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Abstract

Motivated by problems that arise in computing degrees of belief, we consider the problem
of computing asymptotic conditional probabilities for first-order sentences. Given first-order
sentences ¢ and 6, we consider the structures with domain {1,..., N} that satisfy 6, and
compute the fraction of them in which ¢ is true. We then consider what happens to this
fraction as N gets large. This extends the work on 0-1 laws that considers the limiting
probability of first-order sentences, by considering asymptotic conditional probabilities. As
shown by Liogon’kii [Lio69], if there is a non-unary predicate symbol in the vocabulary,
asymptotic conditional probabilities do not always exist. We extend this result to show
that asymptotic conditional probabilities do not always exist for any reasonable notion
of limit. Liogon’kii also showed that the problem of deciding whether the limit exists
is undecidable. We analyze the complexity of three problems with respect to this limit:
deciding whether it is well defined, whether it exists, and whether it lies in some nontrivial
interval. Matching upper and lower bounds are given for all three problems, showing them
to be highly undecidable.
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1 Introduction

Suppose we have a sentence 6 expressing facts that are known to be true, and another sentence
 whose truth is uncertain. Our knowledge 6 is often insufficient to determine the truth of ¢:
both ¢ and its negation may be consistent with 6. In such cases, it can be useful to assign a
probability to y, based on 6. One important application of this idea—indeed, the one that has
provided most of our motivation—is in the domain of decision theory and artificial intelligence.
Consider an agent (or expert system) whose knowledge consists of some facts 6, who would
like to assign a degree of belief to a particular statement . For example, a doctor may want
to assign a degree of belief to the hypothesis that a patient has a particular illness, based on
the symptoms exhibited by the patient together with general information about symptoms and
diseases. Since the actions the agent takes may depend crucially on this value, we would like
techniques for computing degrees of belief in a principled manner.

The difficulty of defining a principled technique for computing the probability of ¢ given 6,
and then actually computing that probability, depends in part on the language and logic being
considered. In decision theory, applications often demand the ability to express statistical
knowledge (for instance, correlations between symptoms and diseases) as well as first-order
knowledge. Work in the field of 0-1 laws (which, as discussed below, is closely related to
our own) has examined some higher-order logics as well as first-order logic. Nevertheless, the
pure first-order case is still difficult, and is important because it provides a foundation for all
extensions. In this paper and in [GHK93] we address the problem of computing conditional
probabilities in the first-order case. In a companion paper [GHK94|, we consider the case of
statistical knowledge.

The general problem of assigning probabilities to first-order sentences has been well studied
(cf. [Gai60, Gai64]). In this paper, we investigate two specific formalisms for computing prob-
abilities, based on the same basic approach. The approach is based on an old idea, that goes
back to Laplace [Lap20]. It is essentially an application of what has been called the principle of
insufficient reason [Kri86] or the principle of indifference [Key21]. The idea is to assign equal
degree of belief to all basic “situations” consistent with the known facts. The two formalisms
we consider differ only in how they interpret “situation”. We discuss this in more detail below.

In many applications, including the one of most interest to us, it makes sense to consider
finite domains only. In the first-order case, our approach essentially generalizes the methods
used in the work on 0-1 laws to the case of conditional probabilities. (See Compton’s overview
[Com88] for an introduction to this work.) Assume, without loss of generality, that the domain
is {1,...,N} for some natural number N. As we said above, we consider two notions of
“situation”. In the random-worlds method, the possible situations are all the worlds, or first-
order models, with domain {1,..., N} that satisfy the constraints . Based on the principle
of indifference, we assume that all worlds are equally likely. In order to assign a probability
to ¢, we therefore simply compute the fraction of them in which the sentence ¢ is true. The
random-worlds approach views each individual in {1,..., N} as having a distinct name (even
though the name may not correspond to any constant in the vocabulary). Thus, two worlds
that are isomorphic with respect to the symbols in the vocabulary are still treated as distinct
situations. In some cases, however, we may believe that all relevant distinctions are captured
by our vocabulary, and that isomorphic worlds are not truly distinct. The random-structures



method attempts to capture this intuition by considering a situation to be a structure—an
isomorphism class of worlds. This corresponds to assuming that individuals are distinguishable
only if they differ with respect to properties definable by the language. As before, we assign
a probability to ¢ by computing the fraction of the structures that satisfy ¢ among those
structures that satisfy 6.!

Since we are computing probabilities over finite models, we have assumed that the domain
is {1,..., N} for some N. However, we often do not know the precise domain size N. In many
cases, we know only that N is large. We therefore estimate the probability of ¢ given 8 by the
asymptotic limit, as N grows to infinity, of this probability over models of size N.

Precisely the same definitions of asymptotic probability are used in the context of 0-1 laws
for first-order logic, but without allowing arbitrary prior information §. The original 0-1 law,
proved independently by Glebskii et al. [GKLT69] and Fagin [Fag76], states that the asymptotic
probability of any first-order sentence ¢ with no constant or function symbols is either 0 or 1.
Intuitively, such a sentence is true in almost all finite structures, or in almost none. Interestingly,
this 0-1 law holds under both the random-worlds and the random-structures methods; in fact,
both approaches lead to the same asymptotic probability in this case [Fag77].

Our work differs from the original work on 0-1 laws in two respects. The first is relatively
minor: we need to allow the use of constant symbols in ¢, as they are necessary when discussing
individuals (such as patients). Although this is a minor change, it is worth observing that it
has a significant impact: It is easy to see that once we allow constant symbols, the asymptotic
probability of a sentence ¢ is no longer either 0 or 1; for example, the asymptotic probability of
P(c) is % Moreover, once we allow constant symbols, the asymptotic probability under random
worlds and under random structures need not be the same. The more significant difference,
however, is that we are interested in the asymptotic conditional probability of ¢, given some
prior knowledge 6. That is, we want the probability of ¢ over the class of finite structures
defined by 6.

Some work has already been done on aspects of this question. Fagin [Fag76] and Lio-
gon’kii [Lio69] independently showed that asymptotic conditional probabilities do not necessar-
ily converge to any limit. Subsequently, 0-1 laws were proved for special classes of first-order
structures (such as graphs, tournaments, partial orders, etc.; see the overview paper [Com88]
for details and further references). In many cases, the classes considered could be defined
in terms of first-order constraints. Thus, these results can be viewed as special cases of the
problem that we are interested in: computing asymptotic conditional probabilities relative to
structures satisfying the constraints of a knowledge base. Lynch [Lyn85] showed that, for the
random-worlds method, asymptotic probabilities exist for first-order sentences involving unary
functions, although there is no 0-1 law. (Recall that the original 0-1 result is specifically for
first-order logic without function symbols.) This can also be viewed as a special case of an
asymptotic conditional probability for first-order logic without functions, since we can replace
the unary functions by binary predicates, and condition on the fact that they are functions.

!The random-worlds method considers what has been called in the literature labeled structures, while the
random-structures method considers unlabeled structures [Com88]. We choose to use our own terminology for
the random-worlds and random-structures methods, rather than the terminology of labeled and unlabeled. This
is partly because we feel it is more descriptive, and partly because there are other variants of the approach, that
are useful for our intended application, and do not fit into the standard labeled /unlabeled structures dichotomy
(see [BGHK95]).



The most comprehensive work on this problem is the work of Liogon’kif [Lio69].? In addition
to pointing out that asymptotic conditional probabilities do not exist in general, he shows that
it is undecidable whether such a probability exists. He then investigates the special case of
conditioning on formulas involving unary predicates only (but no equality). In this case, he
proves that the asymptotic conditional probability does exist and can be effectively computed,
even if the left side of the conditional has predicates of arbitrary arity and equality.

We extend the results of [Lio69] in a number of ways. We first show, in Section 3, that under
any standard weakening of the concept of limit, asymptotic conditional probabilities still do not
exist. We define three independent questions related to the asymptotic conditional probability:
deciding whether it is well defined (i.e., is there an infinite sequence of probabilities to take the
limit over); deciding whether it exists, given that it is well defined; and computing or approxi-
mating it, given that it exists. We show in Section 4 that all three problems are undecidable,
and precisely characterize the degree of their undecidability. These results continue to hold for
many quite restrictive sublanguages of first-order logic. We then present one “positive” result:
In perhaps the most restrictive sublanguage that is still of any interest, if there is a fixed, finite
vocabulary, and the quantifier depths of ¢ and 6 are bounded, there is a linear time algorithm
that computes the asymptotic conditional probability of ¢ given . Moreover, for each fixed
vocabulary and fixed bound on quantifier depth, we can construct a finite set of algorithms,
one of which is guaranteed to be one that solves the problem. However, it follows from our
undecidability results that we cannot tell which algorithm is the correct one. So even this result
holds no real promise. In a companion paper [GHK93|, we extend Liogon’kii’s results for the
case of conditioning on unary formulas. This special case turns out to be quite important for
our application; see [GHK94, BGHK95, BGHK94].

Our undecidability results are of more than purely technical interest. The random-worlds
method is of considerable theoretical and practical importance. We have already mentioned
its relevance to computing degrees of belief. There are well-known results from physics that
show the close connection between the random-worlds method and mazimum entropy [Jay78|;
some formalization of similar results, but in a framework that is closer to that of the current
paper, can be found in [PV89, GHK94]. Essentially, the results say that in certain cases the
asymptotic probability can be computed using maximum entropy methods.?

