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for

middleware,” in PODS ’01: Proceedings of the 20th ACM Symposium

on Principles of Database Systems. New York, NY, USA: ACM Press,
2001, pp. 102–113.

[20] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, 1963.

[21] T. K. Sellis, “Multiple-query optimization,” ACM Trans. Database Syst.,
vol. 13, no. 1, pp. 23–52, 1988.

[22] J. Cocke, “Global common subexpression elimination,” SIGPLAN No-

tices, vol. 5, no. 7, pp. 20–24, 1970.
[23] A. Dobra, M. N. Garofalakis, J. Gehrke, and R. Rastogi, “Sketch-based

multi-query processing over data streams,” in EDBT ’04: Proceedings

of the 9th International Conference on Extending Database Technology.
Berlin, Germany; Heidelberg, Germany: Springer, 2004, pp. 551–568.

[24] N. Trigoni, Y. Yao, A. J. Demers, J. Gehrke, and R. Rajaraman, “Multi-
query optimization for sensor networks,” in DCOSS ’05: Proceedings of

the 2005 International Conference on Distributed Computing in Sensor

Systems. Berlin, Germany; Heidelberg, Germany: Springer, 2005, pp.
307–321.

[25] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava, “Multiple aggre-
gations over data streams,” in SIGMOD ’05: Proceedings of the 2005

ACM SIGMOD International Conference on Management of Data. New
York, NY, USA: ACM Press, 2005, pp. 299–310.

[26] R. Huebsch, M. Garofalakis, J. M. Hellerstein, and I. Stoica, “Shar-
ing aggregate computation for distributed queries,” in SIGMOD ’07:

Proceedings of the 2007 ACM SIGMOD International Conference on

Management of Data. New York, NY, USA: ACM Press, 2007, pp.
485–496.

[27] A. Silberstein and J. Yang, “Many-to-many aggregation for sensor
networks,” in ICDE ’07: Proceedings of the 2007 IEEE 23rd Interna-

tional Conference on Data Engineering. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 986–995.

[28] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics, vol. 2, pp. 83–97, 1955.

[29] G. Aggarwal and J. D. Hartline, “Knapsack auctions,” in SODA ’06:

Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete

Algorithm. New York, NY, USA: ACM Press, 2006, pp. 1083–1092.
[30] C. Ré, N. Dalvi, and D. Suciu, “Efficient top-k query evaluation

on probabilistic data,” in ICDE ’07: Proceedings of the 23rd IEEE

International Conference on Data Engineering. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 886–895.