Given the wide use of maximum entropy, and its justification in terms of the random-
worlds method, our results showing that it is not as widely applicable as one might hope
come as somewhat of a surprise. Indeed, the difficulties of using the method once we move to
non-unary predicates seem not to have been fully appreciated. In retrospect, this is not that
hard to explain; in almost all applications where maximum entropy has been used (and where
its application can be best justified in terms of the random-worlds method) the database is
described in terms of unary predicates (or, equivalently, unary functions with a finite range).
For example, in physics applications we are interested in such predicates as quantum state
(see [DD85]). Similarly, Al applications and expert systems [Che83] typically use only unary
predicates such as symptoms and diseases.

In an earlier version of this paper [GHK92], we stated that, to our knowledge, no work had been done on
the general problem of asymptotic conditional probabilities. We thank Moshe Vardi for pointing out Liogon’kii’s
work to us.

3These results are of far more interest when there are statistical assertions in the language, so we do not
discuss them here (see [PV89, GHK94] for more details).



It is interesting to note that in [Car52], where Carnap considers a continuum of methods for
inductive reasoning (which includes the random-worlds method and a variant of the random-
structures method), he considers only the unary case for all of them, without any comment
or justification. He does provide some justification in [Car50], as well as expressing concern
that the case of non-unary predicates may cause difficulties (although he presents no technical
justification for this claim):

... the bulk of our inductive logic will deal only with properties of individuals [i.e.,
unary predicates|, not with relations between individuals, except for those relations
which are defined on the basis of properties. At the present time, this restriction
seems natural and well justified, in view of the fact that deductive logic took more
than two thousand years from its start with Aristotle to the first logic of relations
(De Morgan, 1860). Inductive logic ... is only a few hundred years old. Therefore,
it is not surprising to see that so far nobody has made an attempt to apply it to
relations. ... The inclusion of relations in deductive logic causes obviously a certain
increase in complexity. The corresponding increase in complexity for inductive logic
is very much greater.

Carnap’s allusion to the difficulty of adding relations to deductive logic is perhaps the observation—
known at the time—that while first-order logic over a vocabulary with only unary predicate
symbols is decidable, it becomes undecidable when we add non-unary predicates [DG79, Lew79].
The fact that there is an increase in complexity in inductive logic when we add non-unary
predicates is not substantiated by Carnap, other than by the observation that very difficult
combinatorial questions arise. As our results show, Carnap’s concern about the difficulty of
doing inductive reasoning with relations (non-unary predicates) is well founded.

2 Asymptotic conditional probabilities

Let ® be a set of of predicate and function symbols, and let £(®) (resp., L~ (®)) denote the
set of first-order sentences over ® with equality (resp., without equality). For the purpose of
this paper, we assume that @ is finite. We discuss the possibility of an infinite vocabulary in
[GHK93]; it turns out that there are various ways to extend the relevant concepts to the infinite
case, but that, for generally trivial reasons, all the results in this paper hold under any of these
definitions. Therefore it is sufficient to work with the simplifying assumption of finiteness.

2.1 The random-worlds method

We begin by defining the random-worlds, or labeled, method. Given a sentence { € L£(®), let
Hworld% (€) be the number of worlds (first-order models) over ® with domain {1,..., N} in
which £ is true. Since ® is finite, so is #world%(¢). We define

w Hworld® (p A O
Priy® (plg) = HuolInte 10)
Hworld x(0)

At first glance, it seems that the value of Pr%’(b(gp\G) depends on the choice of ®. The following
proposition shows that this is not the case.



Proposition 2.1: Let ®,®’ be finite vocabularies, and let ¢, 0 be sentences in both L(®) and
L(®'). Then Pr'y®(p]0) = Pry® (]0).

Proof: We first prove the claim for the case ® = ®U{R} for some symbol R ¢ ®. Let £ € L(D)
be an arbitrary sentence. A world over ® determines the denotations of the symbols in ®, and
the denotation of R. Let r be the number of possible denotations of R over a domain of size V.
Since £ does not mention R, it is easy to see that each model of £ over ® corresponds to r models
of £ over @', one for each possible denotation of R. Therefore, #world%’,{ (€) = 7 - #world%(€).
From this, we can deduce that

Prw’q),(90|9) _ #world%l(gp NC)) T #world%(gp ) _ #world%(gp N 0) _ Prw’q)(<p|0)
N Hworld® () r - #world > (0) H#world® () N ’

as required.

Now, given arbitrary ® and &', a straightforward induction on the cardinality of ®'—® shows
that Pr%’(bu(b (pl0) = Pr%’q)((pw). Similarly, we can show that Pr%’(buq) (pl0) = Pr%"b (¢]0).
The result now follows. 1

Based on this proposition, we omit reference to ® in Pr}‘\},’@(ap\G), writing Priy(p|0) instead.

We would like to define Pr (]0) as the limit limy_.o Pri(¢|¢). However, we must first
deal with a technical problem in this definition: we must decide what to do if #world%(8) = 0,
so that Priy(p]€) is not well defined. Liogon’kii simply takes Pri(¢|f) = 1/2 in this case; we

take a somewhat more refined approach here.

It might seem reasonable to say that the asymptotic probability is not well defined if
#world%(&) = 0 for infinitely many N. However, suppose that 6 is a sentence that is sat-
isfiable only when N is even and, for even N, ¢ A 6 holds in one third of the models of 6. In
this case, we might want to say that there is an asymptotic conditional probability of 1/3, even
though #world%(@) = 0 for infinitely many N. Thus, we actually consider two notions: the
persistent limit, denoted COPrY (¢|f), and the intermittent limit, denoted OOPry (¢|f) (the
prefixes stand for the temporal logic representation of the persistence and intermittence prop-
erties [MP92]). In either case, we say that the limiting probability is either not well defined,
does not exist, or is some number between 0 or 1. The only difference between the two notions
lies in when the limiting probability is taken to be well defined. This difference is made precise
in the following definition.

Definition 2.2: Let A() denote the set {N : #world%(8) # 0}. The asymptotic con-
ditional probability COPri (¢|f) is well defined if N'(0) contains all but finitely many N'’s;
OOPrY (pl0) is well defined if N'(0) is infinite. If the asymptotic probability COPrY (¢|6)
(resp., OOPrY (¢|0)) is well defined, then we take COPrY (¢]0) (resp., OOPrY (¢|f)) to denote

limy o, venr(o) Priv(¢]6). 1
Remark 2.3:

(a) If OOPrY (p|6) is well defined, then so is OOPrY (¢|6). The converse is not necessarily
true.



(b) If both COPrY (|6) and OCPrY (¢|#) are well defined, then they are equal.* 1

It follows from our results in [GHK93| that the two notions of limiting probability coincide if
we restrict to unary predicates or to languages without equality.

2.2 The random-structures method

One way of thinking about the random-worlds method is that it treats each individual in
{1,..., N} as having a distinct name or label (even though the name may not actually corre-
spond to any constant in the vocabulary). This intuition explains why two worlds that are com-
pletely isomorphic as first-order structures (i.e., with respect to the symbols in the vocabulary)
are nevertheless regarded as distinct worlds and are counted separately. The random-structures
method, on the other hand, only counts the number of (unlabeled) structures, which we identify
with isomorphism classes of worlds. Formally, we say that two worlds W; and W, are isomor-
phic (with respect to the language £) if there is a bijective mapping f from the domain of W,
to the domain of W, such that for every predicate symbol P € £, we have P"i(dy,...,d}) iff
P™2(f(dy),..., f(dy)), and similarly for the function and constant symbols in £. Intuitively,
this says that worlds that treat the symbols in the language in the same way are “really” the
same, and so should only be counted once.

Given a structure S and a sentence £ € £(®), all the worlds in S agree on the truth value
they assign to &. Therefore, we can say that S satisfies (or does not satisfy) €. Let #structs (€)
be the number of structures with domain {1,..., N} over ® that satisfy £. We can proceed, as
before, to define
B #structS (o A 6)

C Hstructy(0)

We define the persistent limit, denoted OOPr%®(p|6), and the intermittent limit, denoted
OOPrs2(pl6), in terms of Pr}g\’,@(cp|0), in analogy to the earlier definitions for random-worlds.

It is clear that #world%(0) = 0iff #struct®(#) = 0, so that well definedness (both persistent
and intermittent) is equivalent for the two methods, for any ¢, 6.

Pry” (]6)

Proposition 2.4: For any ¢,0 € L(®), COPrY (¢|0) (resp., OOPrY (¢|0)) is well defined iff
OOPr3®(0l6) (resp., OOPrs®(0l6)) is well defined.

As the following example shows, for the random-structures method the analogue to Propo-
sition 2.1 does not hold; the value of Prf\’,@(gp\ﬁ), and even the value of the limit, depends
on the choice of ®. This example, together with Proposition 2.1, also demonstrates that the
values of conditional probabilities generally differ between the random-worlds method and the
random-structures method. By way of contrast, Fagin [Fag76] showed that the random-worlds
and random-structures methods give the same answers for unconditional probabilities, if we do
not have constant or function symbols in the language.

4When we say that two limits are equal, we mean that one is well defined iff the other is, one exists iff the
other does, and if they both exist then they are equal.



Example 2.5: Consider ® = {P} for a unary predicate P. Let 6 be Jlz P(z) V -3z P(z)
(where, as usual, “3!” means “exists a unique”), and let ¢ be 3z P(z). For any domain size
N, #structh(0) = 2. In one structure, there is exactly one element satisfying P and N — 1
satisfying —P; in the other, all elements satisfy =P. Therefore, OOPr%® (p|6) = %

oo

Now, consider ® = {P,Q} for a new unary predicate Q. There are 2N structures where
there exists an element satisfying P: the element satisfying P may or may not satisfy @, and
of the N — 1 elements satisfying =P, any number between 0 and N — 1 may also satisfy Q.
On the other hand, there are N + 1 structures where all elements satisfy —P: any number of
elements between 0 and N may satisfy (). Therefore, Prf\’,@(np\Q) = 3]2\,7111, and OOPr%® = 2.

We know that the asymptotic limit for the random-worlds method will be the same, whether
we use ® or ®'. Using ®, notice that the single structure where 3l P(x) is true contains
N worlds (corresponding to the choice of element satisfying P), whereas the other possible

N

structure contains only one world. Therefore, Priy(¢|0) = x5, and COPrg (pl0) = 1. 1

Although the two methods give different answers in general, there are important circum-
stances under which they agree. One particular case which is of interest to us in this paper is
the following:

Proposition 2.6: If ® contains at least one non-unary predicate symbol that does not appear
in 0, then
OOPrY (¢|) = OOPrs2 (¢]6) .

This proposition is a special case of Corollary 2.7 in [GHK93], so we do not prove it here.

3 Nonexistence results

In this section, we show that the limiting probability OCPrY (¢]f) (and hence COPrE (¢|6))
does not always exist. In fact, for most reasonable concepts of limit (including, for example,
the Cesaro limit), there are sentences for which the sequence Pri(p|6) does not converge.

3.1 Nonexistence for conventional limits

As we mentioned above, the fact that asymptotic conditional probabilities do not always exist
is well known.

Theorem 3.1: [Lio69, Fag76] Let ® be a vocabulary containing at least one non-unary predi-
cate symbol. There exist sentences p,0 € L(P) such that neither OOPTY (¢|0) nor SOPrY (¢|6)
(resp., neither OOPTS2 (p|0) nor OOPrS®(p|6)) exists, although both are well defined.

Proof: Fagin’s proof of this theorem is quite straightforward. Let R be a binary predicate in
® (although, clearly, any non-unary predicate will do). Using R and equality, it is not hard to
construct sentences @eyen and @44 such that:

® Yepen and @44 both force R to be a symmetric antireflexive binary relation that divides
the domain elements into pairs, where 4,j is a pair precisely when R(i,7). Both ¢eyen
and ¢4 force each element to be paired up with at most one other element.



® ©eyen forces the pairing to be complete; that is, each element is paired up with precisely
one domain element. It is clear that @eyen is satisfiable if and only if the domain size is
even.

e 0,44 forces the pairing to be almost-complete; that is, all elements but one are perfectly
paired. It is clear that ¢4y is satisfiable if and only if the domain size is odd.

We then take ¢ to be ¢ 44 and 0 to be Yeyen V ¢o4q- Clearly, Priy(p|0) alternates between 0
and 1 as N increases, and does not approach an asymptotic limit. il

Although this shows that the asymptotic limit does not exist in general, a good argument
can be made that in this case there is a reasonable degree of belief that one can hold. In the
absence of any information about domain size, 1/2 seems the natural answer. Perhaps if we
modified our definition of asymptotic probability slightly, we could increase the applicability of
our techniques.

There is indeed a reasonable modification that will let us assign a degree of belief of 1/2 in
this case: we can use the Cesaro limit instead of the conventional limit.> The Cesaro limit of a
sequence s, S2, . . . is the conventional limit of the sequence s1, (s1 + s2)/2, (s1 + s2 + s3)/3, . . .,
whose kth element is the average of the first k£ elements of the original sequence. It is well
known that if the conventional limit exists, then so does the Cesaro limit, and they are equal.
However, there are times when the Cesaro limit exists and the conventional limit does not. For
example, for a sequence of the form 1,0, 1,0,... (which, of course, is precisely the sequence that
arises in the proof of Theorem 3.1), the conventional limit does not exist, but the Cesaro limit
does, and is 1/2.

Unfortunately, we show in Section 3.3 that for any definition of limit satisfying some very
basic restrictions, the limit of the conditional probabilities may not exist. In particular, the
Cesaro limit satisfies these restrictions; therefore, even for Cesaro limits, the non-existence
problem still arises.

3.2 Simulating Turing machines

Before we prove the nonexistence theorem, we present the construction on which it is based. All
of our lower bounds are also based on this construction. The main idea is the well-known fact
that we can use first-order sentences, interpreted over finite domains, to encode (arbitrarily
long) prefixes of the computation of a deterministic Turing machine (see [Tra50]). That is,
given a Turing machine M, we can define a sentence fpg such that any finite model satisfying
O encodes a finite prefix of the computation of M on empty input. The exact construction is
fairly standard, but requires many details; we present only an outline here.

The following definition will turn out to be useful.

Definition 3.2: Let ¢ be a formula, and let w(x) be a formula with a single free variable z. We
define ¢ restricted to w to be the formula &' A &, where £’ is a conjunction of formulas w(z) for
any constant or free variable z appearing in &, and &, is defined by induction on the structure
of formulas as follows:

5We remark that Cesaro limits have been used before in the context of 0-1 laws; see Compton’s overview
[Com88] for details and further references.



o &, = ¢ for any atomic formula ¢,

o (78w = &u,

o (ENEw =8 NE,

o (VéY)w =Vy(w(y) = &u(y). 1

Intuitively, £ restricted to w holds if £ holds on the submodel consisting of the set of elements
which satisfy w.

Given a deterministic Turing machine M, we construct fp; as follows. Think of the compu-
tation of M as consisting of a sequence of instantaneous descriptions (IDs), which specify the
head position, state, and the contents of (at least) that part of the tape which has been read or
written so far. Without loss of generality, we can assume that the jth ID contains exactly the
first j symbols on the tape (padding it with blanks if necessary). The construction uses two
binary predicate symbols, H and V', to impose a matching “layered” structure on the elements
of a finite domain.

More specifically, we force the domain to look like a sequence of n layers for some n,
where there are exactly j elements in the jth layer for 1 < 5 < n, but the last layer may be
“incomplete”, and have less than n elements. (This ensures that such a partition of domain
elements into layers is possible for any domain size.) We construct each layer separately, by
assigning each element a horizontal successor. The horizontal successor of the ith element in
the jth layer is the (i + 1)st element in the jth layer. This successor must exist except when 4
is the last element in the layer (i = j), or j is the last (and possibly incomplete) layer (j = n).
We connect one layer to the next by assigning each element a wvertical successor. The vertical
successor of the ith element in the jth layer is the ith element in the (j + 1)st layer. This
successor must exist except if j is the last layer (j = n), and possibly if j is the next-to-last
layer (j = n—1). These two types of successor relationship are captured using H and V: H(z,y)
holds iff y is the horizontal successor of z, and V(x,y) holds iff y is the vertical successor of
x. Straightforward assertions in first-order logic can be used to constrain H and V to have the
right properties.

We use the jth layer to encode the jth ID, using unary predicates to encode the contents of
each cell in the ID and the state of the machine M. It is straightforward to write a sentence fng
that ensures that this simulation of the Turing machine starts correctly, and continues according
to the rules of M. It follows that there is an exact one-to-one correspondence between finite
models of fpg and finite prefixes of computations of M, as required.

We have assumed that two binary and several unary predicate symbols are available. In
fact, it is possible to do all the necessary encoding using only a single binary (or any non-unary)
predicate symbol. Because this observation will be important later, we sketch how the extra
predicate and constant symbols can be eliminated. First, note that the predicates H and V
can be encoded using a single predicate R. Since H holds only between elements in the same
layer, and V only between elements in two consecutive layers, we can define R(x,y) to mean
H(z,y) in the first case, and V(z,y) in the second (we can construct the sentences so that it
is easy to tell whether two elements are in the same layer). Any unary predicate P used in
the construction can be eliminated by replacing P(z) with R(c,z) for some special constant
symbol c¢. We then replace Oy with Oy restricted to  # ¢, as in Definition 3.2, thus making



the denotation of ¢ a distinguished element which does not participate in the construction of
the Turing machine. Finally, it is possible to eliminate the use of constant symbols by using
additional variables quantified with “exists unique”; we omit details. However, note for future
reference that for every constant we eliminate, we increase the quantifier depth of the formula
by one.

This construction has another very useful property. First, note that the layered structure
imposed by H and V ensures that every domain element plays a unique role (i.e., for each
element we can find a first-order formula with one free variable which holds of that element
and no other). So if we (nontrivially) permute the domain elements in one model, we obtain a
different (although isomorphic) model. This property has been called rigidity. Rigidity implies
that, if the domain size is IV, every isomorphism class of worlds satisfying 6y contains exactly
N! worlds. The first important corollary of this is that, for any ¢ and 6 such that 6 = 0y is
valid, Prf\’,q)(g0|9) = Priy(¢]0). Second, note that any two size N models of fyp are isomorphic
(because the machine M is assumed to be deterministic and thus has a unique computation
path when started on the empty input). From this observation and rigidity, we conclude that
the number of size N models of 6y is exactly N!; this fact will also be useful later.

3.3 Weaker limits

Fagin’s non-existence example in Theorem 3.1 was based on a sequence Pr§(¢|f) that consis-
tently alternated between 0 and 1. We mentioned at the end of Section 3.1 that using the Cesaro
limit in place of the conventional limit when computing the limit of this sequence gives us the
plausible answer of % This may lead us to hope that by replacing the conventional limit in our
definition of asymptotic conditional probability, we can circumvent the nonexistence problem.
Unfortunately, this is not the case. It is relatively easy to construct examples that show that
even Cesaro limits of the conditional probabilities Priy(¢]0) do not necessarily converge. In
this section, we will prove a far more general theorem. Essentially, the theorem shows that
no reasonable notion of limit will ensure convergence in all cases. We begin by describing the
general framework that allows us to formalize the notion of “reasonable notion of limit”.

The Cesaro limit is only one of many well-studied summability techniques that weaken the
conventional definition of convergence for infinite sequences. These are techniques which try to
assign “limits” to sequences that do not converge in the conventional sense. There is a general
framework for summability techniques, which we now explain.® (See, for example, [PS72] for
further details.)

Let A = (a;;) be an infinite square matrix; that is, a;; is a (possibly complex) number for
each pair of natural numbers 7,j. Let (s;) = s1,52,53,... be an infinite sequence. Suppose
that, for all 4, the series Z;‘;l a;js; converges, say to sum S;. Then the new sequence (.5;) is
called the A-transform of (s;). The idea is that (S;) may converge to a limit, even if (s;) does
not. The standard notion of limit can be obtained by taking a;; = 1 and a;; = 0 if @ # j. The
Cesaro limit can be obtained by taking a;; = 1/i if j < ¢, and a;; = 0 otherwise.

SSummability theory is so named because one application is to find a way of assigning a “sum” to series
that are divergent according to the conventional notion of limit. However, the theory addresses the problem of
convergence for any sequence, whether or not it arises naturally as a sequence of partial sums.
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Not every transform makes intuitive sense as a weakened notion of convergence. It would
seem reasonable to require, at the very least, the following conditions of a matrix transform A.

e Computability. There should be a recursive function f such that f(i,j) is the entry a;; of
the matrix A. It is difficult to see how we could actually use a transform whose elements
could not be effectively computed.

e Regularity. If a sequence converges (in the conventional sense), say to limit ¢, then the
A-transform should exist and converge to £. This ensures that we really do obtain a more
general notion of convergence.

The regularity condition has been well studied. The following three conditions are known to
be necessary and sufficient for A to be regular. (This result is known as the Silverman-Toeplitz
theorem; see [PS72].)

R1. lim; o a;; = 0, for all 7,
R2. hmz_wo Z?il Ai5 = 1, and
R3. there exists M such that 3272, |a;;| < M, for all i.

In our setting—where the motivation is assigning degrees of belief—we can give an fairly
intuitive interpretation to many regular summability methods. Fix a value for ¢ and suppose
that (1) for all j, a;; is real and nonnegative, and (2) >392, a;; = 1. Then the sequence
a;1, a2, ... can also be viewed as a probability distribution over possible domain sizes. Given
that one accepts the basic random-worlds framework for assigning degrees of belief relative to
a particular domain size, it seems plausible that Y %_; a;nPri;(¢]@) should be one’s degree of
belief in ¢ given 6, if the uncertainty about the correct domain size is captured by a;1, a2, - . .
(and if the probability is defined for all finite N; we discuss how to relax this below). For
example, row 7 of the Cesaro matrix would be appropriate for someone who knows for certain
that there are ¢ or less individuals, but subject to this assigns equal degree of belief to each of
the 7 possibilities. However, no single distribution over the natural numbers seems to accurately
model the situation where all we know is that “the domain size is large.” For one thing, any
distribution gives nonzero probability to particular domain sizes, which seems to involve some
commitment to scale. Instead, we can consider a sequence of distributions, such that the degree
of belief in any particular domain size tends to zero. These assumptions imply conditions R1-
R3, and therefore suffice to guarantee regularity. Furthermore, they are satisfied by almost all
summability transforms considered in the literature.

”

One subtle problem concerning our application of summability transforms is that some
terms in the sequence Pr%(¢|0) (or Pr}g\’,@(gp\ﬁ)) may not exist. Throughout the following, we
adopt perhaps the simplest solution to this difficulty, which is to apply the transform to the
subsequence generated by just those domain sizes for which the probability exists (i.e., for which
0 is satisfiable).

We are now in a position to state the main result of this section: No summability technique
covered by this framework can guarantee convergence for asymptotic conditional probabilities.
This is so even if the vocabulary consists of a single binary predicate symbol.
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Theorem 3.3: Let A be any computable regular matriz transform, and let ® be a vocabulary
containing at least one non-unary predicate symbol. There exist ¢,0 € L(P) such that the
A-transform of the sequence Priy(p|6) (resp., Prf\’,@(gp\G)) exists, but does not converge.

Proof: In the following, let U be a rational number within 0.01 of limsup;_, 3272, |aijl,
Le., [U—lmsup,; . > 72 |a;;|| < 0.01. We will use U as a parameter to the algorithm we are
about to construct. Notice that although the existence of an appropriate U is guaranteed by R3,
we may not be able to compute its value. Thus, the proof we are about to give is not necessarily
constructive. On the other hand, this is the only nonconstructive aspect of our algorithm. A
value for U is computable in many cases of interest (for example, if a;; is nonnegative for all 4
and j, then we can take U = 1); in these cases, our proof becomes constructive. Let ini, be such
that whenever ¢ > inin, we have Z;";l la;j| < U+ 0.01. Such an iy, must exist (because of the
way U is defined); it is not necessarily computable either, but the following does not actually
depend on its value (i.e., we refer to i, only when proving that the constructed machine works
as required).

We use the value of U in the construction of a three-tape four-head Turing machine M.
Tape 2 of M will always (after the first step) contain an alternating sequence of 0’s and 1’s.
The sentence O is constructed so that finite models of 8 encode partial computations of M,
exactly as outlined in Section 3.2. The sentence ¢ is chosen to be true only in models of § where
the last element written on tape 2 is 1. Note that, as usual, we can assume that ¢, O € L({R})
for a binary predicate symbol R.

The idea of the proof is as follows. Suppose b; is the truth value of ¢ (either 0 or 1) in
a domain of size j, and let ¢; = 3772, a;;j bj. Obviously, the sequence (bj) is determined by
the times at which M writes a new symbol to tape 2. We construct M to guarantee that the
sequence (b;) has appropriately spaced runs of zeros and ones, so that there are infinitely many
1 where ¢; is greater than 0.9 and infinitely many ¢ where ¢; is less than 0.1. This ensures that
the sequence (¢;) does not converge.

As we have said, M is a three-tape four-head Turing machine. Heads 1a and 1b read tape 1,
head 2 reads tape 2, and head 3 reads tape 3. We assume that any subset of heads can move
in the same step. Tape 1 is used for keeping track, in unary, of the number of steps that M
has taken so far. Tape 2 contains an alternating sequence of 0’s and 1’s. As we have indicated,
the goal of the rest of the construction will be to ensure that tape 2 is updated at appropriate
intervals. Finally, tape 3 is a work tape, used for all necessary calculations.

Every fourth step, head la writes a 1 at the right end of tape 1, and then moves one step
to the right. This is done independently of the operation of the rest of the machine. Thus, if
we represent the number written on tape 1 at a certain point as m, the actual number of steps
taken by M up to that point is between 4m and 4m + 3. Moreover, if we assume (as we do
without loss of generality) that the size of the ith ID of the computation of M is i, then to
encode the first ¢ steps of the computation we need a domain of size i(i +1)/2 + C, where C is
a constant independent of 7. In particular, the size of the domain required to encode the prefix
of the computation at the point where m is the number on tape 1 is roughly 2m(4m + 1), and
is certainly bounded above by 9m? and below by 7m? for all sufficiently large m. We will use
these estimates in describing M.

The machine M proceeds in phases; each phase ends by writing a symbol on tape 2. At
the completion of phase k, for all k£ large enough, there will exist some number i; such that
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ci, <0.1if £ is even, and ¢;, > 0.9 if £ is odd. Since we will also show that ij41 > i, this will
prove the theorem.

The first phase consists of one step; at this step, M writes 0 on tape 2, and head 2 moves
to the right. Suppose the kth phase ends with writing a 1 on tape 2. We now describe the
(k+1)st phase. (The description if the kth phase ends with writing a 0 is almost identical, and
left to the reader.)

Let n; be the size of the domain required to encode the prefix of the computation up to the
end of phase [. Since the value at the end of tape 2 changes only at the end of every phase,
and b; is 1 if and only if the last element on tape 2 is 1, b; is 0 for n; < j < mg, b; is 1 for
ny < j < ng, and so on. M begins the (k + 1)st phase by copying the number m on tape 1
to tape 3 (the work tape). The copying is done using head 1b (head la continues to update
the number every fourth step). Suppose the number eventually copied is my. Clearly, m; will
be greater than the number that was on tape 1 in the computation prefix that was encoded by
domain size ny. Therefore, ny < 9m3 for k sufficiently large.

We now get to the heart of the construction, which is the computation of when to next write

a value on tape 2. (Note that this value will be a 0, since we want the values to alternate.)
Notice that by R1, R2, and R3 there must be a pair (i, j.) such that:

(a) ix > my,

9m?
(b) X" las.s] < 0.01,

(c) ;*:1 ai,; > 0.99, and

(d) Sy Jai;| > U —0.01.

Moreover, since a;; is computable for all < and j, M can effectively find such a pair by appropriate
dovetailing. Suppose that in fact i, > imin. (Since i, > my by part (a), this will be true once k is
large enough.) Then we claim that, no matter what the values of by, . .., b,, and bj, +1,bj, 42, .. .,
if bp,41 =+ =bj, =1, then ¢;, > 0.9. To see this, note that if i, > min, then (by definition
of imin) Y521 |ai,j| < U +0.01. Thus, by part (d) above it follows that >372  |a;, ;| < 0.02.
Using part (b) and the fact that ny < 9m3, it follows that Z;‘il la;,j| < 0.01. Now from part

(c) we get that Z;*‘:nkﬂ ai,j > 0.98. If by,,, =---=b;, =1, then

Ci. = 2721 by ‘
N 2721 ai*jbj T Zﬁ;nk+1 ai*jbj + Z?ij*_;,_l ai*jbj
> Z;*:nk-i-l Qi,j — Z;Lil ‘G/Z*]| — Z;’ij*+1 ’ai*j
>0.98 —0.01 —0.02
> 0.9.

Thus, it suffices for M to add the next 0 to tape 2 so as to guarantee that ng41 > j., since our
choice of ¢ will then guarantee that b,,+1 = --- = b;, = 1. This can be done by waiting to add
the 0, until after the number m on tape 1 is such that 7m? > j.. As we observed above, the
size of the domain required to encode the prefix of the computation up to this point is at least
7m?2. Since this domain size is njy1 by definition, it follows that nj,1 > j., as desired.
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This completes the description of the (k + 1)st phase. We can then take ig4 1 = i., and
guarantee that c;, ,, > 0.9, as desired. Note that, for every k, iy1 > my, and (my) is a strictly
increasing sequence. Thus, we obtain infinitely many indices 7 at which ¢; > 0.9 and infinitely
many at which ¢; < 0.1, as desired.

Since #world}{VR} (0) # 0 for all sufficiently large NN, this shows that both OCPrY (¢]6) and
OOPrY (]6) are well defined, but their A-transform does not converge. The case of random-
structures follows immediately, because for every N, Prf;(¢|6) is either 0 or 1. Consequently

PI‘?\}{R}(QDW) has the same value as Pr§;(¢]@), and the limiting behavior is the same. I

We remark that there are a few well-known summability methods which are not, strictly
speaking, matrix transforms. Nevertheless, our theorem is applicable to these cases as well (at
least, to all cases we are aware of). The best example of this is Abel convergence. A sequence
(s7) is said to be Abel convergent if lim, ;- (1 —x)>352; s; xU~1) exists. This is not a matrix
transform, because we must consider all sequences of z that tend to 1. However, consider any
particular sequence of rationals that converges to 1, say

1

23 i
T ILE

N | —

We can use these to define a matrix variant of the Abel method, by setting

( i )(j—l)

o\t

aij = ~———

This is regular and computable, and is strictly weaker than the standard Abel method. More
precisely, if the Abel limit converges, then so does this matrix transform. Since our theorem
shows that this new summability method does not ensure convergence for conditional proba-

bilities, this is automatically also the case for the Abel limit.

4 Undecidability results

We have seen that asymptotic conditional probabilities do not always exist. We might hope
that at least we can easily decide when they do exist, so that we would know when the random-
worlds or random-structures method is applicable. As we show in this section, this hope is not
realized. In this section, we show the undecidability of several important problems associated
with asymptotic conditional probabilities: deciding whether the limit is well defined, decid-
ing whether the limit exists, and giving some nontrivial approximation to its value (deciding
whether it lies in some nontrivial interval). Liogon’kii [Lio69] showed that the problem of com-
puting the asymptotic conditional probability for the random-worlds method is undecidable.
He did not consider other problems, nor did he characterize the degree of undecidability of the
problem.

We analyze the complexity of these problems in terms of the arithmetic hierarchy. This
is a hierarchy that extends the notions of r.e. (recursively enumerable) and co-r.e. sets. We
briefly review the relevant definitions here, referring the reader to [Rog67, Chapter 14| for
further details. Consider a formula ¢ in the language of arithmetic (i.e., using 0, 1, 4, x) having
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j free variables. The formula &, interpreted over the natural numbers, is said to define a
recursive set if the set of j-tuples satisfying the formula is a recursive set. We can define more
complex sets using quantification. We define a Eg prefir as a block of quantifiers of the form
Jz1...28YY1 .. . Ym - . ., where there are k alternations of quantifiers (but there is no restriction
on the number of quantifiers of the same type that appear consecutively). A Hg prefix is defined
similarly, except that the quantifier block starts with a universal quantifier. A set A of natural
numbers is in XY if there is a first-order formula £(z) = Q¢’ in the language of arithmetic with
one free variable z, such that n € A iff £(n) is true, where Q is a 39 quantifier block and ¢’
defines a recursive set. We can similarly define what it means for a set to be in II). A set is in
Y9 iff it is r.e. and it is in 1Y iff it is co-r.e. The hierarchy is known to be strict; higher levels
of the hierarchy correspond problems which are strictly harder (“more undecidable”).

We prove the following results for the random worlds method. We later modify the proofs
to apply to the random-structures method.

e Deciding whether OOPTY (|6) is well defined is I19-complete.
e Deciding whether COPrY (|6) is well defined is ¥9-complete.

e Deciding whether GOPrY (¢]0) (resp., OOPTY (p|6)) exists is I13-complete, given that the
limit is well defined.

e Deciding whether the limit COPr (¢|0) (resp., OCPrY (¢|f)) is in some nontrivial closed
interval is TI9-complete, given that the limit exists.

The lower bounds all rely on the construction in Section 3.2, and use a fixed finite vocabulary,
consisting of equality and a single binary predicate. Most of them can, in fact, be translated to
a language without equality, at the cost of adding two more binary predicates (see Section 4.4).

4.1 Well definedness of the limit

We start with the problem of deciding if the asymptotic probability is well defined; this is
certainly a prerequisite for deciding whether the limit exists. Of course, this depends in part
on which definition of well definedness we use.

Theorem 4.1: Let ® be a vocabulary containing at least one non-unary predicate symbol.

(a) The problem of deciding whether a sentence in L(®) is satisfiable for infinitely many
domain sizes is 113-complete.

(b) The problem of deciding whether a sentence in L(®) is satisfiable for all but finitely many
domain sizes is ¥.9-complete.

Proof: We start with the upper bounds. First observe that the problem of deciding whether
a first-order sentence ¢ is satisfiable in some model with domain size N, for some fixed N, is
recursive (and with the help of some suitable encoding of formulas as natural numbers, we can
encode this problem in the language of arithmetic). Given this, deciding if ¢ is satisfiable in
infinitely many domain sizes can be encoded using a I13 block: for all N, there exists N’ > N
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such that £ holds in some model of domain size N’. Similarly, deciding if £ is satisfiable for all
but finitely many domain sizes can clearly be encoded using a X9 block: there exists N such
that for all N > N, £ holds in some model with domain size N’. This proves the upper bounds.

It is well known that the following problem is H%—complete: “Given a Turing machine M,
does M halt on infinitely many inputs?”, and the dual problem—“Given a Turing machine M,
does M halt on only finitely many inputs?”—is %2-complete [Rog67, Theorem 13-VIII; Corol-
lary 14-VIII(b)]. We prove the two lower bounds by reducing these problems to intermittent
and persistent well definedness, respectively. First, given an arbitrary Turing machine M, we
effectively construct another Turing machine M’ that, when started on empty input, starts
simulating the computations of M on all inputs by dovetailing, and enters a special state g
once for each input on which M halts. (We leave details of this construction to the reader.)
Let 6y be the sentence that forces its models to encode prefixes of the computation of M’ on
empty input, as described in Section 3.2, and let ¢ be the sentence that says, with respect to
this encoding, that the last layer is complete, and that M’ is in state g5 in the ID encoded in
this last layer. Clearly ¢ A Oy is satisfiable for infinitely many domain sizes IV iff M halts on
infinitely many inputs, while = A fpp is satisfiable for all but finitely many domain sizes IV iff
M halts on only finitely many inputs. This proves the lower bounds. 1

Corollary 4.2: Let ® be a vocabulary containing at least one non-unary predicate symbol. For
0,0 € L(®), the problem of deciding whether DOPTY (¢|0) (resp., DOPrS2 (|0) ) is well defined
is T19-complete, and the problem of deciding whether OOPTY (p|0) (resp., COPr%2(]0)) is well
defined is ¥9-complete.

4.2 Existence of the limit

If deciding well definedness were the only difficulty in computing, then there might still be
hope. In many cases, it might be obvious that the sentence we are conditioning on is satisfiable
in all (or, at least, in infinitely many) domain sizes. As we are about to show, the situation
is actually much worse. Deciding if the limit exists is even more difficult than deciding well
definedness; in fact, it is I13-complete. We prove this result by first showing that the problem
of deciding whether an r.e. sequence of rationals converges to 0 is II3-complete.

Theorem 4.3: The problem of deciding whether a recursively enumerable infinite sequence of
rational numbers converges to zero is I13-complete.

Proof: The following problem is known to be I13-complete: “Does each of the Turing machines
in a given r.e. set of Turing machines diverge on all but finitely many inputs?”, where the input
to this problem is itself a Turing machine (that generates the encodings for the collection of
Turing machines we are asking about). More precisely, taking 1, to be the 2" r.e. set in some
enumeration of r.e. sets (or, equivalently, the inputs on which the z*" Turing machine halts, in
some enumeration of Turing machines), the set {z : Vy(y € W, = W, finite} is I13-complete.
(The complement of this set is proved to be ¥$-complete in Theorem 14-XV of [Rog67].) For
our purposes it is slightly better to consider a variant of this problem, namely “Does each of
the Turing machines in a given r.e. set of Turing machines enter some distinguished state, say
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gs, only finitely many times when started on the empty input?” The two problems are easily
seen to be equivalent, in that either one can be effectively reduced to the other.

The lower-bound is proved by reducing this problem to the question of whether a sequence
converges to zero. We assume, without loss of generality, that our Turing machine generator
G computes a total function, whose values are encodings of other Turing machines. That is,
on input 4, it is guaranteed to terminate and produce the ith machine (note that the machines
produced by G on different inputs are not necessarily distinct). We now define H;; to have
value 1 if the ith machine generated by G is in state gs on its jth step after being started on
empty input, and value 0 otherwise. Note that H;; is a computable function of 4, j, and the
encoding of G, because we can simulate G to obtain the encoding of the ith machine, then
simulate this machine for j steps.

We use the numbers H;; to define an r.e. sequence s1, sa, ... of rational numbers in [0,1],
where s, is defined as 0. Hy, Hay, ... Hy,. The computability of H;; guarantees that this se-
quence is recursively enumerable. Clearly the sequence si, so,... converges to 0 iff, for all 4,

the sequence H;1, H;o, ... is eventually 0, i.e., there exists n; such that H;; = 0 for all j > n;.
But the sequence H;i, Hjo, ... is eventually 0 iff the ith Turing machine reaches g5 only finitely
often. This proves the lower bound.

For the upper bound, note that the question of whether the limit of sq,ss,... exists and
equals 0 can be written: “For all M, does there exist Ny such that for all N > Ny, |sy| < 1/M?”
The unquantified part of this question is clearly recursive and can be formulated in the language
of arithmetic, while the quantifier block is a I1$ prefix. The result follows. H

Theorem 4.4: Let ® be a vocabulary containing at least one non-unary predicate symbol.
For sentences p,0 € L(P), the problem of deciding whether COPrY (]0) (resp., OCPrY (]0))
exists is 119-complete. The lower bound holds even if we have an oracle that tells us whether
the limit is well defined and its value if it exists.

Proof: To prove the lower bound, we reduce the problem of deciding if an r.e. sequence of ratio-
nals converges to 0 to that of deciding if a particular asymptotic conditional probability exists.
Suppose S is a machine that generates an infinite sequence of rational numbers, s, s9,... .
Without loss of generality, we can assume that the numbers are in [0, 1]; if necessary, a new ma-
chine S’ such that s, = max(1, |s;|) is easily constructed which clearly has the same properties
with respect to convergence to zero. We also assume that the output is encoded in a special
form: a rational value a/b is output on the tape as a sequence of a 1’s, followed by (b —a) 0’s,
suitably delimited.

Let R be a binary predicate symbol. (Of course, any non-unary predicate will suffice.) We
begin by constructing fs € L({R}) such that finite models of fg correspond naturally to prefixes
of computations of S, as described in Section 3.2. Let ¢ be a constant. Let 85 € L({c, R}) be
the conjunction of fg and sentences asserting that, in the computation-prefix of S encoded by
the domain, the denotation of ¢ corresponds to a cell in that section of the last complete ID
that represents the output. Note that for any fixed domain size, fg has a + (b — a) = b times
as many models over {c, R} as fs does over {R}, where a/b is the most recent sequence value
generated by S in the computation simulated so far. According to our discussion at the end of

Section 3.2, #world}{VR}(Qs) = N/, so #world}{\?’R}(Q’S) =b-NL.
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To complete the reduction, consider a sentence ¢ that says that the simulated computation
has just finished writing another sequence element, and the denotation of ¢ corresponds to a cell
in that output containing the symbol 1. Assume that the last sequence element written in the
prefix corresponding to domain size N is a/b. Note that if there are models of ¢ A g of domain
size N, then there are in fact a - N! such models over {¢, R} (corresponding to the a choices
for the denotation of ¢). In this case Pri(p|fg) has value a/b. It follows that the sequence
Pri (¢|6g), for increasing N, is precisely the sequence generated by S interspersed with zeros at
domain sizes corresponding to computations that have not just output a new value. Note that
both persistent and intermittent limits are well defined for this sequence. If this limit exists at
all, it must have value zero, and this will be the case just if the sequence generated by S has
this property. This proves the lower bound. We remark that the use of an extra constant c is
not necessary in our proof; it can be eliminated as discussed in Section 3.2.

To prove the upper bound, note that the question of existence for OOCPrY (¢|f) can be
stated as: “Is it true that for all integers M, there exist rational numbers 1 < r9 and integers
Ny and Ny > M such that for all N > Ny, (1) #worldy, () # 0, (2) if #world¥(0) # 0, then
Priy(pl0) € [r1,72], and (3) roa—r1 < 1/M?” The unquantified part is clearly recursive, showing
that the problem of deciding whether OOPTY (|6) exists is in II3. We can state the problem of
deciding whether COPrY (¢|f) exists as follows: “Is it true that for all integers M, there exist
rational numbers 71 < r9 and an integer Ny such that for all N > Ny, (1) #world%(G) # 0,
(2) Priy(pld) € [r1,72], and (3) 7 — 7 < 1/M?” Thus, the problem of deciding whether
OOPrY (¢]0) exists is also in I13. I

4.3 Computing the limit

Even if we have an oracle that will tell us whether the conditional probability is well defined
and whether it exists, it is difficult to compute the asymptotic probability. Indeed, given any
nontrivial interval (one not of the form [0, 1]), it is even difficult to tell whether the asymptotic
probability is in the interval.

Theorem 4.5: Let ® be a vocabulary containing at least one non-unary predicate symbol, and
let r,r1,7m2 € [0,1] be rational numbers such that r1 < ro. For sentences ¢,0 € L(P), given an
oracle for deciding whether COPrY (p|0) (resp., OOPrY (p|0)) exists,

(a) the problem of deciding whether OOPTY (p|0) = r (resp., OOPTY (pl0) = r) is 113-
complete,

(b) if [r1,m2] # [0,1], then the problem of deciding whether COPrY (¢|0) € [ri,r2] (resp.,
OOPTY (¢]6) € [r1,79]) is T13-complete,

(c) if 11 # 1o, then the problem of deciding if COPrY (|0) € (r1,12) (resp., OOPTY (¢|0) €

(r1,72)) is £9-complete.

Proof: We start with part (a). Just as with our earlier results, the upper bound is the easier
part. This problem can be stated as “For all M, does there exist an N > M such that
Hworld% () > 0, and [Pr¥(p|0) —r| < 1/M?” Tt is easy to see that this sentence has the
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appropriate form for I19. Furthermore, it is true just if there is some subsequence of domain
sizes such that the asymptotic probability, when restricted to these sizes, has value r. If the
sequence as a whole has a limit at all (and we can check this with the oracle) then this limit
must also be 7.

To prove the lower bound, we proceed just as in the proof of Theorem 4.1 by reducing the
problem “Does a Turing machine reach a specified state ¢, infinitely often?” to the problem of
deciding whether the asymptotic probability is . Let M be an arbitrary Turing machine. As
discussed in Section 3.2, we can find a sentence Oy € L({R}) such that finite models of O
correspond naturally to prefixes of computations of M.

Our next step is to construct sentences ¢, and 6, such that Pry(¢,|0,) = r, for all N.
Suppose r = a/b. Choose k such that 2¥ > b. We can easily construct propositional formulas o,
and [, using k primitive propositions p1, ..., pg such that G, has exactly b satisfying assignments
and o, A B, has exactly a satisfying assignments. Let ¢, and 6, be the sentences that result by
replacing occurrences of the primitive proposition p; in a,. or 3, by P;(c), where P; is a unary
predicate symbol and ¢ is a constant symbol. It is ea sy to see that Priy(p,|0,.) = r for all N.

Let @ be a unary predicate not among { Py, ..., Py}, and let 6’ be a sentence asserting that
there is exactly one domain element satisfying @, and that this element corresponds to one of
the tape cells representing the head position when the machine is in state gs. Define 6 to be
OM A O A (0" VY2 Q(x)). For any domain size N, let ¢t denote the number of times the machine
has reached ¢s in the computation so far. The sentence 6 has tx + 1 times as many models
over {R, P1,..., P, @Q,c} as the sentence Oz A 6, has over {R, P, ..., Py, c}. We now consider
two cases: r < 1 and r = 1. If r < 1, let ¢ be simply ¢, V (—¢, AVz Q(x)). It is easy to see
that Pri(|0) is r + (1 — r)/(tny + 1). If M reaches ¢ finitely often, say ¢ times, the limit as
N — ocoisr+ (1 —r)/(t +1), otherwise the limit is . The limit always exists, so our oracle is
not helpful. This proves the required lower bound if r < 1. If » = 1, then we can take 6 to be
Om A (0 VVz Q(x)) and ¢ to be =V Q(z). In this case, Prly(¢|0) is tx/(tn + 1); therefore, the
limit is 1 if M reaches ¢ infinitely often, and strictly less than 1 otherwise. Again, the lower
bound follows. Note that, as discussed in Section 3.2, we can avoid actually using new unary
predicates and constants by encoding them with the binary predicate R.

For part (b), the upper bound follows using much the same arguments as the upper bound
for part (a). For the lower bound, we also proceed much as in part (a). Suppose we are given
an interval [ry, 2] with 79 < 1, and a Turing machine M. Using the techniques of part (a), we
can construct sentences ¢ and 6 such that OOPrY. (]f) and COPrY (¢]@) are both well defined,
and such that the asymptotic probability is ro if M reaches state ¢ infinitely often, and strictly
greater than ro otherwise. This proves the lower bound in this case. If ro = 1, we use similar
arguments to construct sentences ¢ and 6 such that the asymptotic conditional probability is
rq if M reaches state ¢s infinitely often, and is strictly less than r otherwise. Again, the lower
bound follows.

Finally, for part (c), observe that the asymptotic probability is in (r1,r2) iff it is not in
[0,71] U [r2,1]. The arguments of part (b) showing that checking whether the asymptotic
probability is in a closed interval is TI3-complete can be extended without difficulty to dealing
with the union of two closed intervals. Thus, the problem of deciding whether the asymptotic
probability is in an open interval is Eg—complete. |
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It is easy to see that analogues to Theorems 4.4 and 4.5 hold for the random-structures
method as well. The upper bounds hold with no change in proof. The same is true for the
lower bounds as well, since, as we observed in Section 3.2, the sentences constructed to show
that the lower bounds hold are true only in rigid structures (and therefore, random worlds and
random structures agree).

4.4 Eliminating Equality

At first glance, it seems that the proofs of all the above results make heavy use of equality. As
we now show, we can eliminate the use of equality from most of these results, at the price of
adding two more binary predicate symbols to the vocabulary.

Theorem 4.6: Suppose G and E are binary predicate symbols not appearing in ®©, and p,0 €
L(®) are such that #world%(0) is a non-decreasing function of N. Then we can find sentences
¢,0 € L7 (PU{G, E}) such that

lim (Pry(|0) — Pry(£6")) = 0.

N—o00

Proof: The idea of the proof is somewhat similar to that used in [KV90] to eliminate equality.
Let ¢ and 6 be as in the hypotheses of the theorem. Define #F to be the result of replacing all
subformulas of 6 of the form t; = to by E(t1,t2); we define ¢ similarly. Thus, we are using
FE to represent equality. Let n be a conjunction of formulas that force E to be an equivalence
relation, as well as a congruence on G and on all symbols in ®. Thus, a typical conjunct of n
(which in fact forces E to be a congruence on G) has the form:

Vey2(E(r,y) = (G(z,2) & Gy, 2)) A Gz, 1) < G(2,9))))-

Let 0 be 6F An, and ¢’ be ©F.

As we now show, there are many more models of 6" of size N where E is true equality than
there are where F is some equivalence relation other than equality. To simplify the notation,
we write wy instead of #world%(6). It is easy to see that there are precisely wy - 2V * models
of size N of ' over ® U{G, E'} where F is equality: for every model of size N of 6 over ®, there
are 2V° models of ¢/ , because the choice of G is unrestricted.

Now we must get an estimate on the number of models of # where E is an equivalence

relation, but not equality. It turns out that the crucial factor is the number of equivalence
classes into which F partitions the domain. Let {JZ } be the number of ways of partitioning N

elements into exactly k equivalence classes. ({]IX } is known as a Stirling number of the second
kind; see [GKP89].) It is easy to see that there are wy, - {J,X } 2+ models of 6 where E partitions
the domain into k£ equivalence classes, since for each such way, there are 2% choices for G, and
wy, choices for the denotations of the predicates in ® that make 8% true. Thus, our goal is to
show that (38" wg - {J,g} -2k - 2N% asymptotically converges to 0.

To do this, we need a good estimate on {JZ} We begin by showing that (]Z)N! is an
overestimate for {]IX }. To see this, consider any partition, order the equivalence classes by
the minimal elements appearing in them, and order the elements in an equivalence class in
increasing order. This gives us an ordering of the N elements in the domain. Suppose the
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equivalence classes (listed in this order) have size nj,...,ng. This corresponds to choosing
elements ni,n1 + no,...,n1 + --- + ng from the domain. Thus, with each partition into &
equivalence classes, we can associate a unique pair consisting of a permutation and a choice of
k elements out of V.

This estimate suffices for values of k which are relatively small compared to N. We use a
finer estimate for {JIX }if k > N —log N. In this case, at least k —log N equivalence classes must
have size 1. The remaining log N equivalence classes partition at most N — (k—log N) < 2log N
elements. Thus, a bound on {J: } in this case is given by

N N — (k—logN) < N 2log N
k—log N log N - \N —2logN log N
N 2log N

< !

- (N—2logN><logN>(210gN)

N
< ( ) 92108 N (2]og N)!

N —2log N
— N! 2log N
(N —2log N)!

< N2 log N 22 log N
22 log? N+21log N

Thus, we have that

N-1 N—log N N-1
N 2 N 2 N 2
E N L E . ok E .9k
k=1 k=1 k=N—log N+1

- ) N—log N N ) N-—1 )
' k

k=1 k=N—log N+1
9Nlog N o(N—log N)’>9N 4 92 log? N+2log Ng(N-1)>+1

IN

QNLN log N+N+log? N + 2N272N+2 log? N+2log N+2

VAN VANIVAN

2N27Q(N) '

Let o be the formula FE(z,y) < x = y, which says that E is true equality. (Note that o is
not in L~ (PU{G, E}), since it mentions =, but that is not relevant to the discussion below.) It
now easily follows that for any € > 0, we can choose Ny large enough, so that for any N > Ny,

S w - {2

Pry(-ol8') <

wy - 2N?
N—1 (N 2
< WN D {k}Qk
- wy - 2V
9N2—Q(N)
S o= 279N < /2.
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Therefore, since Priy(¢'|0" A o) = Priy(¢]0), it follows that

[Priy(¢'16") — Priv(l0)|

|[Priv (16" A o) - Priy(a]0) + Priv (/10" A o) - Prij(=ol6")] — Priy(v]0)]
IPri (¢l60) (1 = Priy(o]6')] + [Priy(—o]6")]

<
< €/2+¢€¢/2=¢€,

thus completing the proof. 1

Using Theorem 4.6, we can show analogues to most of our results for the language with
equality. First, we can immediately deduce the following corollary to Theorem 3.3.

Corollary 4.7: Let A be any computable reqular matriz transform, and let ® be a vocabulary
containing at least three non-unary predicate symbols. There exist ¢, 0 € L(P) such that the
A-transform of the sequence Priy(p|0) (resp., Pr}g\}q)(gp\ﬁ)) exists, but does not converge.

Proof: It is easy to verify that for the 6 used in the proof of Theorem 3.3, it is indeed the case
that #world% (0) is a non-decreasing function of N. I

We now show that similar analogues to most of the complexity results of this section also
hold. The exceptions are Theorem 4.1 and Corollary 4.2.

For a language with no equality, OOPrY (¢|0) is well defined iff SOPrY (¢|6) is well defined
iff @ is satisfiable for some model. This is true because if 8 is satisfied in some model of size NV,
then it is also satisfied in some model of size N’ for every N’ > N. As a consequence, we can
show:

Theorem 4.8: Let @ be a vocabulary containing at least two non-unary predicate symbols. For
0,0 € L7 (D), the problem of deciding if OOPTY (¢|0) (resp., COPrY (¢|0)) is well defined is
r.e.-complete.

Proof: We can state the problem of deciding whether OOPrY (¢|0) is well defined as follows:
Does there exist an N > 0 for which #world%(0) > 0. The unquantified part is clearly recursive,
thus proving the upper bound. For the lower bound, we proceed as before. For a given Turing
machine M, we let Oy encode a prefix of the computation of M on empty input which is a
complete prefix currently in an accepting state. Let 915[ be the same formula, but with equality
replaced by the binary predicate E, as in the proof of Theorem 4.6. Let 1 be the formula forcing
FE to be an equivalence relation and a congruence on R. The sentence 91‘\5/[ A n is satisfiable in
infinitely many domain sizes iff it is satisfiable for some domain size iff M halts. Note that we
did not need the additional predicate G in this proof. 1

We now show that the remaining complexity results do carry over. It is clear that all our
upper bounds hold trivially for the language without equality. We consider the lower bounds,
one by one.

Theorem 4.9: Let ® be a vocabulary containing at least three non-unary predicate symbols.
For sentences ¢,0 € L™ (), the problem of deciding if COPrY (]0) (resp., OOPrY (¢|0)) exists
is I13-complete. The lower bound holds even if we have an oracle that tells us whether the limit
is well defined.
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Proof: The sentence fg in Theorem 4.4 does not satisfy the requirement of Theorem 4.6, since
#world%(@’s) = N!- b, where a/b is the is the most recent sequence value generated by S
in the computation so far. The values of b do not necessarily form a non-decreasing sequence.
However, it is easy to transform S to an equivalent Turing machine S’, that outputs the rationals
in a non-reduced form satisfying the constraint. Using this transformation, the result follows
from Theorems 4.4 and 4.6. I

Theorem 4.10: Let ® be a vocabulary containing at least three binary predicates, and let
r,r1,72 € [0,1] be rational numbers such that r1 < ro. For sentences ¢,0 € L™ (®), given an
oracle for deciding if COPrY (]0) (resp., OAOPTY (]6)) exists,

(a) the problem of deciding whether OGOPTY (pl0) = r (resp., OOPTY (plf) = r) is 113-
complete,

(b) if [r1,m2) # [0,1], then the problem of deciding whether COPrY (¢|0) € [ri,r2] (resp.,
OOPTY (¢]6) € [r1,72]) is 13-complete,

(c) if 11 # 1o, then the problem of deciding if COPrY (¢|0) € (r1,12) (resp., OOPTY (¢|0) €
(r1,72)) is ¥9-complete.

Proof: It can be verified that the sentences constructed in the proof of Theorem 4.5 satisfy
the constraints of Theorem 4.6. 1

We can trivially obtain analogues to the results in this section for the random-structures
method by adding one more binary predicate to the language (not used in the relevant formulas),
and using Proposition 2.6. For example, we can show that if ® contains at least four non-
unary predicate symbols, then for o, 6 € £7(®), the problem of deciding if OOPr%2(0|6) (or
OOPrs®(¢]6)) exists is [I3-complete. Similar analogues to the other results in that section also
hold. Details are left to the reader.

5 Is there any hope?

These results show that most interesting problems regarding asymptotic probabilities are badly
undecidable in general. Are there restricted sublanguages for which these questions become
tractable, or at least decidable?

All of our negative results so far depend on having at least one non-unary predicate symbol
in the vocabulary. In fact, it clearly suffices to have the non-unary predicate symbols appear
only in 6. However, as we indicated in the introduction, this additional expressive power of
0 is essential. If we restrict 6 to refer only to unary predicates and constants, many of the
problems we encounter in the general case disappear. This holds even if ¢ can refer to arbitrary
predicates. In the companion paper [GHK93] we focus on this important special case. Here,
we consider one other case.

A close look at our proofs in the previous sections shows that we typically started by
constructing sentences of low quantification depth, that use (among other things) an unbounded
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number of unary predicates. For example, the original construction of the sentences encoding
computations of Turing machines used a unary predicate for every state of the machine. We then
explained how to encode everything using only one binary predicate. In the process of doing
this encoding, we had to introduce additional quantifiers (for example, an existential quantifier
for every unary predicate eliminated). Thus, our undecidability results seem to require one of
two things: an unbounded vocabulary (in terms of either the number of predicates or of their
arity), or unbounded quantification depth. Do we really need both? It is actually easy to show
that the answer is yes.

Definition 5.1: Define d(§) to be the depth of quantifier nesting in the formula &:

Let L4(®) consist of all sentences ¢ € L(®) such that ¢ has quantification depth at most d.

Theorem 5.2: For all d, there exists a Turing machine My such that for all v,0 € L4(P),
My decides in time linear in the length of ¢ and 6 whether COPrY (¢|0) (resp., OOPrY (]0),
OOPr3® (0]6), OOPrE2(p|6)) is well defined, if so whether it exists, and if it exists computes
an arbitrarily good rational approximation to its value.

Proof: Let L£(®) consist of all formulas (not necessarily sentences) of quantification depth
at most ¢ that mention only the variables x1,...,z4. Notice that there is an algorithm that
runs in linear time that effectively converts a sentence in L4(®) to a sentence in L4(®). We
now show that (a) we can effectively find a finite set ©¢ of formulas such that every formula in
Ld(®) is equivalent to a formula in $¢, and (b) there is a linear time algorithm that effectively
converts a formula in £¢(®) to an equivalent formula in %¢. This is sufficient to show that any
problem—including all those relating to conditional probabilities—whose inputs are formulas
in E?(q)) and whose outputs only depend on the semantics of formulas, is solvable in linear
time. This is because there exists a constant-time algorithm—essentially a lookup table—that,
given a formula in Eg, outputs the correct response. So, given any formula, we can find the
equivalent formula in Eld, and use this algorithm to obtain the appropriate output. Note that
we cannot necessarily give an effective construction that produces the lookup table.

We first prove the existence of Eg for each fixed d by induction on . For the base case
i = 0, observe that our assumptions imply that there are only finitely many distinct “literals”
consisting of a predicate symbol, followed by the appropriate number of arguments drawn from
the constants in ® and x1,...x4. (For the purpose of this proof, we treat equality just like any
other binary predicate.) Every formula in £3(®) is a Boolean combination of these literals, and
there are only finitely many non-equivalent Boolean combinations of formulas in a finite set.
We can effectively construct a set 28 consisting of one representative of each equivalence class
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of equivalent formulas. For later ease of exposition, we assume that if the equivalence class
includes a literal, then that is the representative chosen to be in Zg.

For the inductive step, suppose that we have constructed Ef. Every formula in £f+1(<b) is
equivalent to a Boolean combination of formulas of the form Qx;, where j < d, ¢ has depth
at most ¢, and @ is either 3,V, or is absent altogether. By the inductive hypothesis, we can
replace 1 by an equivalent formula oy € Zgl. Therefore, every formula in .CfH(CI)) is equivalent
to a Boolean combination of formulas of the form Qx; oy, where j < d and oy, € Eg. Since Zld
is finite and j < d, this is a Boolean combination of formulas in a finite set. Using the fact that
there are only finitely many inequivalent Boolean combinations of formulas in a finite set, we
can again construct a finite set Eflﬂ extending E? for which the result follows.

To complete the proof, we need to show how to determine the appropriate o € Zf given a
sentence £ € E;-i(CID). We assume that £ is fully parenthesized. First, it is clear that there exists
a constant time algorithm (a lookup table) such that: given a formula of the form o1 A o9, 071,
or dx; o1, for 01,09 € E;-i, it finds an equivalent formula in Ef. This is easy to see because, as
Egl is finite, there are only a finite number of possible inputs.

We now proceed by reading ¢ from left to right, doing the following:

1. push all literals and operators (Boolean connectives and quantifiers) on a stack as they
are encountered,

2. when we encounter a right parenthesis, pop the immediately preceding symbols off the
stack, so as to obtain a subformula of the form o1 A 02, =01, or 3z; oy,

3. find the formula o € E? which is equivalent to the popped subformula,

4. push o back onto the stack.

It is straightforward to prove by induction that in Step 2, the formulas o; and o9 are both in
¥¢. The base case follows by our assumption about ¢ containing all literals. The inductive
step follows by the construction of the lookup table algorithm. Moreover, the subformula o
pushed onto the stack in Step 4 is logically equivalent to the formula it replaces. It follows that
after £ is read, there is exactly one formula on the stack, which is equivalent to &.

Given ® and d, it is easy to construct E;fl and a Turing machine that, for each pair of
formulas ¢,0 € E?(@), finds the equivalent formulas o,,09 € Eg. Given that, it remains
only to construct a lookup table that tells us, for any formulas o,,09 € Zf, the behavior of
OOPrY (p|6) (DOPTY (¢]d), ©OPrs®(p|0), OOPrs®(p|6)). We can easily construct a finite
set of linear-time Turing machines, corresponding to the different possible lookup tables. One
of these will allow us to correctly determine the behavior of the asymptotic probability (well
definedness, existence, and value of limit). 1

The proof of the previous theorem says that, for each d, there exist lookup tables that effec-
tively determine the behavior of the asymptotic probability for sentences in L£4(®). Moreover,
it shows that we can effectively construct a finite set of lookup tables, one of which is bound
to be the right one. Unfortunately, we cannot effectively determine which one is the right one,
for if we could, we could effectively construct My given ® and d, and this would contradict our
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earlier undecidability results. Thus, even for this extremely restrictive sublanguage we cannot
effectively construct algorithms for computing asymptotic conditional probabilities.
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